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Abstract

3D data contain rich information about the full geometry of objects or scenes.
Learning tasks on them have always been considered as hard ones in the computer
vision community due to their extreme high dimensionality. Hence, latent
representations of 3D geometries are often used to lower the data dimensionality
for better parameterization and easier computation. In this report, we make a brief
review on those latent representations obtained via different methods including
classical ones and the emerging neural learning-based ones. Furthermore, the
nowadays widely used deep learning methods have also been more closely
investigated regarding their applications on various 3D data formats. The
possibility of combing those two kinds of methods has also been addressed.

1 Introduction

3D data analysis has always been an interesting yet challenging research topic
for computer vision researchers. Learning latent information from them is vital
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to lots of advanced technology applications including robotics, autonomous
driving, virtual reality and augmented reality. Lots of classical methods have
been proposed to extract latent representations from 3D data. Those latent
representations can be images, graphs, histograms, or even vectors [4]. Classical
methods usually focus more on generating latent representations of 3D shapes.
Those generated latent representations are sometimes also referred as shape
descriptors.

In recent years, neural networks have been proved to be one of the most powerful
learning algorithms for computer vision tasks, especially on 2D Euclidean data.
Implicitly learned feature maps or bottleneck feature vectors have been used for
classification, detection, or segmentation tasks. Later on, similar methods have
been proposed on 3D Euclidean data with minor adaptions. However, those
learning algorithms cannot be straightforwardly extended to Non-Euclidean
data due to their non-grid data structure. Different special neural network
architectures for 3D Non-Euclidean data therefore have been more meticulously
designed and proposed, while input, output, latent representations, or even
network operations have been more artfully defined.

This report is structured as follows. In Section 2, we briefly review the most
common 3D data formats. Latent representations learned by classical methods
or neural learning-based methods are reviewed in Section 3. Section 4 gives
a more detailed review on the application of deep learning a) for ML tasks on
3D data and b) for the generation of latent representations that can be used
by different methods later on. Conclusion and future outlook are presented in
Section 5.

2 Overview of 3D data format

3D data have lots of different formats depending on its source. They are usually
categorized into 2 subsets, Euclidean data, which mainly include multi-view
images, RGB-D images, volumetric voxels or octrees; and Non-Euclidean data,
which mainly include point clouds and meshes. Euclidean data are usually of
rasterized forms, they have regular grids. For example, images are composed
of pixels which are well aligned and always have same number of neighbours.
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Non-Euclidean data are usually more of geometric forms, they do not have
regular grids. For example, with geometric metrics, the distance between
two vertices on a mesh should be computed as their geodesic distance on the
manifold, other than the direct Euclidean distance. In this section, different 3D
data formats are briefly reviewed and compared.

2.1 Euclidean data

Multi-view images: 3D data may be presented as a combination of multiple 2D
images captured for the 3D object from different view points [38]. Learning with
this format, the noise effect from incompleteness, occlusion and illumination
problems can be well reduced. All the input views jointly optimize the functions
to represent the whole 3D shape. However, this format requires too many input
sources and is usually too expensive for industrial use. The question of how
many views are sufficient to represent a shape is also still open.

RGB-D images: With the development of RGB-D sensors, e.g., Microsoft
Kinect, more and more industrial applications are using RGB-D images as
the input data format for their tasks. This data format provides an additional
depth map along with the normal 2D RGB color information. Comparing to
other 3D data formats, there are more RGB-D data format available due to its
inexpensiveness [7].

Volumetric data: Same as 2D shapes can be rasterized into pixels, 3D shapes
can also be rasterized into voxels. In this case, 3D shapes are encoded by those
occupied voxels. Despite the simplicity of the voxel-based representation, it
suffers from keeping the intrinsic properties of 3D shapes and the smoothness
of their surfaces [34]. It also requires high memory storage and has high
computation complexity, which makes volumetric format not appropriate for
high-resolution data.

2.2 Non-Euclidean data

Point clouds: A point cloud is a set of unstructured points that approximate
the geometry of an object. However, if we only consider the local structure of

135



Chengzhi Wu

the object, those subsets may also be considered as Euclidean since they have
a global parameterization and are usually represented by a normal system of
coordinates. It depends on the metrics method that is used. But most tasks
still focus on the global structure for shape recognition, matching or retrieval,
hence point clouds are still classified as Non-Euclidean data format in most
cases. Nowadays we have multiple choices of 3D sensors to generate point
clouds, e.g., Ensenso or Zivid, they usually do single-shot and capture the whole
scene. Therefore, different from other formats, preprocessing steps such as
noise filtering or scene segmentation are usually required for point clouds of 3D
shapes.

Meshes/graphs: A polygon mesh is a collection of vertices, edges and faces
that defines the shape of a polyhedral object in 3D computer graphics and solid
modeling. With an appropriate number of vertices, meshes can give extremely
accurate geometric information of 3D shapes. The vertices in a mesh have
certain connectivities, which makes mesh a special case of graph. The process
of generating an approximate watertight mesh from a random connected graph
is called 3D shape completition or inpainting. Although meshes contains rich
information of 3D shapes, it is really a challenging task to learn on them directly
due to its irregularity. In most relevant researches, the spectral properties of the
graphs and meshes are utilized to learn latent features after applying a graph
Laplacian eigen-decomposition.

Continuous space function: Continuous space functions are a very special
data format. It uses a mathematical function to represent the 3D shape directly
and precisely. It is also referred as level set or signed distance function (SDF)
with minor definition modification. Input a coordinate in the defined space, a
SDF outputs a value whose sign (positive or negative) denotes that this point is
outside or inside the shape boundary. For example, if the output space of a SDF
is defined between [−1, 1], the whole function may be considered as a mapping
function f : R3 → [−1, 1]. If 0 is defined as the cutoff boundary, then all the
points whose coordinates yield an output between [−1, 0] after the mapping
means they are inside the object surface, and vice versa. However, only simple
shapes like cube, heart, donuts or lemon can be easily denoted with a SDF. It
is more often impossible to find such a function for a slightly complex shape.
Thus this data format is less explored comparing to others.
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Table 2.1: Property comparison of different 3D data formats
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2.3 Property comparison

It is impossible to say which data format is the best 3D data format. Apart
from the accuracy requirements, to better make use of the 3D information, it is
usually excepted that the data should be geometrically manipulable (deformation,
interpolation, etc.) and convenient to impose structural constraints. On the other
hand, since we are interested in applying deep learning algorithms on them, the
data should also be able to be easily formulated as the input/output to neural
networks and make fast forward/backward propagation computation possible.
Here, based on the state-of-the-art researches, we summarize the overall rating
subjectively on these properties of different 3D data formats in Table 2.1. In
most cases, people will just use the most appropriate data format for their tasks
according to the input source limitation, computation ability, and accuracy and
robustness requirements.

3 Latent representations of 3D data

The process of acquiring latent representations from input data is essentially a
mapping process. It maps the input data from its original data space to another
latent space, which are usually lower dimensional. In statistics definition, latent
representations (or, latent variables) are variables that are not directly observed
but are rather inferred through a mathematical model from other variables that
are directly observed and measured. Although multi-view images or volumetric
data may be regarded as a special mapping method that maps the original
geometric data into a lower dimensional space, those data representations are
usually not considered as latent ones since we can still observe shape properties
directly on them. Hence, in this report, we regard them as other kinds of data
formats and not as latent representations.

Before the recent upsurge of deep learning, there were already many other
classical mathematical methods that try to encode 3D data, mostly on 3D shapes.
For 3D shapes, the latent representations of them are also called as shape
descriptors. In this section, we first make a brief overview on those classical
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methods and the shape descriptors they generated, then probe into the latent
representations learned with neural networks.

3.1 Classical methods

Classical methods usually have very strong mathematical background, involving
strict mathematical formulas and deductions. Therefore the encoding results
from them are usually deterministic. There are numerous classical methods that
try to learn latent representations from 3D data, whether on Euclidean formats
or Non-Euclidean formats. Here we just summarize and list some most known
ones that may be related or helpful to our future work.

Ray-based sampling with spherical harmonics: In order to characterize
shapes of functions on a sphere by just a few parameters, spherical harmonics
[9] were proposed as a suitable tool. The magnitudes of complex coefficients,
which are obtained by applying the fast Fourier transform on the sphere to the
samples, are regarded as vector components. Thus, the ray-based feature vector
is represented in the spectral domain, where each vector component is formed
by taking into account all original input.

Laplacian spectral eigenvectors: In addition to considering the connectivity
of nodes and edges in a graph, mesh Laplacian operators take into account the
geometry of a surface (e.g. the angles at the nodes). For a manifold triangle
mesh, the Laplace-Beltrami operator is used to represent the intrinsic geometric
structure. After applying the Laplacian eigen-decomposition, the original shape
may be represented by its spectral eigenvectors, which makes mesh processing
[24] and surface editing [25]possible.

Heat kernel signature: A heat kernel signature (HKS) is a shape descriptor
obtained via spectral shape analysis methods and in use for deformable shape
analysis. It is based on heat kernel, which is a fundamental solution to the
heat equation [27]. For each point in the shape, HKS defines its feature vector
representing the point’s local and global geometric properties. HKS is one
of the many recently introduced shape descriptors which are based on the
LaplaceBeltrami operator associated with the shape. There are other relevant
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shape descriptors including global point signature (GPS), biharmonic signature
(BS), wave kernel signature (WKS).

Skeleton-based 3D descriptor: Skeletons derived from solid objects can be
regarded as intuitive object descriptions. They are able to capture the most
important information about the shape structure. Sundar et al. [28] presented
a framework for skeletonization and 3D object retrieval. Skeleton-based 3D
descriptor is widely used in animation and film industrial nowadays due to its
ideal parameterized control on the shape joints.

Primitive-based CAD model descriptor: 3D shapes may be approximately
assembled by composing simple volumetric primitives including cuboids, cylin-
ders and spheres. The shapes from one category usually have similar primitive
representations. Using this abstract representation, interpolation between the
obtained latent representations may provide a consistent parsing across shapes
in one certain category.

3.2 Neural learning-based methods

Comparing to the classical methods, neural learning-based methods are less
deterministic since they have more stochastic calculations involved. The final
parameters of a trained neural network may be slightly different even though all
the settings are identical in multiple trainings.

Actually, the latent representations learned via neural networks are seldom of
particular concern in most computer vision tasks, while they have always been
implicitly used. A good example would be the bottleneck features in transfer
learning. In transfer learning, we take a pre-trained model including network and
weights, then remove the last few fully connected (FC) network and construct
our own in place of it. When the training starts on the new data set, usually the
original network parameters before the FC network are frozen and only the newly
added FC network are trained. Here the input to the FC network is referred
as bottleneck features. They represent the latent features learned from the last
convolution layer in the network. Surely we can take the feature maps from any
previous layer and name them as bottleneck features or latent representations, but
in most cases we are more interested in a vector representation, thus a flattened
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Figure 3.1: The basic structure of a neural encoder-decoder. The feature maps/vectors learned
inside the network may be regarded as latent representations.

vector bottleneck feature are more often taken and used. But, still, the properties
of bottleneck features themselves are really less explored.

Also in generation tasks, latent representations are also crucial to learning. A
typical generative adversarial network (GAN) may take a vector from the latent
space as the input to generate pseudo real world data. Interpolating between the
input latent vectors, a continuous reshaping or deforming output can usually be
observed.

Figure 3.1 gives a brief idea how latent representations are learned within a
neural encoder-decoder. A more detailed survey of how latent representations
of 3D shapes are obtained and utilized with deep learning methods is given in
the next section.

4 Deep learning on 3D data

4.1 Learning on 3D Euclidean data

In order to duplicate the success of deep learning techniques from the 2D domain
to the 3D domain, it is easy to see that we can use 3D Euclidean data directly
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for learning purposes. In case of only 3D Non-Euclidean data are provided,
we can always convert them into Euclidean formats with a certain information
loss. Due to its simplicity and convenience, this converting process has been
widely utilized to create rasterized data to fit in the Euclidean neural network
architectures ever since the emerging of deep learning, even till now.

4.1.1 Image-based representations

When using RGB-D images or multi-view images as the input for deep learning
tasks, it is often required to have multiple input channels or even multiple CNN
streams to process the data. For example, [5] used a two-stream CNNs on
RGB-D data for 3D object recognition tasks. The learned latent features from
two streams were fused together in one later FC layer and the classification
result was given after a further softmax layer. A more interesting method was
proposed in [2], in which the idea of transfer learning was combined with the
method used in [5]. It used four separate CNNs to train the four channels in the
RGB-D data, while the weights were transferred from each network to another.
Their results indicated that the depth information carries valuable information
about shapes.

More processing streams will be needed for the multi-view images data format.
MVCNN [26] processed rendered 12 views of a 3D object separately. Then a
max pooling operation was applied in the view-pooling layer to get a compact
latent representation for the whole shape. In [37], a multi-branch CNN has been
designed to use rendered depth maps from different views of the object as input.
Each branch returned a feature vector that contributes to the final classification.
Apart from single value output recognition/classification tasks, this format has
also been used for other more complex tasks. Kalogerakis et al. [11] designed a
neural network for segmenting 3D objects into their labeled semantic parts by
learning from their multiple 2D projections. Local shape descriptors from part
correspondences have also been learned with a multi-view convolutional network
[10]. Even 3D shape reconstruction via multi-view convolutional networks has
also been studied from sketches in [13].
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4.1.2 Volumetric data

Regular 2D convolution operations have been naturally extended to 3D con-
volution operations by applying 4D convolutional kernels, certain network
architectures have also been proposed. VoxNet [15] first converted the point
clouds of shapes into voxels according to their occupancy in the space. Then this
volumetric data was used as input to their neural network for shape classification.
A similar method has been propose in 3DShapeNets [33] except they got the
volumetric data from depth maps. As a followed work, Seaghat et al. [23]
modified the architecture of VoxNet by incorporating the orientation of 3D
objects in the learning process.

Regarding the synthesis tasks with 3D volumetric data, in [32], by extending
the idea of GAN in the 2D domain, volumetric generative adversarial networks
have also been proposed. In McRecon network structure [8], foreground masks
have been used as weak supervision through a raytrace pooling layer for 3D
reconstruction. There are also octree-based methods which only consider the
occupied grids in a more memory efficient way including OctNet[22] and
O-CNN [29].

4.2 Learning directly on 3D Non-Euclidean data

As mentioned in the last subsection, people can always convert 3D Non-Euclidean
data to Euclidean formats for convenient neural network architecture designs
since the technical maturity of similar methods in 2D domain are already quite
high. However, object information will be inevitably lost during the converting
process. The best way to prevent this information loss is learning directly on 3D
Non-Euclidean data, in which special ways to define the input, output, or even
the operations used in the networks are usually required.

4.2.1 Point clouds

The very first proposed deep learning-based method of directly using 3D point
clouds data for shape analysis tasks is PointNet [20]. It used (x, y, z) coordinates
of points as input to the network, then an additional spatial transform network
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was performed as a pre-processing step. After that, lots of weights-sharing
fully connected layers were added to compute point-wise features. Finally, a
max-pooling layer was used to aggregate the global information and output a
1024 dimensional latent feature vector for classification tasks. For segmentation
tasks, the global shape feature and the point-wise features were concatenated
for predicting point-wise segmentation result. Despite the competitive results
achieved by PointNet, it still failed to take full advantage of the local features
in point clouds. Their subsequent work PointNet++ [21] tried to address this
point by grouping the points with different scales, performing PointNet on them
separately in order to aggregate different scale features. To better aggregate the
information in the real local area, aggregate operations similar to the convolution
operations have also been proposed, such as EdgeConv defined in [31] or X-Conv
defined in [12]. Both of them took a certain number of neighbours of each
point into consideration and performed the aggregating operation point-wise.
With this operations, the learned final latent representation also contains local
information implicitly.

In 3D point clouds synthesis field, [1] proposed a deep auto encoder (AE) with
high reconstruction quality and generalization. Generative adversarial networks
(GANs) and Gaussian Mixture Models (GMMs) have also been trained in the
latent space of their AEs respectively. Similarly, FoldingNet [35] proposed a
point clouds auto-encoder via deep grid deformation with graph-based encoders,
in which special perceptron layers were defined as folding operations. Regarding
the upsampling task for sparse point clouds, PU-Net was especially designed
with convolution operations defined in the latent feature space [36].

4.2.2 Meshes

At first glance, triangular meshes give people the illusion that 2D convolutional
kernels may be directly applied. However, these rasterized kernels are only
applicable to Euclidean data due to their structure shift invariance property.
In order to perform convolution locally, appropriate local patches need to be
defined. Geodesic CNN (GCNN) [14] constructed local patches in local polar
coordinates to ensure their structure non-position-dependent. Values of the
functions around each vertex in the mesh are mapped into local polar coordinates
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using the patch operator, thus geodesic convolution may be applied on those
patches. Later on, Anisotropic CNN (ACNN) [3] was proposed to tackle the
limitations in GCNN. It constructed a simpler pattern of local patches, which
are independent to the injectivity radius of meshes. Rather than using a fixed
kernel pattern as in GCNN and ACNN, MoNet [18] were proposed to define a
vertex-wise locally weighted coordinate system, on which parametric kernels
were applied to define the weighting functions. With this definition, GCNN and
ACNN may be considered as special cases of MoNet with certain constraints.

Except for those methods defined on the spatial domain, methods defined on
the spectral domain have also been proposed. For example, [6] first computed
heat kernel descriptors of shapes based on their heat kernel signatures (HKS),
then the descriptors were fed into two neural networks with target value using
Eigen-shape Descriptor and Fisher-shape Descriptor, respectively. The final
deep shape descriptor is formed by concatenating nodes in hidden layers. [30]
proposed a similar pipeline with local point signature (LPS) features. Multi-
scaled vertex spectral images were generated by packing the 16-dimensional
LPS in a compact manner, and then fed into a CNN to generate the final shape
descriptor. Those methods show the possibility that shape properties obtained
via classical methods may be further utilized with the deep learning methods
to get a better latent representation, with which better performance of different
tasks may be achieved.

4.2.3 Continuous space function

Continuous space function (CSF) or signed distance function (SDF) is a really
less explored data format. Although it provides high accuracy, it is usually
impossible to easily find a function that matches a slightly complex object.
Fortunately, neural networks are "universal approximators" and can mimic any
continuous function to the degree that the network size permits.

Early this year, DeepSDF [19] was proposed to learn a continuous SDF represen-
tation for a 3D shape, which encoded a shape’s boundary as the zero-level-set
of the learned function that explicitly divided the space into shape interior and
shape exterior. Deep Level Sets [17] also deployed a similar idea to represent
the output as an oriented level set of a continuous embedding function with the
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help of deep neural networks. In a more recent paper, Mescheder et al. [16]
proposed Occupancy Networks, which also used a network to mimic functions
that define the shape boundaries. An interesting adaption in their method is that
rather than a signed value, the output of the network is a real value between
0 and 1, which indicates the occupancy possibility of a certain point in that
space position. Although all those methods usually need a post-processing step
to visualize the shapes, the reconstruction performance of them are usually
qualitatively better than the performance of classical methods that only work for
point clouds or meshes.

5 Conclusion

In this report, we first briefly review the most used 3D data formats, including both
the Euclidean ones and the Non-Euclidean ones. Secondly, latent representations
or shape descriptors obtained via classical methods and deep neural networks
have been reviewed and discussed. While several classical methods have been
addressed, more efforts have been put into investigating the neural learning-
based methods. Latent representations of different 3D data formats learned with
various network architectures have been reviewed and discussed, the possibility
of combing classical methods and neural learning-based methods has also been
especially addressed. Although within the deep learning scope, the dominant
approaches that utilized for various computer vision tasks nowadays are still
usually based on images or other Euclidean data, we hope that with a better
learning and understanding of the latent representations of 3D shapes, more
efficient architectures may be proposed and better performance may be achieved
with them in the future.
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