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Abstract—The increasing use of smart meters enables the
monitoring and diagnostics of the underlying systems. The
application of data analytics methods can help to automate
monitoring and diagnostics such that human intervention is
limited to the situations where and when it is necessary. In
a smart grid, diagnostics can relate to faulty smart meters
and unusual consumption, corresponding to point anomalies
and contextual anomalies. A Deep Neural Network Regression,
an Autoencoder with reconstruction, and the encoder of the
Autoencoder are proposed for automated anomaly detection. The
three models are evaluated on real-world building load profiles
of a university campus containing such anomalies. The results
demonstrate that the proposed models have superior detection
accuracies over benchmarks and differ in the discrimination
between anomalies and normal electrical load profiles. At the
same time, the models correctly identify different anomalous
electrical load profiles that were wrongly labeled as normal.

Index Terms—Anomaly Detection, Building Load Profiles,
Load Analysis, Deep Neural Network, Autoencoder

I. INTRODUCTION

Energy use in buildings accounts for about one-third of the
world’s final energy consumption [1]. Emissions caused by
lighting and HVAC (heating, ventilation and air-conditioning)
systems in buildings play a key role in contributing to global
warming and climate change. At the same time, faulty equip-
ment in buildings, the energy wasting behavior of their users,
and inappropriate control strategies constitute a substantial
energy saving potential. For this reason, energy management
in the managed facilities is increasingly important for the
responsible facility management (FM) departments.

In the field of building energy management, the analysis of
building operations, equipment status, and equipment failures
is a common problem [2]. With the increasing deployment
of smart meters and other sensors, FM departments focus
more strongly on monitoring the managed facilities. Using data
analytic methods, one of their goals is an automated monitor-
ing system that prompts human intervention only where and
when required. In this context, two typical anomalies, serving
as use cases for such a monitoring in a smart grid, are the
identification of faulty smart meters and unusual consumption.

Generally, any kind of forecasting model [3] could serve
as a basis for detecting these anomalies by considering large

deviations from the forecasting model as anomalies. This
paper examines three specific solutions for detecting the two
aforementioned anomalies that we manually label in our
data set. A Deep Neural Network Regression (DNNR), an
Autoencoder with reconstruction (AER), and the encoder of
the Autoencoder (EAE) are applied to a real-world building
load profiles containing such anomalies. The proposed models
are compared with each other and two benchmarks, a naive
model and a Support Vector Regression (SVR), regarding their
detection accuracy in both use cases. The ultimate goal is
to provide the FM department with an automated machine
learning-based solution that facilitates the monitoring and
diagnostics of the managed resources in a smart grid.

The remainder of this paper is organized as follows: Sec-
tion II presents related work. Section III gives an overview
of the used data and preprocessing. Section IV defines the
anomalies considered in this work. Section V describes the
applied anomaly detection models and Section VI presents
their evaluation. Finally, Section VII gives a conclusion.

II. RELATED WORK

Despite various other promising approaches regarding
anomaly detection such as noise clustering [4] and Super
State Hidden Markov Models [5], this section reviews anomaly
detection literature that

• focuses on smart meter failures or unusual energy con-
sumption data of a building as well as

• employs a Support Vector Regression (SVR), a Deep
Neural Network Regression (DNNR), or an Autoencoder
(AE).

In [6], electrical energy consumption data are investigated
with a SVR and a linear regression regarding both usual
load modeling and anomaly detection. Similarly, a deep semi-
supervised convolutional neural network is proposed and com-
pared with a Fully Connected AE (FCAE), a Convolutional
AE (CAE), and a Support Vector Machine (SVM) in [7].
In [8], recorded electrical power data serve as a basis for
evaluating four approaches: the Classification And Regression
Tree (CART) and k-means clustering, each together with the
Generalized Extreme Studentized Deviate (GESD) algorithm,



Density-Based Spatial Clustering of Applications with Noise
(DBSCAN), and the Artificial Neural Networks and Basic
Ensembling Method (ANN BEM).

Other works do not only compare but also rather combine
different methods. One such ensemble approach is the combi-
nation of an AE with Random Forest and a SVR in [9]. In [10],
an autoencoder-based ensemble method is developed taking
into account different architectures and training schemes in
order to identify anomalies in an unsupervised manner.

To the best of our knowledge, no previous studies have
compared SVR, DNNR, and AE with regard to detecting smart
meter failures and unusual energy consumption in the building
energy domain.

III. DATA OVERVIEW AND PREPROCESSING

This section gives a short overview of the available data and
the preprocessing carried out. Our case study uses the real-
world data presented in [11]. The data set contains readings
of smart meters that collect the electricity consumption every
15 minutes over a period of about 10 years (from January 1,
2006 to May 6, 2015).

Furthermore, we make use of environmental data collected
at a 200-meter high meteorological tower on the campus.
Sensors measure the mean and the maximum of various meteo-
rological parameters at different altitudes on the tower every 10
minutes. For our case study, we only consider the parameters
that have a close correlation with energy consumption, i.e.
outside temperature, illumination, and humidity.

Within the electrical load data, some smart meters have
unusually high quarterly consumption rates, probably due to
a replacement or reset. We replace such values with the
last-known values. Since we have two different temporal
resolutions, we also convert the electrical energy consumption
data from one sample every 15 minutes to one sample every
10 minutes by linear interpolation in order to align them with
the environmental data. Finally, the time series of each smart
meter are segmented into days (0:00 to 24:00) to obtain the
electrical load profiles for our analysis.

IV. ANOMALY DEFINITION

In this section, we present the definition of point anomalies
and contextual anomalies that we identify in our data set.

A. Point anomaly

If an individual data instance can be considered as anoma-
lous with respect to the rest of data, then the instance is termed
a point anomaly [12]. Since we consider electrical load profiles
of one day, a point anomaly refers to up to several anomalous
hours within such a day.

In our data set, we find such anomalous patterns. The smart
meters sometimes report several zero values followed by a
large leap. This leap is roughly equal to the accumulated value
of missing preceding readings. We can reasonably infer that
the smart meters fail to report readings for a certain period
of time and then report the accumulated high value after their
recovery. We review the data of a building (i.e. Building A)

for the second five years and manually label these anomalous
patterns as point anomalies.

B. Contextual anomaly

If a data instance is anomalous in a specific context but
not otherwise, then it is termed a contextual anomaly [12]. In
contrast to the point anomaly, the detection of a contextual
anomaly requires both the electrical load profile and—as
additional information—calendar and public holiday data.

The data set contains various days with unexpected patterns
such as “Proximity days”. For some working days, the smart
meters report an electrical energy consumption that is more
like that of a non-workday, for instance April 30, 2012. As
a theoretically normal workday, it is followed by the Labor
Day as a public holiday on May 1. We assume that people
commonly enjoy a four-day weekend and return to work on
May 2, thus causing a lower electricity consumption on April
30. We label these proximity days as contextual anomalies in
the data of Building A for the second five years.

V. ANOMALY DETECTION MODELS

In this section, we present the applied anomaly detection
models and their corresponding anomaly scores. Two types
of models are involved, i.e. regression-based models and
autoencoder-based models. A naive model and a support vector
regression model are used as benchmarks.

A. Naive model

Since a clear weekly pattern can be observed in the building
load profiles, we assume that it is mainly caused by the people
studying and working on the campus and their tendency to
repeat their behavior weekly. Therefore, we use the electrical
load profile of the same building in the previous week as the
prediction of our naive model. The corresponding anomaly
score S is defined as the Mean Squared Error (MSE) between
the predicted electrical load and the measured electrical load:

Sregression =
1

n

n∑
k=1

(xmeasured[k]− xprediction[k])
2 (1)

B. Regression-based models

Regression-based anomaly detection models predict the
electrical load and compare it to the measured electrical load.
We use the MSE of the predicted and the measured electrical
load as shown in Equ. (1) as the anomaly score for the
regression-based models. For these models, we also make use
of historical electrical load data and environmental data as
input features as shown in Table I. From the many methods
proposed for load profile prediction, we adopt Support Vector
Regression (SVR) [13] and Deep Neural Network Regression
(DNNR) [14] as regression-based models:

1) SVR: Since the load profile is non-linear, we use a Radial
Basis Function (RBF) kernel for the SVR model. We conduct
a grid search and cross-validation to optimize the parameters
C and Gamma.



TABLE I: Description of the features used for both regression-
based models.

Feature Description

Year 2006, 2007, ..., 2015
Month 1, 2, 3, ..., 12
Day 1, 2, 3, ..., 31
Weekday 1, 2, 3, ..., 7
Hour 1, 2, 3, ..., 24
Minute 0, 10, 20, 30, 40, 50
Public Holiday 0, 1
Humidity, Illumination, Outside temperature 0-1 (normalized)

TABLE II: Description of the features used for both
autoencoder-based models.

Feature Description

Year 2006, 2007, ..., 2015
Month 1, 2, 3, ..., 12
Day 1, 2, 3, ..., 31
Weekday 1, 2, 3, ..., 7
Public Holiday 0, 1
Ea {a = 1, ..., 144} Load profile of one day
Daily average temperature 0-1 (normalized)
Daily average illumination 0-1 (normalized)
Daily average humidity 0-1 (normalized)
Daily temperature difference 0-1 (normalized)
Daily maximum illumination 0-1 (normalized)
Daily humidity difference 0-1 (normalized)

2) DNNR: Our DNNR has 10 neurons in the input layer and
one neuron in the output layer that represents the electricity
consumption within 10 minutes. The structure of DNNR model
is a feed forward network (FFN) with four hidden layers. The
number of neurons of each hidden layer is 8, 6, 4, 2. The
Rectified Linear Unit (ReLU) is used as the activation function
in each layer. The model is optimized by the Adam optimizer
[15] that automatically adjusts the learning rate during the
training of the model.

C. Autoencoder-based models

An Autoencoder is a type of feed-forward neural network
that tries to minimize the difference between the output x and
the input x [16]. We apply both a complete Autoencoder as
well as only its encoder for anomaly detection in this work.
To distinguish them, we use the names Autoencoder with
reconstruction (AER) and Encoder of the Autoencoder (EAE)
respectively. The features used as input for both autoencoder-
based models are shown in Table II. Each input vector has
155 dimensions, consisting of time information, the electrical
load profile of one day, and environmental factors.

1) AER: Intuitively, the Autoencoder trained with normal
data is likely to generate a larger |x−x| value when it is applied
to anomalies due to the inherent difference between anomalies
and normal data. The assumption is that the anomalies have
more principle components than normal data. By tuning the
parameters of the Autoencoder, we expect the model to output
a small |x−x| value for normal data and to output a large |x−x|
value for anomalies. Naturally, |x− x| is used as an anomaly
score for the AER model:

SAER = |x− x| (2)

To optimize this parameter, we start with 10 hidden neurons
and gradually reduce the number until the reconstruction loss
is large enough for anomalies and still low for normal data.

2) EAE: The EAE model is merely the encoder of the AER
model. Generally, the encoder compresses the input data into
a lower dimensional space. Fig. 1 illustrates a typical output
of such an encoder. Clearly, there are two clusters. The green
points are normal non-workdays, the blue points are normal
workdays, and the red points are labeled contextual anomalies.
We can observe that the anomalies lie in between these two
clusters and typically in a sparse region, i.e. they do not have
many close neighbors. We therefore define the anomaly score
for the EAE model as follows:

SEAE = Dc ∗Dk (3)

Dc is the distance between the data point and the cluster
center. Dk is the mean distance between the data point and its
k nearest neighbors.

VI. EVALUATION

In this section, we evaluate the three proposed anomaly
detection models and the benchmark models on the electrical
load profiles of building A.

Building A is an office building with about 9000 m2 floor
space. For Building A, electrical load profiles of 3414 days
exist in total in the data set. We train the models on the data
of the first five years and test the models on the data of the
second five years. The second five years of data contain the
days labeled as anomalies. Among the test data set, there are
1169 normal days, 19 instances of point anomalies, and 35
instances of contextual anomalies. The Area Under the Curve
(AUC) is used as the metric for evaluate the models.

A. Point anomaly detection

Fig. 2 shows the ROC curves of the five models regarding
the point anomaly detection. In this context, anomalies are
referred to as being positive. The AER model performs the
best with an AUC value of 0.95. It is followed by the DNNR
model with an AUC value of 0.9. The EAE (AUC = 0.73)
and SVR (AUC = 0.5) models perform worse than the naive
model (AUC = 0.79), which means that they are not suitable
for detecting point anomalies.

B. Contextual anomaly detection

Fig. 3 presents the ROC curves of the five models concerned
with the contextual anomaly detection. The DNNR model
performs the best among all five models with an AUC value
that approximately equals 1. The EAE model also performs
well with an AUC value of 0.99. The performance of the
AER model decreases considerably when detecting contex-
tual anomalies (AUC = 0.66) compared with detecting point
anomalies (AUC = 0.95). The naive model also performs
well when detecting both point anomalies (AUC = 0.79) and



0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

0.000.250.500.751.001.251.501.75

0.5

1.0

1.5

2.0

2.5

Fig. 1: Typical output of the EAE
model with normal non-workdays
(green points), normal workdays (blue
points), labeled contextual anomalies
(red points), and gradual colors for
better readability.
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Fig. 2: Comparison of ROC curves
across models regarding the detection of
point anomalies.
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Fig. 3: Comparison of ROC curves
across models regarding the detection of
contextual anomalies.
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Fig. 4: Comparison of anomaly score distributions across the DNNR, AER, and EAE models, where Normal covers all load
profiles labeled as normal, PA are point anomalies, and CA are contextual anomalies.

contextual anomalies (AUC = 0.83). The SVR model once
again has a worse performance (AUC = 0.37) than the naive
model. The reasons for the limited performance of the SVR
model when detecting both point anomalies and contextual
anomalies are not clear and will be investigated in future
research.

C. Models’ discrimination quality

In order to evaluate the proposed models’ discrimination
quality, we visualize the anomaly score distributions for all
models in Fig. 4. This shows the anomaly score of all
load profiles, the load profiles labeled as normal, the labeled
point anomalies, and the labeled contextual anomalies for
each model. The anomaly score distributions further confirm
the previous observation. As shown in Fig. 4b, the AER
model distinguishes point anomalies from both normal data
and contextual anomalies well. Meanwhile, the EAE model
performs well at discriminating contextual anomalies from
normal data and point anomalies as illustrated in Fig. 4c.
Last but not least, the DNNR model separates both types of
anomalies from normal data well but cannot distinguish both
types of anomalies from each other.

D. Case study: False positives

As Fig. 4 indicates, some electrical load profiles labeled as
normal have anomaly scores so high that they are classified as
anomalies. These load profiles are referred to as False Positives
(FP). Since it is desirable to avoid such wrongly labeled load
profiles, we have a closer look at them in order to gain a
deeper understanding of the DNNR, AER, and EAE models.
For each model, we discuss one typical FP.

As shown in Fig. 5a, the measured load profile on February
21, 2012 is considerably lower than the normal electrical load
profile and the electrical load predicted by the DNNR model.
After checking the calendar, we find these days are Carnival
Festival, which is not officially a public holiday but often taken
as one by many people. Consequently, the visual inspection of
the FP leads to the conclusion that the DNNR model correctly
detects an anomalous electrical load profile that was wrongly
labeled as normal.

This finding also applies to the FPs of the AER and the
EAE models shown in Fig. 5b and Fig. 5c. However, it is
worth noting that these two models identify different FPs.
Naturally, the idea of combining both models arises so that the
resulting combination covers different types of anomalies. The
case study shows that the proposed models have the potential
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Fig. 5: Case study of False Positives (FPs) of the DNNR, AER and EAE models with the mean value of the load profiles
labeled as normal (blue) with a one sigma band, the measured load (red), and, if applicable, the predicted load (purple).

capability to detect new types of anomalies.

VII. CONCLUSION

The present paper addresses a typical challenge in the smart
grid. It considers monitoring and diagnostics by focusing on
smart meter failures and unusual electricity consumption in
real-world data. These two anomalies occur in building load
profiles of a university campus and are detected by three
different machine learning models, namely a DNNR, a AER
and a EAE model. We compare these models with each other
and two benchmarks, a naive and a SVR model, regarding
their detection accuracy for both types of anomalies.

The results show that the AER and the DNNR models
well classify point anomalies. For contextual anomalies, the
DNNR and the EAE models show the best results. Overall,
the AER, DNNR, and EAE models provide better results
than the SVR and the naive models. These three models,
however, distinguish between normal data, point anomalies,
and contextual anomalies differently. At the same time, the
DNNR, AER, and EAE models correctly identify different
kinds of anomalous electrical load profiles that were wrongly
labeled as normal ones during manual labeling.

As a consequence, future work will investigate a combi-
nation of these three best performing models and evaluate
an automated machine learning-based solution that facilitates
the monitoring and diagnostics of the managed resources for
the university’s FM department. Furthermore, we expect to
transfer the pre-trained anomaly detection models to similar
buildings and to prove a good scalability of this approach.
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