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Abstract

Understanding and interpreting a scene is a key task of environment perception
for autonomous driving, which is why autonomous vehicles are equipped with a
wide range of different sensors. Semantic Segmentation of sensor data provides
valuable information for this task and is often seen as key enabler. In this report,
we’re presenting a deep learning approach for 3D semantic segmentation of
lidar point clouds. The proposed architecture uses the lidar’s native range view
and additionally exploits camera features to increase accuracy and robustness.
Lidar and camera feature maps of different scales are fused iteratively inside
the network architecture. We evaluate our deep fusion approach on a large
benchmark dataset and demonstrate its benefits compared to other state-of-the-art
approaches, which rely only on lidar.

1 Introduction

One of the key challenges of autonomous driving is the understanding of the
vehicle’s environment. Therefore, autonomous vehicles are equipped with a wide
range of sensor modalities, usually including, camera, lidar, radar and ultrasonic
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sensors. With different complementary sensors available, shortcomings of an
individual sensor type can be compensated by other sensor types, increasing
accuracy and robustness. In this work, we focus on camera and lidar sensors.
Understanding and interpreting a scene is a key task of environment perception
for autonomous driving, which makes semantic segmentation of sensor data
valuable. For camera images, assigning a class label to every image pixel has
been addressed very successfully with Convolutional Neural Networks (CNNs)
over the past years, achieving impressive results on road and urban scenes [5].
When dealing with 3D lidar point clouds however, the first challenge is a proper
representation, enabling the application of CNNs. One possibility is the lidar’s
native range view, which has shown promising results |15} 16]. This allows the
application of established image segmentation architectures.

Having different sensors available with an overlapping field of view, allows for
approaches that fuse the data of different sensors to improve the robustness and
overall accuracy. When addressing the fusion of camera and lidar data, some
challenges arise. One is a substantial difference in their resolution and another is
their considerable difference in measurements and sensor space. While a camera
observes brightness values resulting in an image, a lidar measures the distance
to its environment, generating a sparse 3D point cloud. Additionally, different
fusion strategies must be considered. Following [4], these are the fusion of the
sensor data (early fusion), the fusion of the predictions for lidar and camera
data (late fusion) or the fusion of the featues maps inside a CNN (deep fusion).
In this work, we propose a deep fusion approach, applied to the range view
representation, which makes use of camera and lidar data to calculate a semantic
segmentation of lidar point clouds. The contributions of this work are twofold:

o First, we propose a fusion module, which takes camera and lidar features,
transforms them into a common space and fuses them afterwards.

e Second, we propose a fusion architecture building upon the fusion modules
and apply them iteratively throughout our network, following the idea of
iterative deep aggregation [26]]. This way, we are able to fuse aggregated
features of both sensors at different scales and maximize the fused
information
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2  Related work

2.1 2D Semantic segmentation

The success of deep learning applied for scene parsing and semantic segmentation
[13L 21} 8]l is closely related to its success in classical image classification [22]
10, [7]. One widely used approach are Fully Convolutional Neural Networks
(FCNN) [[13]], which calculate a pixel-wise prediction for a given image in
an end-to-end fashion. [13]] replaced the fully connected layers of common
classification architectures with 1x1-convolutions, thereby replacing the original
image classification with a pixel-wise classification.

One main challenge, recent works have focused on, is the loss of spatial resolution
while aggregating information. It is of great importance to capture the global
context of a scene as well as fine local structures. DeepLabv3 [3| 2] addresses
this by “atrous’ convolutions, which increase the size of the receptive fields
without reducing resolution or increasing filter sizes. ’Atrous’ convolutions with
different rates are employed in parallel to exploit context at different scales.
In [26], an aggregation architecture is presented, which the authors call deep
layer aggregation (DLA), also targeting the challenge of extracting meaningful
semantic features while preserving spatial information. PSPNet [29] combines
local and global context by a pyramid pooling module, which aggregates the
global context at different scales and appends it to the original feature maps.
OcNet [27] adapts the idea of the pyramid pooling module and multiscale *atrous’
convolutions by introducing an object context module, which exploits object
context at different scales, instead of spatial context.

2.2 3D Semantic segmentation

When addressing semantic segmentation of 3D point clouds with CNNss, the
first thing to consider is the representation of the point clouds. In recent
works, multiple different representations are proposed. PointNet [18]] uses
the raw and unstructured point clouds directly as input by applying pointwise
1x1-convolutions and a symmetric operation for feature aggregation. Because a
single global feature aggregation limits the ability to capture spatial relations, the
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authors proposed PointNet++ [[19]], which applies individual PointNets to local
regions and aggregates the resulting local features in a hierarchical fashion. [23]]
converts the point clouds into a voxel grid and applies a 3D-FCNN, followed
by a Conditional Random Field (CRF) to refine the results. A bird’s eye view
(BEV) with the vertical axis as feature channel is used by [28]] to retrieve a 2D
representation of the point clouds. Having a 2D representation, they’re using
the U-Net architecture [21]], known from image segmentation.

When working with point clouds generated by a lidar sensor, the range view
is another possibility of representation. SqueezeSeg [24] was one of the
first works using the range view for a segmentation task. Their goal was the
segmentation of road objects, with an improved version released in [25]]. Another
approach is RangeNet++ [[16]], which employs the DarkNet53 backbone [20]
for full semantic segmentation. [14] proposed LaserNet, which uses the range
view as input for object detection, while one of their intermediate results is a
semantic segmentation of the input. Their architecture is based on deep layer
aggregation. Transforming the point cloud into its range view and applying
established 2D image segmentation architectures mostly outperforms other
forms of representations while being faster. Therefore, our work also builds
upon the range view representation.

2.3 Multimodal 3D semantic segmentation

Multi-sensor fusion architectures using camera and lidar mostly focus on object
detection [4, |17, 11} 12} [15]]. Only [[15] also tackles the task of 3D semantic
segmentation, using the range view as input representation. Camera image
feature maps, extracted by three ResNet blocks [7]], and extracted lidar feature
maps from the range view are concatenated and passed to a LaserNet, which
serves as DLA for the semantic segmentation. In contrast to applying early fusion
and fusing the RGB values with the range view, this approach aggregates camera
image information first, using the original usually much higher resolution of the
camera image. This deep fusion allows for more information being preserved
and exploited for the semantic segmentation of the lidar point cloud. While
considerably improving the mean Intersection over Union over all classes (mloU)
on distant content (+5.19), the overall improvements are rather small (+0.25).
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We’re also using deep layer aggregation and the full camera image resolution for
deep fusion of camera and lidar. In contrast to [15]], which fuses the features
before applying their DLA network (LaserNet), we’re applying a DLA network
to both, the lidar range view and the camera image, separately but fuse both
networks following iterative deep aggregation [26]. As a result, our deep fusion
approach is able to aggregate and use more information from the camera for the
semantic segmentation of the lidar point cloud.

3  Iterative deep fusion and aggregation

In this section, we present our range view input representation, our fusion
module and the network architecture, used for the fusion of the lidar and camera
input.

3.1 Range view

Commonly used lidar sensors usually observe their environment by spinning
a set of vertically stacked lasers around their vertical axis. The position of a
laser in this stack is often referred to as channel, corresponding to an elevation
angle. The Velodyne HDL-64E, used to record the SemanticKitti dataset [[1} 6],
has 64 channels, an azimuth resolution of approximately 0.17° and an elevation
resolution of 1/3o for the upper and 1/2o for the lower half of the lasers. The
sensor provides measurements o; = (¢;, ¢;, 14, €;), with channel id ¢;, azimuth
angle ¢;, measured distance 7; and reflectance e;. The corresponding 3D points
are

Z; r; cos(6;) cos(¢;)
pi= |y | = | ricos(6;) sin(¢;) |, 3.1
Zi Ti Sm(ﬁl)

omitting correction factors. The elevation angle 6; is derived from the sensor
configuration and the channel id ¢;.

We generate a range view by mapping every point or measurement to a row and
column index. Having measurements from a Velodyne HDL-64E, the row and
column indices are calculated by using the channel as row index and discretizing
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Figure 3.1: range view showing the lidar depth measurements.

the azimuth angle. If only the 3D points p; are provided, the azimuth and
elevation angle are given by

¢; = —arctan2(y;, ;) and 6; = arcsin <ﬁ> . (3.2)

i

Finally, for a range view resolution of h x w, the image coordinates ull = (uli, v})

17 7

are

0;—0,
i {05 “h- MJ 91 > amid
uli = , (33)
(050 (145255 ) | 6; < g

ol = {0.5- (1 + ﬁ) wJ , (3.4)
7T

with a vertical field of view Ogy = Oyp — Gaown = 2° — (—24.8°) = 26.8° and
the border angle between the two vertical resolutions 0,,;q = —26/30. Following
this, we’re mapping the input measurements 7, e, z, y and z to the 2D range
view, receiving a 5 x h x w input tensor R. The depth channel (r) is visualized
in Fig. 3.1}

Ego motion, uncertainty and non-uniformity of the angles can lead to mapping
collisions. As a result, more than one point is mapped to the same range view
pixel. This implies not only a loss of information but also missing predictions for
the shadowed points. The latter isn’t an issue for object detection, for semantic
segmentation however, it has to be considered. Therefore, a post-processing
step based on the labeled points is required to compute class labels for the
shadowed points. Following the simplest one, we assign the same label to all
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measurements projected on the same range view pixel. Another approach is
based on k-nearest neighbor [16]]. We will investigate the post-processing step
in future work. In this work, we’re focusing on the feature fusion.

3.2 Feature transformation and fusion

A crucial part of our work is the feature fusion, which fuses the lidar and
camera features. We’re choosing the range view as our reference system and
project camera features into it. The inverse projection, from lidar to camera, is
mathematically given by the equation

cam
K3

0™ | = K - Tizeam - <’1) , (35)
1

with the camera matrix K and transformation matrix from lidar to camera
Tlizcam- The calculated pixel indices define the correspondence between 3D
points and camera pixels. For this correspondence being still valid after scaling
the range view by (3 or the camera image by «, the following extensions are
made

Luqam . Oéj 5. i Lulvi . J ]
Yyt = ! & Pul = t , witha, 8 €10,1]. (3.6
’ (vaa‘“-aJ =\ p)) o s DA GO
Given scalable projection indices, we’re now able to project camera features I
into the range view R”, following

R7[Pu)] = 1% *u™). (3.7)

3

This is a fixed, geometrically motivated mapping, considering only one location
per 3D point in the camera feature maps. To capture more context and to
compensate errors in the calibration, we apply a learnable function F,, before
performing the fixed projection, resulting in

¢ = Fp(I®) and RY[Pull] = I¢[*us™)]. (3.8)

3

The fusion module shown in Fig. [3.2] builds upon this to implement the camera
feature transformation. We’re using a 3x3 convolution followed by Batch Norm
[9] and ReLu as learnable function F,. The projected camera features and the
lidar features are concatenated and fused by ResNet blocks.
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Figure 3.2: The main building block of our architecture. The fusion module transforms the camera
features into the lidar range view. Afterwards, lidar feature maps, camera feature maps and optionally
fused features maps from the stage before are fused.

3.3 Network architecture

Our proposed network architecture is shown in Fig. [2.3] and has three main
components. First, a DLA network called Lidar-Net (I) for processing the lidar
range view and calculating lidar features. It follows the proposed architecture
of [[14]], which itself is based on [26]. By using a DLA architecture, we ensure
to efficiently aggregate multi-scale lidar features. The second component is
another DLA network (II) with the same architecture for processing the camera
image. Additionally, we downsample the camera image before applying the
DLA network. The resolution of the camera image is much higher than of
the lidar image, so the induced loss in spatial information is small, whereas
the aggregated semantic information are considerably improved. We follow
the ResNet architecture and downsample the camera image with a strided
convolution and max pooling by a factor of four. This also decreases the run
time and memory requirements. The last component are fusion blocks (III),
which apply the previously presented feature transformation and fusion. They
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Figure 3.3: Our proposed fusion architecture, which fuses the lidar and camera features iteratively,
following the idea of iterative deep aggregation [26]. The labels indicate the output stride of the
individual blocks. We use the same network parameters for (I) and (II) as [|E|]

follow the idea of a feature aggregator except that they transform and aggregate
features of different sensors instead of different scales of one sensor.

4 Experiments

4.1 SemanticKitti

We’re evaluating our approach on the SemanticKitti dataset [I, 6], which
contains labels for 19 classes for the single scan benchmark. A total of 22
labeled sequences results in 43552 labeled scans. The official split allocates
sequences 0-10 for training and sequences 11-21 for testing, for which the labels
haven’t been published. However, the official benchmark doesn’t support the
usage of the camera images, meaning for our evaluation, only the sequences
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with published labels 0-10 can be used. Therefore, were excluding sequences 02,
06 and 10 from training and validation and use them only in the end for testing.
This results in 6963 frames for testing and 16238 for training and validation. We
follow the official evaluation metric and report the mean Intersection-over-Union
(mIoU). For our approach, only the lidar scan parts overlapping with the camera’s
field of view in the front of the car can be used.

4.2 Implementation details

Our training starts with an initial lggf‘ning rate of 10~4, which is then multiplied
in each training iteration it by 10 ™ax . Thereby, the learning rate exponentially
decreases by 1/100 during training. We train our network for 50k iteration with a
batch size of 40. To improve generalizability and reduce overfitting, we’re using
random crops of the whole 360° lidar scan for training the lidar net. Although
the crop is random, it follows the constraint, that the overlapping field of view
with the camera has to be fully inside the crop of size 64 x 1536. The fusion
modules finally crop the resulting lidar feature maps exactly to the overlapping
field of view. Additionally, we apply random flipping horizontally to the lidar
and camera images.

To counteract the class imbalance, we’re using a class-balanced cross entropy
loss for the final output as well as the auxiliary loss. The latter is used on the
final feature map of the Lidar-Net. Following the proposed settings of PSPNet
[29], we’re weighting the auxiliary loss by 0.4

4.3 Results

We evaluate our approach and present the improvements gained by the fusion of
lidar and camera image features. Therefore, we compare the results of our deep
fusion architecture, called Fusion-Net, to Lidar-Net, which uses only the lidar
scans. The results of both approaches are shown in Tab. .1} Overall, our fusion
approach outperforms Lidar-Net by a considerable margin, and also the majority
of the individual classes considerably benefit from the deep fusion approach.
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= ©
5 KT
= S e e 5
s 2 » £ 2 2 oz
3 &£ £ 22 . % % % &
Approach e % & % 2 &8 B =B E 3
Lidar-Net [93.1 76.8 56.1 3.4 67.1 81.7 42.0 232 39.8 29.0
Fusion-Net | 93.2 77.0 559 04 74.0 82.0 37.8 264 43.1 29.1

= = =

< = =

5 £ oz 2 % % oz £
Approach 4 & 8 a B & & a&a B |mloU
Lidar-Net |78.0 58.1 67.2 356 11.8 2.4 57.2 36.4 399| 47.3
Fusion-Net | 81.4 65.8 72.0 42.7 11.0 0.3 594 49.6 45.6( 49.8

Table 4.1: Comparison of the results of our deep fusion architecture and the purely lidar based
Lidar-Net

5 Conclusion and Outlook

In this work, we’ve presented a deep learning approach for semantic segmentation
of 3D lidar point clouds. Our approach uses a range view representation of
the lidar scans, enabling the application of established image segmentation
approaches. Furthermore, we use camera image feature maps of different
scales and iteratively fuse them inside our network with the lidar feature maps.
Our experiments underline the advantages of our deep fusion approach, which
outperforms a lidar-only approach by a considerable margin in terms of the
mloU. Also, most of the individual classes considerably benefit from the fusion.
For the future, we plan to further improve our fusion modules and thereby
increase the benefits of our fusion architecture. We’re also planning a more in
depth analysis of the benefits of fusing camera and lidar data for 3D semantic
segmentation.
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