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Abstract 

The software tool was developed to automate the validation of the evaluated neutron cross sections 

files against the benchmarks which provide the differential responses. Specifically it was implemented 

for the energy and time distributions of neutrons and γ-ray spectra measured with the D-T and 
252

Cf(s.f.) neutron sources and simulated by Monte Carlo code MCNP. The master script modifies the 

MCNP input deck by selecting the desired evaluation, runs MCNP and compares the calculated 

spectra with measured ones in user defined intervals. The criteria chi-squared, either for intervals or 

for the whole measured range, was selected to judge about the performance of the evaluated cross 

section data library. The application of the developed tools for the validation of the ENDF/B-VIII.0, 

FENDL-3.1d, JEFF.3.3 and JENDL-4.0u libraries against the iron spherical benchmarks with 
252

Cf 

and D-T sources has shown that JEFF-3.3 should be considered as superable over all others libraries 

for the task of the neutron transport. However all tested libraries underestimate the neutron induced γ-

rays leakage from bulk iron by factor of two. The reliability of the validation conclusions was 

strengthened by inter-comparison of the similar benchmarks but carried out in different labs.  
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Introduction 

 

Validation of the evaluated cross sections data files against experimental benchmarks is the substantial 

and inevitable part of the reliable nuclear data evaluation process. Benchmarks usually have much 

more complicated geometry and material composition than the cross section measurement experiments 

and thus require essentially more efforts to simulate them and get a feedback on quality of the tested 

evaluation. To ease this validation process some kind of automatization was often thought and 

attempted to implement. 

For such important application as the criticality of the simplified assemblies made of fissile material a 

Database for the International Criticality Safety Benchmark Evaluation Project (DICE) at NEA Data 

Bank [1] was developed in 2001 and was regular updated since then. The validation of neutron 

transport data is performed against a single parameter – criticality coefficient Keff.  This coefficient and 

its sensitivities to the neutron cross sections were pre-calculated in DICE for the set of evaluated 

libraries and could be compared with measured ones. The later were imported for many hundreds 

relevant experiments from the International Criticality Safety Benchmark Evaluation Project 

(ICSBEP) [2]. The validation of a new evaluation versus the critical benchmarks supposes additional 

“manual” task: selection of the relevant input information from the DICE database, running 

benchmark simulation and comparison with measured Keff. 

For the benchmarks which provide the spectral responses, i.e. the energy or time-of-flight (TOF) 

spectra of radiation, the validation is considered so far as an individual “manual” job. It includes 

searching of measured data and experiment set-up models in the existing databases such as ICSBEP, 

Shielding Integral Benchmark Archive and Database (SINBAD) [3] or in original publications, 

computing and comparison in terms of Calculation over Experiment ratio C/E. In this case C/E is not a 

single value but an array for the set of secondary particle energies.  

The present situation for the neutron data benchmarking against the spectral responses is following. A 

few collections (suits) of experimental set-up models and measured results united by application or 

type of measurements do exist, even supplemented in several cases by the “private” scripts to run 

simulations. As an example we refer to the dozens Livermore 14 MeV pulsed spheres experiments [4 - 

7] and collections of the relevant input decks assembled by LANL [8, 10] or NRG [11] for the Monte 

Carlo code MCNP [12]. These authors compared the calculated neutron time-of-flight or energy 

spectra with measured ones usually graphically or as C/E ratios for preselected secondary neutron 

energy domains. 

The present report comprises the development of computational software tools to automate the 

computational analyses of fusion or fission relevant benchmark analyses. The sequence of “on-fly” 

steps includes: pick-up of desired evaluated data library, running the coupled neutron-photon transport 

simulation by MCNP, processing of its output and comparison with the experimental data, reporting 

the results of validation as C/E and χ2
 for the user selected energy or time domains or as χ2

 for the full 

range of experimental data.  

This procedure was demonstrated for the energy and TOF spectra of neutrons and γ-rays leaking from 

the iron spherical shells with 
252

Cf(s.f.) and pulsed D-T sources, measured at IPPE (Obninsk) and LLL 

(Livermore). The evaluated cross section data from libraries ENDF/B-VIII.0 [13], JEFFF-3.3 [14], 

JENDL-4.0u [15] or FENDL-3.1 [16] were validated. The ace types data required for the MCNP 

calculations were obtained by processing of the original ENDF6 formatted evaluated files with the 

help of code NJOY21 [17] or were used as provided (a case of FENDL-3.1). 

The present Report gave a special attention to the intercomparison of benchmarks measured at 

different labs to prove their consistency and representativeness for cross section validation. 

The preliminary results were presented at the meeting of Subgroup 45 (SG45) “Validation of Nuclear 

Data Libraries (VaNDaL) Project” [18] of the Working Party on International Nuclear Data Evaluation 

Co-operation (WPEC). 
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1. Description of the nuclear data validation task against the benchmark spectral responses 

 

For developing and demonstration of the automation software, we considered in this report a task of 

validation of the coupled neutron-photon transport data in the so called clean benchmarks, which have 

rather simple geometry and consists of practically single material. Concretely, we focused on the 

Energy and Time of Flight (TOF) spectra of neutrons and γ-rays leaking from the outer surface of iron 

spheres with the 
252

Cf(s.f.) or D-T sources in the centre. Obviously the developed automate procedure 

will work for more complicated benchmarks which also deliver the spectral responses. 

 

1.1. Iron sphere benchmarks with 
252

Cf source: neutron and γ-ray leakage energy spectra 

 

One of the most well described and documented experiment was carried at IPPE (Obninsk, Russian 

Federation) where the neutron and γ-ray leakage spectra from six iron spheres with diameter 15, 20, 

25, 30, 35 and 40 cm were measured by proportional hydrogen counter and stilbene crystal scintillator 

[19 - 23]. Fig. 1.1 shows the lay-out of this experiment: the iron sphere configuration with the 
252

Cf 

source located in its center, detectors positioned at distance at least equal to three outer radius of 

sphere and the shadow bar to measure the room returned background. Further details of the IPPE 

experiment, the numerical experimental data and MCNP model input files are given in the ICSBEP 

handbook [2] under Entry “ALARM-CF-FE-SCHIELD-001” [23].  

 

 

 

 

Fig. 1.1.  The lay-out of the IPPE experiment (left) and arrangement of the iron sphere with cavity for 
252

Cf source closed by the iron plug (right) [19 - 23]. 

 

As an illustration Fig. 1.2 depicts the IPPE experimental data for the case of two iron spheres (Ø40 cm 

and Ø 50 cm) and the results of the Monte Carlo calculations performed with ENDF/B-VIII.0 library.  

The other known similar benchmarks were carried out at KFK (Karlsruhe, Germany) for three spheres 

[24 - 26] and at NIST (Gaithersburg, USA) but only for one sphere [27]. Their results are also plotted 

in Fig. 1.2 and demonstrate in general an agreement between three independent experiments for the 

spheres of the same diameter. The authors of NIST experiment however wrote “Agreement in the 

region below 0.1 MeV is poor and is most likely due to instrumental inaccuracies stemming from 

calibration problems with the low-energy detector” [27]. Regarding all this it becomes obvious that 

the IPPE experiment presents the data for more iron sphere thicknesses and for the larger range of 

secondary neutron energies. Thus it presents, among others with 
252

Cf source, the larger interest for 

nuclear data validation and hence it was used in the present exercise. 
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Additionally to the neutron spectra the IPPE laboratory has measured and reported the γ-ray spectra. 

They were measured by stilbene scintillation detector in the energy range 0.4 to 11 MeV. Long time it 

was a single experiment available for the users who want to benchmark the neutron induced γ-ray 

production cross sections. From the literature it was known that similar experiment was carried out in 

1977 at KFK (Karlsruhe Germany) [25] but its data were not included in the SINBAD database. Such 

deficiency of SINBAD was reported at several WPEC meetings [28, Fehler! Verweisquelle konnte 

nicht gefunden werden.]. Since then the author (S.S.) of present report has established contact with 

Prof. S.-H. Jiang, who made the KFK data on γ-ray leakage spectra available for inclusion in 

SINBAD. 

 

  

Fig. 1.2. Comparison of the spectra of neutrons leaking from Fe sphere fed by 
252

Cf(s.f.) source: IPPE 

and KFK measurements for sphere Ø40 cm (left) and IPPE vs. NIST for sphere Ø50 cm 

(right). Symbols – measurements; curves – MCNP transport calculations with ENDF/B-

VIII.0. The plotted total neutron cross section for 
nat

Fe allows to observe the anti-correlations 

with oscillations in leakage spectra. Bottom parts show corresponding C/E ratios integrated 

in selected energy intervals which capture peaks observed in the energy leakage spectra. 

 

The γ-ray spectra from the IPPE and KFK experiment for the iron shells of the same diameter 30 cm 

are compared in Fig. 1.3 (left). It is clear seen, that in interval 0.5 - 2 MeV the both experiment data 

agree within declared uncertainties 10 – 20%. Fig. 1.3 (right) depicts the KFK data for three spheres 

and results of the MCNP simulation with ENDF/B-VIII.0. 

The validation of the evaluated transport data is usually performed in terms of C/E ratio. The bottom 

parts of Figs. 1.2 and 1.3 plot the C/E ratios after integration of the experimental and calculated 

neutron leakage spectra in rather broad energy intervals, which cover peaks in spectra. As an 

intermediate summary we conclude that modern evaluated data libraries ENDF/B-VIII.0 and JEFF-3.3 

predict neutron leakage within 20% whereas the γ-ray are underestimated by ≈ 50%. It worthwhile to 

notice that authors of IPPE experiment has already highlighted such underestimation of γ-ray yield 
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[22]. We also tried to investigate the reasons and reported intermediate results at series of Nuclear 

Data experts meetings [36 - 38]. 

 

 

 

Fig. 1.3.  Comparison of the spectra of γ-rays leaking from Fe sphere fed by the 
252

Cf source: KFK vs. 

the IPPE measurements for sphere Ø30 cm (left) and all KFK spheres of Ø25 - 35 cm (right). 

Symbols – measurements; curves – MCNP transport calculations with ENDF/B-VIII.0. 

Bottom parts plot corresponding C/E ratios integrated in the energy intervals selected to 

capture the γ-ray spectra features.  

 

 

1.2. Iron sphere benchmark with D-T source: neutron TOF and energy spectra 

 

The spectra of neutrons emitted from three iron solid spheres of radii 4.46, 13.41 and 22.30 cm for a 

14 MeV neutron source have been measured between 10 keV and 14 MeV at Lawrence Livermore 

Laboratory (LLL) in 1972 [4 - 7]. These radii correspond to the mean free paths of 14 MeV neutrons 

0.9, 2.9 and 4.8 mfp which were used by authors of measurements to denote the sphere size. The 

experimental set-up, Fig. 1.4, shows that the source neutrons were produce by the pulsed d-beam stuck 

a solid tritium-titanium target. Measurements of the emitted neutron spectra were carried by the time-

of-flight technique (TOF) for two different neutron energy regions: between 2 and 15 MeV (high 

energy spectra) by the NE213 scintillator, and from a few keV to 1 MeV (low energy spectra) by the 
6
Li glass detector. The high energy spectra were measured using the collimated flight paths at 30 and 

120 degrees, while the low energy spectra were measured at 26
o
 in the center of a large enclosure.  

It has to be noted that authors have derived transmitted spectra from the ratio of measured spectra with 

sphere and without sphere [4]. It eliminates the necessity to know both the absolute neutron production 

yield and absolute detector efficiency. The TOF neutron leakage spectra as a number of neutrons per 
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nanoseconds and per source neutron versus the time bins of 2 shakes (20 ns) are presented in tabulated 

form in Report UCRL-51144 and its Addendum [4, 5] (regrettably these data are not included in 

SINBAD yet). The iron spheres neutron leakage TOF spectra from this experiment are plotted in 

Fig. 1.5. 

 

 

Fig. 1.4.  The lay-out of the LLL experiment for with iron spheres and pulsed D-T neutron source [4]. 

 

 

Fig.1.5. The time of flight spectra of neutrons leaking from LLL spheres of different radii fed by a 

pulsed D-T neutron source and registered by the NE213 scintillation detector positioned at 

indicated angles. 

 

It is worth to quote the following statement of the LLL experiment made in year 1975 [4] “… 
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interactions occur at the center of the spheres, i.e., by assuming a flight path equal to the detector-to-

tritium target distance. This is not a bad assumption, especially for the smaller spheres. However, for 

the larger spheres and for regions of pronounced structure, comparisons must always be carried out 

using the time-of-arrival spectrum.”  

Later this point was investigated and confirmed in the IPPE pulsed experiments, where spheres with 

different sizes and materials were measured by TOF as well as various methodological aspects of this 

method for massive samples were detailed studied by the Monte Carlo simulation [30 - 35]. Due to the 

extremely low threshold of the fast scintillator detector, the neutron leakage spectra were measured 

down to 100 keV, that allowed to observe the resonance structure below ≈ 1 MeV and explain its shift 

to lower energies when TOF spectra are transformed in energy ones.  

We additionally transformed the LLL TOF spectra in the neutron energy distribution. As an example 

Fig. 1.6 shows the LLL neutron leakage energy spectrum for the thickest sphere (radius 22.3 cm), 

where it is compared with the similar IPPE pulsed Fe sphere of radius 30.0 cm measured by TOF 

technique down to 0.1 MeV [35]. Since the IPPE sphere is thicker its spectrum is visibly lower. 

However the C/E ratios derived from both experiments are similar and both point to underestimation 

of neutron yield by ENDF/B-VIII.0 in secondary neutron energy interval 1 to 7 MeV. In other words, 

comparison in terms of C/E demonstrates the agreement between two independent experiments in the 

overlapping energy interval 1.8 – 14 MeV. Additionally the IPPE experimental and simulation results 

[31 - 35] demonstrate the shift of resonance structure below 1 MeV to lower energy, when measured 

TOF spectra are converted in energy representation. 

 

 

Fig. 1.6. Comparison of the spectra of neutrons leaking from Fe sphere fed by pulsed D-T neutron 

source: measurements - LLL sphere of outer radius 22.3 cm (4.8 mfp) [4, 5] and IPPE sphere 

of radius 30 cm [35]; calculations - MCNP with ENDF/B-VIII.0. Bottom part shows the C/E 

ratios obtained from integration in the selected energy intervals. 
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Taking into account the abovementioned studies and since the LLL TOF spectra have been measured 

only above 1.6 MeV were transformed the LLL TOF distributions in energy to demonstrate how 

automatization procedure works both with TOF and energy spectra. The validation of the 4.8 mfp 

thick LLL iron sphere experiment (high energy spectra at 30 degree) was selected as example (see 

next Sections). The MCNP model of the LLL benchmark was taken from Reports [8 - 10]. 

 

 

2. Modifications of the MCNP input decks for IPPE and LLL Iron spheres necessary for 

automatization 

 

To allow automation of the validation procedure the original MCNP input decks, given for the IPPE 

experiment in ICSBEP [23] or for LLL in [9], has to be modified. It was done as following (see 

example in Fig. 2.1). 

(1) Default material card for all nuclides in the task was added:  

m0  nlib=   plib=04c  $  setting default neutron and photon libraries for 

all materials in problem 

(2) Elemental carbon was replaced by isotopes 
12

C and 
13

C, since major modern evaluated cross 

section libraries have no data for natural carbon (in the cases of the JEFF-3.3 and JENDL-4.0u 

evaluations 
12

C was substituted by 
00

C): 

m1   6012   0.000388870 $ 6000 .000393076 was replaced by .000393076*0.9893 

     6013   0.000004206 $ 6013            was added       .000393076*0.0107 

(3) To get the MCNP results in the broader energy range and for more fine groups than those usually 

specified in the original input decks the new neutron or photon Tallies were added with finer energy 

bins, Fig. 2.1. 

(4) To perform validation of neutron and γ-ray leakage spectra in one run, the photon tallies were 

included in the IPPE iron input deck (in the ICSBEP database the IPPE decks for neutron and photon 

leakage are given separately). In the present auto-validation exercise we omitted the γ-rays from decay 

of 
252

Cf(s.f.). However it is still a reasonable approximation for the rather thick iron spheres, of 

diameter 50 cm or more, as was shown in [36, 37]. The reason is that for thick iron layer the Fe(n,x)γ 

reactions make the dominant contribution to the leaking γ-rays, whereas the direct gammas from 
252

Cf 

source will be absorbed. 

It is important to stress that further modifications of the original input decks are usually required to 

perform the nuclear data validation on the up-to-day level of knowledge. In particular, the prompt 

fission neutron spectrum of 
252

Cf(s.f.) given in ISCBEP decks for IPPE experiment is represented by 

the Watt distribution - it should be replaced by standard one [39]. Moreover since the neutron leakage 

spectrum was measured without time analysis (i.e. the prompt fission events were not separated from 

all others) the spectrum of delayed neutrons from the 
252

Cf(s.f.) decay should be added as it was done 

in [36 - 38].  

After all modifications the MCNP input decks renamed as  IPPE_Fe_Cf  and  LLL_Fe_DT_48  

were used in the automation nuclear data validation procedure. As an example Fig. 2.1 lists the 

fragment of the  IPPE_Fe_Cf  input deck (note that the added tallies 202 and 222 will be used for 

comparison with experimental data). 
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Fig. 2.1.  Fragment of the MCNP input file  IPPE_Fe_Cf  with modifications (highlighted by 

colour) necessary for the automation of nuclear data validation. 

message: datapath =  

xsdir             =  

 

Fe,d50cm,b8(Cf252 Benchmark Model, p.103 ALARM-CF-FE-SHIELD-001)  

1 0              -1  imp:n,p=1  

2 1  0.0848605 1 -2  imp:n,p=1  $ Iron 

3 0            2 -3  imp:n,p=1  $ vacuum 

4 2  0.0843428 3 -4  imp:n,p=1  $ Cu 

5 0            4 -5  imp:n,p=1  $ vacuum 

6 1  0.0848605 5 -6  imp:n,p=1  $ Iron sphere 

7 0            6 -7  imp:n,p=1  $ vacuum 

8 0            7 -8  imp:n,p=1  

9 0            8     imp:n,p=0  

 

1 so   0.21 

2 so   0.53 

3 so   0.61 

4 so   0.84 

5 so   0.93 

6 so  25.      $ Iron   Sphere, Outer Radius R = 10,15,20,25,30, 35cm  

7 so  75       $ Detector at distance  r = 3*R = 30,45,60,75,90,105cm  

8 so 110       $ instead of 100.cm 

 

c 

m0  nlib=   plib=04c  $ setting default n and g libraries for all materials 

c 

m1   6012  0.000388870 $ 6000 0.000393076 was replaced by .000393076*0.9893 

     6013  0.000004206 $ 6013             was added       .000393076*0.0107 

     25055       0.000343751  

     26054       0.005051712 

     26056       0.077013534 

     26057       0.001815183 

     26058       0.000243262 

m2   29063       0.058340421  $ Copper 

     29065       0.026002379 

c 

c Source Cards 

sdef pos=0 0 0 erg=d2 

sp2 -3 1.175 1.04             $ Watt fission spectrum 

c sp2 -3 1.025 2.926 

c 

c Tallies 

fc2  Neutron Leakage 0.005 - 0.75 MeV   $ it is original Tallies 

f2:n 7 

e2   0.005 0.01  0.015 0.02 0.021 0.022 0.023 0.024 0.025 0.026 

     0.027 0.028 0.029 0.03 0.032 0.034 0.036 0.038 0.04  0.042 

     0.044 0.046 0.048 0.05 0.052 0.054 0.056 0.058 0.06  0.065 

     0.07  0.075 0.08  0.085 0.09 0.095 0.1   0.11  0.12  0.13 

     0.14  0.15  0.16  0.17  0.18 0.19  0.2   0.21  0.22  0.23 

     0.24  0.25  0.26  0.27  0.28 0.29  0.3   0.32  0.34  0.36 

     0.38  0.4   0.42  0.44  0.46 0.48  0.5   0.55  0.6   0.65 

     0.7   0.75 

ft2 geb 0 0.002 10000 

sd2 1 

fc12  Neutron Leakage 0.085 - 17 MeV   $ it is original Tallies 

f12:n 7 

e12  0.085 0.09 0.095 0.1  0.11  0.12 0.13 0.14 0.15 0.16  

     0.17  0.18 0.19  0.2  0.21  0.22 0.23 0.24 0.25 0.26 

     0.27  0.28 0.29  0.3  0.32  0.34 0.36 0.38 0.4  0.42 
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     0.44  0.46 0.48  0.5  0.55  0.6  0.65 0.7  0.75 0.8 

     0.85  0.9  0.95  1    1.1   1.2  1.3  1.4  1.5  1.6 

     1.7   1.8  1.9   2    2.25  2.5  2.75 3    3.25 3.5 

     3.75  4    4.25  4.5  4.75  5    5.5  6    6.5  7 

     7.5   8    8.5   9    9.5  10   10.5 11   12   13 

     14   15   16    17 

ft12 geb 0 0.125 0 

sd12  1 

c 

fc122  Gamma Leakage 0.407 - 11.1 MeV   $ it is original Tallies 

f122:p 7 

e122  0.407  0.52  0.63   0.74   0.846   0.951   1.055   1.16   1.26  1.365 

      1.467  1.57  1.67   1.77   1.87    1.98    2.08    2.18   2.38  2.58 

      2.78   2.98  3.19   3.39   3.59    3.79    3.99    4.19   4.49  4.79 

      5.09   5.39  5.69   5.99   6.29    6.59    6.89    7.2    7.5   7.9 

      8.3    8.7   9.1    9.5    9.9    10.3    10.7    11.1 

ft122 geb 0 0.15 0 

sd122 1 

c 

 …… 

 

c ----  Tallies for Validation automatization procedure --- 

c 

fc202  Neutron Leakage 0.001 – 14.0 MeV with fine bins 

f202:n 7 

e202  0.0010 0.0012 0.0015 0.0020 0.0023 0.0025  

      0.003  6i  0.010  $ step = 0.001 MeV 

            19i  0.030  $ step = 0.001 MeV 

            14i  0.060  $ step = 0.002 MeV 

            15i  0.14   $ step = 0.005 MeV 

            15i  0.30   $ step = 0.010 MeV 

            14i  0.60   $ step = 0.020 MeV 

             7i  1.00   $ step = 0.050 MeV 

            39i  5.00   $ step = 0.100 MeV 

            24i 10.00   $ step = 0.200 MeV 

            19i 14.00   $ step = 0.200 MeV 

ft202 geb 0 0.002 10000 

sd202 1 

c 

fc222  Gamma Leakage 0.003 - 14.0 MeV with fine bins 

f222:p 7 

e222  0.003  6i  0.010  $ step = 0.001 MeV 

            19i  0.030  $ step = 0.001 MeV 

            14i  0.060  $ step = 0.002 MeV 

            15i  0.14   $ step = 0.005 MeV 

            15i  0.30   $ step = 0.010 MeV 

            14i  0.60   $ step = 0.020 MeV 

             7i  1.00   $ step = 0.050 MeV 

            39i  5.00   $ step = 0.100 MeV 

            29i 11.00   $ step = 0.200 MeV 

            14i 14.00   $ step = 0.200 MeV 

ft222 geb 0 0.15 0 

sd222 1 

c -------------------------------------------------   

mode n p 

c 

c  Print Tallies   Dump to runtp   Print mctal   MaxDumps runtp   MaxRendez    

c prdmp    1.E+9           1.E+9             1                3           0    

prdmp       j                 j              1                j       1.E+9  

print 

c 

nps 1.E+8        $ nps = 1.E+9  4x48=192cpu = 5 min 
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3. Batch script  run_auto  for on-fly modifications of the input deck, running MCNP and post 

processing 

 

Linux batch script  run_auto  is a master of automation procedure. It performs following sequence 

of operations on-fly:  

1) pick-ups the specific Benchmark and Evaluated transport Data for validation purpose; 

2) modifies the basic MCNP deck and creates temporary file  mcnp.inp; 

3) runs MCNP with file  mcnp.inp  as input; 

4) invokes the  ValiDat  code which reads and process the MCNP output (mctal) and 

experimental data files, then performs Validation of nuclear Data in terms of C/E and criteria 

χ
2
; 

5) saves results in the files which will have names relevant to the validation task.  

 

Below are the corresponding fragments of the Linux batch script  run_auto. 

(1)  As the first step the user has to select in script  run_auto  the desirable Benchmark and 

Evaluation by ordering the proper benchmark name and extension of the ACE files. In this example 

the  LLL_Fe_DT_48  and  ace  files with  ext = 03  (JEFF-3.3)  will be picked-up by MCNP (in this 

example since they are listed as the last ones): 

echo " 1: =*= Selection of Benchmark and Evaluated (ace) data library =*=" 

  benchmark="IPPE_Fe_Cf"                      # selection of IPPE benchmark 

  benchmark="LLL_Fe_DT_48"                    # selection of LLL  benchmark 

  ext="31"                                    # selection of FENDL-3.1 

  ext="04"                                    # selection of JENDL-4.0u 

  ext="80"                                    # selection of ENDF/B-VIII.0 

  ext="03"                                    # selection of JEFF-3.3 

 

(2)  At the second step, the Linux stream editor  sed  will replace the string  “nlib=”  by the ordered 

library  “nlib=03c”  and will produce the temporary input file  mcnp.inp  for MCNP: 

echo " 2: =*=*=  modification/creation of mcnp.inp with selected library: 

ext= ${ext}  =*=*= " 

  sed  "s/nlib=/nlib=${ext}c/g"  ${benchmark}  >  mcnp.inp 

 

(3)  Then the batch script launches the MCNP code  mcnp6.mpi,  which will generate the outputs 

(important for the further processing is a file  mctal): 

echo " 3: =*=*=  run mcnp6.20  =*=*= " 

  mpirun   mcnp6.mpi   i = mcnp.inp   o = output   m = mctal   x = xsdir  

 

(4)  At the fourth step, the Fortran code  ValiDat  will be invoked together with its input file  

ValiDat_${benchmark}.inp.  Code  ValiDat  will produce output file  ValiData.res  with 

results of processing and comparison with experiment: 

echo " 4: =*= run ValiDat with input ValiDat.inp to perform validation =*=" 

  ./ValiDat  ValiDat_${benchmark}.inp 
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(5)  As the last step the Linux script copies  mctal  and  ValiDat.res  into files which names will 

contain information about selected  benchmark  and evaluated data library extension  ext  for 

archiving and checking off-line. 

echo " 5: =*= save results under names with ${benchmark} and ${ext} =*=" 

  cp   mctal             mctal_${benchmark}_${ext} 

  cp   output            output_${benchmark}_${ext} 

  cp   ValiDat.res       ValiDat_${benchmark}_${ext}.res 

 

 

4. Code  ValiDat  to read and process the MCNP output and experimental data  

 

The purpose of code  ValiDat.f95  is to read file  mctal  produced by MCNP and file with 

experimental data and then compare them in terms of C/E ratio and criteria χ
2
. The code was written in 

the Fortran-95 language and compiled by two Fortran compilers:  GNU gfortran  and  Intel ifort  (to 

force  ifort  to recognise the Fortran source extension  .f95, the compilation was performed with flags 

"-fpp -free -Tf").  

The  ValiDat.f95  code reads the MCNP computed quantity array (Tally) from file  mctal,  reads the 

experimental spectrum and computes the C/E ratio for every Energy or TOF interval given in file  

Edges.dat.  It is worthwhile noticing that energy bins of MCNP tally should NOT be identical to 

the grid used for experimental spectrum and NOT necessary coincide with Edges of intervals, since  

ValiDat  first computes integrals and their uncertainties for simulated and experimental spectra in the 

intervals given in  Edges.dat,  then calculates arrays of C/E and χ
2
.  

It is supposed that uncertainties, if given at all, are statistical ones. It is always true for the MCNP 

tally, but not for the experimental data. During integrations of the experimental spectrum the statistical 

uncertainties are quadratically summed and thus relative statistical uncertainties decreases as interval 

of integration increases. To avoid this and take into account the non-vanished systematic uncertainty 

of the experimental data, the latter was considered as an additional input parameter for the  ValiDat  

code. 

To qualify the level of agreement we employed the standard metric for testing nuclear data libraries - 

the “reduced” chi-squared parameter: 

𝜒2(𝑛) =
1

𝑛
∑

( 
𝐶𝑖

𝐸𝑖
⁄ −  1)2

𝜎𝑖
2

𝑛

𝑖=1

 

where the calculated and experimental values Ci and Ei for interval i are compared with unity 

mediated by the sum of the total MCNP simulation and experimental relative uncertainty σi. The 

degree of freedom, n, is considered to be equal to the number of Energy or TOF intervals (given in 

Edges.dat) in which the experimental and calculated neutron leakage spectra will be integrated. We 

also considered the partially cumulated χ2(n) when the number of intervals  n  is lesser than maximal 

number necessary to cover the full Energy or TOF range of experimental data. 

As an example, the input file  ValiDat_IPPE_Cf.inp  for  ValiDat.f95  is listed in Fig. 4.1. The 

meaning of input parameters is explained by comments (NB: the comments should start from column 

40 or larger). In the example given, two runs will be performed employing the same file  mctal  (which 

however contains the results for both neutron and γ-ray leakage spectra) but two different 

corresponding experimental data sets with own energy boundaries (Edges) for integration and 

calculation of C/E and χ
2
. 
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It has to be noted that the original experimental data could be presented by authors in the deferent 

ways: as the Spectrum [1/MeV] or Yield [1/bin] arrays versus of two (low and upper bin boundaries) 

or one (middle) argument. To distinguish between them the input parameter  “No. of Argument 

columns in Exp. Data”  is used, whereas its negative sign indicates the spectrum rather than 

yield.  

 

Fig. 4.1. Input file  ValiDat_IPPE_Fe_Cf.inp  for code  ValiDat.f95. 

mctal_IPPE_Fe_Cf        Name of File mctal produced by MCNP 

1.                        Scaling Factor for Tally, Fn (default = 1.) 

0                         is it Spectrum [1/MeV] or Yield [1/bin] ? (1/0) 

0                         Reverse order of argument or not, KeyRev (1/0) 

202                       Tally Number to be processed, NumTally  

IPPE_Fe_Cf_d50n.dat      Name of File with Experimental Data 

-2                        No. of Argument columns in Exp. Data file ? (2/1) 

2                         Error type for Exp. Data: Abs/Rel/No ? (2/1/0) 

0.03                      Systematic Relative Error, ErSys = ? 

Edge_IPPE_Cf_n.dat        File with Edges for Spectrum Integration 

1                        Repeat calculations with other Files  ? (1/0) 

mctal_IPPE_Fe_Cf        Name of File mctal produced by MCNP 

1.                        Scaling Factor, Fn  (default = 1.) 

0                         is it Spectrum [1/MeV] or Yield [1/bin] ? (1/0) 

0                         Reverse order of argument or not, KeyRev  (1/0) 

222                       Tally Number to be processed, NumTally  

IPPE_Fe_Cf_d50g.dat      Name of File with Experimental Data 

-2                        No. of Energy columns Exp. Data file  ? (2/1) 

2                         Error type for Exp. Data: Abs/Rel/No ? (2/1/0) 

0.05                      Systematic Relative Error, ErSys  = ? 

Edge_IPPE_Fe_Cf_g.dat     File with Edges 

0                        Repeat calculations with other Files  ? (1/0) 

 

 

5. Results of validation 

 

The neutron and photon leakage energy spectra simulated by MCNP for the IPPE iron sphere of 

Ø50 cm fed by 
252

Cf source and visual comparison with measurements are shown in Fig. 5.1: the 

energy spectra, C/E ratios and partial criteria χ2
 cumulated from the lowest energies to the maximal 

ones.  

The quality of evaluation could be judged from the consideration of the C/E ratios for energy intervals 

which boundaries should be selected by user to capture the observed specific future in spectra, such as 

peaks, change of slope etc. Thus Fig. 5.1 (left) shows that C/E for neutron leakage indicates 

underestimation of ENDF/B-VIII.0 by 20% above ≈ 1 MeV (pointing to such deficiency was included 

in paper [40] and proper corrections were undertaken afterwards). The cumulated χ
2
(n) (the chi-

squared parameter summed until interval number n) shows the better behaviour of ENDF/B-VIII.0 in 

comparison with JEFF-3.3 up to ≈ 1 MeV. However this 20% underestimation by ENDF/B-VIII.0 

results to the total χ2
 (computed for the whole energy range) to be ≈ 2 times larger than with JEFF-3.3, 

see Table 5.1. 

Both library ENDF/B-VIII.0 and JEFF-3.3 underestimate the γ-ray spectrum by factor of 2. As a result 

criteria χ2
 is substantially different from unity, see also Fig. 5.1 (right plot). It worth to notice that 

JEFF-3.3 stronger than ENDF/B-VIII.0 underestimates the yield of γ-rays above 6 MeV (these 

gammas originate from the neutron capture reaction on iron) - that is also reflected in the rise of 

cumulated χ2(n) above 6 MeV. 
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Fig. 5.1. The neutron (left) and γ-ray (right) leakage spectra from the IPPE iron sphere Ø50 cm with 
252

Cf(s.f.) source: open circle - experiment [21, 23], curves - MCNP simulation with nuclear 

data from ENDF/B-VIII.0 (red) and JEFF-3.3 (blue). Upper part of figures – energy 

spectra, middle – χ2
 cumulated over n integration intervals, bottom – C/E for these 

intervals. 

 

 

Table 5.1.  The total criteria χ2
 for the MCNP simulation of the neutron and photon leakage spectra (in 

whole energy range) for iron spheres measured at IPPE with 
252

Cf(s.f.) and at LLL with D-

T sources. The green or red colours highlight the best or worse evaluations.  

Benchmark 
Leaking 

Radiation 

Energy  

or TOF 

range 

No. of 

Intervals 

for C/E 

total χ2
 computed for whole measured spectrum 

ENDF/B 

-VIII.0 

JEFF 

-3.3 

FENDL 

-3.1d 

JENDL 

-4.0u 

IPPE Fe 

Ø50 cm  

with 
252

Cf 

neutrons 0.01 – 17.0 MeV 18 3.87 1.99 3.48 1.64 

γ-rays 0.50 – 10.3 MeV 8 4.41E+2 5.40E+03 6.49E+2 4.15E+2 

LLL Fe  

Ø44.6 cm   

with D-T 

neutrons 12.9 – 40.9 shake 6 12.0 0.89 0.37 4.48 

neutrons 1.8 – 18.0 MeV 6 8.16 0.39 0.59 3.26 

 

 

The validation results for the thickest 4.8 mfp LLL iron pulsed sphere are shown in Fig. 5.2 for the 

time of flight (left) and energy (right) spectra. The later was calculated from TOF to demonstrate the 
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energy distribution of secondary neutrons, which is more convenient for the interpretation. Then the 

energy integration intervals were selected and corresponding them the TOF integration limits were 

computed. Since the lowest values of TOF results to the highest neutron energies, the cumulated χ2(n) 

increases as function of TOF but decreases versus the neutron energy. For the whole TOF or Energy 

ranges the values of χ2
 should be approximately equal (it depends how TOF uncertainties were 

transformed into energy ones). 

For the analysed LLL Fe benchmark the total criteria χ2
 turns out to be several times lesser for the 

JEFF-3.3 library than for ENDF/B-VIII.0, see Table 5.1.  

At the end we have performed automatic validation of the latest versions of Fusion (FENDL-3.1d) 

[16] and Japanese (JAENDL-4.0u) [15] evaluated data libraries. In this case it was done fully 

automated or “blind”, i.e. without any spectra comparison or analysis of C/E and χ2
 for each 

integration interval. The obtained total χ2
 for neutron leakage are summarised in Table 5.1 for both 

benchmarks. They point to a better quality of FENDL-3.1d and JENDL-4.0u versus ENDF/B-VIII.0 

but comparable or a bit worse performance versus JEFF-3.3. The considered libraries also 

underestimate the yield of leaking γ-rays substantially larger than uncertainties reported in 

experiments.  

 

 

 

Fig. 5.2. The TOF (left) and energy (right) neutron leakage spectra for the LLL iron sphere with wall 

thickness 4.8 mfp (Ø44.6 cm) pulsed by the D-T source and measured at angle 30
o
: open 

circle - experiment [4], curves - MCNP simulation with nuclear data from ENDF/B-VIII.0 

(red) and JEFF-3.3 (blue). Upper part of figures – energy spectra, middle – χ2
 cumulated 

over n integration intervals, bottom – C/E for these intervals.  
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Summary  

 

The computational software tools to automate the validation of the evaluated neutron cross section 

libraries in fusion or fission relevant benchmarks have been developed. The novel element of this 

approach consists in application to the benchmarking versus the spectral responses (arrays), such as 

energy or time distributions of the emitted neutrons or γ-rays, and usage of criteria χ2
 for qualification 

of evaluation. So far existing analogues software tools and databases deal with the validation of 

evaluated data validation versus a single parameter such as the critically coefficient of fissile system. 

The elaborated Linux shell script and Fortran code allow in one automatic sequence to modify the 

MCNP input deck for the experimental benchmark to pick-up desired evaluated cross section files, run 

MCNP simulation, process its output and compare with the experimental data. Finally the procedure 

delivers the C/E and chi-squared criteria to judge about the quality of the used neuron-photon transport 

data library in the preselected energy or time intervals or in the whole measured range. 

For automation of validation process itself, several manual modifications of the original input decks 

are necessary, e.g.: replacing of the element by isotopes, inserting tallies with extended range and 

more fine group structure, more accurate representation of source, etc. Besides this the more deep 

investigation of validation task is often inevitable: selection of the reliable benchmarks, understanding 

of the measuring technique and derived quantities, defining the range of the response validity, analysis 

of the uncertainty components, etc. – all this was done in the present report for considered cases. 

The developed tools were applied for validation of ENDF/B-VIII.0, FENDL-3.1d, JEFF.3.3 and 

JENDL-4.0u in two benchmarks with iron spherical shells fed by spontaneously fissile 
252

Cf and 

pulsed fusion D-T sources. As a result of automated validation based on criteria χ
2
, we conclude that 

JEFF-3.3 should be considered as superable over all others libraries for neutron transport simulation in 

the thick iron. However the quality of all tested libraries to predict the neutron induced γ-rays 

generation and propagation in iron is not acceptable and requires further analysis. 
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