
Towards a Formal Model for Quantifying Trust in
Distributed Usage Control Systems

Paul Georg Wagner

Vision and Fusion Laboratory
Institute for Anthropomatics

Karlsruhe Institute of Technology (KIT), Germany
paul.wagner@kit.edu

Technical Report IES-2019-06

Abstract

Distributed usage control is a form of usage control that spans over multi-
ple domains and computer systems. As a result, usage control components
responsible for evaluating policies, gathering information, executing actions and
enforcing decisions are operated in the vicinity of different stakeholders with
conflicting interests. In order to prevent malicious stakeholders from manipulat-
ing these components, remote attestation can be used to verify the integrity of
their code base. However, in a distributed case it is not always apparent what
sequence of attestations is necessary and which verifier should conduct them.
Furthermore, it is unclear what impact a failed attestation has on the trustworthi-
ness of the whole usage control system. To solve these questions, it is necessary
to identify which agents need to trust each other in order to securely execute a
certain usage control function. Then the sequence of remote attestations that
occur across the distributed usage control system can be examined accordingly.
In this work we develop a formal model that represents the trust relationships of
distributed usage control systems with multiple collaborating actors. Based on
the conducted attestations we define simple binary and non-binary trust metrics
that quantify the trust level a data owner can expect at a certain point in time.

113



Paul Georg Wagner

Finally we show how the model can be used to determine the level of trust
reached in a real-world scenario.

1 Introduction

In recent years, usage control (UC) has been more and more propagated as a
novel technology for governing access to valuable information. Unlike classical
access control, usage control models focus on managing the future usage of data
[7]. With usage control technology it is possible to restrict access to protected
assets even after they have been disclosed. Often usage control is used in
distributed environments, where sensitive data are shared between shareholders.
One such example is the Fraunhofer research project International Data Space
[6]. The International Data Space allows data providers to distribute valuable
data alongside usage restrictions to potentially malicious data consumers. The
data consumer’s systems then process the received information according to
the published rules. Naturally, the data provider wants to ensure that the data
consumer can be trusted to obey the issued usage restrictions on his data. For this
the International Data Space uses distributed UC modules that independently
evaluate the usage control policies and enforce the resulting decisions. Since
each participant of the data space may act maliciously and try to extract foreign
data past the protection mechanisms, it is necessary to verify the integrity of the
UC components prior to the data exchange.

Trusted computing is the state of the art approach that allows for remote
verification of software components. Currently the most widespread trusted
computing technologies are Trusted Platform Modules (TPMs) [9] and Intel’s
Software Guard Extensions (SGX) [3]. Both of these technologies support
establishing trust in remote software stacks by verifying code bases through
special hardware and cryptographic methods. This software verification process
is called remote attestation. Besides verifying the integrity of a software stack,
remote attestation also establishes secure channels between prover and verifier.
The International Data Space uses TPMs and a customized remote attestation
protocol to establish trust in data consumers. However, when developing
distributed usage control systems that establish trust by remote attestation,

114



Model for Quantifying Trust in Distributed Usage Control Systems

several open questions remain. For example, it is not always clear which
components have to be attested, and by which verifiers. Comprehensive usage
control systems are complicated and security relevant UC functions may span
over multiple distributed UC components. This is especially true if the usage
control system also includes components that track and store the provenance
of supervised data. In these cases it has to be ensured that all involved UC
components are properly attested and can securely communicate with each
other. Another interesting question is what impact a failed attestation has on
the security of the overall system. These questions all emerge from the yet
unsolved problem of quantifying the trust propagation in dynamically operating
and distributed usage control systems.

In this work we develop a formal model that can represent the trust relationships
that occur in distributed usage control systems with multiple collaborating actors.
This model is independent from the design of the UC-system, its implementation,
and the used trusted computing technology. Furthermore we define simple
binary and non-binary trust metrics that can be used to determine the trust level
of certain UC functionalities at a specific point in time. Calculating a dynamic
trust level for a UC system is very beneficial for conducting a comprehensive
security analysis of the infrastructure. Finally we show how the model can be
used to determine the level of trust in a real-world example scenario based on
the International Data Space using TPM-based attestation.

2 Related work

Managing and distributing trust has been a major topic of research interest
for a long time. By far the most widespread technique of managing trust in
distributed systems is via a public key infrastructure (PKI). With a PKI, a few
trusted certification authorities (CAs) issue signed public keys for the agents
in their domain. As a result, the trust in a certain communication channel is
reduced to the trustworthiness of the CA. Even though PKIs are a fundamentally
important concept in IT security, as a centralized way of managing trust they
are not applicable to our scenario. In terms of decentralized approaches to trust
management, the most important concept is the Web of Trust [1], which has

115



Paul Georg Wagner

been popularized by the well-known PGP software. Its main principle is to
distribute trust transitively by endorsement of already trustworthy collaborators
(i.e. “my friend’s friend is my friend”). Also, it is possible to generate new trust
by offline comparison of public key fingerprints. This decentralized version of
trust distribution already comes close to what we need for our scenario. A usage
control component could determine the level of trust in a remote system based
on the trust that their peers already have in it. New trust would then be generated
by automated remote attestation instead of manually comparing fingerprints.
However, the Web of Trust does not offer any kind of trust metric, and does not
take possible internal attackers into account. Also it does not give any notion of
time.

An approach that factors in these aspects are dynamic reputation systems [5,
4, 10]. Their idea is to describe trust mathematically and develop a metric for
the reputation of an agent based on their previous behavior. Simply put, if an
agent behaves cooperatively, its level of trust increases. If the agent defects,
the trust level is impacted. However, since it is not at all well-defined what
constitutes as “cooperative behavior” in our scenario, reputation systems also
do not suffice for quantifying trust in distributed UC systems. Furthermore, they
neither define what actions are suitable to increase or decrease trust, nor do they
deal with attestation mechanisms. Since our goal is to develop a formal model
of distributed UC systems that works independently of the system design or the
used attestation technology, reputation systems do not meet our requirements.

3 Formal model

Our goal is to develop a metric that quantifies the level of trust in distributed
UC systems. For this, a formal model is required that describes the trusted
communication between usage control components. Since trust relationships
can be intuitively modeled as graphs, we utilize a graph-based approach.
Furthermore, the formal model needs to represent attestations conducted by the
UC components as well as the architecture of the deployed UC system. In this
section, we develop a suitable model in three steps.

116



Model for Quantifying Trust in Distributed Usage Control Systems

1. Define functions of the UC components that have to be trusted using a
graph-based model (global).

2. Define the existing agents and cross-system activities of interest by
instantiating that graph (scenario specific).

3. Define the system architecture by binding the agents to attestable systems
(implementation specific).

As a first step, the basic semantic of the usage control system is specified via
a trust dependency graph. The trust dependency graph contains the existing
types of usage control components. It describes how they need to trust each
other for any interaction that may occur between them. In the second step we
concretize this graph by considering the actual components that are operated in
the distributed usage control system. For this we represent each concrete UC
component as an instance of a node from the trust dependency graph. We call a
concrete UC component agent, because it needs to securely interact with other
components in the system. The resulting graph is called agent graph. Unlike
the trust dependency graph, each agent graph is specific to a certain scenario
that the UC system is deployed for. It also yields information about the actors
that operate the usage control components in that scenario. The agent graph
can be partitioned into multiple UC activities, which represent a function of the
distributed UC system spanning over multiple UC components. We will later
show how the trust level of a UC activity can be measured using an instance
of the model. Finally, an architecture graph defines how the agents map to
physical computer systems that can be attested. The architecture graph is not
only specific for a certain UC scenario, but also depends on the used trusted
computing technology and the deployment of UC components. Figure 3.1 shows
an overview of the steps required to transfer the design and implementation
of a UC system into the formal model. In the following sections we present
this formal model in detail. Afterwards we develop trust metrics that can be
evaluated on an instance of the model.

117



Paul Georg Wagner

Trust
Dependency

Graph

Agent
Graph

Architecture
Graph

Attestation
Containers

UC
Activities

Component
Instantiation

System
Binding

Global
Scenario Implementation

Figure 3.1: Overview of the formal model.

3.1 Defining UC systems

The first step of the formal model includes defining a distributed UC system and
its components. This is done in definition 3.1.1.

Definition 3.1.1 (DUC system). Let M be a finite set of DUC modules and F

a set of DUC functions. We call the tuple S := (M, F ) DUC system.

Besides the UC components and their functions, we also need to define how
the UC components may interact with each other. This is done by the trust
dependency graph, as described in definition 3.1.2.

Definition 3.1.2 (Trust Dependency Graph). Let S = (M, F ) be a DUC system.
Let EF ⊆ M × M be a set of directed edges over M and lF : EF → F a
mapping that labels each edge with a system function. We call the triple
FG :=

(
M, EF , lF

)
trust dependency graph of S.

The trust dependency graph of a DUC system describes the inter-component
functions that may be called across the distributed system. A trust dependency
graph can be constructed solely with knowledge of the UC component’s interfaces.
It is not necessary to know the use case or the usage control policies that should
be deployed. Hence the trust dependency graph is independent of the system’s
concrete realization and implementation.

118



Model for Quantifying Trust in Distributed Usage Control Systems

An example for a trust dependency graph is presented in figure 3.2. It shows
the trust dependency graph for the XACML-based distributed usage control
architecture that is deployed in the International Data Space. XACML [2] is
a reference architecture that defines usage control components responsible for
enforcement (PEP), policy evaluation (PDP), information gathering (PIP), and
administration (PAP). Besides these XACML-based components, the usage
control architecture of the International Data Space uses some additional
components responsible for retrieving policies (PRP), managing communication
(PMP) and executing obligations (PXP). The displayed DUC system is modeled as
M = {PEP, PDP, PIP, ...} and F = {notify, evaluate, execute, ...}. The
trust dependency graph shows the possible interactions and the resulting trust
dependencies between components as labeled edges. Note that the direction of

PIP

PXP PDP PEP

PMP PRP

PAP

activate revoke

store

delete

deploy

revoke

deploy revoke retrieve

subscribe

notify
unsubscribe

execute

evaluate

notify
notify

evaluate

Figure 3.2: Example of a trust dependency graph.

the edge defines the direction of the trust dependency, which does not always
correspond with the direction of the interaction. For example, a PAP may revoke

119



Paul Georg Wagner

a policy by calling the revoke function of the responsible PMP. However, the
edge is directed the opposite way, because in this case the PMP has to trust the
PAP that the revocation request is legit.

3.2 Defining agents and activities

In order to represent a specific scenario, we can instantiate the trust dependency
graph and introduce agents that interact with each other. This is done in definition
3.2.1.

Definition 3.2.1 (Agent Graph). Let FG =
(
M, EF , lF

)
be a trust dependency

graph. Let A be a set of agents, E ⊆ A × A a set of directed edges over A and
l : A → F a mapping. Let also be type : A → M a mapping that assigns a
module type to each agent. We call the tuple G := (A, E, l, type) agent graph,
if it holds that

∀(a, b) ∈ E : (type(a), type(b)) ∈ EF

∀(a, b) ∈ E : l (a, b) = lF (type(a), type(b))

According to definition 3.2.1, every agent is an instance of a UC component. The
agent interaction corresponds to the DUC functions that have been described by
the trust dependency graph. The two conditions in 3.2.1 ensure that the agent
graph only contains edges that correspond to the trust dependency graph (i.e.
agents can only call existing functions). Note that the agent graph may contain
multiple agents of one particular type (e.g. if multiple PIPs or PEPs exist), while
the trust dependency graph contains each component exactly once.

The agent graph shown in figure 3.3 is based on the example trust dependency
graph in figure 3.2. The example agent graph shows a scenario with two actors
A and B, who operate distributed usage control components. In this scenario,
the PXP instance of actor B is responsible for deploying policies at the PDP
instance of actor A. This allows B to enforce usage control policies on his data,
even if they are shared with A. Note that the agent graph contains multiple
instances of a single UC component. For example, in this case both actors A
and B operate PDPs, PEPs and PXPs. While the trust dependency graph is
of a global nature and represents an abstract DUC architecture, agent graphs

120



Model for Quantifying Trust in Distributed Usage Control Systems

PXP:A PIP:B

PDP:A PMP:A PXP:B PDP:B

PEP:A PEP:B

execute

subscribe notify
unsubscribe

deploy

revoke

deploy

revoke

execute

evaluate

subscribenotify
unsubscribe

notify

Figure 3.3: Example of an agent graph.

derived from it depend on specific use cases. Also note that all agent graph
edges correspond to edges from the trust dependency graph, but not all trust
relationships may be included in the agent graph, depending on their relevance
for the scenario.

Besides defining the agents of the UC system, we also have to specify what kind
of agent interaction should be evaluated for trustworthiness. Definition 3.2.2
partitions the agent graph into multiple acyclic subgraphs called UC activities.
A UC activity represents an action that requires multiple agents to work together,
such as the deployment of policies or the enforcement of access decisions. Since
the involved agents have to trust each other in order to reliably execute these
actions, the trust level of a UC system will be based on the relevant UC activities.

Definition 3.2.2 (UC Activity). Let G = (A, E, l, type) be an agent graph. Let
H := (Ā, Ē, l̄) be a connected subgraph of G with Ā ⊆ A, Ē ⊆ E ∩

(
Ā × Ā

)
and l̄ := l|Ē . We call the subgraph H UC activity of G, if

H is acyclic
∃!x ∈ Ā : indeg(x) = 0
∃y ∈ Ā : outdeg(y) = 0

The unique vertex x is called root of H . A vertex y is called leaf of H . The set
of all leaves is denoted by Y .

121



Paul Georg Wagner

Figure 3.4 shows an example for a UC activity based on the agent graph in figure
3.3. The depicted UC activity represents the necessary interaction for locally
enforcing a policy. First, the enforcement point (PEP) notifies the decision
point (PDP) of an access request. The PDP then evaluates the policies, requests
necessary information at the PIP and executes obligations at the PXP. In this
activity the PEP acts as root, while the PXP and the PIP are leaves. In order
to trust the UC activity of local policy enforcement, all of these interactions
need to be secure. Complex distributed usage control systems, such as the
International Data Space, have many more relevant UC activities that can be
identified, including remote policy enforcement, policy deployment, and policy
revocation. However, for the remainder of this paper we will stick to the example
of local policy enforcement.

PXP:B PIP:B

PDP:B PEP:B

execute evaluate notify

notify

Figure 3.4: Example of a UC activity: Local policy enforcement.

3.3 Defining attestations and architectures

Finally the formal model needs to contain information about the remote attesta-
tions that can be executed by the agents. In order to accommodate this, definition
3.3.1 introduces the notion of attestation containers. An attestation container
is a set of agents that can be jointly attested. Which agents form an attestation
container depends on the used attestation technology and the system architecture.
For example, if the UC system uses TPMs to execute the remote attestations, all
UC components running on a TPM-protected computer system are included in
an attestation container. More advanced trusted computing technologies, such
as Intel’s SGX, allow the attestation of software enclaves rather than whole

122



Model for Quantifying Trust in Distributed Usage Control Systems

computer systems. In that case, all UC components included inside such an
enclave form an attestation container. The tuple of agent graph and attestation
containers is called architecture graph.

Definition 3.3.1 (Attestation Container). Let G = (A, E, l, type) be an agent
graph. We call a non-empty set C ⊆ A attestation container, if all c ∈ C can be
jointly attested. The set of all attestation containers is denoted by C ⊆ P(A) \ ∅.
The tuple (G, C) is called architecture graph.

Based on the description of the attestation container, we have to represent the
concrete attestations that agents actually conduct during runtime. This is done
in definition 3.3.2 via an attestation schedule.

Definition 3.3.2 (Attestation Schedule). Let (G, C) be an architecture graph. For
any agent a ∈ A we call the mapping atta : N+ × C → {−1, 0, 1} attestation
schedule. The family of all attestation schedules is denoted by A = (atta)a∈A.

The attestation schedule of an agent indicates which attestations the agent
conducts at what points in time, and if they are successful. More concretely,
if atta(t, C) = 1, then at time t the agent a conducts a successful remote
attestation of container C. This means that a successfully verifies the integrity
of all agents that are included in C. If instead atta(t, C) = −1, the attestation
fails and the agent is unable to verify the integrity of C. If atta(t, C) = 0, the
agent a does not conduct a remote attestation of container C at time t.

4 Quantifying trust

The formal model allows us to mathematically represent a distributed UC system.
Based on an architecture graph and the associated attestation schedules we can
now define trust metrics for the relevant UC activities.

4.1 Binary trust metrics

Given a UC activity H , we denote the level of trust in the activity at time t by
TrustLevelH(t) ∈ {0, 1}. A trust level of 1 means that the activity is trusted,

123



Paul Georg Wagner

while a trust level of 0 indicates that the attestations are not sufficient to ensure
the integrity of all involved components. In order to define this trust level, we
are examining the paths of H and calculate trust gains for each transition within
the path.

4.1.1 Trust gain by attestations

Whenever an agent a conducts a successful attestation of container C, possible
transitions between a and another agent c ∈ C are trusted and positively influence
the trust level of H . However, this positive influence only lasts as long as no
other agent unsuccessfully conducts an attestation of C, thereby determining
that its integrity cannot be trusted anymore. This idea is expressed in definition
4.1.1. Like the overall trust level, the trust gain is binary. A trust gain of 1 for the
transition (a, b) means that b has been attested by a, and no other agent failed in
verifying the integrity of b since. A trust gain of 0 indicates that a has not yet
attested a container that includes b, or that such an attestation is outdated.

Definition 4.1.1 (Trust Gain by Attestation). Let (G, C) be an architecture graph
and A = (atta)a∈A the family of associated attestation schedules. Let H be a
UC activity of G and (v1, ..., vn) ∈ H a path of the activity. The trust gain by
attestation for the transition (vi−1, vi) at time t is defined as

Gainatt(i, t) :=


1,

∃C ∈ C,t1 ≤ t :
vi ∈ C ∧ attvi−1(t1, C) = 1 ∧
∀a ∈ A : @t2 ∈ [t1, t] : atta(t2, C) = −1

0, else

4.1.2 Trust gain by locality

While it is clear that attesting a remote component increases trust, we also have
to manage the trust gains of local components. If two dependent UC components
are included in the same attestation container, they can communicate securely
without conducting a remote attestation. However, even though a remote
attestation is not required for establishing a secure channel, the integrity of both
components still needs to be verified. Hence we have to demand that a previous

124



Model for Quantifying Trust in Distributed Usage Control Systems

component attests both of the local components. This concept of trust gain by
locality is specified in definition 4.1.2.

Definition 4.1.2 (Trust Gain by Locality). Let (G, C) be an architecture graph
and A = (atta)a∈A the family of associated attestation schedules. Let H be a
UC activity of G and (v1, ..., vn) ∈ H a path of the activity. The trust gain by
locality for the transition (vi−1, vi) at time t is defined as

Gainloc(i, t) :=


1,

∃C ∈ C,t1 ≤ t :
{vi−1, vi} ⊆ C ∧
∃j < i : attvj (t1, C) = 1 ∧
∀a ∈ A : @t2 ∈ [t1, t] : atta(t2, C) = −1

0, else

4.1.3 Putting it together

Given the two concepts of generating trust in a distributed UC system, we can
define the trust level for a UC activity. We can base the definition on the trust
gain by attestation, the trust gain by locality, or both. Definition 4.1.3 specifies
the trust level of a path by multiplying the trust gains of the respective transitions.
The trust level of the whole UC activity is the minimal trust over all paths.

Definition 4.1.3 (Trust Level). Let (G, C) be an architecture graph and further
let H = (Ā, Ē, l̄) a UC activity of G with root x ∈ Ā and leaves Y ⊆ Ā. The
trust level of a path (v1, ..., vn) ∈ H is defined as

TrustLevel(v1,...,vn)(t) :=
n∏

i=2
(Gain(i, t))

Depending on the scenario, the trust gain is defined by attestation or attestation
and locality.

Gain(i, t) := Gainatt(i, t)
Gain(i, t) := max(Gainatt(i, t), Gainloc(i, t))

The trust level of the UC activity H is defined as

TrustLevelH(t) := min
(v1,...,vn)∈H
v1=x,vn∈Y

(
TrustLevel(v1,...,vn)(t)

)

125



Paul Georg Wagner

Note that the trust level definition is based on the transitions between agents
in the UC activity, instead of the agents themselves. Unlike many existing
reputation systems (c.f. section 2), we do not define the trust level of a certain
agent at all. Instead we define the trust gain of a transition within a UC activity,
and then generalize that definition over paths to the whole activity. The reason
for this is that remote attestation is not only responsible for verifying the integrity
of agents, but also establishes a secure channel for communication. Hence it is
not sufficient to focus just on the level of trust in the agent, we need to examine
the connections between them.

4.2 Non-binary trust metrics

A binary trust metric can only distinguish trusted from untrusted systems. In
order to quantify trust more precisely, we can define non-binary trust metrics.
In that case, given a UC activity H , we denote the level of trust in the activity at
time t by TrustLevelH(t) ∈ [0, 1].

A simple non-binary trust metric can be obtained by including the temporal decay
of trust in the model. For this we introduce a dampening factor η : N+

0 → [0, 1]
and modify the definitions of trust gains.

Definition 4.2.1 (Trust Gains with Temporal Decay).

Gainatt(i, t) :=


η(t − t1),

∃C ∈C, t1 ≤ t :
vi ∈ C ∧ attvi−1(t1, C) = 1 ∧
∀a ∈ A : @t2 ∈ [t1, t] : atta(t2, C) = −1

0, else

Gainloc(i, t) :=


η(t − t1),

∃C ∈C, t1 ≤ t :
{vi−1, vi} ⊆ C ∧
∃j < i : attvj (t1, C) = 1 ∧
∀a ∈ A : @t2 ∈ [t1, t] : atta(t2, C) = −1

0, else

The definition of the dampening factor η depends on the scenario. In general,
the choice of η reflects how fast the generated trust deteriorates after a successful

126



Model for Quantifying Trust in Distributed Usage Control Systems

attestation. For most cases a polynomial or exponential decay should be an
adequate choice.

η(t) := (t + 1)−p

η(t) := exp(−λt)

4.3 Example calculation

After defining binary and non-binary trust metrics, we give an example calcula-
tion based on the previously used International Data Space scenario. For this, we
take the UC activity representing local policy enforcement from figure 3.4 and
define suitable attestation containers. As shown in figure 4.1, the set of attestation
containers results to C = {{pip}, {pdp, pxp}}. Since the International Data
Space uses TPMs to provide proof of integrity during remote attestation, in this
case the attestation containers represent physical computer systems.

PXP:B PIP:B

PDP:B PEP:B

execute
evaluate notify

notify

Figure 4.1: UC activity with attestation containers: Local policy enforcement.

In order to determine the trust level of this scenario, we have to specify the
attestation schedule. We assume that the PXP and the PIP do not conduct any
attestations in this example.

∀t ∈ N+, C ∈ C : attpxp(t, C) = 0
∀t ∈ N+, C ∈ C : attpip(t, C) = 0

127



Paul Georg Wagner

The root PEP attests the PDP and PXP at t = 1, while both PEP and PDP attest
the PIP at t = 2. Since in this example all conducted attestations are successful,
the attestation schedules never evaluate to −1.

attpep(t, C) =


1, t = 1 ∧ C = {pdp, pxp}
1, t = 2 ∧ C = {pip}
0, else

attpdp(t, C) =
{

1, t = 2 ∧ C = {pip}
0, else

Furthermore we consider both attestation and locality trust gains for this example
calculation. Table 4.1 shows the development of the trust level for the three
paths.

t TL(pep,pdp,pxp) TL(pep,pdp,pip) TL(pep,pip)

0 0 0 0
1 ηatt(0) ∗ ηloc(0) 0 0
2 ηatt(1) ∗ ηloc(1) ηatt(1) ∗ ηatt(0) ηatt(0)

Table 4.1: Development of trust levels over time.

At t = 0, no attestations have been conducted yet, so the trust level for all paths
is 0. At t = 1, the PEP conducts a remote attestation of the attestation container
{pdp, pxp}. This results in an attestation trust gain of ηatt(0) for the transition
pep → pdp and a locality trust gain of ηloc(0) for the transition pdp → pxp. At
t = 2, both the PEP and the PDP conduct a remote attestation of the attestation
container {pip}. Then the transition pep → pip is directly attested with an
attestation trust gain of ηatt(0). However, the transition pep → pdp now has an
attestation trust gain of ηatt(1), since the relevant attestation is one time step in
the past. For the same reason the transition pdp → pxp now has a locality trust
gain of ηloc(1).

128



Model for Quantifying Trust in Distributed Usage Control Systems

If we assume the dampening factors of the trust gains to be

ηatt(t) := exp(− 1
10 t)

and ηloc(t) := exp(− 1
15 t), the trust level of the entire activity H at time t = 2

results to

TrustLevelH(2) = min
(
ηatt(1) ∗ ηloc(1), ηatt(1) ∗ ηatt(0), ηatt(0)

)
= min

(
ηatt(1) ∗ ηloc(1), ηatt(1) ∗ 1, 1

)
= ηatt(1) ∗ ηloc(1)
= 0.846

5 Conclusion

In this work we developed a formal model for quantifying trust in distributed usage
control systems. After defining the relevant trust dependencies and interacting
agents, we developed binary and non-binary trust metrics that quantify the level
of trust reached in a certain scenario. While successful attestations positively
influence the trust, failed attestations and time progression reduce the reached
overall trust level. Finally we showed an example calculation based on the real
distributed usage control system that is deployed in the International Data Space.

Possible future work includes investigating how Dempster-Shafer theory [8]
could be applied to the formal model. With Dempster-Shafer it is possible
to model unawareness and uncertainty of knowledge. It is also helpful in
combining degrees of belief from different sources, which makes it promising
for representing trust in distributed systems. There already are reputation
systems based on Dempster-Shafer theory [12].

Another important approach is to evaluate to what extent the assumptions made by
the formal model hold in practice. The presented trust metric is only meaningful
if the used remote attestation protocol guarantees integrity verification and
secure communication across the distributed system. However, especially for
the widespread TPMs this assumption does not hold in all scenarios [11]. A
more subtle problem that occurs in practice is the availability of UC components.

129



Paul Georg Wagner

Even if the used remote attestation protocol is secure, one can never prevent
a malicious operator to deliberately sever communications between local and
remote usage control components. In this case it is important that the roots of all
affected UC activities are notified about the loss of communication, otherwise
the security of the usage control system may be compromised. Even though the
formal model cannot directly monitor this, being able to identify relevant UC
activities and their trust dependencies is a substantial help in auditing distributed
usage control systems for these weaknesses.

References

[1] Alfarez Abdul-Rahman. “The pgp trust model”. In: EDI-Forum: the
Journal of Electronic Commerce. Vol. 10. 3. 1997, pp. 27–31.

[2] Anne Anderson et al. “extensible access control markup language (xacml)
version 1.0”. In: OASIS (2003).

[3] Victor Costan and Srinivas Devadas. “Intel SGX Explained”. In: IACR
Cryptology Archive (2016), p. 86.

[4] Audun Josang and Roslan Ismail. “The beta reputation system”. In:
Proceedings of the 15th bled electronic commerce conference. Vol. 5.
2002, pp. 2502–2511.

[5] Stephen Paul Marsh. “Formalising trust as a computational concept”. In:
(1994).

[6] Boris Otto et al. IDS Reference Architecture Model. Tech. rep. International
Data Spaces Association, 2018.

[7] Jaehong Park and Ravi Sandhu. “The UCON ABC usage control model”.
In: ACM Transactions on Information and System Security (TISSEC) 7.1
(2004), pp. 128–174.

[8] Glenn Shafer. A mathematical theory of evidence. Vol. 42. Princeton
university press, 1976.

[9] TCG. “Architecture overview”. In: Specification Revision 1 (2007).

130



Model for Quantifying Trust in Distributed Usage Control Systems

[10] H Vagts, T Cosar, and J Beyerer. “Establishing trust in decentralized smart
sensor networks”. In: Mobile Multimedia/Image Processing, Security,
and Applications 2011. Vol. 8063. International Society for Optics and
Photonics. 2011, p. 806306.

[11] Paul Georg Wagner, Pascal Birnstill, and Jürgen Beyerer. “Challenges
of Using Trusted Computing for Collaborative Data Processing”. In:
International Workshop on Security and Trust Management. Springer.
2019, pp. 107–123.

[12] Bin Yu and Munindar P Singh. “An evidential model of distributed
reputation management”. In: Proceedings of the first international joint
conference on Autonomous Agents and Multiagent Systems: Part 1. ACM.
2002, pp. 294–301.

131


	Privacy Compliant Research Interface for Medical Data
	Semi-Supervised Manifold Learning for Hyperspectral Data
	Ellipsometric Measurements for Nonplanar Surfaces
	Multimodal 3D Semantic Segmentation
	Part Affinity Field based Activity Recognition
	Measurement and Sensor Characteristics in Optical Spectroscopy
	High-NA Confocal Measurement by Diffractive Optical Elements
	Realistic Predictors for Pedestrian Attribute Recognition
	Model for Trust in Distributed Usage Control Systems
	Learning with Latent Representations of 3D Data



