
Complexity-theoretic aspects of expanding cellular automata

Augusto Modanese1

Accepted: 9 October 2020
� The Author(s) 2020

Abstract
The expanding cellular automata (XCA) variant of cellular automata is investigated and characterized from a complexity-

theoretical standpoint. An XCA is a one-dimensional cellular automaton which can dynamically create new cells between

existing ones. The respective polynomial-time complexity class is shown to coincide with � p
ttðNPÞ, that is, the class of

decision problems polynomial-time truth-table reducible to problems in NP. An alternative characterization based on a

variant of non-deterministic Turing machines is also given. In addition, corollaries on select XCA variants are proven:

XCAs with multiple accept and reject states are shown to be polynomial-time equivalent to the original XCA model.

Finally, XCAs with alternative acceptance conditions are considered and classified in terms of � p
ttðNPÞ and the Turing

machine polynomial-time class P.

Keywords Bio-inspired computing � Cellular automata variants � Computational complexity � Varying acceptance

conditions

Mathematics Subject Classification 68Q05 � 68Q25 � 68Q80

1 Introduction

Traditionally, cellular automata (CAs) are defined as a

rigid and immutable lattice of cells; their behavior is dic-

tated exclusively by a local transition function operating on

homogeneous local configurations. This can be general-

ized, for instance, by mutable neighborhoods (Rosenfeld

and Wu 1981) or by endowing CAs with the ability to

shrink, that is, delete their cells (Rosenfeld et al. 1983).

When shrinking, the automaton’s structure and dimension

are preserved by ‘‘gluing’’ the severed parts and recon-

necting their delimiting cells as neighbors. When employed

as language recognizers, shrinking CAs (SCAs) can be

more efficient than standard CAs (Rosenfeld et al. 1983;

Kutrib et al. 2015).

Other variants of CAs with dynamically reconfigurable

neighborhoods have emerged throughout the years. In the

case of two-dimensional CAs, there is the structurally

dynamical CA (SDCA) due to Ilachinski and Halpern

(1987), in which the connections between neighbors are

created and dropped depending on the local configuration.

In the one-dimensional case, further variants in this sense

are considered in the work of Dubacq (1994), where one

finds, in particular, CAs whose neighborhoods vary over

time. Dubacq also proposes the dynamically reconfigurable

CA (DRCA), a CA whose cells are able to exchange their

neighbors for neighbors of their neighbors. Dantchev

(2008) later points out a drawback in the definition of

DRCAs and proposes an alternative dubbed the dynamic

neighborhood CA (DNCA).

By relaxing the arrangement of cells as a lattice, CAs

may be generalized to graphs (Tomita et al. 2002). Graph

automata are related to CAs in that each vertex in the graph

corresponds to a cell; thus, graphs whose vertices have

finite degrees provide a natural generalization of CAs.

Tomita et al. (2002) also define a rule based on topological

refinements of graphs, which may be used as a model for

biological cell division. An additional example of cell

division in this sense is the ‘‘inflating grid’’ of Arrighi and

Dowek (2013).

Parts of this paper have been submitted (Modanese 2016, 2018)

in partial fulfillment of the requirements for the degrees of

Bachelor of Science and Master of Science at the Karlsruhe

Institute of Technology (KIT).

& Augusto Modanese

modanese@kit.edu

1 Karlsruhe Institute of Technology (KIT), Karlsruhe,

Germany

123

Natural Computing
https://doi.org/10.1007/s11047-020-09814-2(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11047-020-09814-2&domain=pdf
https://doi.org/10.1007/s11047-020-09814-2

Modeling cell division and growth, in fact, was one of

the driving motivations towards the investigation of the

expanding CA (XCA) in Modanese (2016). An XCA is, in a

way, the opposite of an SCA; instead of cells vanishing,

new cells can emerge between existing ones. This opera-

tion is topologically similar to the cell division of graph

automata; as in the SCA model, however, it maintains the

overall arrangement and connectivity of the automaton’s

cells as similar as possible to that of standard CAs (i.e., a

bi-infinite, one-dimensional array of cells).

We mention a few aspects in which XCAs differ from

the aforementioned variants. Contrary to SDCAs or CAs

with dynamic neighborhoods such as DRCAs and DNCAs,

XCAs enable the creation of new cells, not simply new

links between existing ones. In addition, the XCA model

does not focus as much on the reconfiguration of cells; in it,

the neighborhoods are homogeneous and predominantly

immutable. Furthermore, in contrast to the far more general

graph automata, XCAs are still one-dimensional CAs; this

ensures basic CA techniques (e.g., synchronization) func-

tion the same as they do in standard CAs.

Finally, shrinking and expanding are not mutually

exclusive. Combining them yields the shrinking and

expanding CA (SXCA). The polynomial-time class of

SXCA language deciders was shown to coincide with

PSPACE (Modanese 2016; Modanese and Worsch 2016).

A previous result by Modanese (2016) is that, for the

class XCAP of polynomial-time XCA language deciders,

we have NP [coNP � XCAP � PSPACE. A precise

characterization of XCAP, however, remained outstanding.

Such was the topic of the author’s master’s thesis (Mo-

danese 2018), the results of which are summarized in this

paper. The main result (Theorem 8) is XCAP being equal

to the class of decision problems which are polynomial-

time truth-table reducible to NP, denoted � p
ttðNPÞ.

The rest of the paper is organized as follows: Sect. 2

covers the fundamental definitions and results needed for

the subsequent discussions. Following that, Sect. 3 recalls

the main result of Modanese (2016) concerning XCAP and

presents two characterizations of XCAP, one based on

� p
ttðNPÞ (Theorem 8) and another (Theorem 14) based on

a variant of non-deterministic Turing machines (NTMs).

Section 4 covers some immediate corollaries, in particular

by considering an XCA variant with multiple accept and

reject states as well as two other variants with diverse

acceptance conditions. Finally, Sect. 5 concludes.

This is an extended and revised version of a preliminary

paper presented at the AUTOMATA 2019 (Modanese

2019). Section 3 has been expanded to provide a complete

proof of Proposition 7 (instead of only an outline), which is

now found in Sect. 3.1, while the material in Sect. 3.3 is

entirely novel. Other improvements include a full proof of

Lemma 5, an updated abstract, broader discussions of

concepts and results, and minor text edits.

2 Definitions

This section recalls basic concepts and results needed for

the proofs and discussions in the later sections and is

broken down in two parts. The first is concerned with basic

topics regarding formal languages, Turing machines, and

Boolean formulas. The second part covers the definition of

expanding CAs.

2.1 Formal languages and turing machines

It is assumed the reader is familiar with the fundamentals

of cellular automata and complexity theory (see, e.g.,

standard references such as Delorme and Mazoyer 1999

and Arora and Barak 2009). Unless stated otherwise, all

words have length at least one. For sets A and B, BA

denotes the set of functions A ! B. For an alphabet R, R�

is the set of words over R. A xx-word is a biinfinite word

w 2 RZ. The notion of a complete language is employed

strictly in the sense of polynomial-time many-one reduc-

tions by deterministic Turing machines.

2.1.1 Boolean formulas

Let V be a language of variables over an alphabet R which,

without loss of generality, is disjoint from

fF; T ;:;^;_; ð; Þg. BOOLV denotes the formal language

of Boolean formulas over the variables of V. For better

readability, we shall prefer prefix notation when writing out

formulas (e.g., ^ðf ; gÞ for formulas f and g instead of the

more common infix notation f ^ g).

An interpretation of V is a map I : V ! fF; Tg. Each
such I gives rise to an evaluation EI : BOOLV ! fF; Tg
which, given a formula f 2 BOOLV , substitutes each

variable x 2 V with the truth value I(x) and reduces the

resulting formula using standard propositional logic. A

formula f is satisfiable if there is an interpretation I such

that EIðf Þ ¼ T , and f is a tautology if this holds for every I.

In order to define the languages SAT of satisfiable for-

mulas and TAUT of tautologies, a language V of variables

must first be agreed on. In this paper, variables are encoded

as binary strings prefixed by a special symbol x, that is,

V ¼ fxg � f0; 1gþ. The language SAT contains exactly the

satisfiable formulas of BOOLV . Similarly, TAUT contains

exactly the tautologies of BOOLV . The following is a

classical result concerning SAT and TAUT:

Theorem 1 (Cook 1971) SAT is NP-complete, and TAUT

is coNP-complete.

A. Modanese

123

2.1.2 Truth-table reductions

The theoryof truth-table reductionswas establishedbyLadner

et al. (1975) and Ladner and Lynch (1976). Later, Wagner

(1990) showed the class of decision problems polynomial-

time truth-table (i.e., Boolean-circuit) reducible to NP,

denoted � p
ttðNPÞ, remains the same even if the reduction is in

terms of Boolean formulas (instead of circuits). We refer to

Buss and Hay (1991) for a series of alternative characteriza-

tions of � p
ttðNPÞ. The inclusions NP [coNP � � p

ttðNPÞ
and � p

ttðNPÞ � PSPACE are known to hold.

A more formal treatment of the class � p
ttðNPÞ is not

necessary to establish the results of this paper; it suffices to

note � p
ttðNPÞ has complete languages. In particular, we

are interested in Boolean formulas with NP and coNP

predicates. To this end, we employ SAT and TAUT to

define membership predicates of the form , where f is a

Boolean formula, L 2 fSAT;TAUTg, and is a purely

syntactic construct which stands for the statement ‘‘f 2 L’’.

Definition 2 (SAT^-TAUT_) Let V ¼ fxg � f0; 1gþ and

for L 2 fSAT;TAUTg. The language

BOOL^_SAT;TAUT � BOOLVSAT[VTAUT
is defined recursively

as follows:

1. VSAT;VTAUT � BOOL^_SAT;TAUT.

2. For v 2 VSAT and f 2 BOOL^_SAT;TAUT, ^ðv; f Þ 2
BOOL^_SAT;TAUT.

3. For v 2 VTAUT and f 2 BOOL^_SAT;TAUT, _ðv; f Þ 2
BOOL^_SAT;TAUT.

The language SAT^-TAUT_ � BOOL^_SAT;TAUT contains

all formulas which are true under the interpretation map-

ping to the truth value of the statement ‘‘f 2 L’’.

For example, given f1; f2; f3; f4 2 BOOLV , the following

formula f is in BOOL^_SAT;TAUT:

Then, f 2 SAT^-TAUT_ if, for instance, f1 2 SAT and

f2 2 TAUT holds.

From the results of Buss and Hay (1991) it follows:

Theorem 3 SAT^-TAUT_ is � p
ttðNPÞ-complete.

2.2 Cellular automata

Here, we are strictly interested in one-dimensional cellular

automata (CAs) with the standard neighborhood and

employed as language deciders. CA deciders possess a

quiescent state q; cells which are not in this state are said to

be active and may not become quiescent. The input for a

CA decider is provided in its initial configuration

surrounded by quiescent cells. As deciders, CAs are Turing

complete, and, more importantly, CAs can simulate TMs in

real-time (Smith 1971). Conversely, it is known a TM can

simulate a CA with time complexity t in time at most t2. A

corollary is that the class of problems decidable in poly-

nomial time by CAs is exactly P.

2.2.1 Expanding cellular automata

First considered in Modanese (2016), the expanding CA

(XCA) is similar to the shrinking CA (SCA) in that it is

dynamically reconfigurable; instead of cells being deleted,

however, in an XCA new cells emerge between existing

ones. This does not alter the underlying topology, which

remains one-dimensional and biinfinite.

For modeling purposes, the new cells are seen as hidden

between the original (i.e., visible) ones, with one hidden

cell placed between any two neighboring visible cells.

These latter cells serve as the hidden cell’s left and right

neighbors and are referred to as its parents. In each CA

step, a hidden cell observes the states of its parents and

either assumes a non-hidden state, thus becoming visible,

or remains hidden. In the former case, the cell assumes the

position between its parents and becomes an ordinary cell

(i.e., visible), and the parents are reconnected so as to adopt

the new cell as a neighbor. Visible cells may not become

hidden, and we refer to hidden cells neither as active nor as

quiescent (i.e., we treat them as a tertium quid).

Definition 4 (XCA) Let N ¼ f�1; 0; 1g be the standard

neighborhood.An expandingCA (XCA) is aCAAwith state set

Q and local transition function d : QN ! Q and which pos-

sesses a distinguished hidden state � 2 Q. For any local con-

figuration ‘ : N ! Q, dð‘Þ ¼ � is allowed only if ‘ð0Þ ¼ �.

For a global configuration c : Z ! Q, let hc : Z ! QN

be such that hcðzÞð�1Þ ¼ cðzÞ, hcðzÞð0Þ ¼ �, and

hcðzÞð1Þ ¼ cðzþ 1Þ for any z 2 Z. Define a : QZ ! QZ

as follows, where D is the standard CA global transition

function (as induced by d):

aðcÞðzÞ ¼
DðcÞðz

2
Þ; z even

dðhcð
z� 1

2
ÞÞ; otherwise.

8
><

>:

Finally, with c still arbitrary, let U : QZ ! QZ be the map1

that acts as a homomorphism on c deleting any occurrence

1 Strictly speaking, the codomain of U (as here defined) is not only

QZ but actually larger (since, for c 2 QZ arbitrary, UðcÞðzÞ may be

undefined for certain z 2 Z). However, since the configurations that

arise in our context of XCAs have infinitely many occurrences of q in

either direction (i.e., cðiÞ ¼ q holds for infinitely many i[0 as well

as infinitely many i\0), in this case UðcÞðzÞ is guaranteed to be

defined for every z 2 Z, that is, UðcÞ 2 QZ. Hence, to simplify the

presentation, we write only ‘‘QZ’’ here.

Complexity-theoretic aspects of expanding cellular automata

123

of � (and contracting the remaining states towards zero),

formally:

UðcÞðzÞ ¼
cðmþðzÞÞ; z� 0

cðm�ð�z� 1ÞÞ; otherwise

�

where mþðzÞ is the maximum i 2 Z for which jfj 2 ½0; iÞ j
cðjÞ 6¼ �gj ¼ z and m�ðzÞ is the minimum i 2 Z for which

jfj 2 ði;�1	 j cðjÞ 6¼ �gj ¼ z. Then the global transition

function of A is DX ¼ U
 a.

Figure 1 illustrates an XCA A and its operation for input

001010 as an example. The local transition function d of A

is as follows:

dðq�1; q0; q1Þ ¼
q�1 � q1; q�1; q1 2 f0; 1g
q0; otherwise

�

where � denotes the bitwise XOR operation, that is,

addition modulo 2. The initial configuration is marked as c.

The hidden cells are those in state �. Starting from c, a
applies d to each local configuration, where hc specifies the

local configurations for the hidden cells; a also promotes

all originally hidden cells to visible ones. Finally, U then

eliminates cells having the state �, as such cells are per

definition not allowed to be visible (rather, they are present

only implicitly in the global configuration).

The supply of hidden cells is never depleted; whenever a

hidden cell becomes visible, new hidden cells appear

between it and its neighbors. Thus, the number of active

cells in an XCA may increase exponentially:

Lemma 5 Let A be an XCA. For an input of size n, A has

at most aðtÞ ¼ ðnþ 3Þ2t � 3 active cells after t 2 N0 steps.

This upper bound is sharp.

Proof The claim is proven using induction on t 2 N0. The

induction basis is evident since A has exactly n active cells

in time step t ¼ 0. For the induction step, assume the claim

holds for some t 2 N0. Without loss of generality, it may

also be assumed that the number of active cells in A is

maximal (i.e., equal to a(t)). Then A can have at most

2aðtÞ þ 3 active cells in time step t þ 1 since a(t) many

cells were already active, and a maximum of two quiescent

and aðtÞ þ 1 hidden cells may become active in the tran-

sition to the next step. The proof is complete by using

2aðtÞ þ 3 ¼ ðnþ 3Þ2tþ1 � 3 ¼ aðt þ 1Þ. h

We have postponed defining the acceptance condition

for XCAs until now. Usually, a CA possesses a distin-

guished cell, often cell 0, which dictates the automaton’s

accept or reject response (Kutrib 2009). In the case of

XCAs, however, under a reasonable complexity-theoretical

assumption (i.e., P 6¼ � p
ttðNPÞ) such an acceptance con-

dition results in XCAs not making full use of the efficient

cell growth indicated in Lemma 5 (see Sect. 4.3). This

phenomenon does not occur if the acceptance condition is

defined based on unanimity, that is, in order for an XCA to

accept (or reject), all its cells must accept (or reject)

simultaneously. This acceptance condition is by no means

novel (Rosenfeld 1979; Sommerhalder and van Westrhe-

nen 1983; Ibarra et al. 1985; Kim and McCloskey 1990).

As an aside, note all (reasonable) CA time complexity

classes (including, in particular, linear- and polynomial-

time) remain invariant when using this acceptance condi-

tion instead of the standard one.

Also of note is that, for the standard acceptance condi-

tion, we insist on unique accept and reject states. This

serves to not only simplify some arguments in Sect. 3 but

also to show that unique states already suffice to decide

problems in � p
ttðNPÞ. We revisit this topic in Sect. 4.1,

where we consider XCAs with multiple accept and reject

states (and prove that the class of problems that can be

decided efficiently remains the same).

Definition 6 (Acceptance condition, time complexity)

Each XCA has a unique accept state a and a unique reject

state r. An XCA A halts if all active (and visible) cells are

either all in state a, in which case the XCA accepts, or they

are all in state r, in which case it rejects; if neither is the

case, the computation continues. L(A) denotes the set of

words accepted by A.

The time complexity of an XCA (for an input w) is the

number of elapsed steps until it halts. An XCA decider is an

XCA which halts on every input. A language L is in XCAP

if there is an XCA decider A0 with polynomial time

complexity (in the length |w| of w) and such that L ¼ LðA0Þ.

In summary, the decision result of an XCA decider is the

one indicated by the first configuration in which its active

cells are either all in the accept or all in the reject state.

This agrees with our aforementioned notion of a unanimous

decision.

q 0 0 1 0 1 0 q

-1 0 1 2 3 4 5 6

q 0 0 1 0 1 0 q
� � � � � � �

-2 0 2 4 6 8 10 12

-1 1 3 5 7 9 11

q 0 1 0 0 0 0 q
� 0 1 1 1 1 �

-2 0 2 4 6 8 10 12

-1 1 3 5 7 9 11

1 0 1 0 1 0 � q01100�q

-2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12

1 0 1 0 1 0 q01100q

-1 0 1 2 3 4 5 6 7 8 9 10 11

α(c)

c

ΔX (c)

Fig. 1 Illustration of a step of the XCA A. The number next to each

cell indicates its index in the respective configuration

A. Modanese

123

3 Characterizing XCAP

This section covers the main result of this paper, that is,

characterizing XCAP as being equal to � p
ttðNPÞ (Theo-

rem 8). It is subdivided into three parts: First, we address a

result from Modanese (2016) which is relevant towards

proving the aforementioned characterization. Next, we

state and prove Theorem 8. Finally, we discuss an alter-

native characterization of XCAP based on NTMs.

3.1 An XCA for TAUT

In this section, we cover the following result from Moda-

nese (2016), which provides the starting point towards

proving Theorem 8:

Proposition 7 NP [coNP � XCAP.

Since many-one reductions by TMs can be simulated by

(X)CAs in real-time, it suffices to show XCAP contains

NP- and coNP-complete problems. We construct XCAs

for SAT and TAUT which run in polynomial time and

apply Theorem 1. Since acceptance and rejection are

defined symmetrically (as per Definition 6), if L can be

accepted by an XCA A, then swapping the accept and reject

states of A we obtain an XCA that decides the complement

of L with the exact same complexity as A. Hence, as NP

and coNP are complementary classes, it suffices to show

coNP � XCAP.

The key idea towards the result is that an XCA can

efficiently duplicate portions of its configuration: Let a

block denote a subconfiguration #w# where # is a (spe-

cial) separator symbol and w is a word not containing #. In

particular, starting from any such block, the XCA can, in a

single step, produce the block #w2$# where $ is a sepa-

rator symbol different from # and

w2 ¼ ðwð0Þ; 0Þðwð0Þ; 1Þ � � � ðwðjwj � 1Þ; 0Þðwðjwj � 1Þ; 1Þ

duplicates the word w (i.e., we have jw2j ¼ 2jwj). Using a

stable sorting algorithm (following, e.g., techniques from

Gordillo and Luna (1994)), the XCA then sorts the symbols

into place according to the second component of the tuples

above and obtains the subconfiguration #w$w# in a linear

number of steps.

Proof In accordance with the previous discussion, we

construct an XCA A for TAUT.

Firstly, A verifies the input f is a syntactically correct

formula; this can be done, for instance, simply by

simulating a TM for this task. Following that, the operation

of A can be subdivided into two large steps. In the first of

them, A iteratively expands its configuration (in a way we

shall describe in more detail) so as to cover every possible

truth assignment of the variables of f and arrives at a

configuration cf (detailed below). The second step starts

from cf , computes the evaluations of f under the respective

truth assignments in parallel, and accepts or rejects

according to whether the results are all ‘‘true’’ or not.

Both procedures require time polynomial in the length |f | of

f; thus, A runs in polynomial time.

Step 1 Given a Boolean formula f over m variables, let

x0; . . .; xm�1 be the ordering of its variables according to

their first appearance in f when this is read from left to

right. Furthermore, letting s0; . . .; s2m�1 be the lexico-

graphic ordering of the strings in fF; Tgm (under the

convention that F precedes T), we obtain a natural ordering

I0; . . .; I2m�1 of the 2m possible interpretations of the xi by

identifying each sj with the interpretation Ij that satisfies

IjðxiÞ ¼ sjðiÞ. We let cf be the following configuration:

� � � q # ðE0Þjf j # � � � # ðE2m�1Þjf j # q � � �

where Ej ¼ EIjðf Þ is the evaluation of f under Ij (as a

symbol, i.e., an element of the alphabet fF; Tg).
We now further specify how cf is reached. A starts by

surrounding f with # delimiters. Each block #f# of

A repeats the following procedure as long as f contains at

least one variable:

1. Duplicate f (as described previously), yielding the

subconfiguration #f$f 0#.

2. Determine the first variable v ¼ xy in f, where

y 2 f0; 1gþ, and replace every occurrence of v in f

(resp., f 0) with Fk (resp., Tk), where k ¼ jvj ¼ 1þ jyj.
3. Replace the middle delimiter $ with# and synchronize

the two blocks corresponding to f and f 0 (so they

continue their operation at the same time).

When f no longer contains a variable, the block evaluates it

directly (e.g., by simulating a TM for this task).

The correctness of the above is shown by induction on

m. The case m ¼ 0 is trivial, so assume m[0. The above

procedure replaces the variables of f such that precisely 2m

copies are produced, each corresponding to an Ij (and

according to the ordering described above). Also note the

blocks of A always have the same length and, because of

step 3 above and using transitivity, any two blocks are

synchronized with each other. Thus, when f has no

variables left, the evaluations all happen and terminate at

the same time, thus producing the desired configuration.

Finally, it is straightforward to show the above procedure

requires polynomial time.

Step 2 We now describe the second procedure of A

which, starting from the configuration cf of, leads A to

accept or reject depending on the results present in cf .

Notice that, in the first step above, we ensured that cf is

reached in such a way that the blocks corresponding to the

Complexity-theoretic aspects of expanding cellular automata

123

Ei are all synchronized. Hence, from this point each block

(including the delimiting # cells) initiates a synchroniza-

tion, following which all cells in the block simultaneously

enter the accept (resp., reject) state if the respective

evaluation’s result was T (resp., F). The reject state is

maintained while accept states yield to a reject state, that is,

we have dðq1; r; q2Þ ¼ r and dðq1; a; q2Þ ¼ r for the local

transition function d of A and arbitrary states q1 and q2.

Thus, if all evaluations are ‘‘true’’ (i.e., their result is T), the

cells all simultaneously enter the accept state; otherwise,

all cells necessarily enter the reject state. Since this process

also takes only polynomial time, the claim follows. h

We conclude this section by stressing that step 2 above

builds on a ‘‘trick’’ that is only possible due to the unani-

mous acceptance condition of XCAs. Assume, for the

moment, that the XCA A of before can continue computing

(i.e., does not halt) even if it has reached a configuration in

which it accepts or rejects. Then A is guaranteed to even-

tually reach a configuration in which it rejects regardless of

what the results for the evaluations of f are. This means the

only case in which A is prevented from rejecting is when it

accepts (namely when all of the Ei are ‘‘true’’); that is, A is

capable of rejecting under the condition it has not accep-

ted. This kind of behavior is quite different from, say, an

NTM (seen as an alternating Turing machine with only

existential states), where the result of each computation

branch is completely independent of the other branches.

We shall come back to this point later in Sect. 3.3 and

address it from another perspective.

3.2 A first characterization

In this section, we prove the main result of this paper:

Theorem 8 XCAP ¼ � p
ttðNPÞ.

The equality in Theorem 8 is proven by considering the

two inclusions (Propositions 9 and 12).

Proposition 9 � p
ttðNPÞ � XCAP.

Proof The claim is shown by constructing an XCA A that

decides SAT^-TAUT_ (see Definition 2 and Theorem 3) in

polynomial time. The actual inclusion follows from the fact

that CAs can simulate polynomial-time many-one reduc-

tions by TMs in real-time.

Given a problem instance f, A evaluates f recursively.

Without loss of generality, we may assume

, where f 0 is a further

problem instance; other instances of SAT^-TAUT_ are

obtained by replacing f1, f2, or f 0 with a trivial formula

(e.g., a trivial tautology).

To evaluate , A emulates the behavior of the

XCA for SAT (see Proposition 7); however, special care

must be taken to ensure A does not halt prematurely. All

computation branches retain a copy of f. Whenever a

branch obtains a ‘‘true’’ result, the respective cells do not

directly accept (as in the original construction); instead,

they proceed with evaluating the formula’s next connec-

tive. Conversely, if the result is false, the respective cells

simply enter the reject state. The behavior for is analogous,

with A emulating the XCA for TAUT instead (and with

exchanged accept and reject states, accordingly). Addi-

tionally, we require dðq1; r; q2Þ ¼ a and dðq1; a; q2Þ ¼ r for

every states q1 and q2, that is, once a cell enters the accept

or reject state, it is forced to unconditionally alternate

between the two. To ensure A is still able to accept or

reject, we (arbitrarily) enforce accept states only exist in

even-numbered steps and reject states only in odd-num-

bered ones.2

If f1 62 SAT, all branches of A transition into the reject

state, and A rejects. Otherwise, f1 is satisfiable; thus, at least

one branch obtains a ‘‘true’’ result, and A continues to

evaluate f until the (aforementioned) base case is reached.

An analogous argument applies for f2. Note the syn-

chronicity of the branches guarantee they operate exactly

the same and terminate at the same time. The repeated

transition between accept and reject states guarantee the

only cells relevant for the final decision of A are those in

the branches which are still ‘‘active’’ (in the sense they are

still evaluating f).

In conclusion, A accepts f if and only if it evaluates to

true; otherwise, A rejects f. A runs in polynomial time since

f has at most |f | predicates and since evaluating a predicate

requires polynomial time in |f |. h

For the converse, we express an XCA computation as a

SAT^-TAUT_ instance. The main effort here lies in

defining the appropriate ‘‘variables’’:

Definition 10 (STATE8) Let A be an XCA, and let VA be

the set of triples (w, t, z), w being an input for A, t 2
f0; 1gþ a (standard) binary representation of s 2 N0, and z

a state of A. STATE8ðAÞ � VA is the subset of triples such

that, if A is given w as input, then after s steps all active

cells are in state z.

Lemma 11 For any XCA A with polynomial time com-

plexity, STATE8ðAÞ 2 coNP:

Proof Let p : Nþ ! N0 be a polynomial bounding the

time complexity of A, that is, for an input of size n, A

always terminates after at most p(n) many steps. Suppose

there is an NTM T which covers all active cells in step s of
A for input w, that is, for each such active cell r there is at

least one computation branch of T corresponding to r.

2 For example, have each cell contain a bit counter and, if needed,

wait for one step before transitioning to an accept or reject state.

A. Modanese

123

Furthermore, assume T can then compute the state z0 of r in
polynomial time and accepts if and only if z0 ¼ z. Without

restriction, we may assume s� pðjwjÞ; this can be enforced

by T, for instance, by computing p(|w|) and rejecting

whenever s[pðjwjÞ. Then, the claim follows immediately

from the existence of T: If all computation branches of T

accept, then in step s all cells of A are in state z; otherwise,

there is a cell in a state which is not z, and T rejects.

The rest of the proof is concerned with the construction

of a T with the properties just described. First, we describe

the construction, followed by arguing it has the desired

complexity (which is fairly straightforward). The last part

of the proof concerns the correctness of T which, although

fairly evident, calls for a more technical argument.3

Construction To compute the state of a (in particular,

active) cell in step s, T computes a series of subconfigu-

rations c0; . . .; cs of A, that is, contiguous excerpts of the

global configuration of A. As the number of cells in an

XCA may increase exponentially in the number of

computation steps, bounding ci is essential to ensure T

runs in polynomial time; in particular, T maintains jcij ¼
1þ 2ðs� iÞ (for i� 1), thus ensuring the lengths of the ci
are linear in s (which, in turn, is polynomial in |w|). This

choice of length for the ci ensures each of the subconfig-

urations correspond to a cell of A surrounded by s� i cells

on either side (i.e., each ci corresponds to the extended

neighborhood of radius s� i of said cell). The non-

determinism of T is used exclusively in picking the cells

from ci which are to be included in the next subconfigu-

ration ciþ1.

The initial subconfiguration c0 is set to be q2swq2s, thus

containing the input word as well as (as shall be proven) a

sufficiently large number of surrounding quiescent cells.

To obtain ciþ1 from ci, T applies the transition function of

A to ci and obtains a new temporary subconfiguration c0iþ1.

The next state of the two ‘‘boundary’’ cells (i.e, those

belonging to indices 0 and jcij � 1) cannot be determined,

and they are excluded from c0iþ1. As a result, c0iþ1 contains

jcij � 2 cells from the previous configuration ci, plus a

maximum of jcij � 1 additional cells which were previ-

ously hidden. Therefore, to maintain

jciþ1j ¼ 1þ 2ðs� ðiþ 1ÞÞ, T non-deterministically sets

ciþ1 to a contiguous subset of c0iþ1 containing exactly 1þ
2ðs� ðiþ 1ÞÞ� jcij � 2 cells.

The process of selecting a next subconfiguration ciþ1

from ci is depicted in Fig. 2. In the illustration, jcij has been
replaced with n for legibility. T at first applies the global

transition function of A to obtain an intermediate subcon-

figuration c0iþ1 with m ¼ jc0iþ1j cells. Because of hidden

cells, c0iþ1 may consist of n� 2�m� 2n� 3 cells. Non-

determinism is used to select a contiguous subconfiguration

of n� 2 cells, thus giving rise to ciþ1.

Complexity T runs in polynomial time since the invariant

jcij ¼ 1þ 2ðs� iÞ guarantees the number of states T

computes in each step is bounded by a multiple of s,
which, in turn, we assumed to be bounded by p(|w|). Only

|w| has to be taken into account when estimating the time

complexity of T since the encoding of z is O(1) long, while

that of t has length Oðlog pðjwjÞÞ ¼ Oðlog jwjÞ; as a result,

the problem instance (w, t, z) has length O(|w|).

Correctness To show T covers all active cells of A in

step s, it suffices to prove the following by induction: Let

i 2 f0; . . .; sg, and let z1; . . .; zm be the active cells of A in

step i; then T covers all subconfigurations of

q2ðs�iÞz1 � � � zmq2ðs�iÞ of size 1þ 2ðs� iÞ, that is, for every
such subconfiguration s there is a branch of T in which it

picks s as its ci. Note this corresponds to T covering all

subconfigurations of A in step i which contain at least one

active cell; thus, when T reaches step s, it covers all

subconfigurations of z1 � � � zm of size 1, that is, all active

cells.

The induction basis follows from c0 ¼ q2swq2s. For the

induction step, fix a step 0\i� s and assume the claim

holds for all steps prior to i. To each subconfiguration of

q2ðs�iÞz1 � � � zmq2ðs�iÞ having size 1þ 2ðs� iÞ corresponds a
cell r which is located in its center; thus, we may

unambiguously denote every such subconfiguration by

siðrÞ. Now let siðrÞ be given and consider the following

three cases: r was active in step i� 1; r was a hidden cell

which became active in the transition to step i; or r was a

z1 z2 . . . zn−1 znci

. . .z′
2z′

1 z′
m−1 z′

mc′
i+1

n − 2

. . .z′′
2z′′

1 z′′
n−3 z′′

n−2ci+1

Fig. 2 Illustration of how T obtains the next subconfiguration ciþ1

from ci

3 The main reason for this is that our construction of T non-

deterministically picks cells starting at the initial configuration of

A instead of (picking a final computation step and then) an arbitrary

cell from the final configuration. The issue with the latter approach is

that then, in order to compute the chosen cell’s state, we would

require a procedure that, given an arbitrary cell z in the final

configuration of A and without simulating A directly, determines

whether z was already present in the initial configuration and,

provided it was not, in which step exactly did it turn from a hidden

cell into an active one. This is indeed feasible if we constructed

A ourselves but virtually impossible in case A is arbitrary (which is

the setting of the proof).

Complexity-theoretic aspects of expanding cellular automata

123

quiescent cell in step i� 1 and, since jsiðrÞj ¼ 1þ 2ðs� iÞ
and r is the middle cell of siðrÞ, r is at most s� i cells away

from z1 or zm.

In the first case, by the induction hypothesis, there is a

value of ci�1 corresponding to si�1ðrÞ; since only the two

boundary cells are present in ci�1 but not in c0i, T can

choose ci from c0i with r as its middle cell and obtain siðrÞ.
In the second case, for any of the two parents p1 and p2 of

r, there are, by the induction hypothesis, values of ci�1

which equal si�1ðp1Þ and si�1ðp2Þ; in either case, choosing

ci from c0i with r as its middle cell again yields siðrÞ.
Finally, if r was a quiescent cell, then, without loss of

generality, consider the case in which r was located to the

left of the active cells in step i� 1. By the induction

hypothesis, for each cell r0 up to s� iþ 1 cells away from

the leftmost active cell z1 there is a value of ci�1

corresponding to si�1ðr0Þ, and the first case applies; the

only exception is if ci would then contain only quiescent

cells, in which case r would be located strictly more than

s� i cells away from z1, thus contradicting our previous

assumption. The claim follows. h

Proposition 12 XCAP � � p
ttðNPÞ.

Proof Let L 2 XCAP, and let A be an XCA for L whose

time complexity is bounded by a polynomial p : Nþ ! N0.

Additionally, let w be an input for A, VA be as in Defini-

tion 10, and let , where is

a syntactic symbol standing for membership in

STATE8ðAÞ (cf. Definition 2). Define f0ðwÞ; . . .; fpðnÞðwÞ 2
BOOLV recursively by

for i\pðnÞ and

Lemma 11 together with the coNP-completeness of TAUT

(see Theorem 1) ensures each subformula of the form

is polynomial-time many-one reducible

to an equivalent (in the sense of evaluating to the same

truth value under the respective interpretations; see Defi-

nition 2) SAT^-TAUT_ formula !, g being a TAUT

instance. Similarly, each subformula

is reducible to an equivalent for-

mula . Since each of the fiðwÞ may contain only

polynomially (respective to |w|) many connectives, each is

polynomial-time (many-one) reducible to an equivalent

SAT^-TAUT_ instance f 0i ðwÞ.

By the definition of XCA (i.e., Definitions 4 and 6) and

our choice of p, f 0ðwÞ ¼ f 00ðwÞ is true if and only if A

accepts w. Since f 0ðwÞ is such that jf 0ðwÞj is polynomial in

|w|, this provides a polynomial-time (many-one) reduction

of L to a problem instance of SAT^-TAUT_ 2 � p
ttðNPÞ.

The claim follows. h

This concludes the proof of Theorem 8.

3.3 A turing machine characterization

We now turn to a closer investigation of the relation

between XCA polynomial-time computations and the class

� p
ttðNPÞ. In this section, we shall view NTMs as a special

case of alternating Turing machines (ATMs), that is, as

possessing a computation tree in which all branches are

existential. Recall the computational strategy of the XCA

in Proposition 7 essentially consists of creating multiple

computation branches, each corresponding to a possible

variable assignment of the input formula. In a sense, this

merely replicates the standard NTM construction used to

show SAT 2 NP (or, equivalently, TAUT 2 coNP).

Nevertheless, it is widely suspected that XCAP ¼
� p

ttðNPÞ is a strictly larger class than NP, and it is a fair

point to question exactly why it is that we obtain such a

class (instead of merely NP). The explanation ultimately

lies in the acceptance condition of XCAs. Consider that, for

instance, the presence of a non-accepting cell prevents

acceptance; thus, by the automaton not halting, would-be

accepting branches are made aware of the existence of this

cell. This enables a form of information transfer between

computation branches which is not possible in NTMs. In

fact, this form of interaction is not exclusive to a model

based on CAs but, as we shall see, may also be expressed in

terms of a model based on Turing machines.

In the following definition, we extract the essence of this

interaction and embed it into the NTM model. The novelty

consists in a modification to the acceptance condition,

which, as is the case for XCAs (see Definition 6), requires

a simultaneous decision across all computation branches.

Unsurprisingly, the condition is that of a unanimous deci-

sion across the branches (instead of a single branch being

accepting) and actually resembles more a characterization

of coNP than of NP (by an NTM variant which accepts if

and only if all non-deterministic branches are accepting or,

equivalently, an ATM possessing only universal states).

However, note this by no means deviates from our goal,

that is, defining a model based (exclusively) on TMs that

features the form of information transfer discussed above.

Definition 13 (SimulNTM) A simultaneous NTM

(SimulNTM) is an NTM T having the property that, for any

input w of T, there is t 2 N0 such that, in step t, the

A. Modanese

123

computation branches of T are either all accepting or all

rejecting. Furthermore, if t is minimal with this property,

then T accepts (resp., rejects) if all branches in step t are

accepting (resp., rejecting). SimulNP denotes the class of

languages decided by SimulNTMs in polynomial time.

Refer to Fig. 3 for an example illustrating the compu-

tation of a SimulNTM T with accept state a and reject state

r. Upon reaching step number t0, T does not yet terminate

since some of the computation branches are accepting

while some are still rejecting, that is, there is no unanimity.

T accepts in step t since then all its branches are in state

a (assuming this was not the case in any step prior to step

t).

Theorem 14 SimulNP ¼ XCAP ¼ � p
ttðNPÞ.

The proof uses techniques fairly similar to the previous

ones in this section.

Proof The claim is shown by proving the two inclusions,

both of which, in turn, are proven by polynomial-time

simulation of either model by the other one.

For the inclusion SimulNP � XCAP, let T be a

SimulNTM whose running time is bounded by a polyno-

mial p : Nþ ! N0, to which we shall construct a polyno-

mial-time XCA A with LðAÞ ¼ LðTÞ. Strictly speaking, A is

not as in Definition 6 since it has multiple accept and reject

states (i.e., A is an MAR-XCA; see Sect. 4.1); as mentioned

in Sect. 2.2 and proven in Theorem 18, however, this is

equivalent to the original definition (i.e., Definition 6). As

is the case for ATMs, we may assume T always creates one

additional branch in each step, that is, if its computation is

viewed as a tree, then each node has outdegree precisely 2.

A maintains a separate block of cells for each branch in

the computation of T. Each block contains the respective

instantaneous configuration of T and is updated according

to the rules of T. The simulation of T is advanced every

m ¼ mðbÞ steps, where b denotes the current length of the

respective block and m we shall yet specify. After each

simulated step of T, one blank symbol is created on either

end of the represented configuration; this is so that T has

(theoretically) unbounded space while ensuring any two

blocks always have the same length. When the computation

of T creates an additional branch, the respective block

creates a copy of itself and updates it so as to reflect the

instantaneous configuration of the new branch (parallel to

updating its own configuration). Additionally, if the head

of T becomes accepting or rejecting, the cell representing it

sends signals to the other cells in the block so that they

mark themselves as such accordingly. Here, ‘‘mark’’ means

the respective cell changes into a state in which it behaves

exactly the same way as before (i.e., as if it was not

marked), only this state is an accepting or rejecting state (as

determined by the respective state of T). Once all cells in a

block have marked themselves, they wait for an additional

step (so that A may possibly accept or reject), after which

all cells in the block are unmarked again.

We now set m to be the total number of steps required

by the two aforementioned procedures, that is, creating a

new branch and (if applicable) marking cells as accepting

or rejecting and subsequently unmarking them. Note that

m 2 HðbÞ is computable in real-time (by a block) as a

function of b. As an aside, also note the entire procedure

described above does not require any synchronization

between the blocks whatsoever since it consists solely of

operations that each require a fixed number of steps and, in

addition, the simulation is advanced every m steps, which

is also fixed.

If the branches of T are all accepting at the same time,

then so are all cells of A (at the respective simulation step).

The converse also holds: If the branches of T all reject at

the same time, then so do the cells of A. In addition,

because m 2 HðbÞ and b 2 OðpðnÞÞ for an input of length

n, the running time of A is polynomial, and SimulNP �
XCAP follows.

To prove the converse inclusion, given an XCA A with

running time bounded by a polynomial p : Nþ ! N0, we

construct a polynomial-time SimulNTM T with

LðTÞ ¼ LðAÞ. Given an input w for A, T first sets t ¼ 0

and then executes the following procedure:

...
...

...
...

r a raaStep t′

...
...

...
...

...

a a a a aStep t

Step 0

Step 1

Step 2

Fig. 3 Illustration of the operation of a SimulNTM. States other than

a or r have been omitted for simplicity

Complexity-theoretic aspects of expanding cellular automata

123

1. Branch over all active cells of A in time step t (using,

e.g., the non-deterministic procedure described in the

proof of Lemma 11) and compute the state z of the cell

that was chosen.

2. If z is the accept state of A, assume an accepting state

for exactly one computation step and then a non-

rejecting state for exactly one step. If z is the reject

state of A, assume a non-accepting state followed by a

rejecting state. If z is the quiescent state, assume an

accepting state followed by a rejecting state. If none of

the cases above hold (i.e., z is an active state that is

neither the accept nor the reject state), wait for two

steps in a state that is neither accepting nor rejecting.

3. Increment t and repeat.

Since the lengths of the configurations ci (see the proof of

Lemma 11) are the same regardless of how they are cho-

sen, the branches of T can all be synchronized in their

computation of the ci so that they advance the simulation of

the respective cell block at the same time and, therefore,

arrive at the respective state z simultaneously. The subse-

quent instruction ensures LðTÞ ¼ LðAÞ since, if A accepts

(resp., rejects) its input in step s, then so do all branches of

T accept (resp., reject) simultaneously for t ¼ s, and the

converse also holds. In addition, note that, by definition of

STATE8ðAÞ, T is guaranteed to halt since ðw; s; zÞ 2
STATE8ðAÞ must hold for some s� pðjwjÞ and z 2 fa; rg.
Since T is only slower than the NTM in the proof of

Lemma 11 by a factor O(p(|w|)), it also runs in polynomial

time. h

4 Immediate implications

This section covers some immediate corollaries of Theo-

rem 8 regarding XCA variants. In particular, we address

XCAs with multiple accept and reject states, followed by

XCAs with acceptance conditions differing from that in

Definition 6, in particular the two other classical accep-

tance conditions for CAs (Rosenfeld 1979).

4.1 XCAs with multiple accept and reject states

Recall the definition of an XCA specifies a single accept

and a single reject state (see Sect. 2.2). Consider XCAs

with multiple accept and reject states. As shall be proven,

the respective polynomial-time class (MAR - XCAP)

remains equal to XCAP. In the case of TMs, the equivalent

result (i.e., TMs with a single accept and a single reject

state are as efficient as standard TMs) is trivial, but such is

not the case for XCAs. Recall the acceptance condition of

an XCA requires orchestrating the states of multiple, pos-

sibly exponentially many cells. In addition, an XCA with

multiple accept states may, for instance, attempt to accept

whilst saving its current state (i.e., a cell in state z may

assume an accept state az while simultaneously saving state

z). Such is not the case for standard XCAs (i.e., as specified

in Definition 6), in which all accepting cells have neces-

sarily the same state.

Definition 15 (MAR-XCA) A multiple accept-reject XCA

(MAR-XCA) A is an XCA with state set Q and which

admits subsets Qacc;Qrej � Q of accept and reject states,

respectively. A accepts (resp., rejects) if its active cells all

have states in Qacc (resp., Qrej), and it halts upon accepting

or rejecting. In addition, A is required to either accept or

reject its input after a finite number of steps. MAR - XCAP

denotes the MAR-XCA analogue of XCAP.

The following generalizes STATE8 (see Definition 10

and Lemma 11) to the case of MAR-XCAs:

Definition 16 (STATEMAR
8) Let A be an MAR-XCA

with state set Q, and let VA be the set of triples (w, t, Z), w

being an input for A, t 2 f0; 1gþ a binary encoding of

s 2 N0, and Z � Q. STATEMAR
8 ðAÞ � VA is the subset of

triples such that, if A is given w as input, after t steps all

active cells have states in Z.

Lemma 17 For any MAR-XCA A with polynomial time

complexity, STATEMAR
8 ðAÞ 2 coNP:

Proof Adapt the NTM from the proof of Lemma 11 so as

to accept if and only if the last state is contained in Z. h

Proceeding as in the proof of Proposition 12 (simply

using STATEMAR
8 instead of STATE8) yields:

Theorem 18 MAR - XCAP ¼ XCAP.

Proof Define formulas fiðwÞ as in the proof of Proposi-

tion 12 while replacing STATE8 with STATEMAR
8 , the

accept state a with the set Qacc, and the reject state r with

the set Qrej. Lemma 17 guarantees the reductions to

SAT^-TAUT_ are all efficient. Thus,

MAR - XCAP � � p
ttðNPÞ ¼ XCAP. Since MAR-XCAs

are a generalization of XCAs, the converse inclusion is

trivial. h

4.2 Existential XCA

The remainder of this section is concerned with XCAs

variants which use the two other classical acceptance

conditions for CAs (Rosenfeld 1979). The first is that of a

single final state being present in the CA’s configuration

sufficing for termination. We use the term existential as an

allusion to the existential states of ATMs.

A. Modanese

123

Definition 19 (EXCA) An existential XCA (EXCA) is an

XCA with the following acceptance condition: If at least

one of its cells is in the accept (resp., reject) state a (resp.,

r), then the EXCA accepts (resp., rejects). The coexistence

of accept and reject states in the same global configuration

is disallowed (and any machine contradicting this

requirement is, by definition, not an EXCA). EXCAP

denotes the EXCA analogue of XCAP.

Disallowing the coexistence of accept and reject states

in the global configuration of an EXCA is necessary to

ensure a consistent condition for acceptance. An alternative

would be to establish a priority relation between the two

(e.g., an accept state overrules a reject one); nevertheless,

this behavior can be emulated by our chosen variant with

only constant delay. This is accomplished by introducing

binary counters to delay state transitions and assure, for

instance, that accept and reject states exist only in even-

and odd-numbered steps, respectively.

Theorem 20 EXCAP ¼ XCAP ¼ � p
ttðNPÞ.

Note this is an equivalence between two disparately

complex acceptance conditions: As specified in Defini-

tion 6, all cells of an XCA must agree on the final decision;

on the other hand, in an EXCA, a single, arbitrary cell

suffices. We ascribe this phenomenon to XCAP ¼
� p

ttðNPÞ being equal to its complementary class.

As for the proof of Theorem 20, first note that Propo-

sition 9 may easily be restated in the context of EXCAs:

Proposition 21 � p
ttðNPÞ � EXCAP.

Proof By adapting the XCA A for SAT^-TAUT_ from the

proof of Proposition 9, we obtain a polynomial-time

EXCA B for TAUT^-SAT_. Here, TAUT^-SAT_ is the

problem analogous to SAT^-TAUT_ and which is obtained

simply by exchanging ‘‘TAUT’’ and ‘‘SAT’’ in Defini-

tion 2. As SAT^-TAUT_, it is straightforward to show

TAUT^-SAT_ is � p
ttðNPÞ-complete (see also Theorem 3).

To evaluate a predicate of the form , B proceeds

as A and emulates the behavior of the XCA deciding TAUT

(see Proposition 7); however, unlike A, the computation

branches of B which evaluate to false reject immediately

while it is those that evaluate to true that continue evalu-

ating the input formula. As a result, if f 2 TAUT, all

branches of B evaluate to true and continue evaluating the

input in a synchronous manner; otherwise, there is a branch

evaluating to false, and, since a single rejecting cell suffices

for it to reject, B rejects immediately. The evaluation of

is carried out analogously.

The modifications to A to obtain B do not impact its time

complexity whatsoever; thus, B also has polynomial time

complexity. h

For the converse inclusion, consider the following NP

analogue of the STATE8 language (cf. Definition 10 and

Lemma 11):

Definition 22 (STATE9) Let A be an XCA and V be the

set of triples (w, t, z) as in Definition 10. STATE9 � V is

the subset of triples such that, for the input w, after t steps

at least one of the active cells of A is in state z.

Lemma 23 For any XCA A with polynomial time com-

plexity, STATE9ðAÞ 2 NP:

Proof Consider the NTM T from Lemma 11 and notice

that, if any of the active cells of A in step s have state z,

then T will have at least one accepting branch; otherwise,

none of the active cells of A in step s have state z; thus, all
branches of T are rejecting. h

Using Lemma 23 to proceed as in Proposition 12 yields

the following, from which Theorem 20 follows:

Proposition 24 EXCAP � � p
ttðNPÞ.

4.3 One-cell-decision XCA

We turn to the discussion of XCAs whose acceptance

condition is defined in terms of a distinguished cell which

directs the automaton’s decision, considered the standard

acceptance condition for CAs (Kutrib 2009). This condi-

tion is similar to the existential variant in the sense that the

automaton’s termination is triggered by a single cell

entering a final state. The difference is that, here, the

position of this cell is fixed.

We consider only the case in which the decision cell is

the leftmost active cell in the initial configuration (i.e., cell

0). By a one-cell-decision XCA (1XCA) we refer to an XCA

which accepts if and only if 0 is in the accept state and

rejects if and only if cell zero is in the reject state. Let

1XCAP denote the polynomial-time class of 1XCAs.

The position of the decision cell is fixed; with a poly-

nomial-time restriction in place, it can only communicate

with cells which are a polynomial (in the length of the

input) number of steps apart. As a result, despite a 1XCA

being able to efficiently increase its number of active cells

exponentially (see Lemma 5), any cells impacting its

decision must be at most a polynomial number of cells

away from the decision cell. Thus:

Theorem 25 1XCAP ¼ P.

Proof The inclusion 1XCAP � P is trivial. For the con-

verse, recall the construction of the NTM T in Lemma 11.

T can be modified so that it works deterministically and

always chooses the next configuration ciþ1 from ci by

selecting cell zero as the middle cell. If cell zero is

accepting, then T accepts immediately; if it is rejecting,

Complexity-theoretic aspects of expanding cellular automata

123

then T also rejects immediately. This yields a simulation of

a 1XCA by a (deterministic) TM which is only polyno-

mially slower, thus implying 1XCAP � P. h

5 Conclusion

This paper summarized the results of Modanese (2018) and

also presented related and previously unpublished results

from Modanese (2016). The main result was the charac-

terization XCAP ¼ � p
ttðNPÞ (Theorem 8) in Sect. 3,

which also gave an alternative characterization based on

NTMs (Theorem 14). In Sect. 4, XCAs with multiple

accept and reject states were shown to be equivalent to the

original model (Theorem 18). Also in Sect. 4, two other

variants based on varying acceptance conditions were

considered: the existential (EXCA), in which a single,

though arbitrary cell may direct the automaton’s response;

and the one-cell-decision XCA (1XCA), in which a fixed

cell does so. In the first case, it was shown that the poly-

nomial-time class EXCAP equals XCAP (Theorem 20); in

the latter, it was shown that the polynomial-time class

1XCAP of 1XCAs equals P (Theorem 25).

This paper has covered some XCA variants with diverse

acceptance conditions. A topic for future work might be

considering further variations in this sense (e.g., XCAs

whose acceptance condition is based on majority instead of

unanimity, which appears to lead to a model whose poly-

nomial-time class equals PP). Another avenue of research

lies in restricting the capabilities of XCAs and analyzing

the effects thereof (e.g., restricting 1XCAs or SXCAs to a

polynomial number of cells). A final open question is

determining what polynomial speedups, if any, 1XCAs

provide with respect to 1CAs.

Acknowledgements I thank Thomas Worsch for his mentoring,

encouragement, and support during the writing of this paper. I would

also like to thank Dennis Hofheinz for pointing out a crucial mistake

in a preliminary version of this paper as well as the anonymous ref-

erees for their valuable remarks and suggestions.

Funding Open Access funding enabled and organized by Projekt

DEAL.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

Arora S, Barak B (2009) Computational complexity: a modern

approach. Cambridge University Press, Cambridge

Arrighi P, Dowek G (2013) Causal graph dynamics. Inf Comput

223:78–93

Buss SR, Hay L (1991) On truth-table reducibility to SAT. Inf

Comput 91(1):86–102

Cook SA (1971) The complexity of theorem- proving procedures. In:

Proceedings of the 3rd annual ACM symposium on theory of

computing, May 3–5, 1971, Shaker Heights, Ohio, USA,

pp 151–158

Dantchev SS (2008) Dynamic neighbourhood cellular automata. In:

Visions of computer science-BCS international academic con-

ference, Imperial College, London, UK, 22–24 September 2008,

pp 60–68

Delorme M, Mazoyer J (eds) (1999) Cellular automata: a parellel

model. Mathematics and its applications 460. Springer,

Amsterdam

Dubacq J-C (1994) Different kinds of neighborhood-varying cellular

automata. Maı̂trise (honors bachelor’s) thesis. École normale

superiéure de Lyon

Gordillo JL, Luna JV (1994) Parallel sort on a linear array of cellular

automata. In Proceedings of the IEEE international conference

on systems, man and cybernetics, SMC 1994, San Antonio,

Texas, USA, October 2–5, 1994, pp 1903–1907

Ibarra OH, Palis MA, Kim SM (1985) Fast parallel language

recognition by cellular automata. Theor Comput Sci 41:231–246

Ilachinski A, Halpern P (1987) Structurally dynamic cellular

automata. Complex Syst 1(3):503–527

Kim S, McCloskey R (1990) A characterization of constant-time

cellular automata computation. Phys D 45(1–3):404–419

Kutrib M (2009) Cellular automata and language theory. In:

Encyclopedia of complexity and systems science, pp 800–823

Kutrib M, Malcher A, Wendlandt M (2015) Shrinking one-way

cellular automata. In: Cellular automata and discrete complex

systems-21st IFIP WG 1.5 international workshop, AUTO-

MATA 2015, Turku, Finland, June 8–10, 2015. Proceedings,

pp 141–154

Ladner RE, Lynch NA (1976) Relativization of questions about log

space computability. Math Syst Theory 10:19–32

Ladner RE, Lynch NA, Selman AL (1975) A comparison of

polynomial time reducibilities. Theor Comput Sci 1(2):103–123

Modanese A (2016) Shrinking and expanding one-dimensional

cellular automata. Bachelor’s thesis. Karlsruhe Institute of

Technology (KIT)

Modanese A (2018) Complexity-theoretical aspects of expanding

cellular automata. Master’s thesis. Karlsruhe Institute of Tech-

nology (KIT)

Modanese A (2019) Complexity-theoretic aspects of expanding

cellular automata. In: Cellular automata and discrete complex

systems-25th IFIP WG 1.5 international workshop, AUTO-

MATA 2019, Guadalajara, Mexico, June 26–28, 2019, Proceed-

ings, pp 20–34

Modanese A, Worsch T (2016) Shrinking and expanding cellular

automata. In: Cellular automata and discrete complex systems-

22nd IFIP WG 1.5 international workshop, AUTOMATA 2016,

Zurich, Switzerland, June 15–17, 2016, Proceedings, pp 159–169

Rosenfeld A (1979) Picture languages: formal models for picture

recognition. Academic Press, London

Rosenfeld A, Wu AY (1981) Reconfigurable cellular computers. Inf

Control 50(1):60–84

Rosenfeld A, Wu AY, Dubitzki T (1983) Fast language acceptance by

shrinking cellular automata. Inf Sci 30(1):47–53

A. Modanese

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Smith AR III (1971) Simple computation-universal cellular spaces.

J ACM 18(2):339–353

Sommerhalder R, van Westrhenen SC (1983) Parallel language

recognition in constant time by cellular automata. Acta Inf

19:397–407

Tomita K, Kurokawa H, Murata S (2002) Graph automata: natural

expression of self-reproduction. Phys D 171(4):197–210

Wagner KW (1990) Bounded query classes. SIAM J Comput

19(5):833–846

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Complexity-theoretic aspects of expanding cellular automata

123

	Complexity-theoretic aspects of expanding cellular automata
	Abstract
	Introduction
	Definitions
	Formal languages and turing machines
	Boolean formulas
	Truth-table reductions

	Cellular automata
	Expanding cellular automata

	Characterizing {\textsf {XCAP}}
	An XCA for {\textsf {TAUT}}
	A first characterization
	A turing machine characterization

	Immediate implications
	XCAs with multiple accept and reject states
	Existential XCA
	One-cell-decision XCA

	Conclusion
	Funding
	References

