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Dissipation without resistance: Imaging impurities at quantum Hall edges
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Motivated by a recent experiment [A. Marguerite et al., Nature (London) 575, 628 (2019)] on imaging in
graphene samples, we investigate theoretically the dissipation induced by resonant impurities in the quantum
Hall regime. The impurity-induced forward scattering of electrons at quantum Hall edges leads to an enhanced
phonon emission, which reaches its maximum when the impurity state is tuned to resonance by a scanning tip
voltage. Our analysis of the effect of the tip potential on the dissipation reveals peculiar thermal rings around
the impurities, consistent with experimental observations. Remarkably, this impurity-induced dissipation reveals
nontrivial features that are unique for chiral one-dimensional systems such as quantum Hall edges. First, the
dissipation is not accompanied by the generation of resistance. Second, this type of dissipation is highly nonlocal:
A single impurity induces heat transfer to phonons along the whole edge.
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I. INTRODUCTION

Although the quantum Hall (QH) effect has been stud-
ied for decades, it continues to attract the attention of the
community for multiple reasons. To begin with, at the QH
plateaus, mobile quasiparticles are confined within the sample
edges. Consequently, QH problems bridge two-dimensional
(2D) and 1D physics, with the latter allowing for an exact
description in terms of bosonization and other well-developed
techniques [1–4]. The second reason is the chiral nature of
edge excitations, which leads to the most distinguished feature
of the QH effect: the topologically protected quantized Hall
conductance. This feature is one of the major reasons for the
long-lasting interest in the QH effect. Furthermore, multiple
QH-based complex structures have been proposed as possible
hosts of quasiparticles with exotic statistics [5–12].

Conventionally, dissipation in electronic transport is re-
lated to resistance. One could thus expect that the absence
of backscattering in the topologically protected edge state is
accompanied by the absence of energy dissipation. However,
it has been shown that even for a clean single chiral channel,
energy dissipation is possible through the electron-phonon
interaction [13]. This effect leads to dissipation (transfer of
energy from electrons to phonons) along the quantum Hall
edges with a homogeneous power density. It can be considered
as an ultimate manifestation of nonlocal dissipation [14,15].
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Indeed, the work on the electronic system is performed only
at the contacts between the QH edge and reservoirs, while
the energy transfer to phonons is spatially separated from the
regions producing the electrical resistance.

At the same time, realistic graphene samples contain an
abundance of resonant impurities at the boundary. We show in
this paper that such impurities lead to dissipation in QH edges
that is strongly enhanced when the impurity is tuned to reso-
nance. This dissipation can be observed in a thermal imaging
experiment, as has been recently reported [16]. Specifically,
our theory explains the fascinating features observed in the
experiment: the ring-shape structure of the thermal profile as
a function of the tip position where a local potential is applied
(Fig. 1). Remarkably, this thermal profile is not accompanied
by any electrical resistance (additional voltage drop). This
should be contrasted with the case of a homogeneous edge
(where nonlocal dissipation along the edge is associated with
the voltage drop at the contacts), as well as with the resonant
supercollisions in 2D materials [17–19] that lead to both local
dissipation and local resistance.

The paper is organized as follows. We begin with the
formulation of the model in Sec. II. We then calculate the
phonon emission rate induced by impurities along a QH edge
state in Sec. III. There we demonstrate that forward scattering
at resonant impurities produces the experimentally observed
thermal rings. Based on the theory, we further address other
experimental observations of Ref. [16] in Sec. IV. In this
section we discuss the role of the edge reconstruction and pro-
pose a two-tip measurement to verify our theory. We finally
summarize our results and put forward further proposals in
Sec. V. Technical details of the calculations are relegated to
the Appendixes.

2643-1564/2020/2(1)/013337(10) 013337-1 Published by the American Physical Society

https://orcid.org/0000-0003-1073-1029
https://orcid.org/0000-0002-9253-6691
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.2.013337&domain=pdf&date_stamp=2020-03-18
https://doi.org/10.1038/s41586-019-1704-3
https://doi.org/10.1038/s41586-019-1704-3
https://doi.org/10.1038/s41586-019-1704-3
https://doi.org/10.1038/s41586-019-1704-3
https://doi.org/10.1103/PhysRevResearch.2.013337
https://creativecommons.org/licenses/by/4.0/


ZHANG, GORNYI, AND MIRLIN PHYSICAL REVIEW RESEARCH 2, 013337 (2020)

FIG. 1. Thermal rings induced by the impurity (red circle) at the
sample boundary (thick black line). When the tip is placed on top
of a thermal ring, the tip voltage tunes the impurity to resonance,
leading to a stronger impurity-QH tunneling and an enhanced energy
dissipation rate. This leads to a higher temperature at the rings that is
represented by the darker color. The corresponding impurity energy
diagram is shown in the inset.

II. SYSTEM

We consider a sample which consists of a graphene layer
encapsulated between two hexagonal boron nitride (h-BN)
substrates [16]. The system is placed under a perpendicular
quantizing magnetic field that confines extended electron
states to a strip with the width of the order of the magnetic
length lm = √

1/eB (h̄ = 1 for brevity) at the edge of the
sample. A metallic gate beneath the sample applies the back-
gate voltage VBG to globally control the charge density. A
superconducting tip (superconducting quantum interference
device on tip [17,20,21]) is placed above the top h-BN layer.
The role of the tip is twofold: On one hand, it applies a tip
voltage Vtip which locally controls impurity levels; on the
other hand, it measures the local temperature reflecting the
energy dissipation rate [17,21].

We model the system by an effective single-particle Hamil-
tonian for electrons, which consists of four parts:

H = H0 + HT + Hdot + He-ph. (1)

Here the first term H0 describes the field-dependent motion of
graphene electrons under the back-gate voltage. We assume
a sufficiently strong magnetic field such that the sample is
in the integer QH regime where the QH edge electrons can
be considered as 1D free particles in chiral channels [1,22].
For simplicity, we focus on the case with filling factor ν = 2,
where the system contains only one topological chiral channel
(after ignoring the spin degree of freedom), with the free
Hamiltonian along the x direction

H0 =
∑

k

εkc†
kck, (2)

where εk is the energy of the electron with momentum k and
c†

k is its corresponding creation operator.
Strictly speaking, edge reconstruction in the graphene

sample may lead to the emergence of additional (nontopo-
logical) counterpropagating channels [23]. This can manifest
itself in the local resistance features, as has been observed
experimentally [16]. On the other hand, edge reconstruction
does not essentially affect the mechanism of impurity-induced

dissipation without resistance that is explored in the present
paper. Furthermore, the additional nontopological channels
can be locally removed through the application of a local
plunger gate that depletes quasiparticles or by the peculiar
geometric confinement [16]. Experimentally, these thermal
rings are observed in regimes both with and without edge
reconstruction [16]. We thus discard the edge reconstruction
in the major part of the paper.

Realistic graphene samples contain resonant impurities
that originate from irregularities and the missing dangling
sites next to the material boundary. These resonant impuri-
ties can be viewed as quantum dots that host electrons. For
simplicity, we consider a single impurity that couples to the
chiral edge state

Hdot + HT = εd d†d + t
∑

k

(c†
kd + H.c.), (3)

where HT is the tunneling term describing hybridization be-
tween the impurity and the QH edge, and t is the momentum-
independent coupling strength. We assume that the energy dif-
ference between neighboring impurity states is large enough
such that only one impurity level is relevant, with the energy
εd . For a fixed Vtip, the energy εd depends on the tip-impurity
distance lti. The first three terms of the Hamiltonian (1)
correspond to that of a resonant level model where an impurity
is side attached to a chiral edge state.

The fourth term of the Hamiltonian He-ph is the electron-
phonon interaction

He-ph =
∫∫

d2 �q
∑

k1

∑
k2

g0F (�q)

2π

√
ωqM(k1, k2, qx )

× (b�q + b†
−�q)ψ†

k1
ψk2 , (4)

where

M(k1, k2, qx ) =
∫

dx �∗
k1

(x)eiqxx�k2 (x) (5)

is the phonon-induced scattering matrix element and ψ
†
k is

the creation operator of the eigenstate with the corresponding
wave function �k (x), where x is the coordinate along the
edge. For an impurity-free QH channel, ψ†

k = c†
k and �k (x) =

eikx/
√

L ≡ �
(0)
k (x), where L is the size of the graphene sam-

ple. With an impurity present, ψ
†
k instead creates a scatter-

ing state shown in Eq. (12) below. Because of the lack of
backscattering along a QH edge, the scattering-state wave
function simply acquires a phase shift after the scattering at
the impurity. In Eq. (4), g0 is the electron-phonon interaction
strength, ωq = sq is the acoustic phonon dispersion with the
sound velocity s, and F (�q) is the form factor [13]

F (�q) =
∫ ∞

0
dy

√
2 sin(qyy)ϕ∗

k+qx
(y)ϕk (y), (6)

with ϕk (y) the y-direction electron wave function that is
confined near the physical boundary within the range of lm.
Such spatial confinement further leads to the relaxation of the
momentum conservation along the y direction [13].

Before proceeding with calculations, we discuss the fea-
tures of the form factor defined in Eq. (6). First, the form
factor, strictly speaking, depends also on the electron momen-
tum k. We neglect this dependence since k ∼ qT s/v � qT ,
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where v 	 s is the electron Fermi velocity and qT ≡ kBTel/s
is the thermal momentum defined in terms of the electron
temperature Tel. Second, because of the sin(qyy) oscillation,
the expression of the form-factor depends on the ratio between
| �q| and the inverse magnetic length l−1

m . More specifically,
if | �q| 	 l−1

m , sin(qyy) of Eq. (6) oscillates strongly so that
F (�q) = χ1/qylm, where χ1 is a qy-independent prefactor. In
the opposite limit | �q| � l−1

m , qyy � 1 so F (�q) = χ2(qylm).
Since the characteristic value of | �q| is qT , the character of
electron-phonon scattering depends on the value of qT lm,
which translates to the appearance of a B-dependent effective
Bloch-Grüneisen temperature TBG = s/kBlm. Below we study
the dissipation in both limiting cases qT 	 l−1

m and qT � l−1
m ,

i.e., the temperature above and below TBG.

III. RESONANT SCATTERING AND THERMAL RINGS

With the Hamiltonian introduced above, we can calculate
the energy dissipation induced by the presence of a resonant
impurity. In contrast to the 2D case, where energy dissipation
originates from the particle scattering in all directions [18,19],
only forward scattering at the impurity is operative in the
chiral QH edge. This only introduces a phase factor in the
wave function.

The scattering state in the presence of a single impurity
thus has the general form

�k (x) = 1√
L

eikx+i
(x−x0 )θk , (7)

where 
(x − x0) is the step function, θk is the momentum-
dependent phase shift, and x0 is the impurity position. With
the wave function (7), the phonon-induced matrix element (5)
becomes

M(k1, k2, qx )

= M0(k1, k2, qx ) + Ms(k1, k2, qx )

= δk1,qx+k2 − i
1

L(k1 − qx + k2)
[e−i(θk1 −θk2 ) − 1], (8)

where M0(k1, k2, qx ) is the impurity-free part. The effect of
M0 has already been studied in Ref. [13]; it gives the contri-
bution to the energy dissipation rate

P0 =
{ g2

0
12

s
v2

χ2
1

l2
m

k2
B

(
T 2

el − T 2
lattice

)
, qT 	 l−1

m

4π4g2
0

63
s
v2

χ2
2 l2

m

s4 k6
B

(
T 6

el − T 6
lattice

)
, qT � l−1

m ,
(9)

where Tlattice is the lattice temperature. In Eq. (9), P0 has
the dimension energy/(time × length), which describes the
amount of energy transferred between electrons and phonons
per unit time and unit length. The total dissipated power in the
sample of size L is P0L.

Below we investigate the effect of Ms in two contrasting
scenarios, where electrons are scattered by either a scalar
potential or a resonant impurity.

A. Energy dissipation for a scalar potential

We start by investigating the energy dissipation rate in-
duced by a scalar potential. Generally, a scalar potential
locally changes the potential energy of quasiparticles. In the

chiral 1D case, the effective Hamiltonian with a single scalar
potential at x0 is simply

Heff = H0 + Hpotential = −iv∂x + Vsδ(x − x0), (10)

where Vs is the strength of the scalar potential and v is the
free-electron Fermi velocity.

The straightforward solution of the Schrödinger equation
with the Hamiltonian (10) gives us the box-normalized wave
function

�k (x) = e−i(Vs/v)
(x−x0 ) 1√
L

eikx, (11)

where a momentum-independent phase shift θk = Vs/v occurs
upon the scattering. Following Eq. (8), Ms = 0 and the scat-
tering matrix will not be modified by the presence of the scalar
potential. The scalar potential is thus trivial in the energy
dissipation along a QH edge state.

The vanishing Ms upon a scalar potential is a unique
feature of the 1D geometry, which should be contrasted with
scattering at a scalar potential in 2D systems that creates a
nontrivial energy dissipation rate [18,24]. The irrelevance of a
scalar potential to the creation of dissipation is in line with the
intuitive expectation that the QH edge states are topologically
protected from dissipation at local potentials. However, when
the scalar potential is replaced by a resonant impurity, this
expectation breaks down, as we show below.

B. Resonant impurity scattering

The scattering of QH particles at a resonant impurity is in
sharp contrast to that in the case of a scalar potential in two
major manners.

On one hand, with a resonant impurity, electrons may be
locally trapped in the quantum dot. The wave function of the
trapped electron creates an additional term Mimp on top of
Eq. (8). However, following the discussion of Appendix C,
Mimp does not contribute to any dissipation when the pointlike
impurity couples to a single point of the QH edge state. We
thus neglect Mimp and focus on the effect of scattering states
in the rest of the paper.

On the other hand, in comparison to the case with a
scalar potential, the presence of a resonant impurity enables
more scattering possibilities. To see its effect, we derive
the scattering-state operator in the presence of a resonant
impurity, following the technique introduced in Ref. [25]. The
derivation details are provided in Appendix A, with the result

�k = �
(0)
k + t

εk − εd + i�

∑
k′

t� (0)
k′

εk − εk′ + iη
, (12)

where �
(0)
k is the unperturbed electronic plane wave, � is the

level broadening [26], and η is a positive infinitesimal.
In Eq. (12), the first and second terms correspond to the

wave function of the free and the scattered states, respectively.
For an infinite chiral channel with a spectrum εk = vk − μ

(with μ the chemical potential), the integral over k′ in the
wave function (12) is given by its residue εk′ = εk . Then the
scattering-state wave function (7) can be conveniently written
in terms of the k-dependent phase shift of the plane wave at
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x > x0:

θk = −2 arctan
�

εk − εd
. (13)

The main difference of this phase shift from the one in the
case of a scalar potential (11) is its momentum dependence.
It is this feature of the phase shift (13) that yields dissipation
without resistance in the case of resonant impurity scattering.

C. Dissipation induced by resonant impurities

With the scattering phase shift (13), the matrix element Ms

produced by a resonant impurity becomes (see Appendix B)

Ms(k1, k2, qx ) ≈ 2�

−εd − i�

eiqxL/2 − eiqxx0

L(qx − ωq/v)
. (14)

Here we have used the energy conservation prescribing that
v(k2 − k1) = ωq for the process of phonon emission and have
taken the limit εd , � � sqT . With Eq. (14) we calculate the
energy dissipation rate at x > x0 in two limiting cases

Pimp =
⎧⎨
⎩

g2
0

3
s
v2

χ2
1

l2
m

k2
B

(
T 2

el − T 2
lattice

)
�2

�2+ε2
d

for qT 	 l−1
m

16π4g2
0

63
s
v2

χ2
2 l2

m

s4 k6
B

(
T 6

el − T 6
lattice

)
�2

�2+ε2
d

for qT � l−1
m .

(15)

The impurity-induced energy dissipation rate (15) is the cen-
tral result of this paper. It shows a resonant feature: The
energy dissipation rate reaches its maximum when εd = 0
and decreases in a Lorentzian manner with the half-width �.
This resonant feature leads to the experimentally observed
thermal rings. Specifically, at a certain tip-impurity distance,
the impurity level is fine-tuned by the tip voltage to resonance,
which gives rise to the enhanced dissipation according to
Eq. (15).

The resonant character of dissipation in Eq. (15) bears
similarity to resonant supercollisions in the 2D graphene bulk
[18,19]. However, the chiral 1D case is distinct in several
respects. These peculiarities are related to the chiral 1D nature
of the edge states.

First, the 2D theory implies the increase of resistance
associated with the increase of dissipation. In contrast to that,
dissipation introduced by resonant scatterers in 1D edges is
not accompanied by any local voltage drop, i.e., any local
change of the resistance. This leads to an important conclu-
sion: In a chiral QH channel, forward scattering at a resonant
impurity gives rise to a finite-energy dissipation rate, despite
of the topological protection of the Hall conductance.

Second, the dissipation rate (15) does not depend on x for
x > x0, which means that the impurity-induced dissipation
in one dimension is global. This result is also distinct from
that in two dimensions, where the major energy dissipation
occurs locally near the scattering impurity [18,19,24]. Indeed,
in 1D edges, scattering states do not decay with respect to x,
in contrast to the 2D geometry. As a result, the dissipation
induced by a single impurity in 1D edge becomes extensive:
The entire QH edge past the impurity participates in the
energy dissipation, leading to its global feature.

Strictly speaking, the electron temperature Tel decreases
after the phonon emission. The strong temperature depen-
dence of Eq. (15) then indicates an accompanied decrease in

(a) (b)

FIG. 2. Spatial dependence of (a) the energy dissipation rate and
(b) the electron temperature. An on-resonance impurity is placed at
x = x0. The temperature T0 is the background temperature, which
is assumed to be constant. We make the plots following the high-
temperature expression of Eq. (15).

the phonon emission rate. With the standard technique (see
Ref. [13], for instance) and the steady-state assumption, the
temperature gradient becomes

∂kBTel(x)

∂x
= −P(x)

Cv
, (16)

where C = πkBTel/6h̄v is the specific heat of the QH edge
state. The dissipation rate P(x) = P0(x) when x < x0 and
P(x) = P0(x) + Pimp(x) otherwise. Based on Eq. (16), we plot
the energy dissipation rate and the electron temperature as a
function of the position in Fig. 2, where T0 is the background
temperature and x0 is the impurity position. The decreasing
electron temperature ensures that the total dissipated power
does not diverge with the system size.

IV. LINKING TO THE EXPERIMENT

With the impurity-induced dissipation rate (15), here we
discuss a connection between our theory and the experimental
data.

A. Estimates for thermal rings

As has been pointed out above, the resonant feature of
Eq. (15) leads to the experimentally observed thermal rings,
with their centers located at the resonant impurity sites. Since
the half-width of a dissipation peak is ∼�, these rings have
the thickness ∼rring�/Vtip, which is much smaller than the ring
radius rring. This explains the sharp contrast of the experimen-
tally observed thermal rings [16].

On the quantitative level, we evaluate the temperature
enhancement induced by the impurity. To begin with, the
experiment is carried out with the background temperature
T0 ≈ 4.2 K and under the magnetic field B ≈ 1 T. Based on
Ref. [13], we focus on the LA phonons with the longitudinal
sound velocity s = 2.2 × 104 m/s. We also take the interac-
tion parameter for LA phonons g0 ≈ 1.7 × 10−19 J s/(kg)1/2.
Finally, we take the form factor χ ≈ 0.96 and the graphene
Fermi velocity v = 106 m/s. The derivation of the impurity-
induced temperature enhancement requires a solution of the
heat diffusion equation

−κlattice∇2Tlattice = P(x)δ(y) − γ0(Tlattice − T0), (17)
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where γ0 quantifies the coupling to the bath and κlattice is the
phonon conductivity. In Eq. (17) we simply the model with
the assumption that only electrons right at the boundary emit
phonons. In reality, the phonon emission involves electrons in
the edge state with the width ∼lm. Since phonons propagate in
two dimensions, we evaluate the value of κlattice following the
2D equations [19],

κlattice = 9Zζ (3)k2
BT0

h̄
≈ 2 × 10−8 W/K, (18)

where Z ≈ 200 is the number of atom layers of the
graphene–h-BN system with the width approximately equal to
60 nm [16].

Experimentally, electron temperature enhances near the
constriction due to the energy input. Following the heat trans-
port equation and ignoring the phonon emission (since it is
negligible in comparison to the rate of the input energy), we
arrive at the expression of the electron temperature at the
constriction Tel(0),

T 2
el (0) − T 2

0 = 12

N

h̄ηWinput

πk2
B

, (19)

where N = 2 for two graphene edges and Winput = 10 nW is
the energy input. We take the efficiency parameter η = 0.5,
assuming that half of the input energy is transferred into the
electron temperature at the source (the other half is dissipated
at the drain). With Eq. (19) we get the electron temperature
at the constriction Tel(0) ≈ 50 K. Based on Ref. [16], without
the contribution from resonant impurities, the measured edge
temperature is

δTedge = Tlattice − T0 ≈ 150 μK (20)

higher than the background temperature. We thus get

γ0 = P0/δTedgelm ≈ 5 × 105 W/(m2 K), (21)

which is reasonably close to the experimental result [27].

With these values of parameters, we begin to calculate
the phonon temperature following Eq. (17). Strictly speaking,
P(x) ∝ T 2

el (x) − T 2
lattice(x) and the spatial dependence of the

electron temperature should be considered. However, in the
presence of an on-resonance impurity, the electron tempera-
ture cools down [following Eq. (16)] with the characteristic
cooling length [13]

lcool = πv2l2
m

2h̄g2
0sχ2

1

≈ 20 μm, (22)

which is of the same order as the system size. We thus ignore
the spatial dependence of the electron temperature Tel(x) ≈
Tel(0) in the evaluation that follows.

Meanwhile, since T 2
el (0) 	 T 2

lattice(x) ≈ T 2
0 , we approxi-

mately treat both P0 and Pimp as constant. We further define di-
mensionless parameters T̃ ≡ [Tlattice − T0]/δTedge, X ≡ x/ld ,
and Y ≡ y/ld , where

ld ≡ √
κlattice/γ0 ≈ 200 nm (23)

is the typical traveling distance of phonons before they enter
the bath. With these dimensionless parameters, we rewrite
Eq. (17) as

−(
∂2

X + ∂2
Y

)
T̃ =

{
δ(Y ) − T̃ , X < 0
5δ(Y ) − T̃ , X > 0.

(24)

It is conventional to solve Eq. (24) by dividing the edge
into pointlike sources, with the solution

Tlattice(x, y) − T0 =
∫ ∞

−∞
dx′S(x′)

K0(r)

π
, (25)

where Kn(r) is the modified Bessel function of the second
kind, with r =

√
(x − x′)2 + y2 the distance to a pointlike

source. The function S(x) = 1 for x < 0 and S(x) = 5 other-
wise. At the boundary Y = 0, we have the analytical expres-
sion of Eq. (25),

T̃ (X, 0) =
{

1 + 2[1 + XK0(−X )L−1(X ) − XK1(−X )L0(X )], X < 0

3 + 2X [K0(X )L−1(X ) + K1(X )L0(X )], X > 0,
(26)

where Ln(x) is the modified Struve function. For Y �= 0, we
integrate Eq. (25) numerically, with the result presented in
Fig. 3(a). Note that the nonlocality of the phonon emission
introduces the anisotropy of a thermal ring. However, the
complete temperature profile is experimentally inaccessible
with the single-tip measurement.

Experimentally, thermal rings have a typical radius around
30–100 nm. For a thermal ring with a radius of 50 nm, the
impurity-induced phonon temperature enhancement is around
250–350 μK, depending on the tip position. This value agrees
quite well with the experimental data.

Before the end of the section, we emphasize that we
obtain the results (25) and Fig. 3 after neglecting the electron
temperature variation. On a larger scale, after arriving at
its peak value around x = ld , the phonon temperature Tlattice

decreases simultaneously with the decreasing Tel. This de-
crease in Tel becomes manifest when x 	 lcool, where the

phonon temperature enhancement Tlattice − T0 also (almost)
vanishes.

B. Role of the edge reconstruction

The major result (15) only requires the existence of for-
ward scattering at resonant impurities. However, edge recon-
struction should be included to fully describe all the findings
of Ref. [16].

In the experiment [16], bias is applied to the source while
the drain is grounded. In this situation, our analysis with
a full chiral edge yields thermal rings only on the edge
segment downstream from the source. This agrees with the
experimental observation for high filling factors. At the same
time, for the case of low filling factors (close to unity), the ex-
periment reveals dissipation rings also upstream from the
source. The possible explanation of this is related to the edge
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(a)

(b)

FIG. 3. Temperature profile Tlattice(X,Y ) obtained by solving
Eq. (24). (a) The 2D temperature profile through numerical integral.
The black dashed line refers to the tip position where a thermal ring
is detected. The edge state (represented by the white solid line) is
propagating rightward (the white arrow). (b) Plot of the analytical
result (26) when Y = 0.

reconstruction, as also proposed in Ref. [16]. Indeed, if the
equilibration length in the reconstructed edge is comparable
to the system size, energy can also propagate from the source
upstream over the corresponding segment of the edge. This
will also heat the outermost channel on the segment. The
scattering of this channel at the impurities near the sample
boundary will produce the rings observed.

Meanwhile, backscattering between counterpropagating
channels in the edge-reconstructed area leads to an ex-
tra amount of dissipation. In strong contrast to the
resonance-induced thermal rings discussed in this paper, the
backscattering-induced thermal signal (i) does not generically
display the ring shape and (ii) is strongly correlated with
the scanning gate signal which measures the longitudinal
Hall resistance. A more detailed discussion of these issues is
outside the scope of the present paper.

Finally, in the edge reconstructed area, the backscattering-
induced dissipation strongly depends on the equilibration

between counterpropagating channels. As a possible exten-
sion of the experiment, we thus propose that the scanning-
tip technique can be employed to systematically explore the
equilibration feature of other systems that consist of counter-
propagating chiral channels. Fractional QH systems, where a
direct measurement of the equilibration pattern is missing, are
possible candidates.

C. Nonlocal dissipation in experiment

As the central prediction of this paper, the nonlocality of
the impurity-induced dissipation cannot be directly measured
by a single tip in the current experiment of Ref. [16]. We thus
propose a two-tip experiment to investigate the global feature
of the dissipation in one dimension. In this experiment, one tip
(the detector) measures the sample temperature and the other
(the tuning tip) tunes the impurity on-resonance.

Following the mechanism that produces dissipation in two
dimensions [18], the scattering wave function decays in the
∼r−2 manner, where r is the distance from the resonant im-
purity. The resulting temperature enhancement induced by su-
percollisions involving this impurity displays a fast-decaying
profile as a function of the distance from the impurity position.
This profile can be probed by the detector in the two-tip
measurement.

In contrast, in the QH regime, if the tuning tip tunes one
boundary impurity on-resonance, the edge temperature mea-
sured by the detector follows the pattern shown in Eq. (25),
as has been plotted in Fig. 3. More specifically, when the
detector moves from the upstream side to the downstream side
of the on-resonance impurity, it detects an abrupt temperature
enhancement; otherwise the temperature measured by the
detector varies slowly and smoothly. As a comparison, the
single-tip measurement only detects the temperature of points
on the black dashed ring and is thus unable to detect the full
temperature profile. The two-tip measurement is thus able to
verify our theory.

Finally, the two-tip measurements can also verify our ex-
planation of the upstream thermal rings. Experimentally, the
tuning tip should be placed at the position where one upstream
thermal ring is produced in Ref. [16]. At such a position, one
impurity at the upstream side of the source has been tuned on-
resonance by the tuning tip. The detector should then detect an
extensive heat production along the downstream direction of
the on-resonance impurity. Otherwise, heat production should
be detected equally on both sides of the impurity.

V. SUMMARY AND OUTLOOK

We have studied dissipation on a chiral edge of a QH sam-
ple in the presence of a resonant impurity. In strong contrast to
the expectation that forward scattering is irrelevant to energy
dissipation, we have shown that the forward scattering within
a single chiral QH channel at a resonant impurity produces
a nontrivial dissipation enhancement. We have found that the
phonon emission rate is maximized through supercollisions
at an on-resonance quantum dot. This enhancement, which
is related to the momentum-dependent phase shift, leads to
a finite impurity-induced temperature peak in local thermal
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nanoimaging, thus explaining the appearance of thermal (en-
tropy) rings observed in a very recent experiment [16].

These thermal rings are distinct from those in 2D sys-
tems in the following respects: (i) The dissipation in a 1D
chiral edge is global because the wave-function modification
induced by the impurity remains along the entire edge and
(ii) the dissipation pattern is uncorrelated with any local
resistance variations.

Before closing the paper, we discuss several prospective di-
rections for future research related to our work. As mentioned
above, the experiment has observed the strong dependence of
equilibration length on the filling factor. It is thus interesting
to include systematically the edge reconstruction and inter-
channel equilibration in the theoretical study of dissipation in
QH graphene samples.

As another direction, it would also be interesting to study
the impurity-induced dissipation in other topological systems
with complex edge structures, including fractional QH and
spin QH systems. These systems may naturally provide coun-
terpropagating edge modes and are characterized by strong
correlations, so the impurity-induced dissipation feature may
be distinct from that of the integer QH system studied in this
paper.

Finally, in this paper we assumed that only one impurity is
tuned on-resonance by the tip. However, one can imagine that
several impurities can be tuned on-resonance simultaneously
under certain circumstances. The exploration of dissipation in
this case is another prospective topic.
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APPENDIX A: EFFECT OF A RESONANT IMPURITY:
SCATTERING-STATE OPERATORS

In this Appendix we present the details on getting the
scattering-state wave function (12) following the L operator
method [25]. We begin with the Hamiltonians (2) and (3)

H =
∑

k

εkc†
kck + t

∑
k

(c†
kd + d†ck ) + εd d†d

= H0 + HT + Hdot, (A1)

where the electron-phonon interaction He-ph has been ignored.
For later convenience, here we define operators L̂n,

L̂nÔ = [Ô, Hn], (A2)

where Ô is any operator and n ∈ {0, T, dot} for the three parts
of the Hamiltonian. We further define L̂ = L̂0 + L̂T + L̂dot.

The target is to rewrite the Hamiltonian (A1) as the effec-
tive one H ′ = ∑

k εkψ
†
k ψk with the scattering-state operators

ψk that are linear combinations of bare lead operators c′
k and

the impurity operator d . The scattering-state operators satisfy
the commutation relation [25]

[ψ†
k , H ′] = −εkψ

†
k + iη(c†

k − ψ
†
k ), (A3)

where η = 0+ is a positive infinitesimal. With the definition
of the L̂ operator, Eq. (A3) can be rewritten as

ψ
†
k = c†

k + t

L̂ + εk + iη
d†. (A4)

Apparently, we need to express the second term of Eq. (A4)
in terms of bare operators. Straightforwardly, following the
definition (A2), it becomes

1

L̂ + εk + iη
d† = 1

εk + iη
d† + 1

L̂ + εk + iη
d† εd

εk + iη

− 1

εk + iη

1

L̂ + εk + iη
L̂Td†. (A5)

In the derivations above, we have used the fact that L̂dotd† =
−εd d†. The last term of Eq. (A5) can be calculated through

1

L̂ + εk + iη
L̂Td† = 1

L̂0 + L̂dot + εk + iη
L̂Td† − 1

L̂ + εk + iη
L̂T

1

L̂0 + L̂dot + εk + iη
L̂Td†

= −
∑

k′

t

εk − εk′ + iη
c†

k′ + 1

L̂ + εk + iη
L̂T

∑
k′

t

εk − εk′ + iη
c†

k′ = −
∑

k′

t

εk − εk′ + iη
c†

k′ + i�

L̂ + εk + iη
d†,

(A6)

where we have used

L̂Td† = −V
∑

k

c†
k , L̂dotc

†
k = 0, L̂0c†

k = −εkc†
k .

In the last step of Eq. (A6), we have used the continuous
momentum k and a large-band approximation:

∑
k′

t2

εk − εk′ + iη
= ρ

∫
dεk′

t2

εk − εk′ + iη

= − �

π
ln

∣∣∣∣D + εk

D − εk

∣∣∣∣ − i� ≈ −i�. (A7)

Here ρ is the density of state ρ = L/2πv and � = πρt2 is the
dot level broadening. At the large band limit, the real part of
Eq. (A7) vanishes.

With Eqs. (A4)–(A6) combined, we finally get the
scattering-state operators

ψ
†
k =c†

k + t

εk − εd +i�

(
d† +

∑
k′

t

εk − εk′ + iη
c†

k′

)
. (A8)

After ignoring the part of the wave function localized on the
impurity (the term with d†), we arrive at Eq. (12).
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APPENDIX B: ENERGY EMISSION RATE INDUCED BY A
RESONANT IMPURITY

With the scattering-state wave function derived in
Appendix A, we calculate the energy emission rate induced
by a resonant impurity. In this Appendix only the contribution
from Ms will be calculated. The contribution from Mimp will
be evaluated in Appendix C. Based on Eq. (7), the scattering
at a resonant impurity located at x = x0 induces a momentum-
dependent phase shift θk . The expression of θk has been
provided by Eq. (14).

The phonon-induced matrix element calculated with the
wave function (7) becomes

1

L

∫ L/2

−L/2
dx ei(−k2+qx+k1 )xe−i
(x−x0 )(θk2 −θk1 )

= δk2,k1+qx +[e−i(θk2 −θk1 ) − 1]
∫ L/2

x0

dx
ei(−k2+qx+k1 )x

L
,

(B1)

where the first term is the impurity-free contribution and
the second term comes from the electron scattering at the

impurity. In the limit �, εd � kBTel, we can approximate

exp
[ − i

(
θk2 − θk1

)] − 1 ≈ −2�/(ε + i�).

To study the effect of an impurity on the energy dissipation
processes, we need to evaluate the integral

2�

−ε − i�

∫ L/2

x0

dx
1

L
ei(−k2+qx+k1 )x

= 2�

−ε − i�

ei(−k2+qx+k1 )(L/2) − ei(−k2+qx+k1 )x0

iL(−k2 + qx + k1)

≈ 2�

−ε − i�

ei(qxL/2) − eiqxx0

iqxL
, (B2)

where in the second line we have used the fact that typically
qx 	 k1, k2. The absolute square of Eq. (B2) reads

4�2

ε2
d + �2

2 − 2 cos[qx(L/2 − x0)]

q2
x L2

, (B3)

With Eq. (B3) we calculate the phonon absorption rate in-
duced by the impurity

�a =
∫∫

d2 �q
∑

k1

∑
k2

g2
0

(2π )2
F 2(qy)ωq

2 − 2 cos[qx(L/2 − x0)]

q2
x L2

[
1 − nF

(
εk1

)]
nF

(
εk2

)
N lattice

B (ωq)
4�2

ε2
d + �2

δ
(
εk1 − εk2 − ωq

)

=
∫∫

d2 �q g2
0L2

(2π )4v2
F 2(qy)ω2

qN lattice
B (ωq)

[
Nel

B (ωq) + 1
]2 − 2 cos[qx(L/2 − x0)]

q2
x L2

4�2

ε2
d + �2

. (B4)

Here nF and N lattice
B are the electron and phonon distribution

functions, respectively, and Nel
B describes the Bose distribution

with temperature Tel.
The energy dissipation rate in the high-temperature limit

qT 	 l−1
m reads

Wimpurity = 2�(2)ζ (2)
g2

0

π2

s

v2

χ2
1

l2
m

k2
B

[
T 2

el − T 2
lattice

]

× �2

�2 + ε2
d

(L/2 − x0). (B5)

Similarly, in the opposite limit, it becomes

Wimpurity = 2�(6)ζ (6)
g2

0

π2

s

v2

χ2
2 l2

m

s4
k6

B

[
T 6

el − T 6
lattice

]
× �2

�2 + ε2
d

(L/2 − x0). (B6)

Dividing the rates in Eqs. (B5) and (B6) by L/2 − x0, we get
the expression for Pimp as Eq. (15).

Equations (B5) and (B6) indicate that the coupling between
a chiral Fano system and the environment (the phonon bath) is
enhanced by the on-resonance impurity. Notice that Eqs. (B5)
and (B6) are proportional to the length of the sample edge
behind the impurity L/2 − x0. Since we have assumed negli-
gible temperature variations on both Tel and Tlattice, this result
implies a constant energy dissipation rate per unit length (for
the refinement, see the discussion around Fig. 2 in the main
text).

To further illustrate this, we consider |Ms|2,

|Ms|2 = 1

L2

4�2

ε2
d + �2

∫∫ L/2

x0

dx dx′ei(qx−k1+k2 )(x−x′ )

= 1

−i(qx − k1 + k2)L2

4�2

ε2
d + �2

×
∫ L/2

x0

dx[e−i(qx−k1+k2 )(L/2−x) − e−i(qx−k1+k2 )(x0−x)],

(B7)

without taking the integral over x. This way, the energy
dissipation power becomes

Wimpurity ∝
∫ L/2

x0

dx
∫∫

d2 �q
iqx

[eiqx (x−x0 ) − eiqx (x−L/2)]

× ω3
q|F (�q)|2[Nel

B (ωq) − N lattice
B (ωq)

]
=

∫ L/2

x0

dx K (x), (B8)

with the derivative of the kernel

dK

dx
=

∫∫
d2 �q{cos[qx(x − x0)] − cos[qx(x − L/2)]}

× ω3
q|F (�q)|2[Nel

B (ωq) − N lattice
B (ωq)

]
. (B9)

The major dissipation contribution in Eqs. (B5) and (B6) orig-
inates from the integral in the qy ∼ qT area, where Eq. (B9)
vanishes. We have thus arrived at the conclusion that after
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the impurity position the impurity-induced energy dissipation
rate per unit length should be a constant, if the temperature
variation has been neglected.

APPENDIX C: DISSIPATION CONTRIBUTION FROM Mimp

As has been mentioned in Sec. III B, electrons may be
trapped in the impurity, thus creating another matrix element
Mimp. In this Appendix we prove that Mimp is negligible by
calculating its vanishing contribution to the dissipation.

To begin with, in the presence of the impurity, the complete
wave function contains three parts

�k (x, y) = φ0
k (x, y) + φs

k (x, y) + φd
k (x, y). (C1)

In Eq. (C1), φ0
k (x, y) is the free-particle wave function. The

second term φs
k (x, y) is the scattered-state wave function that

only exists at x > 0. The third term φd
k (x, y) is the part of the

wave function that is trapped in the impurity.
Following Eq. (C1), the overlap between the two wave

functions
∫∫

dx dy �∗
k′ (x, y)�k (x, y), which equals δk,k′ due to

the orthogonality requirement, can be decomposed into three
parts∫∫

dx dy �∗
k′ (x, y)�k (x, y)

=
∫∫

dx dy φ0∗
k′ φ0

k (x, y) +
∫∫

dx dy
[
φs∗

k′ (x, y)φs
k (x, y)

+ φ0∗
k′ (x, y)φs

k (x, y) + φs∗
k′ (x, y)φ0

k (x, y)
]

+
∫∫

dx dy
[
φd∗

k′ (x, y)φd
k (x, y) + φ0∗

k′ (x, y)φd
k (x, y)

+ φd∗
k′ (x, y)φ0

k (x, y) + φs∗
k′ (x, y)φd

k (x, y)

+ φd∗
k′ (x, y)φs

k (x, y)
]
. (C2)

Because of the orthogonality of the first term on the right-hand
side of (C2), the sum of the second and third terms equals
zero. Now we calculate the expression of Mimp based on this

equation. With the definition �r = (x, y) and the assumption
that the pointlike impurity is interacting with QH particles at
a single point, Mimp becomes

Mimp ≈ − ei �q·�r0

∫∫
dx dy

(
φs∗

k′ φ
s
k + φ0∗

k′ φs
k + φs∗

k′ φ
0
k

)
= − eiqxx0

2i�v

L(εk′ − εd − i�)(εk − εd + i�)

× [ei(k−k′ )(L/2) − ei(k−k′ )x0 ]F (k, k′), (C3)

where �r0 = (x0, y0) is the location of the impurity and the
form factor in the y direction follows from the orthogonality
requirement

F (k, k′) =
∫

dy ϕ∗
k′ (y)ϕk (y) = δk,k′ . (C4)

Consequently, Mimp(k, k′, �q) = 0 unless k = k′, where no en-
ergy is dissipated. We have thus arrived at the conclusion that
Mimp produces no dissipation once (i) the impurity is pointlike
and (ii) it only interacts with QH electrons at a single point.

In a more realistic consideration, we assume that the impu-
rity has a finite size and interaction range ∼a. The form factor
becomes F (k, k′, qy) = χqya since qT a � 1. Following the
same technique provided in Appendix B, we get the energy
dissipation rate produced by Mimp,

Wdot = �(5)ζ (5)
g2

0

(2π )2

a2ξ 2

s4
k5

B

[
T 5

el − T 5
lattice

] 4�2

�2 + ε2
d

. (C5)

A straightforward comparison between Eqs. (B6) and (C5)
shows that

Wdot

Wimpurity
∼ a2

lmL

v2

s2

1

qT lm
� 1. (C6)

Equation (C6) proves that we can safely ignore φd
k from the

wave function and the dissipation produced by Mimp.
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