Using Logical Time to Ensure Liveness in Material Handling Systems
With Decentralized Control

Zazilia Seibold

Abstract— We describe a method for decentralized control of
route-based material handling systems in which devices have
no central controller (by definition), no common source of
information, and no synchronized or common clocks with which
to plan and execute their activities. The control scheme is based
on the concept of logical time, which is a means of partially
ordering events in computer operating systems. We modify
the concept to the domain of material handling systems and
prove system liveness. We conclude by describing GridSorter,
a conveyance-based sorter that uses decentralized control and
logical time to sort packages. A prototype has been successfully
built and tested at the Institute for Material Handling and
Logistics, Karlsruhe Institute of Technology.

Note to Practitioners—Decentralized control is a means of
distributing the control of a complex system away from a central
computing source toward individual devices and subsystems.
In material handling, complex systems can malfunction due to
deadlock, livelock, or starvation. This article presents a new
method for controlling decentralized material handling systems
based on logical time, a method from computer operating systems
describing a sequence of activities at each resource. We modify
logical time for material handling and show that the system
is deadlock-free, thus giving engineers an easy-to-implement
method of controlling route-based material handling systems such
as automated guided vehicles (AGVs) or conveyors.

Index Terms—Decentralized control, logical time, material
handling.

I. DECENTRALIZED CONTROL IN
MATERIAL HANDLING

N IMPORTANT feature of the Industry 4.0 concept in

material handling systems is autonomy, the ability of
devices to make independent decisions. When autonomous
devices must cooperate to get things done without a cen-
tral controller, we say that the system has decentralized
control.

Manuscript received August 27, 2019; revised June 7, 2020; accepted
July 22, 2020. This article was recommended for publication by Edi-
tor B. Vogel-Heuser upon evaluation of the reviewers’ comments. This
work was supported in part by the Institute for Material Handling and
Logistics at Karlsruhe Institute of Technology and in part by several
projects financed through “Zentrales Innovationsprogramm Mittelstand” of
“Bundesministerium fiir Wirtschaft und Energie (BMWI).” (Corresponding
author: Zdzilia Seibold.)

Zizilia Seibold and Kai Furmans are with the Department of
Mechanical Engineering, Institute for Material Handling and Logistics,
Karlsruhe Institute of Technology, Karlsruhe 76131, Germany (e-mail:
zaezilia.seibold @partner.kit.edu; kai.furmans @kit.edu).

Kevin R. Gue is with the Department of Industrial Engineering, University
of Louisville, Louisville, KY 40292 USA (e-mail: kevin@kevingue.com).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TASE.2020.3029199, provided by the authors.

Digital Object Identifier 10.1109/TASE.2020.3029199

, Kai Furmans, and Kevin R. Gue, Member, IEEE

The problem of decentralized control in material handling
has been addressed by several authors for automated guided
vehicle (AGV)- or vehicle-based systems and recently by a
few authors for conveyance-based systems. Most of these
articles assume some form of route-based planning in which,
for example, an AGV travels a predetermined route from origin
to destination. By “route,” we mean a path through a network
of zones, usually represented by a graph. A fundamental
challenge of operating such systems is timing the movement
of entities (AGVs, boxes) among the shared resources (zones
and conveyors) such that the entities are transported when and
where required without sacrificing system liveness—that is,
without causing deadlocks, livelocks, or starvation.

Tanenbaum and Bos [1] described four strategies for dealing
with deadlocks in operating systems: ignoring the problem,
detection and recovery, dynamic avoidance, or prevention.
Of these possibilities, we address the structural prevention of
deadlocks by applying and adapting the principle of logical
time [2], which is a means of partial ordering of events
in distributed computer operating systems. We modify the
concept from computer science in order to sequence activities
on shared physical resources.

This allows the system to be independent of synchronized
(physical) clocks within the system, which represents a signif-
icant departure from prior work that assumes a central clock
to coordinate activities between decentralized control units.
By means of structural deadlock prevention, we create an
environment in which the degree of decentralization is as high
as possible and the communication load is low.

Our article is structured as follows. In Section II, we intro-
duce articles in the field of material handling systems with
decentralized control or route-based planning algorithms.
Section III is a formal description of the system, and
Section IV introduces the principle of logical time that serves
as a base for Section V where we transfer logical time to
material handling systems. After the proof in Section VI,
we conclude in Section VII by describing a prototype system
called GridSorter, a grid-based conveyor system that uses the
logical time to sort packages. The functionality of its control
algorithm has been shown and evaluated with simulation and
on a real demonstration system.

II. LITERATURE REVIEW

We observe an equivalence between AGVs moving through
a network of zones and boxes being transported by a network
of conveyors: the general problem is routing entities in a
network of resources under the assumption that a resource can

possess only one entity at a time [3] unless it is transferring
the entity to another resource, during which time both
resources are busy with the same entity (this subtlety is
usually unmentioned). Therefore, we divide the literature
of decentralized control for material handling into articles
addressing conveyor-based systems and articles addressing
AGV- or vehicle-based systems. We focus only on articles that
handle resource conflicts potentially resulting in deadlocks.

The term decentralized control, sometimes called
autonomous control [4], is used differently in the literature.
All articles assume decentralized decision making, but
there are differences with respect to information sharing
and time coordination. In this article, we address systems
with decentralized decision-making with distributed, local
synchronization, and no general broadcasting [5]. In most of
the articles, the means of time coordination is implied rather
than stated explicitly.

Methods for conveyor-based systems can be further divided
into negotiation-based algorithms, which move items in a
stepwise manner, and reservation-based algorithms, which
determine a module-by-module path from source to destina-
tion. Mayer and Furmans [5] proposed a reservation-based
algorithm to route boxes within a network of small conveyor
modules (called FlexConveyors). Each module has its own
control and communicates with its neighbors to make deci-
sions. For each box entering the system, a route is reserved
from source to destination in order to prevent opposing routes
on bidirectional conveying modules. The system uses “dead-
lock tokens” to ensure deadlock-free operations, a property
proven by the authors. Because FlexConveyor is intended for
sparse conveyor networks and not for more general dense
networks, the deadlock-avoidance mechanism does not address
an unlimited number of interlocking circular routes.

FlexConveyors also form the basis of grid-based material
handling systems such as GridStore [6], GridPick [7], and
GridSequence [8], which embody the negotiation-based decen-
tralized control scheme. Adjacent units in the grid negotiate
by passing messages in order to determine what action to
take next. GridStore was proven deadlock-free; GridPick was
shown to be deadlock-free under certain conditions. These
systems assume time synchronization.

Krihn et al. [9], [10] described small-scaled conveyor
modules called “cognitive conveyors,” which feature decen-
tralized control and route-based planning. These systems are
distinctive in that many modules work together to transport a
single box. The system applies a deadlock-avoidance algo-
rithm requiring a high number of messages but does not
require synchronization of clocks.

Because our method is route-based, we provide a
brief overview of route-based planning for AGV systems.
Kim and Tanchoco [11] described a centralized algorithm
using time-window-based routing. Maza and Castagna [12]
presented a time-window-based algorithm based on [11] which
they call sequence-based conflict-free routing because dead-
locks are prevented as long as resources respect the sequence
of vehicles visiting them. In [13], they propose different
methods for changing this priority if delays occur in order to
reduce the impact of such incidences. All the articles described

in this paragraph use centralized control, but they highlight
an important feature of route-based solutions that we also
exploit; in the presence of variability, respecting the sequence
of activities on a resource maintains deadlock-free operation.

To our knowledge, there exist only two control algorithms
using decentralized decision-making with distributed, local
synchronization, and no general broadcasting: the method
of [5], which is only applicable to spare networks with low
risk of deadlock, and that of [9], which uses a complex
deadlock-avoidance algorithm with high communication effort
before each transport and cannot easily be applied to different
system conditions and tasks. Our method improves on prior
work by addressing more general system architectures using
structural deadlock prevention.

III. SYSTEM DESCRIPTION AND ASSUMPTIONS

Because our most complex application domain is a dense
grid of unit-sized conveyors being able to transport boxes to
its four neighbors, we assume that resources are conveyors
and entities are boxes for the rest of the discussion. Bigger
conveyors that can hold more than one box concurrently
are virtually divided into several unit-sized conveyors. The
conveyor modules can be of linear or curved shape, as long as
they can be modeled as unit-sized conveyors with one-to-four
transport directions. Modules with nonopposing directions are
able to perform direction changes.

A system of conveyor modules and boxes can be considered
a distributed system as follows; the transport of a box from
source to destination is a process. When the box is being
conveyed, the corresponding process is in state Transport;
otherwise, it is in state Hold and Wait. The process starts when
the box is inserted in the system and the transport steps from
one conveyor module to the next are events in the process.
The process is finished when the box reaches its destination.

Conveyor modules are resources in the system. A box must
be conveyed by two conveyor modules concurrently to be
transported from one module to the next. Thus, the correspond-
ing process in state Transport must hold both resources. The
duration of this transport phase is not defined but finite. When
the box is stationary, it remains on one conveyor module. Thus,
a process in state Hold and Wait only needs to hold only one
resource, although it will have already requested the resource
it needs for the next transport step.

Each resource can host at most one entity at any time,
a “tandem movement” is executed in order to increase system
throughput. Having three aligned conveyor modules, the mid-
dle module can receive a box from one side and send a box
to the opposite side concurrently. This resource is assigned to
two processes.

Resources are allowed to communicate with their direct
neighbors. One important difference between any material
handling system and a distributed multiprocess system is that
the time required for physical movement is many times higher
than the time needed to share and process information. This
makes it possible to finish a reservation process with a high
number of sent messages before starting the first transport of
a box.

[~]l] =] = s =
(a) (b)

o i e

= s e
(c)
Acquisition of resources for tandem transport. (a) Both boxes are

Fig. 1.
waiting. (b) Box a is being transported. (c) Boxes a and b are transported in
tandem. (d) Box a has arrived while box b is still being transported. (e) Both
boxes have arrived.

The graphical representation of processes, resources, and
possible relations between them is based on the representation
of Tanenbaum and Bos [1]. They describe a sequence of
actions required to use a resource as follows: request, use,
and release the resource. In our system, resources need to be
reserved before requesting them.

Fig. 1 shows the course of acquisition of resources for the
more complex case of tandem transport. The resources have
been reserved already. In Fig. 1(a), process Pj is requesting
resource R;, which is this time already held by process P,.
Process P,, in turn, has requested resource R;. Tandem
transport is physically possible because the trio of resources
Ri, Rj, and Ry is aligned. Once resource Ry is granted to P,
P, switches to state Transport [see Fig. 1(b)]. Resource R; can
now be granted to process Pp, while it is still held by P, [see
Fig. 1(c)]. P switches to state Transport as well. Transition
to Fig. 1(d) is triggered when process P, switches to Hold
and Wait after a finite physical time interval. In addition,
process P, switches to Hold and Wait and requests the next
resource after a finite physical time interval [see Fig. 1 (e)].

To summarize: the transition from state Hold and Wait to
Transport takes place when granting conditions (GCs) are
fulfilled. A resource can only be granted to a process if it is
free, i.e., not held by another process, or if tandem transport
conditions are fulfilled. The transition from Transport to Hold
and Wait is time-triggered because the transport has a finite
duration in physical time.

IV. LAMPORT’S LOGICAL TIME

A distributed system consists of multiple parallel processes,
each comprising an ordered set of events (graphically repre-
sented in Fig. 2). This order defines causal relations between
events (dots) of one process (vertical lines). Lamport [2]
referred to a causal relation as a “happening before” relation.
Parallel processes are connected to each other by messages
(wavy arrows) defining a causal relation between events of
two different processes; the event of sending a message
happens before the event of receiving it. The entire set of
causal relations forms a partial ordering of the events in the
system. In Fig. 2, event p; happens before g3 because the
events are connected through the sequence of causal relations

process P
process R

o
IS

y / process Q
o af e
o e S
-
IS

P3

Fig. 2. Distributed system: parallel processes with multiple events and causal
relations, from [2].

Sequence of events of boxes:
— al - a2— a3

b2 b1 — b2 — b3

¢l —c2

Sequence of events of crossing module:
cl b3 — atlora2— b2

Fig. 3. Example routes for three boxes.
via ¢2. However, the ordering of events p3 and ¢3 cannot be
determined because there is no sequence of causal relations.

Lamport [2] assigned a number to each event representing
the logical time at which the event occurs. C; is the logical
clock of process P; and Cj(a) is the logical time of event a
if it is an event of process P;. The set of logical clocks of all
processes is represented by C, where C(a) = C;(a) if a is an
event of process P;. Lamport formulates the clock condition as
follows. For any events a and b, if a — b, then C(a) < C(b),
where “—" is the symbol for “happening before.”

Lamport also defines timestamps on messages to update log-
ical time and manage access to a common resource. Because
in a distributed system there is no universal clock, mod-
ules only become aware of changes in time when executing
events. A message sender indicates its logical time with the
timestamp; if later than the receivers’ logical time, the receiver
updates its logical clock; the sender does likewise with the
acknowledgment.

To see how logical time might be understood in the context
of material handling, consider a small network of unit-sized
conveyors arranged in a grid (see Fig. 3). Two different
“happening before” relations exist (see the right of Fig. 3).
The transport steps of each box can only take place in a
predetermined order. On the module where the routes of
handling unit @ and b cross, the transport steps must occur
in a certain order. Handling unit @ must have left the module
before unit b enters or vice versa. The route of box ¢ does not
overlap with another route. Therefore, no causal relations exist,
and the transport of box ¢ can be performed independently of
the other boxes.

For the two kinds of “happening before” relations, the fol-
lowing conditions must be fulfilled in order to satisfy Lam-
port’s clock condition: The transport steps of one box must

Fig. 4. Example for routes of three boxes with representative logical times.

Transport
of box a

Transport
of box b

Transport
of box ¢

Pa Py Pe
RI
. b3 R
box a carried by T
conveyingmodulen IR, R 2
a3 o5 Rq
3 transport step of box R‘m’ " - Ry c1
afrom conveying ~ a2¢* b1 R,
module m to module n R,
R
al
Ry

Fig. 5. Representation of the system in Fig. 4 as multiprocess system
(inspired by [2]).

happen at advancing logical time. Consider one conveyor
module. The outgoing transport of one box must take place at
an earlier logical time than the incoming transport of the next
box (in the example C(b3) < C{al) or C(a2) < C(b2)).

Two possible combinations of logical times of the events
satisfying these conditions are shown in Fig. 4. Logical time
increases by one unit in these examples.

V. LOGICAL TIME FOR MATERIAL HANDLING

There are two important differences between Lamport’s con-
ception of logical time and our model for material handling.
First, in our model of material handling, it is resources that
control the system by sending messages, not the processes.
Second is the need to account for the physical (processing)
time intrinsic to material handling events. In a pure expression
of logical time, events have a sequence but no duration. In a
world of events having nonzero time such as material handling,
we must modify logical time appropriately.

A. Assigning Logical Clocks to Resources

Fig. 5 shows the example of Fig. 4 as a multiprocess system
inspired by the representation of Lamport (compare to Fig. 2).
The three processes P,, P, and P. (vertical lines) represent
the transport of boxes with an uninterrupted sequence of
resources to the destinations. With a transport step (dot),
the box is transferred from one conveyor to another. For this
transfer, both resources are needed. In the model, the physical
duration of a transport step is irrelevant—the event simply
includes the process switching from one resource to the
next. A “happening before” relation between two processes
(dotted arrow) is needed if a resource is used in common,
i.e., if two routes cross. In Fig. 5, the common resource R;
of our example is highlighted in gray. The dotted arrow states

that R; must first be released by process P, before being
granted to Pp, which corresponds to the “happening before”
relation a2 — b2.

Even though Fig. 5 is similar to Fig. 2, it contains an
additional dimension. Consider resource R; highlighted in gray
in Fig. 5. Following this resource in the horizontal direction,
we observe that it forms a sequence of events like a process.
Consequently, each event is related to one process and two
resources that must be synchronized.

We now apply logical time: C is the set of all logical clocks
in the system and C{al) is the number assigned to event al
by the set of all logical clocks. In [2], C(al) = C,(al) is
assigned by the logical clock of process a if event al is part
of process a. In our system, it is not the processes equipped
with control, but the resources. Let C; denote the logical clock
of resource R;. Consequently, the logical time of an event
can only be assigned by the related resources that must have
logical clocks of their own. For each event of a process, two
resources are necessary. For example, in Fig. 5, the transport
step al of box a is enabled by conveyors k and /. The logical
clocks of both resources must assign the same logical time to
the event. It must hold that C({al) = Ci(al) = Ci{al) if al
is an event for which resource Ry and R; are needed.

Still, a valid sequence of resources for a process needs to
be found and the resources need to agree on the logical time
of an event. In order to find a route for a specific box to its
destination, the conveyors send reservation requests to each
other, assigning timestamps 7 to the transport steps of the
box. By assigning a timestamp to each transport step, both
conveyors agree on the logical time at which the transport
should be performed. The entire set of reservations establishes
a partial ordering of all transport steps for a box, as well as a
partial ordering of all boxes on a resource. In order to satisfy
the clock condition formulated in [2], the transport steps must
be performed according to the partial ordering defined by
the reservation timestamps. During transport of the boxes,
each module sets its logical clock to the timestamp of the
performed transport step and thereby synchronizes its logical
clock with the neighboring conveyor module. The transport
of boxes influences the reservation of modules because new
reservations can only be accepted if they lie in future logical
time in order to satisfy the clock condition.

B. Reserving Resources Using Logical Timestamps

For each process, all resources needed for its successful ter-
mination must be reserved before the process requests the first
resource that could be commonly used. To use the principle of
logical time for the control of a decentralized material handling
system, the reservations must fulfill certain conditions that are
introduced in this section. We do not present the algorithm
showing how a set of possible reservations is found (i.e., the
route reservation process) because it is not relevant for
the principle of logical time. A possible implementation of
the route reservation process is introduced in [14]. Here,
we simply assume that a valid sequence of resources is known
and reserved for each process. Each reservation is defined
by a starting and an ending timestamp because the module is

reservation with
starting timestamp 2
and

4 ending timestamp 3
7
2. 2 3 3

Fig. 6. Example for routes of three boxes with reservation (logical) times
of resources.

Toit T

H T Tou

Fig. 7.

Timestamps of (left) one reservation and (right) one transport step.

occupied by the box between the incoming and the outgoing
transport. Two subsequent conveyor modules on the route of a
box agree on the timestamp for this transport step. These reser-
vations are distributively stored among the resources so that
each resource only keeps its own reservations. A resource must
be able to keep multiple reservations for different processes.

Fig. 6 shows the reservations for the previous example if the
modules agree on the timestamps, as shown in Fig. 4 (left). The
reservations are represented by white arrows. Each timestamp
of a transport step is listed as the ending timestamp of the
reservation of the sending module (head of arrow) and as the
starting timestamp of the reservation of the receiving module
(base of arrow). On the module where two routes are crossing,
the reservations do not interfere with each other because the
reservation for box a has the ending timestamp 2, whereas the
reservation for box b has the starting timestamp 3.

Observe that the reservations are not necessarily received
and accepted in the order of their timestamps. It is possible
that a reservation is accepted even though another reserva-
tion exists for later timestamps, as long as the new request
lies in the future logical time and does not interfere with
other reservations. For example, the commonly used resource
in Fig. 6 could have received the reservation of box b before
the reservation for box a.

Let us now describe the reservation conditions formally.
The reservation of a resource for a specific process is defined
by two timestamps. Let 7i,(P,, R;) denote the timestamp of
the incoming transport and Toy(P,, R;) denote the timestamp
of the outgoing transport. The reservation of resource R; for
process P, is defined by the pair of timestamps

[Tin(Pua Ri)a TOUI(P(la Ri)]
with
Tin(Pa, Ri) < Tou(Pa, Ri) (1)

representing that the incoming transport of a box must take
place before its outgoing transport (see the left of Fig. 7). This
condition guarantees that the clock condition for the causal
relation between the events of one process is respected.

:
: - B
. "

Fig. 8. Two boxes in (left) single movement and (right) tandem movement.

Two conveyors are needed to transport a box from one
conveyor to the next one. If process P, needs to use
resource R; and R; subsequently, the condition

Tout(Pa; Ri) = Tin(Paa Rj) (2)

must be fulfilled (see the right of Fig. 7). This condition
guarantees that both resources agree on the logical time of
the related event.

As stated above, a resource can only be granted to one
process at a time (with the exception of tandem movement).
If process P, uses resource R; before process P, the reser-
vations must fulfill the condition

Tout(Pa, Ri) < Tin(Pp, R;) (3)

if single movement is planned because box a must have left
conveyor i before box b can enter (see the left of Fig. 8). This
is being the case that the clock condition for the causal relation
between the events of two different processes is respected.
Single movement is necessary if the incoming direction of
box b is perpendicular to the outgoing direction of box a.
Tandem movement is physically possible if the correspond-
ing trio of resources is aligned, which is why box a leaves
module i on the opposite side of box b entering (see the right
of Fig. 8). In this case, resource R; can be assigned to two
processes, and instead of condition (3), the condition

Towt(Pa, Ri) = Tin(Pp, R;) 4

must be fulfilled.

Let C; be the logical clock of resource R; defining its cur-
rent logical time. Related to the logical clock, the reservation
for process P, must satisfy the condition

Ci = Tin(Pa, Ri))

in order to be in future logical time of the resource. As in
any calendar system, reservations lying in the past cannot be
accepted. An alternative, later time has to be found for the
reservation.

C. Acquisition of Resources Using Logical Time

In Section III, we describe the course of acquisition of
resources and state that a resource is only granted if the
granting conditions are fulfilled. In this section, the conditions
for granting and releasing a resource are defined using the
timestamps of the related reservation. Each resource holds a
list of all accepted reservations. Reservations are deleted once
the corresponding transport steps are fulfilled.

Referring to box b in Fig. 1, the course of acquisition of
resources with the additional information of the logical clocks
works as follows: In Fig. 1(a) and (b), process Pp is holding

resource R; and its logical clock depicts the timestamp of the
outgoing transport. If now resource R; is granted to Py, it sets
its logical clock to the timestamp of the incoming transport

Cj = Tin(Pp, Rj). (6)

In Fig. 1(c), Pp holds to resource R; and R; and switches to
state Transport. The logical clocks of both resources show the
same logical time. When the box is successfully transported to
the next resource as shown in Fig. 1(e), the following actions
take place.

1) The resource R; is released.

2) R; deletes the reservation of process P, because all
related transport steps have been performed.

3) Process P, requests the next resource Ry and switches
to state Hold and Wait.

4) R; sets its logical clock to the timestamp of the outgoing
transport

Cj = Tou(Pp, R)). @)

The transition from the state Transport to the state Hold and
Wait is only triggered by the end of the transport step, that is,
it takes place after a finite physical time without any special
conditions related to the reservation.

The following granting conditions must be fulfilled before
starting a transport.

GCI: R; is requested by Pp. This condition guarantees that
the sending conveyor is ready for the transport.

R; has performed all transport steps with lower
timestamps and deleted the relevant reservations.
Therefore, R; can be granted to P if it does not
keep a precedent reservation for any process P,
with Tou(Pa, Rj) < Tin(Pp, Rj). (Within tandem
movement, resource R j keeps a reservation with
Tow(Pa, Rj) = Tin(Pp, R;) that is allowed.)

The third condition depends on the transport type; for a
single transport, R; must be free (not held by any other
process), for a tandem transport, R; must be held by
P, which is in state Transport, and tandem transport
must be physically possible (compare Fig. 1).

GC2:

GC3:

The granting conditions guarantee that transports are fulfilled
in the order of their reservation timestamps so that the logical
clock of the conveyor is always set forward and never back.
What does this set of logical clocks look like for an external
observer? Each module has its own logical clock which is
only set forward in discrete steps if a box is transported.
If two neighboring modules perform a transport together, their
logical clocks are synchronized, that is, their logical clocks are
set forward to the timestamp reserved for the transport step.
The set of logical clocks does not define one identical system
time because all logical clocks could differ from each other.
The logical time is completely independent of physical time.
For example, it could happen that a conveyor module remains
in the same logical time for a long period of physical time
because it is not involved in the movement of any boxes.
Fig. 9 shows a conveyor network forming a crossing where
boxes have only been transported from WEST to EAST several
times. All other modules have remained in the logical time 0.

Reservation with

starting timestamp 271
and

22 ending timestamp 22
22

21

21

Logical time of this
module
1

1

Fig. 9. Conveying network (left) before and (right) after the transport process
of box a.

The left of the figure shows a valid reservation because all
timestamps lie in the future logical time of the participating
conveyor modules. When the transport of box a is finished,
the conveyor modules have updated their logical time by
synchronizing with the neighboring module when performing
a transport step. The logical clocks have skipped all time steps
in between. To put it more explicitly, one could say that the
boxes bring the time to the conveyors.

VI. PROOF OF LIVENESS

To prove that a decentralized material handling system
controlled with logical time is live, we must show that it is
deadlock-free, livelock-free, and that no box will stay in the
system indefinitely (no starvation). The latter two requirements
are met by definition of route-based planning by reservation;
boxes are disallowed from livelock behavior, and a valid route
ensures that the box will depart eventually. To show that the
system is deadlock-free, we first show that our modified algo-
rithm satisfies the clock condition mentioned in [2] (a more
detailed version can be found in [14]). We then prove that the
only relevant deadlock condition (circular wait) is impossible.

Lemma 1: Our implementation of logical time for material
handling satisfies Lamport’s clock condition.

Proof: ~ The “happening before” relation only exists
between events of one process or between events on one
resource. It is therefore sufficient to show that the events of
one process take place in ascending order of their timestamps
and that the logical clock of one resource is advancing,
i.e., the related events take place in ascending order of their
timestamps.

With the reservation conditions (1) and (2), we guarantee
that the timestamps of reservations of one process are ascend-
ing. It is physically given that the transport steps are executed
in this order. Therefore, the clock condition is satisfied.

Thus, if process Pp is holding to resource R; and waiting
for the next resource, no reservation exists for process P, on
any other resource R; € R with

Touw(Py, R;) < Cj. (8)

Consider now the events related to one resource. The logical
clock is set to a new value if the resource is granted to a
new process [(6)] or if the next resource is requested [(7)].
Granting condition GC2 and reservation conditions (3) and
(5) guarantee that the logical time is ascending when granted
to a new process. Reservation condition (1) guarantees that
logical time is ascending when the next resource is requested.

We conclude that the clock condition is also satisfied for the
events happening on one resource. This means the following;
if process P is holding to resource R;, no reservation on
resource R; exists for any process P, € P with

Tout(PaaRj) < Cj- 9

Tanenbaum and Bos [1] stated that a deadlock exists under
the following conditions. First, all involved resources are held
by a process. Second, resources cannot be preempted. Third,
all involved processes are in state Hold and Wait. Fourth,
the processes are waiting in a circular chain. The circular
wait condition is the only one that can be negated in our
system. To prove the absence of deadlocks, we show that the
circular wait condition contradicts the described reservation
and granting conditions.

Theorem 1: A system operated according to logical time
for material handling is deadlock-free.

Proof: We know that a logical clock in our system is
only set forward if an event takes place. In case of a deadlock
with circular wait condition, no events take place in a set
of resources held by processes. Therefore, the corresponding
set of logical clocks would remain infinitely in their current
logical time. We must show that the logical clocks of resources
held by the process are set forward definitely.

Let us consider only the resources held by a process. If we
can show that, out of this set of resources, the resources
with the minimal value as logical time set their logical clock
forward definitely; we can conclude that every event of every
process will take place at some time because it will be the
event related to the resource with the minimal value for the
logical clock at some time.

Let us assume the worst case. All processes in the system
are in state Hold and Wait. Let Cpy denote the minimum
logical time of all resources held by a process and Ry, =
{Ri | C; = Cpnin} the set of the held resources having the
minimal logical time. Processes are only in Hold and Wait if
granting conditions of Section V-C are not fulfilled:

1) GC1 is fulfilled because the processes have already

requested the next resource.

2) Because of (8) and (9), there is no resource R; € R
keeping a reservation for a process P, € P with
Touwt(Py, Rj) < Cpyin. Thus, GC2 is fulfilled for the set
of resources Rpin.

3) Therefore, the processes holding these resources can
only be in Hold and Wait because of GC3, meaning that
the requested resource is not released by the previous
process.

Suppose that the processes holding to the resources Rpin
are waiting in a chain, as shown in Fig. 11. In our system,
the chain should include at least four different resources so
that a deadlock in a loop is possible. Opposing deadlocks with
only two resources are prevented by reservation condition (3).

It is not defined yet whether tandem transport is possible
between these resources. From reservation conditions (2)—(4),
we can deduce

Tou(P;, R;) = Tin(Pi, Riy1) = Tou(Pit1, Rit+1)

Fig. 10.
Crossing routes lead to conflicts.

GridSorter sorting packages from one side to the opposite side.

and consequently

TOllt(Pla Rl) = TOllt(P]/a Rl’)- (10)

For there to be a deadlock with circular waiting of these
resources, it must be given P = P;y and Ry = Ry. We can
deduce

Cy = Tow(P1, Ry) = Tow(Py, Ry) = Cy. (1D

Equation (10) is only consistent to (11) if tandem transport
with reservation condition 4 is used exclusively in (10). For
that, all trios of resources in this circular chain of Hold and
Wait must satisfy the physical tandem transport condition
by being aligned. This is only the case if all resources are
aligned,! which makes it impossible that R| = Ry. We can
state that a circular waiting of resources connected with
tandem transport reservations is physically impossible.

If Ry = Ry, there must be at least one single transport
between resources in the chain and (10) becomes

TOUI(Pla Rl) > Tout(Pl’a Rl/) (12)

which is in contradiction to (11). A circular waiting of
processes is therefore impossible.

VII. IMPLEMENTING LOGICAL TIME WITH GRIDSORTER

GridSorter is a grid-based material handling system com-
prised of a grid of unit-sized FlexConveyors operating under
decentralized control and the logical time scheme we describe
earlier. Boxes enter the grid through any conveyor module on
any side and exit through a specified destination module on
any side. Thus, GridSorter could be used to sort boxes or totes
in a distribution center or package handling facility. We have
chosen the GridSorter for implementation because it is suited
to the implementation of a control algorithm for the transport
of goods to specific destinations in dense networks with high
risk of deadlock.

Fig. 10 shows an exemplary GridSorter system. The topol-
ogy of the network can take any shape and is recognized
by a decentralized process based on the Link-State-Routing-
Algorithm: After each module has requested the identifier of
its neighbors, it distributes this information through the entire

IWe assume that curved modules are modeled as conveyor modules with
direction change and therefore without the ability of tandem movement.

‘ﬂ'“‘!’\ ‘H"‘I’\ ‘I’
. .
. .
. .

Fig. 11. Chain of processes in Hold and Wait.

network. With this information, modules can calculate shortest
paths. Arriving boxes are identified by barcode or RFID
before entering the grid. After receiving information about
the destination of the box, the source conveyor begins the
route reservation process via message passing to its immediate
neighbors (see [14] for details). Once the route is determined,
the transport starts according to the algorithm described in
Section V-C.

The control algorithm described in this article has been
implemented on a 5 x 5 demonstrator of GridSorter. For
quantitative evaluation using multiagent simulation (see [14]),
where several layout combinations have been analyzed regard-
ing size, throughput, location of sources/destinations, and
resulting synchronicity of logical clocks. We invite the
reader to view a video of the GridSorter prototype at
https://tinyurl.com/yxpr94m2. More detailed descriptions as
well as a video showing GridSorter in operation can be found
in the accompanying material of this publication.

VIII. CONCLUSION

Although originally conceived as a means of describing the
partial ordering events among distributed computer operating
systems, logical time is an effective means of routing physical
entities in a network of resources such that entities reach their
destinations without deadlock, livelock, or starvation.

A fair question with regard to our assumptions is, “Why
assume there is no central clock, when any reasonable operat-
ing environment would make such a clock easily available?”
We answer: eliminating the need for a central clock reduces
the communication load on the system because the system
can react flexibly to delayed or early transports without
renegotiation of reservations. Unlike decentralized methods
that rely on time windows with safety margins [15], execution
with logical clocks introduces delays only in response to
existing delays and then only as long as necessary. Liveness
is guaranteed as long as the order of events is respected on
each resource. In this sense, managing transport with logical
time guarantees liveness in the same way as proposed in [12],
but their algorithms assume centralized control, whereas we
assume decentralized control with minimal requirements for
information sharing and clock coordination.

We have shown by a formal proof that decentralized control
with logical time is effective for a network of conveyors of
any size and shape that can be modeled as unit-sized resources

being able to transport boxes in one-to-four directions. Due
to structural deadlock prevention resulting in highly local
decision making, the algorithm is scalable in terms of net-
work size. Therefore, we believe that logical time is a new
way of thinking about and designing control algorithms for
decentralized control.

Future research could extend the logical time to further
applications, such as sequencing or buffering of boxes. The
ability to address failures (lost messages and broke conveyors)
should be included before industrial application because one
conveyor remaining in its logical time forever would eventu-
ally result in a system with all conveyors in state Hold and
Wait.

Finally, we observe that logical time is being used in
practice: Gebhardt Fordertechnik GmbH has installed several
instances of the FlexConveyor, which uses logical time as
control principle.

REFERENCES

[11 A.S. Tanenbaum and H. Bos, Modern Operating System, 4th ed. Boston,
MA, USA: Pearson, 2015.

[2] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Commun. ACM, vol. 21, no. 7, pp. 558-565, Jul. 1978.

[3] M. P. Fanti, A. M. Mangini, G. Pedroncelli, and W. Ukovich,
“A decentralized control strategy for the coordination of AGV systems,”
Control Eng. Pract., vol. 70, pp. 86-97, Jan. 2018.

[4] K. Windt, F. Bose, and T. Philipp, “Autonomy in production logistics:
Identification, characterisation and application,” Robot. Comput.-Integr.
Manuf., vol. 24, no. 4, pp. 572-578, Aug. 2008.

[5] S. Mayer and K. Furmans, “Deadlock prevention in a completely
decentralized controlled materials flow systems,” Logistics Res., vol. 2,
nos. 3—4, pp. 147-158, Dec. 2010.

[6] K. R. Gue, K. Furmans, Z. Seibold, and O. Uludag, “GridStore:
A puzzle-based storage system with decentralized control,” /IEEE Trans.
Autom. Sci. Eng., vol. 11, no. 2, pp. 429-438, Apr. 2014.

[7] O. Uludag, “GridPick: A high density puzzle based order picking system
with decentralized control,” Ph.D. dissertation, Dept. Ind. Syst. Eng.,
Auburn Univ., Auburn, AL, USA, 2014.

[8] K. R. Gue, O. Uludag, and K. Furmans, “A high-density system for
carton sequencing,” in Proc. 6th Int. Sci. Symp. Logistics, 2012, pp. 1-5.

[9] T. Kriihn, M. Radosavac, N. Shchekutin, and L. Overmeyer, “Decentral-

ized and dynamic routing for a cognitive conveyor,” in Proc. Int. Conf.

Adv. Intell. Mechatronics (AIM), 2013, pp. 436-441.

T. Kriihn, “Dezentrale, verteilte Steuerung flchiger Fordersysteme

fiir den innerbetrieblichen Materialfluss,” Ph.D. dissertation, Fakultit

fiir Maschinenbau, Gottfried Wilhelm Leibniz Universitit Hannover,

Hannover, Germany, 2014.

C. W. Kim and J. M. A. Tanchoco, “Conflict-free shortest-time bidirec-

tional AGV routeing,” Int. J. Prod. Res., vol. 29, no. 12, pp. 2377-2391,

Dec. 1991.

S. Maza and P. Castagna, “A performance-based structural policy

for conflict-free routing of bi-directional automated guided vehicles,”

Comput. Ind., vol. 56, no. 7, pp. 719733, Sep. 2005.

P. Zitek, Sequence Based Hierarchical Conflict-Free Routing

Strategy Bi-Directional Automated Guided Vehicle. Amsterdam,

The Netherlands: Elsevier, 2005.

Z. Seibold, “Logical time for decentralized control of material han-

dling systems,” Ph.D. dissertation, Karlsruhe Inst. Technol., Karlsruhe,

Germany, 2016.

S. Sohrt and L. Overmeyer, “Decentralized routing algorithm with

physical time windows for modular conveyors,” Logistics Res., vol. 13,

no. 1, Aug. 2020, doi: 10.23773/2020_8.

[10]

[11]

[12]

[13]

[14]

[15]

http://dx.doi.org/10.23773/2020_8

ST

Karlsruher Institut fr Technologie

Repository KITopen

Dies ist ein Postprint/begutachtetes Manuskript.

Empfohlene Zitierung:

Seibold, Z.; Furmans, K.; Kevin, R.
Using Logical Time to Ensure Liveness in Material Handling Systems With Decentralized

Control.
2020. IEEE transactions on automation science and engineering.

doi: 10.5445/IR/1000126385

Zitierung der Originalveréffentlichung:

Seibold, Z.; Furmans, K.; Kevin, R.
Using Logical Time to Ensure Liveness in Material Handling Systems With Decentralized

Control.
2020. IEEE transactions on automation science and engineering, 1-8.
doi:10.1109/TASE.2020.3029199

Lizenzinformationen: KiTopen-Lizenz

https://publikationen.bibliothek.kit.edu/1000126385
https://publikationen.bibliothek.kit.edu/1000126385
https://publikationen.bibliothek.kit.edu/1000126385
https://publikationen.bibliothek.kit.edu/1000126385
https://publikationen.bibliothek.kit.edu/1000126385
https://ieeexplore.ieee.org/document/9261470
https://www.bibliothek.kit.edu/cms/kitopen-workflow.php

