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A B S T R A C T

In this study, two-component displacement of a time-dependent non-Newtonian fluid by a Newtonian fluid in a 
two-dimensional inclined channel is simulated. Using a special multi-component model of the lattice Boltzmann 
method that is called He-Chen-Zhang, made it possible to do the simulations for non-uniform density and very 
high viscosity ratios. The main focus of this study is altering the flow pattern and displacement efficiency by 
Applying Electro- and magneto-hydrodynamic fields, using added nanoparticles and heating the channel walls. 
Displacement efficiency in different cross-sections, thickness of the static wall layer at the top and bottom of the 
channel, development of interfacial instabilities, magnitude of generated forces and, temperature distribution in 
the simulation environment are analyzed comprehensively to fully control the fingering structure. Investigation 
of injected fluid movement in the other one and displacement efficiency showed that enhancement in the power 
of the electric field is associated with displacement efficiency alteration in various longitudinal sections of the 
channel. However, removing the residual layer at the top and bottom of the fingering structure doesn’t cause the 
total efficiency of displacement (Mt) to change significantly since the axial motion of the invading fluid is 
weakened. In contrast, applying magnetic field, increasing the Hartmann number and changing the rotation 
angle of the coordinate system (to 180), enhances the axial velocity and displacing ability of this fluid. 
Furthermore, for Ha = 10 and θ = 0, with the transverse velocity rising, displacement efficiency for longitudinal 
sections close to the channel axis decreases and the occurrence of interfacial instabilities is inevitable.   
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1. Introduction

Transport of crude oil in pipe-lines (Taghavi et al., 2012), oil re-
covery (Abedi et al., 2012; Abedi and Kharrat, 2016) food processing, 
and coating are industrial examples of pressure or gravitational driven 
displacement flow. In these cases, high viscosity of materials creates a 
flow which is in the laminar range. However, it is still difficult to model 
fluid-fluid interface in immiscible flows even by considering laminarity. 
Therefore, precision of numerical models and schemes, which are 
capable of capturing dynamics of the interface and computationally 
efficient, are of great significance (Heidaryan, 2019). 

Penetration of a fluid with a low viscosity into a fluid with a higher 
viscosity results in a two-layer or two-core annular flow leading to the 
occurrence of interfacial instabilities, such as the Kelvin-Helmholtz. The 
dynamics of these flows can be simulated in miscible (Etrati and Frig-
aard, 2018; Mishra et al., 2012; Sharma et al., 2020) and immiscible 
(Patmonoaji et al., 2020; Suo et al., 2020; Tsuzuki et al., 2019) states. 
Accordingly, roll-up structures occur in miscible displacements (Bis-
chofberger et al., 2014; Shabouei and Nakshatrala, 2020), and sawtooth 
structures occur in immiscible displacements (Redapangu et al., 2012). 
(Goyal and Meiburg, 2006) numerically studied miscible displacements 
of highly viscous fluids, and they observed that, two-dimensional in-
stabilities (caused by the shear stress between the two fluids) turn into 
three-dimensional instabilities by increasing the applied flow rate. This 
observation is completely consistent with laboratory findings by 
(Petitjeans and Maxworthy, 1996) and theoretical solutions provided by 
(Lajeunesse et al., 1999). In the field of oil recovery (Taghavi et al, 2009, 
2011), numerically and experimentally investigated the displacement of 
two miscible fluids, and similar instabilities at low applied velocities in 
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exchange flows were observed (Sahu et al., 2009a). analyzed the effects 
of gradient angles and the Froude number on miscible flows considering 
nonequality of densities and viscosities. The presence of tiny instabilities 
is consistent with their previous findings regarding the linear stability 
analysis (Sahu et al., 2009b). (Yang and Yortsos, 1997) investigated 
miscible displacements in Stokes flows between parallel plates. The re-
sults of their studies shows that fingering instabilities increases by 
increasing viscosity ratio. Nevertheless, displacement efficiency in 
different cross-sections and thickness of the static wall layer are rarely 
addressed in the literature. Therefore, a comprehensive investigation of 
static wall layer alteration due to these instabilities seems to be neces-
sary considering the enormous effects of interfacial instabilities on the 
displacement efficiency. 

There are few studies investigating the displacement of non- 
Newtonian fluids by Newtonian fluids (Dimakopoulos and Tsamopou-
los, 2003). investigated the displacement of viscoplastic fluids by air in 
convergent channels. They illustrated that some parts of the displaced 
fluid were left unyielded at the corners of the channel (Papaioannou 
et al., 2009). investigated the displacement of air by viscoplastic fluids, 
and they introduced conditions for the separation of the injected fluid 
from channel walls (Ebrahimi et al., 2016). as well as (Wielage-Burchard 
and Frigaard, 2011) studied the displacement of Bingham fluids by other 
fluids (at equal densities), and investigated the thickness of the static 
layer left on walls for different Bingham numbers (Frigaard and Nouar, 
2005). studied impacts of viscosity adjustment criteria on dynamics of 
flow including Simple (Allouche et al., 2000), Bercovier-Engleman 
(Mitsoulis and Tsamopoulos, 2017), and Papanastasiou (Khan and Sul-
tan, 2018) models. According to their findings, the Papanastasiou model 
performed better than the rest models. Unfortunately, displacement of 
time-dependent non-Newtonian fluids (like hydrogenated castor oil, 
xanthan gum solutions and aqueous iron oxide gels) by Newtonian ones 
and effects of wall temperature have not been yet addressed. Further-
more, simplified models of fluid motion were employed to study the 
aforementioned problems leading to lower accuracy and less reliability 
of results. 

Several researchers declared that Lattice Boltzmann method is a 
trustworthy scheme for modeling fluid flows and transfer theories in 
recent years. Various approaches of this method are available among 
which we can mainly refer to the color gradient (Akai et al., 2018), the 
Shan-Chen (Baakeem et al., 2020), the free energy (Mino and Shinto, 
2020), and the He-Chen-Zhang (Sudhakar and Das, 2020). Many sci-
entists applied the Shan-Chen model to simulate immiscible (Chin, 

2002), but due to very low Reynolds numbers used in these studies, they 
didn’t observe any sign of interfacial instabilities (Redapangu et al., 
2012). investigated a displacement flow for two immiscible Newtonian 
fluids at medium Reynolds numbers using the He-Chen-Zhang (Zhang 
et al., 2000) method, and effects of Atwood number, gradient angles, 
and viscosity ratios on flow dynamics were studied. Their results shows 
that sawtooth-structure instabilities occur at the interface of the two 
fluids for this type of displacements. Similar studies, in which impacts of 
yield stress on the displacement efficiency evaluated, were conducted by 
Vikhansky (Vikhansky, 2008, 2012) and Derksen (2013) on viscoplastic 
fluids. Significant advantages of the lattice Boltzmann method over 
other numerical methods like Smoothed Particle Hydrodynamics 
(Gholami Korzani et al, 2014, 2016, 2017; Rahmat et al., 2019) made it 
an appropriate scheme for modeling these problems. These advantages 
include Auto-separation of phases, computational efficiency, simplicity 
of coding, and local calculation of shear rates (Sadeghi et al., 2018; 
Sadeghi and Shadloo, 2017; Safdari Shadloo, 2019). 

The above-mentioned studies concerning displacement flow and 
fingering mainly concentrated on the impacts of dimensionless numbers 
and viscosity criterion on dynamics of flow without offering any prac-
tical solutions to increase the displacement efficiency utilizing external 
forces. In this paper, we propose a new approach by adding nano-
particles to the injected fluid for employing electro-hydrodynamic and 
magneto-hydrodynamic fields as applied external forces, and then the 
impacts of nano-particles and other external forces, such as thermal 
fields, on the displacement of time-dependent non-Newtonian fluids by 
Newtonian fluids are analyzed. 

In this manuscript, after introducing boundary conditions and the 
equations governing the fluid flow, a simple example of displacement 
flow in a tilted channel is simulated. Then, the results of this simulation 
are compared with the results of the study conducted by (Redapangu 
et al., 2012). Moreover, a mesh sensitivity analyses was carried out. 
Finally, the results of the simulations are discussed and interpreted by 
presenting two groups of figures which are used to exhibit the 
displacement efficiency and the appearance of flow. These figures show 
the efficiency of displacement in all longitudinal and cross-sections of 
the channel, the amount of displaced fluid left in the channel, the 
thickness of the static layer at the top and bottom of the channel, 
development of instabilities, and placement pattern of two fluids in the 
channel. 

2. Numerical modeling

Consider a two-dimensional inclined channel which is initially filled
with a stagnant incompressible Newtonian fluid with a viscosity of μ2 
and density of ρ2 (fluid 2). This fluid is displaced in an immiscible 
manner due to the presence of a flow applied by a fluid with a viscosity 
of μ1 and density of ρ1 (fluid 1). The inlet and outlet of the channel are 
located at x 0 and x L, and its walls at y 0 and y H. 

We used the hydrodynamic boundary condition for the upper and 
lower walls of the channel, a fully developed velocity profile at the inlet, 
and the Neumann boundary condition for pressure at the outlet (through 
extrapolation). We also considered the height-to-length ratio of the 
channel to be 1 to 30 in all the simulations, and the inclination angle of 
the channel was considered according to the longitudinal axis. Fig. 1 
shows a schematic of the above conditions. 

2.1. Numerical method 

The present study is based on a model of the He and Chen’s method 
(He et al., 1999a, 1999b) developed by Sahu and Vanka (2011) for fluids 
with unequal viscosities. In what follows, we briefly describe this model. 

The two distribution functions f and g are defined using relations (1) 
and (2) in the collision step: 

Fig. 1. A schematic showing the initial geometry (without observing the pro-
portionality) and structure of the flow. The inlet and outlet of the channel are 
located at x = 0 and x = L, respectively. The length to height ratio of the 
channel is L/H = 30. In the initial state, the channel is filled with fluids 1 and 2 
at 0 ≤ x ≤ 5 and 5 ≤ x ≤ L, respectively. 
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In the above equations, u represents the velocity vector, and τ is the 
relaxation time, which is related to the kinematic viscosity through the 
relation γ (τ 0.5)c2

s δ. Also, cs is the speed of sound, and its value is 
set to 0.333 in the above equation. We use Relation (4) to find the 
mesoscopic velocity at the lattice scale: 
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As for the weight functions, we have the following: 
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In addition, the equilibrium distribution functions are obtained from 
equations (6) and (7): 
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The index function(ϕ), pressure (P), and velocity (u) are calculated 
using relations (8) to (10): 

ϕ
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And eventually, to calculate the density (ρ) and kinematic viscosity (γ), 
we have the following: 

ρ(ϕ) ρ1 +
ϕ ϕ1

ϕ2 ϕ1
(ρ2 ρ1) (11)  

γ(ϕ) γ1 +
ϕ ϕ1

ϕ2 ϕ1
(γ2 γ1) (12)  

where γ1 and γ2 are the kinematic viscosities, ρ1 and ρ2 densities, and ϕ1 

andϕ2 index functions of the first and second fluid. The values of the 
index functions are set to 0.2508 and 0.02381 for the heavy and light 
fluid, respectively. 

In non-ideal fluids, ∇ψ plays a fundamental role in the simulation of 
intermolecular interactions and separation of phases. This term is ob-
tained from the Carnahan-Starling equation (Ezzatneshan and Vasegh-
nia, 2020; Ishak et al., 2020; Yuana et al., 2019; Zachariah et al., 2019). 
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where a represents the power of intermolecular interactions, whose 
critical value is 3.53357. If a is greater than this value, the flow gener-
ated by the movement of the two fluids remains immiscible. It should be 
noted that, for large values of a, the convergence of the solutions may be 
disrupted. In the present study, this value is set to 4, and the fourth-order 
compact scheme has been used for the discretization of ∇ψ . 
(
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Moreover, the second-order discretization is used For ∇2ψ (Lee and 
Lin, 2005). 

∇2ψ 1
6
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Besides, surface tension and gravitational forces are calculated using 
relations (17) and (18): 

Fs kϕ∇∇2ϕ (17)  

G (ρ ρm)g (18) 

In the above equations,ρm is defined through the equationρm (ρ1 +

ρ2)/2, and k determines a model of surface tension intensity, which is 
obtained from relations (19) and (20): 

σ k
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)2
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I(α) 0.1518(a ac)
1.5
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In Relation (19), ξ is the direction perpendicular to the contact 
surface. 

Considering the type of relations in the He-Chen-Zhang model to 
obtain the macroscopic characteristics of a fluid, it is not efficient to use 
the Zou-He boundary condition for obtaining unknown distribution 
functions at boundaries. Also, the importance of the wall boundary 
condition in the current problem makes us use the hydrodynamic 
boundary condition, instead of the bounce-back boundary condition. In 
what follows, we will detail the way of applying the aforesaid models to 
obtain unknown distribution functions at boundaries. 



ϕi,0 ϕi,1 , ϕi,Ny ϕi,Ny 1 i 0,Nx (21)  

where Nx+1 and Ny+1 are the numbers of points in the lattice, in the 
direction of x and y. 

Velocity: Velocities are reflected in mirror forms to apply non-slip 
and non-penetration conditions. 

ui,0 2uw ui,1 , ui,Ny 2uw ui,Ny 1 i 0,Nx (22)  

vi,0 2vw vi,1 , vi,Ny 2vw vi,Ny 1 i 0,Nx (23) 

In the present study, uw and vw are the tangential and vertical ve-
locities of the wall, which are assumed to be zero. 

Distribution function (f): 

fi,0 f eq
i,0 + f neq

i,1 , fi,Ny f eq
i,Ny0 + f neq

i,Ny 1 i 0,Nx (24) 

Pressuredistribution function (g): 

Pi,0 Pi,1 , Pi,Ny Pi,Ny 1 i 0,Nx (25) 

This pressure is used to calculate the equilibrium value of the dis-
tribution function (g). But be careful that in order to substitute the ve-
locity in this function, its value must be considered zero, its ghost value 
must be ignored. By being added to the non-equilibrium value, this 
equilibrium value creates Function (g) (as in Relation (24) for Function 
(f)). 

In addition to the above-mentioned methods, one of the efficient 
approaches to obtain unknown distribution functions at boundaries is 
the extrapolation method for distribution functions at boundaries with 
known velocities or pressures, which will be discussed in what follows. 

In hydrodynamic problems, boundary conditions are usually given 
for macroscopic values (such as velocitypressure). However, in the lat-
tice Boltzmann method, what is important is knowing the values of 
distribution functions at boundaries. Hence, there is a need for a 
comprehensive method to obtain distribution functions based on 
macroscopic values at the boundaries. Accordingly, researchers pro-
posed the idea of extrapolating the non-equilibrium values of distribu-
tion functions similarly to that of hydrodynamic boundary conditions, 
with the exception that, in the streaming step unlike the hydrodynamic 

method, distribution functions in internal points can stream into boun-
dariesreplace them (Zhao-Li et al., 2002). 

2.3. Simulation of non-Newtonian fluids 

Time-independent non-Newtonian fluids are certain kinds of mate-
rials, for which the curve of shear stress versus shear rate could not pass 
through the origin of the coordinate system, or the relationship between 
may not be linear. The apparent viscosity, which is defined as is a 
function of The shear rate of these fluids at a certain point of them is 
determined only by the corresponding shear stress at that point, vice 
versa. For the generalized Newtonian fluids with no memories of their 
motion, the uniform shear behavior can be expressed in the form of 
relation (26): 

γ̇yx f
(
σyx

)
(26)  

And in its inverse from: 

σ̇yx f 1
(

γ̇yx

)

(27) 

According to the above relation, the general behavior of non- 
Newtonian fluids can be categorized in these three types:  

1 Shear-thinning or pseudoplastic behavior  
2 Viscoplastic behavior  
3 Shear-thickening or dilatant behavior 

However, for time-dependent fluids the apparent viscosity changes 
with timeshear rate (Abedi et al., 2020). In other words, they can be 
termed as memory materials. Examples of these types of fluids are 
gelatine, shortening, cream, paints, yogurt, xanthan gum solutions, 
aqueous iron oxide gels, gelatine gels, pectin gels, synovial fluid, hy-
drogenated castor oil, some clays (including bentonite, montmoril-
lonite), carbon black suspension in molten tire rubber, some drilling 
muds, many paints, many floc suspensions, many colloidal suspensions. 
According to the time-dependent viscosity model (Larson, 2015), the 
apparent viscosity of the fluid is obtained from Relation (28). 

μ μ21 + (μ22 μ21) S (28)  

where 

DS
Dt

a(1 S) bSγ̇ (29) 

In Relations (28) (29), (a,b) are the viscosity curve fitting con-
stantsstructural parameter (s) is an index of the degree of microstruc-
tures within the fluid system which lies in the range of 0–1. The fluid’s 
viscosities corresponding to these two limiting cases are denoted by 
μ21μ22, respectively. Finally, the value of the shear rate tensor is obtained 
from relations (30) (31). 

γ̇ ∇V +∇VT (30)  

|γ̇|
1
2
γ̇ ˙: γ

√

(31) 

In the lattice Boltzmann method, the relaxation time is considered to 
be constant for Newtonian fluids at any point of the lattice. But, for non- 
Newtonian fluids, the relaxation time at each point is different from that 
at its adjacent point. It should be noted that in time-dependent fluids, the 
viscosity is a function of time, velocity gradient, shear history. Thus, 
because of differences in the velocity gradient, viscosityrelaxation time 
at each point are different from those at its neighborhood. 

2.4. Simulation of the temperature field 

The distribution function (T) is utilized by the thermal lattice 

2.2. Boundary conditions for the He-Chen-Zhang model 

(Noble et al., 1995) introduced the idea of hydrodynamic boundary 
condition as a different and distinct kind of bounce-back boundary 
condition. They suggested the use of non-slip conditions to find un-
known distribution functions. The easiest and most straightforward way 
of applying hydrodynamic boundary conditions is using equilibrium 
conditions at the walls. Special attention should be paid to the fact that 
after the application of the boundary condition, the streaming process 
should take place. The streaming distribution functions should not be 
used to replace the distribution functions at the walls and all the dis-
tribution functions should be set to their equilibrium values. Further-
more, the values of the density and velocity of the walls must be used to 
obtain equilibrium distribution functions at the walls. By developing the 
boundary condition presented by (Chen et al., 1996), (Guo et al., 2002) 
introduced a special kind of boundary condition, in which the 
non-equilibrium part of the distribution functions in the internal points, 
is extrapolated and added to its equilibrium value at boundaries to 
obtain the values of distribution functions. It should be noted that this 
method is of second-order accuracy. Eventually, in the present study, we 
used a kind of hydrodynamic boundary condition, which is based on the 
ghost fluid approach and extrapolation of the non-equilibrium values of 
distribution functions. This kind of boundary condition is of 
second-order accuracy. In what follows, the way of using this boundary 
condition is explained in more detail. 

Index function (ϕ): By placing the wall among the lattice points and 
applying the zero gradient to the index functions (with a second-order 
accuracy), we achieve the following: 
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where the equilibrium distribution functionrelaxation time for the 
temperature field defined as: 

Teq
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s
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In the above equations, α is the thermal diffusion coefficienttemp is 
local temperature. Finally, the distribution functions (f, g) which 
introduced in the previous sectionT are coupled through the following 
force term: 

Fb ρgβ
(
temp tempref

)
(35)  

where β is the thermal expansion coefficienttempref is the reference 
temperature (cold wall or ambient temperature) usually set to 0 in the 
non-dimensional scale. The buoyancy force couples the Navier–Stokes 
equation with energy equation. It is assumed that invading fluid enters 
the channel with a specific temperature. Also, bottomtop of the channel 
are maintained at fixed temperatures. 

2.5. Lattice Boltzmann model for nanofluid 

Because of differences in thermo-physical properties such as density, 
thermal conductivity, specific heat capacitythermal expansion, both 
hydrodynamicthermal properties of nanofluid are different from those 
of pure fluid. Hence, the governing equations of the mixture must be 
modified precisely. Therefore, the density, thermal expansion, heat ca-
pacity, thermal diffusion, dynamic viscositythermal conductivity are 
given by the following relations, respectively. 
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(
ks kf

)

]
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In the above relations f, snf represent pure fluid, nano-
particlesmixture properties. 

2.6. Simulation of the electric field 

In the present study, the leaky dielectric model is used to simulate 
the effects of applied electric fields on displacement flow. In our simu-
lations, the electric field is considered to be irrotational. It means: 

∇× E→ 0 (42)  

where E is the electric field. The electric force applied to a fluid element 
can be written as: 

F→
∫ (

ρ E→
1
2

E2∇ε
)

dx3 (43) 

In the above equation, ε is the local fluid permittivity. The forces 
experienced by fluid particles can be expressed as a Maxwell stress 
tensor or as a body force. Therefore, the influence of an applied electric 
field on the fluid motion is created by this electric force (Almasi et al., 
2019): 

F→
1
2

E→⋅ E→∇ε + q E→ (44)  

where q is the free charge density given by: 

q ∇⋅
(

ε E→
)

(45) 

The electric field can be written as the gradient of a scalar potential 
U. 

E→ ∇U (46) 

Also, the mixture dielectric properties (local fluid permittivity-
conductivity) are assumed as follows: 

ε(ϕ) ε1 +
ϕ ϕ1

ϕ2 ϕ1
(ε2 ε1) (47)  

χ(ϕ) χ1 +
ϕ ϕ1

ϕ2 ϕ1
(χ2 χ1) (48)  

where ε1, ε2, χ1χ2 are constants which can be adjusted to produce 
different bulk property values. 

In this study, the lattice Boltzmann framework proposed by HeLi 
(2000) is followed to solve the electric potential. Thus, a new set of 
particle distributions is introducedtheir evolutions are described as: 

hα(x+ eαδt, t+ δt) hα(x, t)
hα(x, t) heq

α (x, t)
τh

(49)  

where equilibrium distribution functionrelaxation time for electric field 
are: 

heq
α tαU (50)  

τh 3σ + 0.5 (51) 

Finally, potential U is defined as: 

U
∑

α
hα (52) 

The potential U at northernsouthern boundaries is known. Also, the 
open boundary condition is set at the inletoutlet. Therefore, like tem-
perature distribution functions we have: 

2.7. Simulation of magnetic force 

In this study uniform magnetic field ( B→ Bx e→x + By e→y) is applied
to the domain of solution. The orientation of the magnetic field forms an 
angle γ with the horizontal axis of the channel such that γ

Boltzmann model for the temperature field (Mohamad, 2011). The 
general form of the Lattice Boltzmann equation For the temperature 
field is as follows: 
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cot− 1(Bx /By). The electromagnetic force F is defined by F→ ξ(V→ × B→)

× B→. In order to incorporate this force term in the model, it needs to be 
calculated in the two directions as follows (Kefayati et al., 2012): 

Fx
Ha2μnf

H2

(
vsinγcosγ usin2γ

)
(53)  

Fy
Ha2μnf

H2

(
usinγcosγ vcos2γ

)
(54)  

where H is the height of the channelthe Hartmann number is defined as: 

Ha HB0
σnf

μnf

√

(55)  

2.8. Modeling procedure 

In the numerical solution, the new relaxation time at each point (τ) is 
related to the velocity gradienttime. This new value will be used it in the 

next time step. So, the general procedure of the numerical solution will 
be as follows:  

1) Initialization of distribution functionsrelaxation time
2) Calculation of the macroscopic velocity fielddensity
3) Calculation of equilibrium distribution functions
4) Calculation of the velocity gradient
5) Calculation of viscosity using the structural equation of non-

Newtonian fluids
6) Calculation of the new relaxation time for non-Newtonian fluids
7) Calculation of new distribution functions in the collision step
8) Stream distribution functions into their adjacent points (propagation

step)
9) Using new relaxation time, velocity field, distribution functions in

the next time step (Step 2)repetition of this process

3. Lattice independence ofvalidation of the computer code

In order to explain the factors affecting the characteristics of a flow,
we have used the following non-dimensional numbers: Reynolds (Re
Qρ1/μ1), Atwood (At (ρ2 ρ1)/(ρ2 + ρ1)), viscosity ratio (m
μ2/μ1), Richardson (Ri gH3/Q2), Rayleigh (Ra gβΔtempH3/ν1α1), 
Prandtl (Pr ν1/α1)capillary (Ca Qμ1/σH). In the above-mentioned 
relations, Q is the volumetric flow rate per unit length. 

Fig. 2 shows time changes in the dimensionless volume (Mt
Mx/M0) of Fluid 2 for At 0.2, m 2, Ri 0.1, Ca ∞, Re 100,θ 
45 in the three lattice layouts; 55 × 1650, 80 × 2400,110 × 3300, 
where; S is the dimensionless time,M0Mx are criteria for the initial 
volumetime-varying volume of Fluid 2, which are calculated through 
relations (81) to (83): 

S H2/Q (56)  

M0
ϕ ϕ1

ϕ2 ϕ1
LH (57)  

Mx

∫L

0

∫H

0

ϕ ϕ1

ϕ2 ϕ1
dydx (58)  

And Fig. 3 shows changes in the mean thickness of the static layer left on 
the lower wall of the channel for At 0.2, m 20, Ri 1, Ca ∞, Re 

Fig. 2. The effects of changes in the lattice layout on changes in Mt at 
different times. 

Fig. 3. The effects of changes in the lattice layout on the mean thickness of the 
static layer left on the lower wall of the channel at different times. 

Fig. 4. A comparison between the results of the present studythe results ob-
tained by Redapangu et al. [11] for At = 0, m = 2, Ri = 0, Ca = 0.263, Re =
100,L/H = 48 in a horizontal channel. 
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100,θ 45 using definitions (84) (85) for the lowerupper walls, 
respectively: 

Hb
1

xl xb

∫xl

xb

∫Ny/2

0

ϕ ϕ1

ϕ2 ϕ1
dydx (59)  

Ht
1

xl xt

∫xl

xt

∫Ny

Ny/2

ϕ ϕ1

ϕ2 ϕ1
dydx (60) 

Eventually, due to the low difference between the results of the two 
denser layouts, the appropriate structure has been taken into consider-
ation. We also used the results obtained by Redapangu et al. [11] for a 
simple Newtonian displacement in a horizontal channel with At 0, m 

2, Ri 0, Ca 0.263,Re 100 (as shown in Fig. 4) to verify the 
performed simulation. 

4. ResultsDiscussion

In the current study, traditional approaches of the Lattice Boltzmann
method were utilized to simulate the temperatureelectric field. Appli-
cation of these fields results in creating new external forces which can be 
added to the interfacial forces in step 2. Before analyzing the presented 
results, the type of viscosity changes versus timeshear rates is shown in 
Fig. 5 (for a 0.1, b 0.5, μ21 0.4μ22 0.8). 

It can be seen that for a specific shear rate, the viscosity increases 
with the time. In addition, at a fixed time point, a higher shear rate leads 
to enhancement of viscosity. The occurrence of such behavior in the 
trend of viscosity changes versus timeshear rates plays a key role in 
interpreting the dynamicsefficiency of the displacements. 

Fig. 5. Viscosity changes versus timeshear rates in time-dependent fluids for a 
= 0.1, b = 0.5.μ21 = 0.4μ22 = 0.8 

Fig. 6. The effect of nanoparticles on the density contour in displacements of time-dependent fluids for the parameters listed in Table 1.  

Fig. 7. The effect of nanoparticles on the longitudinal velocity contour in displacements of time-dependent fluids for the parameters listed in Table 1.  

Fig. 8. The effect of nanoparticles on the transverse velocity contour in displacements of time-dependent fluids for the parameters listed in Table 1.  



4.1. Effects of added nanoparticles 

By defining t 1000δt Figs. 6–10 show the effects of nanoparticles 
on the flow dynamics in pressure-driven displacements of time- 
dependent fluids for the parameters listed in table. 1and ϕ 0, ϕ 
0.02, ϕ 0.04. These figures qualitatively reveal the effect of nano-
particles on the contours of density, longitudinal velocity, transverse 
velocity, temperatureviscosity. 

Adding nanoparticles to displacing fluid changes the displacement 
efficiency through various mechanisms. The increment in the density-
decrement in the thermal expansion coefficient of injected fluid (caused 

Fig. 9. The effect of nanoparticles on the temperature contour in displacements of time-dependent fluids for the parameters listed in Table 1.  

Fig. 10. The effect of nanoparticles on the viscosity contour in displacements of time-dependent fluids for the parameters listed in Table 1.  

Table 1 
Dimensionless numbersparameters used in simulation.  

m Re Ri At Ca Angle of Inclination Pr Ra α1/α2  a b μ21 μ22 T 

20 100 1 0.2 0.25 45 1 20,000 0.2 0.1 0.5 0.4 0.8 50  

Table 2 
Thermo-physical properties of pure injected fluidnanoparticles.   

ρ(Kg /m3) β(K 1) CP(J/kg K)  k(w/m K)  

Pure fluid 1000 0.0002 4000 0.5 
nanoparticle 4000 0.00016 600 10  

Fig. 11. Displacement efficiency versus time for time-dependent fluidsdifferent (ϕ)s.  



by adding nanoparticles) enhances the vertical forcesthat in turn in-
creases the vertical motion of this fluid toward the bottom of the 
channel. On the other hand, a higher viscosity of invading mixture 
causes the momentum transfer between its layers to occur more 
severely. Finally, alteration in the specific heat transferconduction leads 
to change in relaxation time, the equilibrium distribution function of 
temperature, total temperaturevertical motion of displacing fluid. The 

thermo-physical properties of pure injected fluidnanoparticles are pre-
sented in Table 2. 

Figs. 11–13 exhibit the total efficiency of displacementthe thickness 
of the static layers at the topbottom of the channel respectively. Ac-
cording to the above-mentioned explanation, increasing in densityvis-
cosity of injected fluid improves its ability for driving the secondary one. 
However, the effects of this improvement on the displacement efficiency 
are very small (Fig. 11). On the other hand, the influences of variation in 
the thermal features of injected fluid are not enough to change the 
thickness of the static layers significantly. It should be mentioned that 
because of the economical considerations percent of nanoparticles 
cannot be enhanced greatly. So, adding nanoparticles to the injected 
fluid is not an appropriate way to change the displacement efficiency. 

4.2. Effects of applying electric field 

By defining E0 (Uupper Ulower)/H, Figs. 14–20 show the effects of 
electro-hydrodynamics on the flow dynamics in pressure-driven dis-
placements of time-dependent fluids for the parameters listed in 
Table 1E0 0, E0 0.05, E0 0.1. 

The effects of electric field on transverse forces at the interface of two 
fluids cause wide changes in the appearance of the displacement. Ac-
cording to Fig. 19, these transverse forces at the upper interface are 
toward the top of the channel. However, they are toward the bottom of 
the channel at the lower interface. The sign change of these forces has 
roots in the variation of ∇ε value (Relation. 57) at different points of the 
interface. In the present study, Xt is used to represent the front of the 
invading fluid flow at the top of the channelXb for that at the bottom of 
the channel. Moreover, as an important criterion for determining the 
advance of the displacing fluid, we identified the point of the displacing 
fluid, which has the maximum value in the direction of the x-axis. This 
location is represented by XLcalled the attacking front Fig. 21. As shown 
in Figs. 22–25, increasing lateral forces at the interface points toward the 
walls of the channel causes an increment in the location of XtXb. 
Although, decrement in the location of XL is associated with the 
reduction in axial motion of the invading fluid. As a result, the total 
efficiency of displacement (Mt) doesn’t change significantly. Based on 
definitions (86) (87), Fig. 26Fig. 27 show the flow efficiency in all the 
longitudinalcross sections of the channel, the advance rate of the dis-
placing fluidthe severity of interfacial instabilities.  

Rx
1
H

∫H

0

ϕ ϕ1

ϕ2 ϕ1
dy (61)  

Ry
1
L

∫L

0

ϕ ϕ1

ϕ2 ϕ1
dx (62) 

Regarding previous explanations, the enhancement in the power of 
the electric fieldmotion of the injected fluid toward the walls of the 
channel can be interpreted as an improvement in displacement effi-
ciency in longitudinal sections close to the wallsvice versa. It should be 
mentioned that imposing higher electric field intensifies interfacial in-
stabilities which appear as fluctuations in Rx (Fig. 26)discontinuous 
finger structure in density contour (Fig. 14). Thus, a strong electric field 

Fig. 12. The mean thickness of the static layer versus time at the top of the 
channel in the displacement of time-dependent fluids for different (ϕ)s. 

Fig. 13. The mean thickness of the static layer versus time at the bottom of the 
channel in the displacement of time-dependent fluids for different (ϕ)s. 

Fig. 14. The electro-hydrodynamics effects on the density contour in pressure-driven displacements of time-dependent fluids for the parameters listed in Table 1.  



Fig. 15. The electro-hydrodynamics effects on the longitudinal velocity contour in pressure-driven displacements of time-dependent fluids for the parameters listed 
in Table 1. 

Fig. 16. The electro-hydrodynamics effects on the transverse velocity contour in pressure-driven displacements of time-dependent fluids for the parameters listed 
in Table 1. 

Fig. 17. The electro-hydrodynamics effects on the temperature contour in pressure-driven displacements of time-dependent fluids for the parameters listed 
in Table 1. 

Fig. 18. The electro-hydrodynamics effects on the viscosity contour in pressure-driven displacements of time-dependent fluids for the parameters listed in Table 1.  



Fig. 19. The electro-hydrodynamics effects on the transverse force contour in pressure-driven displacements of time-dependent fluids for the parameters listed 
in Table 1. 

Fig. 20. The electro-hydrodynamics effects on the longitudinal force contour in pressure-driven displacements of time-dependent fluids for the parameters listed 
in Table 1. 

Fig. 21. A schematic showing the appearance of the displacement.  

Fig. 22. Displacement efficiency versus time for different (E0)s in the 
displacement of time-dependent fluids. Fig. 23. The location of the attacking front versus time for different (E0)s in the 

displacement of time-dependent fluids. 



increases the average thickness of the static layers at the topbottom of 

the channel (Fig. 2829). Enhancing interfacial forces magnifies velocity 
in the same direction. As a result, by intensifying small perturbations at 
the interface of two fluids, the magnitude of interfacial instabilities in-
creases. Nevertheless, altering roll-up structure, vorticities, temperature 
distribution control Kelvin-Helmholtz, Reighley-Taylor,Reighley- 
Benard instabilities. Finally, the equal total efficiency (Mt) for different 
values of E0 implies that the area under the curves RxRy is equal for all of 
the cases. 

It is worth mentioning that the static wall layer left on the lower wall 
is exposed to the warmer boundary for a long time. So, this region has a 
higher temperature in comparison with other areas of the flow. This 
layer at the top of the channel has a lower temperature, Because not only 
it is located in the neighborhood of the colder boundary, but also a 
continuous flow of the cold finger-like structure prevents the upper layer 
from sticking to lower one. Eventually, according to Fig. 5 the viscosity 
of the time-dependent fluid reaches its maximum value after a long 

timesmall deviation from this value in Fig. 18 is related to the differ-
ences in the velocity gradient in various points of the channel. 

4.3. Effects of applying magnetic field 

Figs. 30–35 show the effects of magneto-hydrodynamics on the flow 
dynamics in pressure-driven displacements of time-dependent fluids for 
the parameters listed in Table 1, θ 0, θ 180Ha 0, Ha 10. 

In order to intensify magnetic forces in the direction (or opposite 
direction) of transverse velocity the coordinate system is turned as 
Fig. 36 (just for calculating ((V× B) × B)). 

In the simulation of the magnetic forces, the electrical conductivity 
of the displaced fluid is assumed to be ignorable in comparison to those 

Fig. 24. The location of the advancing front at the top of the channel versus 
time for different (E0)s in the displacement of time-dependent fluids. 

Fig. 25. The location of the advancing front at the bottom of the channel versus 
time for different (E0)s in the displacement of time-dependent fluids. 

Fig. 26. The efficiency versus Rx for different (E0)s in the displacement of time- 
dependent fluids. 

Fig. 27. The efficiency versus Ry for different (E0)s in the displacement of time- 
dependent fluids. 



of the injected fluid. Therefore, these forces just impress the displacing 
fluid. According to Figs. 30–32 for Ha 10θ 180 resisting forces 
against the transverse movement of the displacing fluid regularize the 
finger structure. Thus, the axial motion of this fluid occurs in a wider 
space. So, injection of cold invading fluid to warm static layer reduces. 

According to the above explanations, for Ha 10θ 180, by 
enhancing axial velocity of the invading fluid, its ability of displacing 
increases. On the other hand, for Ha 10θ 0, the magnetic forces 
intensify transverse motion of the injected fluid toward the walls. So, 
Mtthe locations of XL , XtXb are representatives of these behaviors 
(Figs. 37–40). 

Three effective factors which determine the average thickness of the 
static wall layers are displacement efficiency in the different cross- 
sections of the channel, development of interfacial instabilitiesdisplac-
ing fluid tendency to move toward the walls. For Ha 10θ 0, 
enhancement of this tendency in longitudinal sections close to the 
channel walls causes the displacement efficiency to increase. However, 
this motion (toward the walls) is associated with a decrement in the 
displacement efficiency for longitudinal sections close to the channel 
axis (Fig. 42). In contrast to the effects of the electric field, imposing a 
magnetic field creates a special kind of transverse motion in the dis-
placing fluid which finally leads to enhancement in the total efficiency 
of displacement. It means in comparison with induced interfacial force 
by the electric field, the body force generated by applying the magnetic 
field doesn’t violate the integrity of the fingering structure. The average 
thickness of the static wall layer is calculated for y 0 to y Ny/2y 
Ny/2 to y Ny (Relation. 8485). Finally, for Ha 10θ 0, with the 
transverse velocity increasing, interfacial instabilities (Fig. 41) which 
are the main cause of the fluctuations in the average thickness of the 
static wall layers, enhance (Fig. 4344). 

5. Conclusion

In this study, the He-Chen-Zhang model is used to simulate the
displacement of a time-dependent non-Newtonian fluid by a Newtonian 
one. We have numerically investigated the effects of heating channel 
wallsapplying magnetic/electric fields on added nanoparticles to 
improve the efficiency this transport process. Several diagramsfigures 
are provided to demonstrate the displacement efficiencythe apparent 
flow pattern at different cross-sections of the channel. 

The results of our simulations revealed that imposing higher electric 
field intensifies interfacial instabilities due to increment in the trans-
verse velocity. However, the total efficiency of the displacement (Mt) 
does not change significantly. It means applying the electric field is the 
best approach to sweep the residual boundary layer of the displaced 
fluid around the fingering structure. But, we cannot expect to collect 
higher amount of secondary fluid for injecting a specific volume of 
Newtonian fluid over time. 

By increasing the Hartmann numberchanging the rotation angle of 
the coordinate system (to 180), the resisting forces against transverse 
movement of the displacing fluid are intensified. Hence, axial velocity of 

Fig. 28. The mean thickness of the static layer versus time at the top of the 
channel in the displacement of time-dependent fluids for different (E0)s. 

Fig. 29. The mean thickness of the static layer versus time at the bottom of the 
channel in the displacement of time-dependent fluids for different (E0)s. 

Fig. 30. The magneto-hydrodynamics effects on the density contour in pressure-driven displacements of time-dependent fluids for the parameters listed in Table 1.  



Fig. 31. The magneto-hydrodynamics effects on the longitudinal velocity contour in pressure-driven displacements of time-dependent fluids for the parameters listed 
in Table 1. 

Fig. 32. The magneto-hydrodynamics effects on the transverse velocity contour in pressure-driven displacements of time-dependent fluids for the parameters listed 
in Table 1. 

Fig. 33. The magneto-hydrodynamics effects on the temperature contour in pressure-driven displacements of time-dependent fluids for the parameters listed 
in Table 1. 

Fig. 34. The magneto-hydrodynamics effects on the viscosity contour in pressure-driven displacements of time-dependent fluids for the parameters listed in Table 1.  
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this fluidits ability of displacing increases. Furthermore, for Ha 10θ 
0, with the transverse velocity increasing, displacement efficiency for 
longitudinal sections close to the channel axis decreasesthe occurrence 
of interfacial instabilities is inevitable. 

By increasing the velocity gradientallowing sufficient time, the vis-
cosity of the time-dependent fluid reaches its maximum value. There-
fore, small spatial perturbation of velocity field can create fluctuations 

Fig. 35. The magneto-hydrodynamics effects on the transverse force contour in pressure-driven displacements of time-dependent fluids for the parameters listed 
in Table 1. 

Fig. 36. The original coordinate systemits turning direction just for calculating 
((V× B) × B). 

Fig. 37. Displacement efficiency versus time for different (Haθ)s in the 
displacement of time-dependent fluids. 

Fig. 38. The location of the attacking front versus time for different (Haθ)s in 
the displacement of time-dependent fluids. 

Fig. 39. The location of the advancing front at the top of the channel versus 
time for different (Haθ)s in the displacement of time-dependent fluids. 

M. Esmaeilpour and M. Gholami Korzani



in the viscosity of the displaced fluid leading to different instabilities. 
Applying a magnetic field can increase the total displacement effi-

ciencythe displacement efficiency in longitudinal sections of the channel 
adjacent to the walls simultaneously. However, it is not possible to 
enhance both of these two criteria for the description of displacement 
efficiency at the same time by imposing an electric field since it violates 
the integrity of the fingering structure. 

It is found that adding nanoparticles to the injected fluid slightly 
changes the displacement efficiency. It should be noted that the amount 

of nanoparticles in the displacing fluid cannot be increased greatly due 
to economical consideration. But, adding nanoparticles to the injected 
fluid is required to create magneticelectric fields. 

Investigating the displacement of non-Newtonian fluids by other 
ones in 3D channelsa real application of the provided approach in in-
dustrial processes can be potentially interestingmotivating for re-
searchers to developcontinue the present study. 
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Fig. 40. The location of the advancing front at the bottom of the channel versus 
time for different (Haθ)s in the displacement of time-dependent fluids. 

Fig. 41. Displacement efficiency versus Rx for different (Haθ)s in the 
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Fig. 42. Displacement efficiency versus Ry for different (Haθ)s in the 
displacement of time-dependent fluid. 

Fig. 43. The mean thickness of the static layer versus time at the top of the 
channel in the displacement of time-dependent fluids for different (Haθ)s. 
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