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Dual variational methods for a nonlinear Helmholtz equation with

sign-changing nonlinearity

Rainer Mandel, Dominic Scheider, Tolga Yeşil

Abstract

We prove new existence results for a Nonlinear Helmholtz equation with sign-changing non-

linearity of the form

−∆u− k2u = Q(x)|u|p−2u, u ∈W 2,p(RN )

with k > 0, N ≥ 3, p ∈
[

2(N+1)
N−1 , 2N

N−2

)

and Q ∈ L∞(RN ). Due to the sign-changes of Q, our

solutions have infinite Morse-Index in the corresponding dual variational formulation.

1 Introduction

In the present article, we consider nonlinear Helmholtz equations of the form

(1.1) −∆u− k2u = Q(x)|u|p−2u on R
N

for p ∈
[

2(N+1)
N−1 , 2N

N−2

)

and k > 0 with a weight function Q ∈ L∞(RN ) that may change sign. To

allow for the latter is nontrivial given that one of the main tools for proving the existence of solutions

is the dual variational method that, in its classical form, relies on the nonnegativity of the weight

function. In the context of Nonlinear Helmholtz equations it was first implemented in a paper by

Evéquoz and Weth [4]. To highlight the role of the nonnegativity of Q we briefly recapitulate the

approach.

Instead of (1.1) one considers a reformulation as the integral equation

(1.2) u = R(Q|u|p−2u) u ∈ Lp(RN ),

whereR is the real part of a resolvent type operator R, i.e., a right inverse of the Helmholtz operator

−∆− k2 on R
N . For f ∈ S(RN ) the operator R is given by R(f) = Φ ∗ f where

Φ(x) :=
i

4

(

k

2π|x|

)
N−2

2

H
(1)
N−2

2

(k|x|), x ∈ R
N \ {0}

1

http://arxiv.org/abs/2011.07808v2
Christian Knieling



is the fundamental solution of the Helmholtz equation associated with Sommerfeld’s outgoing radi-

ation condition

(1.3)

∣

∣

∣

∣

∇Φ(x)− k iΦ(x)
x

|x|

∣

∣

∣

∣

= o(|x|
1−N

2 ), as |x| → ∞.

Here, H
(1)
N−2

2

denotes the Hankel function of the first kind and order N−2
2 . So the operator R

from (1.2) is given by R(f) = Ψ ∗ f where Ψ := Re(Φ) is given by

(1.4) Ψ(x) = −
1

4

(

k

2π|x|

)
N−2

2

Y 2−N
2

(k|x|), x ∈ R
N \ {0}

It is known [7, Theorem 2.3] that R extends as a continuous linear map from Lp
′
(RN ) → Lp(RN )

precisely for p ∈
[

2(N+1)
N−1 , 2N

N−2

]

. One then introduces the dual variable ũ := Q1/p′ |u|p−2u and

observes that solutions of (1.2) are precisely the critical points of the (dual) energy functional

I : Lp
′
(RN ) → Lp(RN ) given by

I(ũ) :=
1

p′
‖ũ‖p

′

p′ −
1

2

∫

RN

ũKũ dx.

Here, K : Lp
′
(RN ) → Lp(RN ), ũ 7→ Q

1
pR(Q

1
p ũ) is a symmetric operator in the sense of

(1.5)

∫

RN

f Kg dx =

∫

RN

gKf dx for all f, g ∈ Lp
′
(RN ),

see [4, Lemma 4.1]. Under the additional assumption that Q vanishes at infinity, one obtains that

I is an odd functional of class C1 that has the Mountain Pass Geometry and satisfies the Palais-

Smale Condition. So the existence of an unbounded sequence of solutions to (1.2) follows from

the Symmetric Mountain Pass Theorem. Inverting the transformation u 7→ ũ one thus obtains an

unbounded sequence of solutions to the nonlinear Helmholtz equation (1.1). This is the strategy

proposed by Evéquoz and Weth [4] for the focusing nonlinear Helmholtz equation Q ≥ 0. We refer

to [9] for analogous results in the defocusing case Q ≤ 0, where the dual variational approach was

implemented for the dual variable ũ := |Q|1/p
′
|u|p−2u. In view of these two results it is natural to

ask for a dual variational approach work in the intermediate case of sign-changing Q. In this paper,

we provide a solution for this problem.

To treat sign-changing coefficients Q ∈ L∞(RN ) we have to come up with a new idea to make the

dual variation approach work. We write Q = Q+ −Q− where Q± := |Q|1A± and

(1.6) A+ := {Q > 0}, A− := {Q ≤ 0}.
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In fact we will consider Qλ := λQ+ −Q− for λ > 0 in the following. Our main idea is to introduce

a tuple of dual variables (ϕ,ψ) ∈ Lp
′
(A+) × Lp

′
(A−) associated with (u|A+ , u|A−) and to derive

a coupled system of nonlinear integral equations the solutions of which are precisely the critical

points of an associated strongly indefinite dual energy functional. We will see that the indefiniteness

comes from the presence of Q− and thus vanishes in the case of a nonnegative function Q ≥ 0. In

particular, the critical points of this dual energy functional will have infinite Morse index, which

clearly distinguishes these solutions from the dual bound and ground states obtained in [4] in the case

Q ≥ 0. We will explain the dual variational framework in detail in Section 2. Our conditions for the

existence of critical points involve the linear operator K : Lp
′
(RN ) → Lp(RN ), f 7→ |Q|

1
pR(|Q|

1
p f)

as well as the numbers

(1.7) α := max
‖ϕ‖

p′
=1,

supp(ϕ)⊂A+

∫

RN

ϕKϕ dx, β := max
‖ϕ‖

p′
=‖ψ‖

p′
=1,

supp(ϕ)⊂A+,supp(ψ)⊂A−

∫

RN

ϕKψ dx.

Since we will assume K to be compact, both values are indeed attained. Moreover we have β ≥ 0

and [4, Lemma 4.2(ii)] gives α > 0 once we assume that A+ has positive measure, i.e., Q+ 6≡ 0. Our

main result reads as follows.

Theorem 1.1. Let p ∈ [2(N+1)
N−1 , 2N

N−2 ) and Q ∈ L∞(RN ), Q+ 6≡ 0. Moreover assume that

(1.8) K : Lp
′
(RN ) → Lp(RN ) is compact and

∫

RN

ψKψ dx ≥ 0 for all ψ ∈ Lp
′
(A−).

Then for almost all λ > λ0 := (2βα−1)p there is a nontrivial strong solution u ∈ W 2,q(RN ) ∩

C1,γ(RN ) for all q ∈
(

2N
N−1 ,∞

)

and γ ∈ (0, 1) of

(1.9) −∆u− k2u = Qλ(x)|u|
p−2u on R

N .

The proof relies on a combination of a saddle-point reduction and the abstract monotonicity trick by

Jeanjean-Toland [6], which provides bounded Palais-Smale sequences (only) for almost all λ > λ0.

It would clearly be desirable to extend our result to all λ > λ0, but related a priori bounds seem to

be out of reach. Notice also that [9, Theorem 1.4] suggests the existence of nontrivial solutions also

for small λ > 0, possibly assuming the set {Q > 0} to be small enough and following a different

variational approach. Let us point out that λ0 is small provided that the number β, which is the

same as the operator norm ‖1A+K(1A−)‖p′→p, is small compared to α > 0. In the case p > 2(N+1)
N−1

this can be achieved by considering coefficient functions Q such that dist(A−, A+) is large enough,

see [5, Lemma 2.6].

In the following Corollary, we show that the abstract conditions (1.8) hold for a reasonable class of

sign-changing functions Q ∈ L∞(RN ). If for instance Q vanishes at infinity, then [4, Lemma 4.1(ii)]

applied to |Q| implies that K : Lp
′
(RN ) → Lp(RN ) is compact. It is less immediate to verify the non-

3



negativity assumption on the bilinear form (1.8). From [2, Corollary 5.4] we infer that this condition

holds for measurable sets A− with small enough diameter. To be more precise, if yN−2
2

denotes

the first (positive) zero of the Bessel function YN−2
2

, then the condition diam(A−) ≤ k−1yN−2
2

is

sufficient. To put this condition into perspective, note that for N = 3 we have Y 1
2
(t) = −

√

2
πt cos t,

thus y1/2 = π/2 and yN−2
2

> y1/2 for N > 3 (see [1, Section 9.5]). We thus conclude as follows.

Corollary 1.2. Assume p ∈ [2(N+1)
N−1 , 2N

N−2 ) and Q ∈ L∞(RN ), Q+ 6≡ 0 . Moreover assume

(1.10) lim
R→∞

esssup|x|≥R |Q(x)| = 0 and diam (A−) ≤ k−1yN−2
2
.

Then for almost all λ > λ0 := (2βα−1)p there is a nontrivial strong solution u ∈ W 2,q(RN ) ∩

C1,γ(RN ) for all q ∈
(

2N
N−1 ,∞

)

and γ ∈ (0, 1) of (1.9).

The regularity results in Theorem 1.1 and Corollary 1.2 are direct consequences of [4, Lemma 4.3]

and of the iteration procedure from Step 3 in the proof of [8, Theorem 1]. Notice that [8, Theo-

rem 1] provides solutions to far more general Nonlinear Helmholtz equations than (1.1) regardless

of whether sign-changes occur or not, but the constructed solutions are small. This result relies on

a fixed point approach. Let us also mention [3] where nontrivial solutions of Nonlinear Helmholtz

equations are constructed for rather general and possibly sign-changing nonlinearities vanishing

identically outside some compact subset of RN . Our method is entirely different from any of these

approaches.

This paper is organzied as follows: In Section 2 we introduce our basic tools and develop the dual

variational framework by reformulating the indefinite Nonlinear Helmholtz equation as a coupled

system of integral equations. Then we prove that nontrivial critical points of the associated energy

functional Jλ are indeed nontrivial solutions u ∈ Lp(RN ) of the integral equation u = R(Qλ|u|
p−2u).

This motivates the search for critical points of Jλ. In Section 3 we perform the saddle-point reduction

of (ϕ,ψ) 7→ Jλ(ϕ,ψ) leading to a reduced function J̃λ that depends on ϕ only. In Section 4 we

establish the existence of bounded Palais-Smale sequences for these reduced functionals for almost

all λ > λ0. As mentioned above, this step entirely relies on the monotonicity trick by Jeanjean and

Toland [6]. Finally, we combine all the auxiliary results to prove Theorem 1.1 and Corollary 1.2 in

Section 5.

Let us close this introduction by fixing some notation: Throughout the paper we denote by Br(x)

the open ball in R
N with radius r > 0 and center at x ∈ R

N . Moreover, we set Br = Br(0) for any

r > 0. For 1 ≤ s ≤ ∞, we abbreviate the standard norm on Ls(RN ) by ‖·‖s. The Schwartz-class of

rapidly decreasing functions on R
N is denoted by S(RN ). For any p ∈ (1,∞) we always denote by

p′ := p
p−1 the Hölder conjugate of p. The indicator function of a measurable set B ⊂ R

N is 1B. By

diam (B) we always denote the diametere of a set. We will always use the symbols ϕ,ψ to denote

4



Lp
′
(A+)− and Lp

′
(A−)-functions that are continued trivially to the whole of RN .
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2 Dual variational formulation

In this section we will formulate a variational framework to the equation (1.9). We recall from the

introduction that solutions of our problem are obtained as solutions of the integral equation

(2.1) u = R(Qλ|u|
p−2u), u ∈ Lp(RN ).

where R(f) = Ψ ∗ f for the function Ψ introduced in (1.4) and

(2.2) ‖R(f)‖Lp(RN ) ≤ C ‖f‖Lp′ (RN )

for all p ∈
[

2(N+1)
N−1 , 2N

N−2

]

and some constant C > 0.

To obtain the dual variational formualation of (2.1) we introduce v := 1A+u and w := 1A−u. Then

(2.1) is equivalent to the system

v = λ1A+R
[

Q+|v|
p−2v

]

− 1A+R
[

Q−|w|
p−2w

]

,

w = λ1A−R
[

Q+|v|
p−2v

]

− 1A−R
[

Q−|w|
p−2w

]

.

Setting
ϕ := λQ

1/p′

+ |v|p−2v ∈ Lp
′
(A+), ψ := Q

1/p′

− |w|p−2w ∈ Lp
′
(A−)

we deduce

λ1−p
′
|ϕ|p

′−2ϕ = Q
1/p
+ v

= λQ
1/p
+ R

[

Q+|v|
p−2v

]

−Q
1/p
+ R

[

Q−|w|
p−2w

]

= Q
1/p
+ R

[

Q
1/p
+ ϕ

]

−Q
1/p
+ R

[

Q
1/p
− ψ

]

= Q
1/p
+ R

[

|Q|1/p(ϕ− ψ)
]

.

Similarly
|ψ|p

′−2ψ = Q
1/p
− R

[

|Q|1/p(ϕ− ψ)
]

.

In terms of the Birman-Schwinger operator K : f 7→ |Q|
1
pR
(

|Q|
1
p f
)

introduced above this can be

reformulated as

λ1−p
′
|ϕ|p

′−2ϕ = 1A+K(ϕ − ψ),

5



|ψ|p
′−2ψ = 1A−K(ϕ − ψ)

and therefore carries a variational structure through the (dual) energy functional Jλ on Lp
′
(A+)×

Lp
′
(A−) given by

(2.3) Jλ(ϕ,ψ) :=
λ1−p

′

p′
‖ϕ‖p

′

p′ −
1

p′
‖ψ‖p

′

p′ −
1

2

∫

RN

(ϕ− ψ)K(ϕ − ψ) dx.

This functional is of class C1 with

∂1Jλ(ϕ,ψ)[h1] =

∫

RN

(

λ1−p
′
|ϕ|p

′−2ϕ−K(ϕ− ψ)
)

h1 dx, h1 ∈ Lp
′
(A+)

∂2Jλ(ϕ,ψ)[h2] =

∫

RN

(

−|ψ|p
′−2ψ −K(ϕ − ψ)

)

h2 dx, h2 ∈ Lp
′
(A−).

Here ∂1, ∂2 standard for partial derivatives with respect to ϕ and ψ. For this reason we will look

for critical points of Jλ. These solve the integral equation (2.1). Thus by the regularity results [4,

Lemma 4.3] and [8, p.13] these are indeed strong solutions to our original problem (1.9).

Proposition 2.1. Let (ϕ,ψ) ∈ Lp
′
(A+)× Lp

′
(A−) \ {(0, 0)} be a critical point of Jλ where λ > 0.

Then

u := R
(

|Q|
1
p (ϕ− ψ)

)

∈ Lp(RN )

is a nontrivial solution of (2.1).

Proof. Let (ϕ,ψ) ∈ Lp
′
(A+)× Lp

′
(A−) \ {(0, 0)} be a critical point of Jλ. Thus we have

λ1−p
′
|ϕ|p

′−2ϕ = 1A+K(ϕ − ψ), |ψ|p
′−2ψ = 1A−K(ϕ− ψ)

as well as

Qλ|u|
p−2u = (λ1A+ − 1A−)|Q||u|p−2u

= (λ1A+ − 1A−)|Q|
1
p · ||Q|

1
pu|p−2 · |Q|

1
pu

= (λ1A+ − 1A−)|Q|
1
p · ||Q|

1
pR
[

|Q|1/p(ϕ− ψ)
]

|p−2 · |Q|
1
pR
[

|Q|1/p(ϕ− ψ)
]

= (λ1A+ − 1A−)|Q|
1
p · |K [ϕ− ψ] |p−2 · K [ϕ− ψ]

= (λ1A+ − 1A−)|Q|
1
p ·
∣

∣

∣
λ1−p

′
|ϕ|p

′−2ϕ+ |ψ|p
′−2ψ

∣

∣

∣

p−2
·
(

λ1−p
′
|ϕ|p

′−2ϕ+ |ψ|p
′−2ψ

)

= (λ1A+ − 1A−)|Q|
1
p ·
(

λ(1−p
′)(p−1)ϕ+ ψ

)

= |Q|
1
p · (ϕ− ψ) .

Applying R then gives R
(

Qλ|u|
p−2u

)

= R
(

|Q|
1
p (ϕ− ψ)

)

= u. Hence u solves (2.1).

6



So we conclude that it remains to find nontrivial critical points of the functionals Jλ for as many

λ > 0 as possible. This will be achieved with the Mountain Pass Theorem for families of C1-

functionals by Jeanjean and Toland [6].

3 Saddle-point reduction

In this section we perform the saddle-point reduction of Jλ with respect to the ψ-variable. To this

end, we prove that for any fixed ϕ ∈ Lp
′
(A+) the functional ψ 7→ Jλ(ϕ,ψ) attains its maximum

at some uniquely defined function in Lp
′
(A−) that we will call Z(ϕ) in the following. We shall

see that the positivity assumption
∫

RN

ψKψ dx ≥ 0 for all ψ ∈ Lp
′
(A−) ensures that the functional

ψ 7→ Jλ(ϕ,ψ) is strictly concave so that the global maximization with respect to ψ is the only

reasonable approach to perform a saddle point reduction. We introduce the reduced functional

J̃λ : Lp
′
(A+) → R via

(3.1) J̃λ(ϕ) := sup
ψ∈Lp′ (A−)

Jλ(ϕ,ψ).

Proposition 3.1. Assume that K : Lp
′
(RN ) → Lp(RN ) is compact and that

∫

A−

ψKψ dx ≥ 0 for all

ψ ∈ Lp
′
(A−). Then for every ϕ ∈ Lp

′
(A+) there exists a unique Z(ϕ) ∈ Lp

′
(A−) such that for all

λ > 0 we have

J̃λ(ϕ) = Jλ(ϕ,Z(ϕ)).

Moreover:

(i) For any ϕ ∈ Lp
′
(A+) the corresponding maximizer Z(ϕ) satisfies

(3.2) ‖Z(ϕ)‖p′ ≤
(

p′β ‖ϕ‖p′
)

1
p′−1

where β is defined in (1.7).

(ii) The map Z : Lp
′
(A+) → Lp

′
(A−) is continuous.

(iii) The reduced functional J̃λ : Lp
′
(A+) → R is of class C1 with derivative

J̃ ′
λ[h] = ∂1Jλ(ϕ,Z(ϕ))[h].

Proof. We first establish the existence of a maximizer. So fix ϕ ∈ Lp
′
(A+) and consider a maximizing

sequence (ψn)n ⊂ Lp
′
(A−). Using Jλ(ϕ, 0) ≤ sup

ψ∈Lp′ (A−)

Jλ(ϕ,ψ) = Jλ(ϕ,ψn) + o(1) as n → ∞ we

7



obtain

o(1) ≤ −
1

p′
‖ψn‖

p′

p′ +

∫

RN

ϕKψn −
1

2

∫

RN

ψnKψn ≤ −
1

p′
‖ψn‖

p′

p′ + β‖ϕ‖p′‖ψn‖p′ (n→ ∞).

Here we used the nonnegativity assumption on K as well as (2.2). Hence,

(3.3) ‖ψn‖p′ ≤ (p′β‖ϕ‖)
1

p′−1 + o(1) (n→ ∞),

so (ψn)n is bounded. Passing to a subsequence we find ψ∗ ∈ Lp
′
(A−) such that ψn ⇀ ψ∗ in Lp

′
(A−)

as n→ ∞. Using the compactness of K and the weak lower semicontinuity of the norm we find

sup
ψ∈Lp′ (A−)

Jλ(ϕ,ψ)

=
λ1−p

′

p′
‖ϕ‖p

′

p′ −
1

p′
‖ψn‖

p′

p′ −
1

2

∫

RN

ϕKϕ dx+

∫

RN

ϕKψn dx−
1

2

∫

RN

ψnKψn dx+ o(1)

=
λ1−p

′

p′
‖ϕ‖p

′

p′ −
1

p′
‖ψn‖

p′

p′ −
1

2

∫

RN

ϕKϕ dx+

∫

RN

ϕKψ∗ dx−
1

2

∫

RN

ψ∗Kψ∗ dx+ o(1)

≤
λ1−p

′

p′
‖ϕ‖p

′

p′ −
1

p′
‖ψ∗‖p

′

p′ −
1

2

∫

RN

ϕKϕ dx+

∫

RN

ϕKψ∗ dx−
1

2

∫

RN

ψ∗Kψ∗ dx+ o(1)

= Jλ(ϕ,ψ
∗) + o(1).

Hence the supremum is attained at ψ∗. Since equality must hold in the above estimate we conclude

‖ψn‖p′ → ‖ψ∗‖p′ , whence ψn → ψ∗ in Lp
′
(A−) as n→ ∞. This shows the existence of a maximizer

satisfying the estimate stated in (i). So (i) is proved once we have established the uniqueness of the

maximizer.

To this end assume that ψ∗, ψ† ∈ Lp
′
(A−) are maximizers. Then we have

0 ≤
1

2
Jλ(ϕ,ψ

∗) +
1

2
Jλ(ϕ,ψ

†)− Jλ

(

ϕ,
1

2
(ψ∗ + ψ†)

)

=
1

p′

(

∥

∥

∥

∥

ψ∗ + ψ†

2

∥

∥

∥

∥

p′

p′
−

1

2
‖ψ∗‖p

′

p′ −
1

2
‖ψ†‖p

′

p′

)

+
1

2

(
∫

RN

ψ∗ + ψ†

2
K

[

ψ∗ + ψ†

2

]

dx−
1

2

∫

RN

ψ∗Kψ∗ dx−
1

2

∫

RN

ψ†Kψ† dx

)

=
1

p′

(

∥

∥

∥

∥

ψ∗ + ψ†

2

∥

∥

∥

∥

p′

p′
−

1

2
‖ψ∗‖p

′

p′ −
1

2
‖ψ†‖p

′

p′

)

−
1

8

∫

RN

(ψ∗ − ψ†)K[ψ∗ − ψ†] dx

≤
1

p′

(

∥

∥

∥

∥

ψ∗ + ψ†

2

∥

∥

∥

∥

p′

p′
−

1

2
‖ψ∗‖p

′

p′ −
1

2
‖ψ†‖p

′

p′

)

≤ 0,
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where we have used the non-negativity condition in the second last step and the convexity of

z 7→ |z|p
′
in the last step. So we have equality in each estimate and conclude ψ∗ = ψ†. Note that

the maximizer does not depend on λ since the only λ-dependent term in Jλ(ϕ,ψ) is λ1−p
′

p′ ‖ϕ‖p
′

p′ ,

which is independent of ψ.

We now prove (ii), i.e., the continuity of the map Z: Assume ϕn → ϕ in Lp
′
(A+) and let (ψn)n :=

(Z(ϕn))n ⊂ Lp
′
(A−) be the associated maximizers. By (3.3), the sequence (ψn)n is bounded and

after passing to a subsequence we may assume ψn ⇀ ψ0 in Lp
′
(A−) as n → ∞. Arguing as above

we deduce

(3.4) lim sup
n→∞

J̃λ(ϕn) = lim sup
n→∞

Jλ(ϕn, ψn) = lim sup
n→∞

Jλ(ϕ,ψn) ≤ Jλ(ϕ,ψ0) ≤ J̃λ(ϕ).

using weak lower semicontinuity and lim inf
n→∞

‖ψn‖p′ ≥ ‖ψ0‖p′ . On the other hand, with the special

choice ψ = Z(ϕ) we obtain

(3.5) lim inf
n→∞

J̃λ(ϕn) ≥ Jλ(ϕ,ψ) = Jλ(ϕ,Z(ϕ)) = J̃λ(ϕ).

Combining both estimates gives ‖ψn‖p′ → ‖ψ0‖p′ as well as J̃λ(ϕn) → J̃λ(ϕ) as n → ∞. Thus we

have equality in (3.4), (3.5). Since maximizers are unique, we obtain ψ0 = Z(ϕ) and in particular

Z(ϕn) = ψn → ψ0 = Z(ϕ0) in L
p′(A−) as n→ ∞.

We are left to prove (iii). Let h ∈ Lp
′
(A+) be arbitrary. We can estimate the difference quotients

as follows:

lim inf
τ→0

J̃λ(ϕ+ τh)− J̃λ(ϕ)

τ
≥ lim inf

τ→0

Jλ(ϕ+ τh, Z(ϕ)) − Jλ(ϕ,Z(ϕ))

τ

= lim inf
τ→0

∫ 1

0
∂1Jλ(ϕ+ τσh,Z(ϕ))[h] dσ

= ∂1Jλ(ϕ,Z(ϕ))[h],

lim sup
τ→0

J̃λ(ϕ+ τh)− J̃λ(ϕ)

τ
≤ lim sup

τ→0

Jλ(ϕ+ τh, Z(ϕ+ τh)) − Jλ(ϕ̃, Z(ϕ+ τh))

τ

= lim sup
τ→0

∫ 1

0
∂1Jλ(ϕ

∗ + τσh,Z(ϕ+ τh))[h] dσ

= ∂1Jλ(ϕ,Z(ϕ))[h].

Here we used that Z is continuous and that ∂1Jλ is continuous, see [10, Proposition 9] for a

similar computation. We conclude that J̃λ is Gâteaux-differentiable with continuous derivative

ϕ 7→ ∂1Jλ(ϕ,Z(ϕ))[·], see Proposition 3.1 (iii). Hence, the reduced functional J̃λ is continuously

(Fréchet-)differentiable with

J̃ ′
λ(ϕ)[h] = ∂1Jλ(ϕ,Z(ϕ))[h] ∀h ∈ Lp

′
(A+)
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as claimed.

Notice that the condition
∫

RN
ψKψ dx ≥ 0 is also necessary for the existence of a global maximizer

of ψ 7→ Jλ(ϕ,ψ) because otherwise this functional is unbounded from above.

4 Palais-Smale sequences for the reduced functional

In view of the results of the previous sections, we obtain a solution to our problem by proving

the existence of a nontrivial critical point of the reduced functional J̃λ : Lp
′
(A+) → R introduced

in (3.1). This will be done via Mountain-pass techniques for monotone families of functionals

originating from the work of Jeanjean and Toland [6].

Definition 4.1. Let X be a Banach space, M ⊂ R a compact interval. Then the family (Iν)ν∈M

of C1-functionals on X is said to have the Mountain Pass Geometry if there exist v1, v2 ∈ X such

that for all ν ∈M it holds

cν := inf
γ∈Γ

sup
t∈[0,1]

Iν(γ(t)) > max{Iν(v1), Iν(v2)},

where Γ := {γ ∈ C([0, 1],X) : γ(0) = v1, γ(1) = v2}.

Theorem 4.2. (Jeanjean, Toland) [6, Theorem 2.1] Assume that X is a Banach space, M ⊂ R a

compact interval and (Iν)ν∈M a family of C1-functionals on X having the Mountain Pass Geometry.

Assume further that (Iν)ν∈M has the following property:

For every sequence (νn, ϕn) ∈M ×X with νn ր ν∗ ∈M and with

− Iν∗(ϕn), Iνn(ϕn),
Iνn(ϕn)− Iν∗(ϕn)

ν∗ − νn
bounded from above,

the sequence (ϕn) is bounded itself, and lim sup
n→∞

(Iν∗(ϕn)− Iνn(ϕn)) ≤ 0.

(H)

Then for almost all ν ∈M there is a bounded Palais-Smale sequence (BPS) for Iν at the level cν .

We shall apply this result to X = Lp
′
(A+) and the family of C1-functionals Iλ := J̃λ : X → R. We

first verify the Mountain Pass Geometry for parameters λ ∈ (λ0,∞) where λ0 = (2βα−1)p. Let us

recall that α, β were defined as

α := max
‖ϕ‖

p′=1,

supp(ϕ)⊂A+

∫

RN

ϕKϕ dx, β := max
‖ϕ‖

p′=‖ψ‖
p′=1,

supp(ϕ)⊂A+,supp(ψ)⊂A−

∫

RN

ϕKψ dx.

Proposition 4.3. Let K : Lp
′
(RN ) → Lp(RN ) be compact and assume

∫

RN

ψKψ dx ≥ 0 for all

ψ ∈ Lp
′
(A−). Then, for any given compact subinterval M ⊂ (λ0,∞), the family of functionals

(J̃λ)λ∈M has the Mountain Pass Geometry according to Definition 4.1.

10



Proof. For λ ∈M we define rλ := (λp
′−1α)1/(p

′−2). Then we have

inf
‖ϕ‖p′=rλ

J̃λ(ϕ) = inf
‖ϕ‖p′=rλ

sup
ψ∈Lp′ (A−)

Jλ(ϕ,ψ) ≥ inf
‖ϕ‖p′=rλ

Jλ(ϕ, 0)

= inf
‖ϕ‖p′=rλ

λ1−p
′

p′
‖ϕ‖p

′

p′ −
1

2

∫

RN

ϕKϕ dx

=
λ1−p

′

p′
rp

′

λ −
α

2
r2λ = α

(

1

p′
−

1

2

)

(λp
′−1α)

2
p′−2

> 0.

On the other hand, we have

J̃λ(0) = sup
ψ∈Lp′ (A−)

Jλ(0, ψ) = sup
ψ∈Lp′ (A−)

[

−
1

p′
‖ψ‖p

′

p′ −
1

2

∫

RN

ψKψ dx

]

= 0.

According to Definition 4.1 it therefore remains to find some ϕ∗ ∈ Lp
′
(A+) with ‖ϕ∗‖p′ ≥ rλ0 such

that J̃λ0(ϕ
∗) ≤ 0 holds. Notice that in this case we actually have J̃λ(ϕ

∗) < J̃λ0(ϕ
∗) ≤ 0 for all

λ ∈M ⊂ (λ0,∞). To achieve this we estimate J̃λ0 from above as follows

J̃λ0(ϕ) = Jλ0(ϕ, 0) −
1

p′
‖Z(ϕ)‖p

′

p′ +

∫

RN

ϕK(Z(ϕ)) −
1

2

∫

RN

Z(ϕ)K(Z(ϕ))

≤ Jλ0(ϕ, 0) −
1

p′
‖Z(ϕ)‖p

′

p′ + β‖ϕ‖p′‖Z(ϕ)‖p′

≤ Jλ0(ϕ, 0) +
βp

p
‖ϕ‖pp′

where we have used that max
c≥0

(

− cp
′

p′ + β ‖ϕ‖p
′

p′ c
)

= βp

p ‖ϕ‖
p
p′ . We choose ϕ∗ = r0ϕ0 where the

function ϕ0 ∈ Lp
′
(A+), ‖ϕ0‖p′ = 1 attains the maximum α =

∫

RN
ϕ0Kϕ0 dx > 0. Then the choice

R := (12αβ
−p)1/(p−2) yields after some computations (recall λ0 = (2βα−1)p)

‖ϕ∗‖p′ = R =

(

1

2
αβ−p

)
1
p−2

≥ (λp
′−1

0 α)
1

p′−2 > (λp
′−1α)

1
p′−2 = rλ for all λ ∈M.

Using again the explicit formulas for R,λ0 we find

J̃λ0(Rϕ0) ≤ Jλ0(Rϕ0) +
βpRp

p

=
λ1−p

′

0

p′
Rp

′
−
α

2
R2 +

βp

p
Rp

=
Rp

′

p′
·

(

λ1−p
′

0 −
pα

2(p − 1)
R2−p′ +

βp

p− 1
Rp−p

′

)
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=
Rp

′

p′
·

(

λ1−p
′

0 −
1

2
αR2−p′

)

=
Rp

′

p′
·

(

(2βα−1)
− p
p−1 −

1

2
α ·

(

1

2
αβ−p

)
1
p−1

)

= 0

and thus the claim holds with v1 = 0 and v2 = ϕ∗ = Rϕ0.

Having established the Mountain Pass Geometry of our functionals we now verify the condition (H)

in order to use Theorem 4.2

Proposition 4.4. For any compact subinterval M ⊂ (λ0,∞) the family of C1−functionals (J̃λ)λ∈M

satisfies the condition (H).

Proof. Consider a sequence (ϕn, λn) ∈ Lp
′
(A+)×M with λn ր λ∗ and

−J̃λ∗(ϕn) ≤ C, J̃λn(ϕn) ≤ C,
J̃λn(ϕn)− J̃λ∗(ϕn)

ν∗ − νn
≤ C

for all n ∈ N. Then we have

C ≥
J̃λn(ϕn)− J̃λ∗(ϕn)

λ∗ − λn
=
λ1−p

′

n − λ1−p
′

∗

λ∗ − λn
‖ϕn‖

p′

p′ =
(

(p′ − 1)λ−p
′

∗ + o(1)
)

‖ϕn‖
p′

p′ (n→ ∞)

So we conclude that (ϕn) is bounded. Furthermore, λn → λ∗ > 0 gives

lim sup
n→∞

(Iλ∗(ϕn)− Iλn(ϕn)) = lim sup
n→∞

(λ1−p
′

n − λ1−p
′

∗ )‖ϕn‖
p′

p′ = 0,

which is all we had to show.

We thus conclude that Theorem 4.2 applies in our context and yields BPS sequences for J̃λ at

the corresponding Mountain pass levels cλ for almost all λ ∈ (λ0,∞). From the existence of BPS

sequences we deduce rather easily the existence of critical points at the corresponding Mountain

Pass level.

Proposition 4.5. Let K : Lp
′
(RN ) → Lp(RN ) be compact and assume

∫

RN

ψKψ dx ≥ 0 for all

ψ ∈ Lp
′
(A−). Then for all λ ∈ (λ0,∞) every BPS sequence of J̃λ at its Mountain Pass level cλ

converges to a critical point of J̃λ at the level cλ.

Proof. Let (ϕj)j in Lp
′
(A+) be a BPS sequence for J̃λ, i.e., J̃λ(ϕj) → c > 0 and J̃ ′

λ(ϕj) → 0.

We may thus assume w.l.o.g. ϕj ⇀ ϕ∗. Moreover, Proposition 3.1 (i) implies the boundedness of

(ψj)j := (Z(ϕj))j and hence w.l.o.g. also weak convergence. For all h ∈ Lp
′
(A+) we then have, in

12



view of the formula for J̃ ′
λ from Proposition 3.1 (iii),

∣

∣

∣

∣

∫

RN

|ϕj |
p′−2ϕjh− |ϕk|

p′−2ϕkh dx

∣

∣

∣

∣

=

∣

∣

∣

∣

J̃ ′
λ(ϕj)h− J̃ ′(ϕk)h+

∫

RN

hK[ϕj − ϕk] dx−

∫

RN

hK[ψj − ψk] dx

∣

∣

∣

∣

≤ ‖h‖p′ ·
[

‖J̃ ′
λ(ϕj)‖+ ‖J̃ ′

λ(ϕk)‖+ ‖K[ϕj − ϕk]‖p + ‖K[ψj − ψk]‖p

]

= ‖h‖p′ · o(1) (j, k → ∞).

We infer that (|ϕj |
p′−2ϕj)j converges strongly in Lp(A+). By uniqueness of weak limits, we infer

|ϕj |
p′−2ϕj → |ϕ∗|p

′−2ϕ∗ strongly in Lp(A+) and hence in particular ‖ϕj‖p′ → ‖ϕ∗‖p′ . This finally

implies ϕj → ϕ∗ strongly in Lp
′
(A+). A standard computation finally shows J̃λ(ϕ

∗) = cλ as well as

J̃ ′
λ(ϕ

∗) = 0.

5 Proof of Theorem 1.1 and Corollary 1.2

We finally combine all auxiliary results to prove Theorem 1.1.

Proof of Theorem 1.1. From Proposition 2.1 and Proposition 3.1 we infer that for almost all λ ∈

(λ0,∞) a nontrivial solution u ∈ Lp(RN ) of the nonlinear Helmholtz equation (1.9) is found once

we have proved the existence of nontrivial critical points of the reduced functional J̃λ for almost all

λ ∈M whereM is an arbitrary compact subinterval of (λ0,∞). From Proposition 4.3 we infer that

the family (J̃λ)λ∈M has the Mountain Pass Geometry. Moreover, by Proposition 4.4, condition (H)

holds. So Theorem 4.2 yields for almost all λ ∈ M a BPS sequence for J̃λ at the corresponding

Mountain Pass level. By Proposition 4.5 each of these BPS sequences converges to a critical point

ϕλ of J̃λ at the Mountain Pass level. Since this critical point is necessarily nontrivial, we have thus

obtained the desired claim for Lp(RN )-solutions of (1.9). From [4, Lemma 4.3] we infer that each

of these solutions belongs to W 2,q(RN ) ∩ C1,α(RN ) for all p ≤ q < ∞ and α ∈ (0, 1). Arguing

as in Step 3 and Step 4 [8, p.13] one even obtains that these solutions belong to W 2,q(RN ) for

all q ∈ ( 2N
N−1 , p). In particular, these solutions are strong solutions of (1.9), which finishes the

proof.

Proof of Collorary 1.2. In order to apply Theorem 1.1 we show that (1.10) implies (1.8). In the

special case k = 1 the compactness of K was shown in Lemma 4.2 in [4]. So the general case follows

by rescaling. It therefore remains to show that δ := diam (A−) ≤ k−1yN−2
2

implies
∫

RN

ψKψ dx ≥ 0

for all ψ ∈ Lp
′
(A−). Due to (2.2), K = |Q|1/pR(|Q|1/p·) and Q ∈ L∞(RN ) it suffices to prove

(5.1)

∫

RN

ψRψ dx ≥ 0, for all ψ ∈ S(A−).

13



Using that x, y ∈ A− implies x− y ∈ Bδ we infer from Corollary 5.4 in [2]

∫

RN

ψRψ dx =

∫

RN

ψ[1BδΨ ∗ ψ](x) dx ≥ 0

which proves (5.1) and hence the Corollary.
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