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Abstract

In multi-agent systems (MAS) di�erent agents work on a common problem. Such systems

are also used in natural language processing (NLP). Agents of an MAS for natural language

can generate results with con�dence, so called hypotheses. These hypotheses re�ect the

ambiguity of natural language. If agents are dependent on each other, a wrong hypothesis

can quickly lead to error propagation into the hypotheses of the dependent agents. The

exploration of hypotheses o�ers the chance to improve the results of agents. This thesis

improves the results of agents of a MAS for NLP by a controlled exploration of the

hypothesis search space. Therefore, a framework for the exploration and evaluation of

hypotheses is developed. In an evaluation with three agents promising results regarding

the improvement could be achieved. For example, Top-X Exploration achieved an average

improvement of the F1 score of the Topic Detection agent from originally 40% to now 49%

and of the Ontology Selection agent from originally 74% to 79%.
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Zusammenfassung

In Multi-Agenten Systemen (MAS) arbeiten verschiedene Agenten an einem gemeinsamen

Problem. Auch im Bereich der natürlichen Sprachverarbeitung (NLP) werden solche Sys-

teme verwendet. Agenten eines MAS für natürliche Sprache können neben Ergebnissen

auch Ergebnisse mit Kon�denzen, s.g. Hypothesen generieren. Diese Hypothesen spiegeln

die Mehrdeutigkeit der natürlichen Sprache wider. Sind Agenten abhängig voneinander,

so kann eine falsche Hypothese schnell zu einer Fehlerfortp�anzung in die Hypothesen

der abhängigen Agenten führen. Die Exploration von Hypothesen bietet die Chance, die

Ergebnisse von Agenten zu verbessern. Diese Arbeit verbessert die Ergebnisse von Agen-

ten eines MAS für NLP durch eine kontrollierte Exploration des Hypothesen-Suchraums.

Hierfür wird ein Framework zur Exploration und Bewertung von Hypothesen entwickelt.

In einer Evaluation mit drei Agenten konnten vielversprechende Ergebnisse hinsichtlich

der Verbesserung erzielt werden. So konnte etwa mit der Top-X Exploration eine durch-

schnittliche Verbesserung des F1-Maßes des Topic-Detection-Agenten von ursprünglich 40%

auf jetzt 49% und des Ontology-Selection-Agenten von ursprünglich 74% auf 79% erreicht

werden.
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1. Introduction

Together — one of the most inspiring words in the English language. Coming together
is the beginning. Keeping together is progress. Working together is success.

— Edward Everett Hale [25]

Multi-Agent Systems (MAS) aim to work together on a commonly de�ned problem.

According to Dorri, Kanhere, and Jurdak [7] MAS are one of the fundamental methods

in Distributed Arti�cial Intelligence. In such systems, Agents cooperate with each other

and exchange information about a task. The purpose of this exchange is to allow the

agents to build on information from other agents. In order to accomplish natural language

processing (NLP) tasks with such kind of system, Programming ARchitecture for Spoken
Explanations (PARSE) [28] has been developed.

PARSE is an MAS for spoken natural language. Each agent of PARSE has its own task,

like the detection of actions or the detection of the topics for a given input. Agents may

need information from other agents for their work. Due to this, there can be dependencies

between the results of agents. In particular, errors in the results of agents can directly

in�uence the results of other agents. Especially when working with natural language, you

have to deal with uncertainty in the results. One possibility to do so is that the agents or

algorithms in NLP do not simply deliver a result. Instead, the algorithms provide multiple

results and corresponding con�dence levels that indicate the certainty of the agent for each

result. A result and its con�dence form a so-called Hypothesis. In addition to the existence

of hypotheses, dealing with hypotheses is particularly important since existence does not

yet prevent error propagation. This thesis presents an approach for the assessment of

hypotheses with the goal to improve the results of agents of an MAS for NLP.

First, a simple example is used to show why hypotheses are important for the work with

MAS for natural language. Two existing PARSE agents are considered: The Wikipedia-

based Word-Sense Disambiguation (Wiki WSD) agent and the Topic Detection (TD) agent.

The �rst one tries to identify the actual sense of ambiguous words for a given input. The

second uses this information to retrieve topics for the given input. Currently, the most

likely sense of a word is considered to be truth regardless of its con�dence. This procedure

can lead to error propagation as shown in the example in Figure 1.1. The example deals

with the input “I want to make my guests happy by preparing a good bass”. This text is

actually about me, who wants to prepare a nice meal (respectively a �sh) for my guests.

In Figure 1.1 you can see the disambiguation of two ambiguous words and the resulting

topics for the input text. The Wiki WSD agent identi�es two words that have to be

disambiguated: “guests” and “bass”. The disambiguation of “guests” works well because

“hospitality” expresses a reasonable meaning. However, if you look at the word “bass”, it is

1



1. Introduction

Figure 1.1.: Hypotheses of two PARSE agents: Word-Sense Disambiguation (WSD) and

Topic Detection (TD)

noticeable that the “bass guitar” with the highest rating is chosen as sense. Only in third

place the actually correct hypothesis is found: bass as a �sh. The example showcases that

a con�dence is primarily seen as an arbitrary �oating-point number. Wrong topics have

been identi�ed for the example because the PARSE agents use the best rated hypotheses

as results. In particular, according to the agent, one topic of the example are “string

instruments”. The example shows that a consideration of the hypotheses must not be

limited to the best hypotheses.

This thesis addresses the problem of error propagation in MAS for natural language.

Therefore, the work is based on the Multi-Agent System PARSE [28]. At the moment, a

common solution strategy in PARSE is to consider the best rated hypothesis to be correct.

In the example you could see that this strategy does not always lead to correct results

and especially facilitates error propagation. This thesis aims to explore the search space

created by the hypotheses and to achieve better results by assessing the hypotheses found.

The search space itself is a search tree that is spanned by di�erent selections of hypotheses.

If you look at the example from above, exactly one path is shown. This path is de�ned by

the selection of “hospitality” and “bass guitar”. A new path is created by making di�erent

selections of hypotheses, such as “hospitality” and “bass (�sh)”. Each selection opens a new

branch in the search tree. The problem with this search space is that it grows exponentially.

Therefore, strategies have to be developed how to e�ciently explore this search space. In

addition, after the search space has been explored, the correct result has to be identi�ed.

So the idea of this work is to partially explore the search space and then identify the best

results by means of an assessment procedure. This ensures that several hypotheses can be

examined e�ciently. Since the hypotheses are no longer generated locally for an agent

but are part of a search space, it is also possible to follow the progression of an agent’s

2



con�dence over di�erent branches. This can help to maximize con�dence on a larger scale,

rather than just looking at con�dence locally for one agent at a time.

The following research questions shall be answered:

Research Questions

RQ1: What types of hypotheses are found in agents of an MAS for

natural language?

RQ2: Can the results of agents be improved through partial explo-

ration without changing the underlying mechanisms of the

agents?

RQ3: Can correct hypotheses be identi�ed after exploration?

The �rst research question deals with the di�erent kinds of hypotheses. In particular, the

focus is on di�erent types of hypotheses that need to be found and identi�ed in MAS

for natural language. The second question addresses the issue of whether exploration

respectively controlled partial exploration can improve the results of agents. It is par-

ticularly important to determine whether mechanisms to control the search space can

be applied without losing the advantage of improving the results. The identi�cation of

the better results is not the focus of this research question. This identi�cation of the

correct hypotheses is the �nal goal of the work. The focus of the last research question is

especially whether candidates for good results can be identi�ed from exploration.

This thesis is structured as follows: First, the fundamentals necessary for understanding

the work are introduced (see Chapter 2). Subsequently, I will look at related works in

Chapter 3 that deal with similar topics to this work. After that, Chapter 4 introduces the

approach of this thesis — the Agent Analysis Framework. The detailed development of this

Framework is covered in the following three chapters (see Chapter 5, 6, and 7). These

chapters are followed by the evaluation of this work (see Chapter 8). This thesis concludes

with a summary of the results in Chapter 9.
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2. Fundamentals

This chapter introduces the basic knowledge necessary to further understand the thesis.

Concepts, projects, and terms are examined in more detail.

2.1. Multi-Agent Systems

According to Dorri, Kanhere, and Jurdak [7], algorithms forDistributed Arti�cial Intelligence
can be separated to three categories: “Parallel AI”, “Distributed Problem Solving”, and

“Multi-Agent Systems”. Multi-agent systems (MAS) involve agents to solve a certain

problem. Dorri, Kanhere, and Jurdak de�ne an agent as “an entity that is placed in an

environment and senses di�erent parameters that are used to make a decision based on

the goal of the entity”. It is therefore crucial for MAS that agents pursue a precise goal.

Agents are also characterized by the fact that their individual goals should be part of an

overarching goal. This means that they perform individual tasks that together produce

an aggregate result. Figure 2.1 summarizes the structure of an MAS. As shown in the

Figure 2.1.: A generic Multi-Agent System

picture, an MAS operates on a common problem instance. Within the MAS several agents

communicate via a suitable communication strategy to solve the problem. The agents try

to accomplish their tasks and try to �nd consensus in order to create a consistent result.

After processing the problem instance, the MAS provides a solution that is built by the

agents.

5



2. Fundamentals

Following Dorri, Kanhere, and Jurdak, you can distinguish three communication strate-

gies for MAS: “Speech Act”, “Message Passing”, and “Blackboard”. The strategy “speech

act” needs a certain language and the de�nition of two roles for the agents: “Speaker” and

“Hearer”. Using this strategy, the agents communicate by using the language and taking

into account their respective roles. If agents communicate via “message passing”, they are

directly connected via a communication channel. Here, it is important that not all agents

have to be directly connected. The “blackboard” strategy uses a common data structure

to enable the communication of the agents. Thus, the agents are able to communicate by

manipulating their common data. Since agents talk to other agents to solve their problems,

dependencies between agents arise. Thus, the result of one agent can in�uence the results

of other agents.

2.2. Natural Language Processing

Natural Language Processing (NLP) describes a �eld of research that deals with the machine

processing of spoken and written natural language. Typically, this processing is divided

into many successive processing steps. A realization of several of these steps is provided

by the Stanford CoreNLP Natural Language Processing Toolkit [16]. In the following, some

steps for processing natural language are introduced. Besides the steps implemented by

Stanford Core NLP, I will discuss possible steps in general.

Part-of-speech Tagging (POS Tagging) One of the typical and important steps of natural

language processing is Part-of-speech Tagging (POS Tagging). The individual parts of a

sentence are assigned to word types. An example is shown in Figure 2.2.

Robo , go to the kitchen , get the water and bring it to John .

NNP , VB IN DT NN , VB DT NN CC VB PRP IN NNP .

Figure 2.2.: POS Tagging by Stanford Core NLP 4.0.0

For this example Stanford Core NLP, respectively, the web interface https://corenlp.run

was used. As you can see, for instance words that have been identi�ed as nouns (NN and

NNP), verbs (VB and VBN), adverbs (RB), or adjectives (JJ). In addition, also punctuation

marks have been annotated. Even articles (DT), personal pronouns (PRP), and preposi-

tions (IN) have been labeled. POS Tagging thus represents a �rst possibility to enrich a

sentence with information for interpretation. Simple algorithms could identify the tagged

verbs as possible actions in a certain input text. Obviously, this would be a very simpli�ed

approach. Nevertheless, it shows how essential POS Tags are.

Named Entity Recognition (NER) A second important step in natural language processing

is the Named Entity Recognition (NER). The Stanford CoreNLP recognizes mentioned

people, locations, and organizations as named entities [16]. Furthermore, it also �nds

mentions of money, numbers, dates, and times. An example for the detection of named

entities is shown in Figure 2.3.

6
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2.3. Result vs. Hypothesis

Robo , go to the kitchen , get the water and bring it to John .

Person Person

Figure 2.3.: NER by Stanford Core NLP 4.0.0

In the example, the named entity recognition identi�es two mentioned people. On the

one hand, the robot called “Robo” and on the other hand, the person “John”. Obviously,

there is no distinction between a robot and a person. Both are classi�ed as person. Like the

POS Tagging before, the NER is a basic part of natural language processing. For example,

simple algorithms may use the information about mentioned people, dates, locations, or

points in time to determine the intent that is encapsulated in a given text. If you think of a

booking machine for traveling tickets, the most important information is each person’s

traveling destination. So the information needed would be a person and the location to

travel.

Co-reference Resolution The resolution of co-references aims to connect referenced enti-

ties with their actual entity. An example is shown in Figure 2.4.

Robo , go to the kitchen , get the water and bring it to John .

Mention ← co-ref→ Mention

Figure 2.4.: Co-reference Resolution by Stanford Core NLP 4.0.0

In the example, the co-reference resolution tries to identify the actual entity that is

referred by “it”. You can see that the resolution marks “the water” as entity referenced

by “it”. In general, the co-reference resolution is useful whenever one needs to map

pronouns to their corresponding entities. This resolution is also important to determine

the equivalence of entities within multiple sentences.

Word-sense Disambiguation (WSD) Word-sense disambiguation (WSD) is a useful tool for

more complex applications. In many applications that use natural language, it is important

to �nd the actual sense of a word for a given text. Consider the word “bass” as an example.

Most people might associate a musical instrument with it. Depending on the context of a

sentence, “bass” can mean something completely di�erent. If one considers the sentence

“I want to eat a bass”, it is clear that in this case it would be the name of a �sh. The WSD

annotates the actual sense of di�erent words to them. Thereby, the WSD has to analyze the

existing context to disambiguate the words. The knowledge of word senses allows building

more complex algorithms. For example, the topics of an input could be identi�ed [14].

2.3. Result vs. Hypothesis

The di�erence between a result and a hypothesis is essential for further understanding of

the work. If one considers algorithms, most of them return exactly one result. In case of a

sorting algorithm this could be a sorted list. Considering such deterministic algorithms,

there is usually exactly one result that is expected.
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Regarding algorithms for natural language processing (NLP), the question of what the

result of an algorithm should be is no longer clear. Especially in natural language, uncer-

tainty and ambiguity must be dealt with. The example from the introduction (cf. Figure 1.1)

shows that the topic of a sentence is usually more than one result. The sentence that has

been used in the example is “I want to make my guests happy by preparing a good bass”.

This sentence is about cooking, guest meetings, and especially about preparing a bass.

Therefore, it would be di�cult (even as a human) to formulate exactly one correct topic as

result. Thereby, it becomes important to introduce hypotheses. A hypothesis in this work

refers to an assumption. Hypotheses always consist of a resulting value and a con�dence.

A con�dence or con�dence level is a score that provides some insight into the certainty

of a hypothesis. The structural di�erence between a result and a hypothesis is shown in

Figure 2.5.

Result

value : object

Hypothesis

value : object

con�dence : double

Figure 2.5.: Result vs. Hypothesis: A structural point of view

The idea of hypotheses is similar to probabilistic algorithms: An algorithm that uses

hypotheses does not provide one result, but several hypotheses. In context of NLP, this

allows working with uncertainties or multiple possibilities. In the introduction it was

stated that the question is how to deal with hypotheses. The example of the introduction

showed that simply considering the best hypotheses does not necessarily lead to the

desired results. Thus, this thesis aims to facilitate the exploration and assessment of such

hypotheses.

2.4. Hypotheses Graph & Hypotheses Paths

This section deals with the Hypotheses Graph or Hypotheses Tree. The Hypotheses Graph

refers to a directed acyclic graph with exactly one start node — the root. As described in

Chapter 1, this thesis aims to analyze di�erent selections of hypotheses of an agent to

examine the possible outcomes in the succeeding agents. Di�erent selections open up

the possibilities for other agents to �nd new hypotheses. Thereby, “new” refers to the

original hypotheses that arise if the algorithm does not use selection mechanisms, but

simply execute the agents. In Figure 2.6, you can see an illustration of such a Hypotheses

Graph.

As you can see, the graph can be divided into layers that are each containing one

agent. The �gure also shows important properties of Hypotheses Graph. These properties

are the absence of cycles and the existence of a unique root. The root of the graph is

represented by the textual input that will be used by the agents. As a successor, a node

containing the hypotheses of the �rst agent is appended to the root node. Subsequently,

di�erent hypotheses are selected by some selection mechanisms. These mechanisms lead

8



2.5. Programming Architecture for Spoken Explanations (PARSE) &
Intent-Driven Requirements-to-Code Traceability (INDIRECT)

Figure 2.6.: Layered Hypotheses Graph

to new hypotheses of the second agent. Starting at those new hypotheses, new selections

can lead to further branching for successive agents. After exploration, one has many

hypotheses and possibilities of what the agents provide as �nal result. The possible results

of the agents are the di�erent paths within the Hypothesis Graph. One path is marked

by thicker arcs in Figure 2.6. A path is de�ned by the selections of hypotheses along its

edges. These selections determine what are assumed to be correct hypotheses for this

path. Therefore, the �nal task that remains after an exploration is to select the best of all

these paths (respectively the actual best result).

2.5. Programming Architecture for Spoken Explanations &
Intent-Driven Requirements-to-Code Traceability

The Programming Architecture for Spoken Explanations (PARSE) [31] is a multi-agent system

for spoken natural language. The architecture of PARSE is shown in Figure 2.7. In a �rst

step, the speech is transformed into an input text. The actual processing of the input

text starts with a pre-processing pipeline. This pipeline performs typical tasks of natural

language processing, such as tokenization or POS Tagging. As a result, the pipeline

generates the so-called PARSE Graph. The PARSE Graph represents the common data

structure that is used by the agents. Therefore, the PARSE system uses a blackboard

communication mechanism (cf. Section 2.1). In addition, the nodes and arcs of the PARSE

Graph can contain arbitrary attributes. Thus, the agents communicate by modifying the

arcs, nodes, and attributes in the graph. The idea behind PARSE is that di�erent agents

work on processing the input and successively add information to the PARSE Graph.

In the following, the actual PARSE Graph is examined in more detail. This is needed as

the following chapters deal with agents that store information into the PARSE Graph. A

simpli�ed model of the PARSE Graph is shown in Figure 2.8. The graph itself is an instance

of the IGraph interface. It contains all methods required to create, delete, or modify the

arcs and nodes of the graph.

9
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Figure 2.7.: The PARSE Architecture

The graph is a directed graph and consists of INode and IArc. Since the graph is directed,

an arc has speci�c source and target nodes. The most important feature of nodes and

arcs is the possibility of storing attributes into them. The types of attributes are de�ned

within the node type and the arc type.

Information can be stored as values of a speci�c attribute in the corresponding arc or

node. So far, information can encoded in two ways: On the one hand, by the connections

between nodes — the edges. On the other hand, by the attributes or their values in the

nodes and arcs of the graph.

The most essential type of nodes are TokenNodes. TokenNodes are generated by the

pre-processing pipeline and represent the individual words (respectively tokens) of the

input. For instance, the attributes of TokenNodes contain information about the word types.

In addition, arcs (Next) connecting them to represent the word order from the original

input.

The Intent-Driven Requirements-to-Code Traceability (INDIRECT) approach by Hey [11] is

based on PARSE. INDIRECT uses the architecture of PARSE to perform tasks on written nat-

ural language documents. PARSE and INDIRECT di�er signi�cantly in the pre-processing

pipeline they use. The di�erences are due to the fact that INDIRECT was designed for writ-

ten and PARSE for spoken language. For example, INDIRECT can work with punctuation

marks and uses a standalone agent for named entity recognition (cf. Chapter 5). PARSE

cannot handle punctuation and recognizes named entities directly in the pre-processing

pipeline.
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2.5. PARSE & INDIRECT

0..* 0..*

target

source

�interface�
IGraph

createNode(type : INodeType) : INode

createArc(src : INode, tar : INode, type : IArcType) : IArc

. . .

�interface�
INode

. . .

�interface�
IArc

. . .

�interface�
INodeType

�interface�
IArcType

�interface�
IGraphObject

getAttribute(attribute : String) : Object

setAttribute(attribute : String, value : Object)

. . .

�interface�
IType

getName() : String

addAttribute(type : String, attribute : String)

. . .

Figure 2.8.: Model: PARSE Graph (Simpli�ed)
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3. RelatedWork

After the fundamentals for understanding this work were established in the previous

chapter, the following one now deals with related work. Since this work is aimed at

improving the results of an MAS for natural language, several topics are addressed: The

�rst area of research are con�dences in multi-agent systems. This work primarily depends

on the con�dences of hypotheses generated by the agents of PARSE. Thus, it is important

to understand how con�dences are used in MAS. Furthermore, papers about uncertainty

in natural language are discussed. Uncertainty is related to this thesis because con�dences

re�ect some kind of uncertainty in the input text. Also, the research that about the handling

of uncertainty in NLP is covered.

3.1. Trust & Confidence in Multi-Agent Systems

This section deals with research on con�dences and their e�ects in MAS. In this context, a

con�dence is an indicator for the assumed correctness of the behavior of an agent or the

correctness of certain data.

The �rst paper being discussed in the following paragraph, deals with so-called trust

models in MAS. In their paper Ramchurn et al. [20] try to create a trust model for in-

teractions in multi-agent systems based on con�dences and reputations. Primarily, the

authors deal with autonomous agents in “open environments”. They de�ne that in such

open environments agents can also break their contracts. With the help of con�dence

and reputation they want to decide which agents are trustworthy for another agent. This

shall lead to a decision which agent should be used by other agents for cooperation in the

future. In their work they de�ne con�dence as being based on past interactions between

agents. This work is not directly related to the con�dence that an agent assigns to his

results. The part relevant for this thesis is the handling of con�dence using so-called

“con�dence levels”. In particular, they have found that con�dence can be subjective from

the perspective of agents. In one example, they consider the levels: “Bad”, “Average”, and

“Good” for a given task. How an actual event or a past execution is now classi�ed depends

on the agent performing the classi�cation. For this work it can be concluded that the

con�dence of an agent can only be compared within the same agent.

After investigating a model for trust, the next paper covers con�dence and its modeling

for MAS in general. Basheer et al. [3] try to create a new model for con�dence in multi-

agent systems. They state that “con�dence in multi-agent systems gives agents a form of

control in making decisions”. In particular, they try to model con�dence by combining

the reputation of an agent, experiences with other agents, and the behavior of an agent.

Furthermore, they note that an agent may depend on multiple data sources. Especially in

this case, they note the bene�t of a model for con�dence. Their model of con�dence consists
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of three parts: “Trust”, “Certainty”, and “Evidence”. In addition, they distinguish between

“local con�dence” and “global con�dence”. Local con�dence refers to a con�dence that is

calculated by the agent itself, whereas a global con�dence is calculated by considering the

interactions between agents. In contrast to the paper, this thesis deals with an MAS for

natural language. Furthermore, the agents of PARSE do not use mechanisms like trust or

evidence so far. In future work it might be interesting to analyze whether some model of

trust is applicable to the agents in PARSE.

Like the last paper, the paper of Becker and Corkill [4] also deals with con�dence. In

contrast to the previous paper, this one treats con�dences from a theoretical point of

view. In their work, they present analysis model that is able to “measure the sensitivity

of a collaborative problem-solving system to potentially incorrect con�dence-integration

assumptions”. This model has been designed as domain-independent analysis model. In a

�rst step, they de�ne their model for agents. They distinguish three types of models: First,

a model that represents the sequential execution of the agents. Second, a model that is

used to represent MAS that execute agents in parallel. The third type of model combines

both models to represent both possibilities. In their models, they represent agents, the

world’s state and the dependencies between the agents. The model is parameterized

by various probabilities: You can specify probabilities for certain events in the agent’s

world. In addition, you de�ne probabilities for dependencies between certain agents.

Furthermore, the correctness agents and the correction/introduction of errors by the agents

can parameterized. By using their model, they found out that the incorrect assumption of

independence of the agents can lead to signi�cant errors. According to the authors, this

e�ect occurs less strongly with good agents than with “mediocre” ones. In contrast to the

work of Becker and Corkill, this thesis is less concerned with the theoretical combination

of con�dence. Nor can any assumptions of dependence or independence of results be made

because the agents considered in this thesis each deal with a separate task. In particular,

the agents in the paper had partly the same tasks.

3.2. Uncertainty in Natural Language & Natural Language
Processing

In the following, related work that deals with the handling of uncertainty in NLP is

introduced. Hypotheses and con�dence are needed in natural language processing, since

natural language itself contains uncertainty. Therefore, this section also covers work that

deals with uncertainty in natural language in particular.

The �rst paper in this section analyzes the expression of uncertainty in linguistic

data [2]. Therefore, Auger and Roy [2] classify uncertainty into two sub types. On

the one hand “linguistic ambiguities” and on the other hand “referential ambiguities”.

Linguistic ambiguities mainly refer to di�erent meaning of words. In contrast, referential

ambiguities arises by missing context information. They state that the resolution of

linguistic ambiguities are mainly resolvable using linguistic data. But they also �nd that

the problems with referential ambiguities require more contextual models. They also deal

with the mapping of uncertainty to probability values. Therefore, they refer to a so-called
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“Kent Chart” introduced by S. Kent and mentioned in Brown and Shuford [5]. A Kent Chart

combines formulations with a probability range that acts a score for the meant certainty.

You have to note that the authors of the paper explain that the scope for interpretation of

these mappings is too wide. According to them, this has been shown in several surveys.

This paper is relevant for the thesis because it provides insight on how uncertainty in

NLP arises. It also gives an estimation of uncertainties that are easier to resolve. This

knowledge could help to assess hypotheses. Furthermore, the paper explains that the

mapping of a formulation to a score that represents the certainty as numerical value is not

obvious. Therefore, one should take care that when classifying hypotheses with respect

to their correctness; the options for classi�cation should be kept as clear as possible. In

contrast to this thesis, the paper considers language in general and not MAS for natural

language.

After having examined the expression of uncertainty in natural language in the last

paper, the following paper deals with its modeling [21]. The work of Raskin and Taylor [21]

also deals with the “modeling” and “representation” of uncertainty in natural language.

Furthermore, they describe a methodology to the major type of uncertainty that is present

in a given sentence. They try to build a formal representation of uncertainty. Therefore,

they analyze four phenomena that refer to di�erent “uncertainty types”: “vagueness”,

“fuzziness”, “possibility”, and “probability”. To classify a certain sentence, they classify the

words of a sentence and associate one of these four types to the words. Like the paper of

Auger and Roy [2], this paper deals with uncertainty in natural language in general. They

provide a classi�cation mechanism to identify the type of uncertainty of a sentence. In

contrast to the work of Raskin and Taylor, this thesis will not take a closer look on the

cause of the con�dences that are related to some uncertainty.

After considering approaches to uncertainty in natural language in general, the next

paper deals with a use case where this uncertainty must be dealt with. This use case is the

so-called “Ontology Learning” [9]. According to Haase and Völker [9], “ontology learning

aims at generating domain ontologies [. . . ] by applying natural language processing and

machine learning techniques”. They aim at generating a consistent ontology. For this

thesis the processes to eliminate and handle uncertainty is relevant as this thesis tries to

improve the results of agents by using con�dences. They explain that generally there are

two ways to model uncertainty: First, the direct integration to the ontology data. This

would be achieved by adding con�dence values to the data. Second, it would be possible

to keep other data on the side instead. For this thesis and the agents of PARSE, this means

that two locations must be examined for con�dence. One is the data itself (the PARSE

Graph) and the other is the internal data of the agents. They generate their ontologies by

applying changes that arise during the creation of an ontology consecutively. Thereby,

they try to eliminate the inconsistencies in an ontology by removing the changes with the

lowest con�dence. Their experiments indicate that more logical contradictions arise, the

worse the con�dences are. In contrast to the work in the paper, this thesis operates on a

multi-agent system. In addition, this thesis does not aim to generate ontologies.

Another use case where uncertainty has an important role is part-of-speech tagging. In

their paper, Alba, Luque, and Araujo [1] deal with di�erent algorithms for POS Tagging.

Especially, they use genetic algorithms to create the tagging. Furthermore, they analyze

di�erent types of encoding the problem of tagging. They consider that POS Tagging is an
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important step for many NLP processes. In addition, they make it clear that POS Tags are

associated with uncertainty, as the word type results from the context. As an example,

they use the word “can”. This word can be a noun, an auxiliary verb or a transitive verb [1].

They further explain that the search for the correct tags is time-consuming, which is why

parallel algorithms were also considered. In their experiments, they study di�erent genetic

algorithms, di�erent population sizes and di�erent corpora. Overall, their experiments

have shown that genetic algorithms have the potential to improve the results of POS

Tagging in some cases. In contrast, in this thesis the search space shall be searched by

strategies. In particular, characteristics of hypotheses are to be worked out that help to

reduce the search space.

After a use case for genetic algorithms was considered in the previous paper, the next

paper deals with evolutionary algorithms in NLP in general. Bungum and Gambäck [6]

describe that a lot of tasks are related to NLP and some of them can be approached

with evolutionary algorithms. As an example, they mention the summarizing of texts.

In particular, they note that genetic algorithms were used in the work of Litvak, Last,

and Friedman [15] to explore a search space that was used to generate summaries. They

further describe that the implementation of a genetic algorithm worked well in this example.

Among other examples for application scenarios of evolutionary algorithms, they conclude

that such algorithms work well for parameter optimization. However, they also believe

that, depending on the application case, it must be examined whether other state-of-

the-art approaches are more appropriate. In particular, they noticed that evolutionary

algorithms show no signi�cant improvement over other approaches. This thesis does not

use evolutionary or genetic algorithms for the exploration of the search space. Instead, the

aim is to investigate whether the search space can be searched speci�cally by properties

of hypotheses.

The last paper of this section deals with an approach similar to that of this thesis, but

in a di�erent application area. Sperber et al. [22] aim to use “neural lattice-to-sequence”

models to deal with uncertain natural language. A lattice de�nes several paths for a given

input. Each path de�nes a possible recognition of an original input. Since every word

that is represented as node in the lattice, has a con�dence, the actual score of a path can

be simply evaluated by combining the con�dences. Thus, a lattice is comparable to a

Hypotheses Graph as used in this thesis. By using these lattices they are able to retrieve

di�erent possibilities for a given input explicitly. In their paper, they combine lattices

with neural networks. In contrast to the paper, this thesis does not operate on words but

on hypotheses of agents in a multi-agent system. Furthermore, the thesis does not use

machine learning during exploration or rating of the hypotheses.

3.3. Exploration of large Search Spaces

This last section covers work on exploring large search spaces in the context of NLP.

A hypotheses graph de�nes a search space that grows exponentially in the number of

hypotheses. Therefore, approaches to explore large search spaces in NLP are helpful for

this thesis.
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The �rst work, which is considered here, deals with a variation of the so-called Beam
Search. This is a search method that is standard in the �eld of decoding in machine

learning [26, 17]. Vijayakumar et al. [26] are interested in generating sequences from

a neural sequence model. According to the authors the beam search is normally used

for this purpose. They have noticed that the sequences that are generated by the beam

search algorithm are only slightly di�erent. Since the generated sequences are so similar,

ambiguity is not well detected according to the authors. For this thesis the approach is

relevant because the paper also deals with the exploration of search spaces that potentially

become large and are created in the context of NLP. In contrast to this thesis the authors

deal with algorithms of machine learning. In particular, they aim to show that their

algorithms provides more diverse results and thus potentially generates sequences in a less

one-sided way than beam search. One of their examples is the task of “image captioning”

where headlines for images are to be found. In comparison to the beam search, they have

succeeded in �nding di�erent formulations. With regard to the exploration of the search

space of hypotheses explored in this thesis, there are also decisions that have to be made.

For instance, the exploration strategy has to consider whether to continue the search with

small changes or to pursue larger changes in the selection of hypotheses. The authors

have shown that in some cases, larger changes are better than small changes to cover as

much diversity as possible. In contrast to the approach from the paper, this thesis does not

directly use neural models. Therefore, the approach is not directly applicable to this paper.

The next paper also deals with a variation of the beam search. In their paper, Meister,

Vieira, and Cotterell [17] deal with a new search algorithm called “Best-First Beam Search”.

They state that the “decoding for many NLP tasks requires a heuristic algorithm for

approximating exact search”. According to the authors, this is necessary because the

search space is too large to explore it e�ciently. As explained above, the state-of-the-art

approach for this case is a beam search. The authors of the paper present their algorithm

as a replacement for this standard algorithm. In their experiments, they show that their

algorithm for decoding neural models is faster than the usual ones. As before, the algorithm

cannot be directly transferred to the approach of this thesis, since no neural models are

used. However, the work clearly shows that the problem of search spaces in NLP does not

disappear even if neural models are used.

The last paper in this section deals with an empirical analysis regarding search al-

gorithms for a concrete problem in NLP. Yoo et al. [32] make an empirical analysis on

generating NLP adversarial examples. For each analysis, they consider the algorithm, the

search space, and the search budget. They aim to create a reproducible benchmark for

di�erent algorithms, search spaces, and budgets. For their work, they consider determin-

istic and non-deterministic search algorithms. In fact, they use a “beam search”, several

“greedy” searches, a “genetic algorithm” and a “particle swarm optimization”. Through

their experiments, the authors were able to show that greedy approaches are good for this

application from a runtime perspective. At the same time, other methods such as beam

search also yielded better results at longer runtimes. This last paper shows that di�erent

algorithms dealing with the exploration of search spaces in NLP are investigated. This

thesis deals especially with NLP in the context of MAS. It also deals with the exploration

of a search space of hypotheses and not with a speci�c NLP task.

17





4. Overview of the Approach — The Agent
Analysis Framework

The goal of this thesis is to improve the results of agents that rely on each other using

hypotheses. Therefore, this chapter introduces the Agent Analysis Framework (AAF).
This framework performs the task of managing agents, their respective hypotheses, as

well as their dependencies. In the design of the AAF, particular focus was placed on

extensibility. The expansion to include new agents, new methods of exploration, as well

as new possibilities of evaluating hypothesis paths has been given special attention. The

following sections describe the architecture of the framework and highlight the design

decisions that were made.

4.1. Architecture

This section covers the architecture of the Agent Analysis Framework. Di�erent module

groups are introduced. Furthermore, the connections between the individual modules

are explained. Figure 4.1 provides an overview. The picture shows the four di�erent

Figure 4.1.: Architecture of the Agent Analysis Framework

module groups of the project. A module group refers to one or more modules that have

been grouped together. In the implementation, the modules are represented with Maven

projects and modules. The framework is divided into four module groups:
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1. Agent Analysis Port (cf. Section 4.1.1)

2. Agent Analysis Speci�cation (cf. Section 4.1.2)

3. External Code (cf. Section 4.1.3)

4. Agent Analysis (cf. Section 4.1.4)

All module groups depend on the interfaces and common data structures in the Agent

Analysis Port. In addition, the de�nitions of the agents uses the external code that contains

the actual agents. In order that the Agent Analysis does not have dependencies to all

agents, there is no direct dependency to the speci�cations. Instead, the speci�cations are

only used for unit tests or in evaluation.

4.1.1. Agent Analysis Port

The Agent Analysis Port contains the central interfaces to the Agent Analysis Frame-

work (AAF) to work with agents, hypotheses, and the framework itself.

The most important tasks of the module are the de�nition of . . .

• interfaces for PARSE and INDIRECT agents (cf. Section 4.1.2)

• information provided and needed for agent execution

• interfaces for hypotheses, and selections of hypotheses

• interfaces for the exploration of hypotheses graphs

• interfaces for rating functions

• basic data containers

The following paragraphs take a closer look at the di�erent de�nitions.

Information & Agent Execution First, the Agent Analysis Port aims to de�ne an interface

for automatic execution of agents. This step is a preliminary work for the later speci�ca-

tions of the agents. The goal is to describe the dependencies between the agents. Therefore,

two entities are de�ned: the InformationId and the AgentSpecification.

�interface�
AgentSpeci�cation

getInstance() : Agent

. . .

�enum�
InformationId

WSD

. . .

0..*

requires

1..*

provides

Figure 4.2.: Architecture: InformationId & AgentSpeci�cation
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In Figure 4.2 you can see the relation between an information and an agent speci�cation.

The idea is to achieve automation in the execution by explicitly de�ning dependencies.

An agent speci�cation encapsulates at least one instance of an agent. Furthermore, a

speci�cation has to de�ne the required information of an agent as well as the provided

information. An information then denotes an artifact that was written in the PARSE Graph.

For example, the disambiguation of the input words (WSD). This structure with explicit

dependencies is a �rst aid for this work. It can be used to avoid making mistakes during

the execution of agents that are caused by a wrong execution order. An exact de�nition of

the interfaces is then made in the implementation in Chapter 5.

Hypothesis and Hypotheses Selection The second block of the Agent Analysis Port deals

with hypotheses and their selections. The Hypotheses Graph is introduced in Section 2.4.

This graph is mainly created by di�erent selections of hypotheses. Therefore, the port will

provide structures to de�ne selections of hypotheses from a �xed set of hypotheses.

�interface�
HypothesesSelection

. . .

�interface�
Hypothesis

. . .

1..*

all

1..*

selected

Figure 4.3.: Architecture: Hypothesis & HypothesesSelection

Figure 4.3 shows that the minimum requirement for the selection of hypotheses is a

structure that combines the actual selection with the original �xed set of all hypotheses.

This �xed set of hypotheses to choose from is called all. The chosen hypotheses from

this set are called selected. The full de�nition of the relation between hypotheses and

selections of hypotheses is in Chapter 6.

Layered Exploration Graph The exploration graph of hypotheses builds layers (cf. Sec-

tion 2.4). Thus, some basic elements for the exploration can be de�ned.

LayeredExploration

root : IGraph

explore() : LayerEntry

LayerEntry

agent : Agent

hypotheses : Hypothesis[1..*]

previousSelection : HypothesesSelection[1..*]

children

*

Figure 4.4.: Architecture: Layered Exploration

Figure 4.4 shows the preliminary structure of the exploration mechanism for hypotheses

graphs. The exploration itself needs an initial PARSE Graph (root). This graph is the start-

ing point for the exploration. The result of the exploration is at least the root entry of the
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exploration graph. The nodes of the exploration graph are called LayerEntry. These entries

are coupled to an agent that is responsible for the generation of hypotheses. Furthermore,

each step contains the hypotheses that are generated by this agent. As each LayerEntry

has a parent (besides the root entry), the entry is a result of HypothesesSelections from

the previous layer entries. Thus, the entry also encapsulates the selections that lead to

this entry. This structure de�nes the information that is needed to represent the Layered

Exploration and the exploration graph itself. The actual realization of this exploration will

be discussed in Section 6.2.

RatingFunctions The last artifact that needs to be de�ned in the port of the Agent Analysis

Framework are Rating Functions for the exploration paths. As mentioned in Section 2.4,

the approach uses the rating functions to determine good paths in the exploration. A path
in an exploration graph is de�ned as a list of the corresponding Layer Entries. Thus, a

rating function will provide a score for a collection of paths.

�interface�
RatingFunction

ratePaths(paths : Path[]) : double[]

. . .

�interface�
Path

getPath() : LayerEntry[]

. . .

Figure 4.5.: Architecture: Hypothesis & HypothesesSelection

Figure 4.5 summarizes the connection between rating functions and paths. The image

shows that a rating function provides multiple scores for multiple paths. The detailed

implementation of these is discussed in Chapter 6.

4.1.2. Agent Analysis Specification

The Agent Analysis Speci�cation Module Group consists of �ve modules (cf. Figure 4.6).

These modules specify the available PARSE and INDIRECT agents. This separation into

�ve modules is made so that projects dependent on it do not directly build dependencies

to all existing agents.

The �rst module to mention is the Agent Analysis Speci�cation Platforms (AAS Plat-

forms) Module. It de�nes the di�erent pre-processing pipelines of PARSE and Indirect.

Thus, they provide the code to process textual input and generate PARSE Graphs. Fur-

thermore, it de�nes super classes for the di�erent types of Agent Speci�cations. Namely,

PARSE agents, INDIRECT agents, and Hypothesis agents. The latter de�nes the base class

for agents that can deal with hypotheses. More information on the di�erent types of Agent

Speci�cations can be found at the end of this section.

In addition, the AAS Module Group contains four further modules. These modules

contain di�erent speci�cations of agents. They build groups of speci�cations. The AAS

PARSE Core Module contains the speci�cation of the core agents of PARSE. The core

agents are those agents that are directly referenced by the PARSE project page [28]. Similar
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Figure 4.6.: Architecture of the Agent Analysis Speci�cation

to that, the AAS INDIRECT Core Module contains the speci�cations of the agents that are

directly referenced by the INDIRECT project page [12]. Each module depends on the AAS

Platforms Module as this module contains the base classes for the agents. Furthermore,

the modules have explicit dependencies to the di�erent agent projects. Thus, the modules

do not need all agent projects but only the projects with the agents they specify.

�interface�
AgentSpeci�cation

getInstance() : Agent

. . .

�interface�
AgentHypothesisSpeci�cation

getHypotheses(IGraph) : Hypothesis[0..*]

applySelection(HypothesesSelection, IGraph)

. . .

Figure 4.7.: Architecture: AgentSpeci�cation & AgentHypothesisSpeci�cation

In general, you distinguish two types of agent speci�cation: The Agent Speci�cation and

the Agent Hypothesis Speci�cation. The di�erences are shown in Figure 4.7. The normal

Agent Speci�cation is already known from Section 4.1.1. This type of speci�cation is used

to make the dependencies between the agents explicit. The Agent Hypothesis Speci�cation

extends a normal speci�cation by providing methods to deal with hypotheses. On the one

hand, you can extract the hypotheses stored in a PARSE Graph (IGraph) with an instance

of the corresponding agent. Thus, the hypotheses for selection are retrieved. On the other

hand, these hypotheses are used to build selections that can be applied to a PARSE Graph.

In this way, the hypotheses are written in the graph and considered as chosen. The process

of selection is ful�lled by so-called Selection Providers and is discussed in Chapter 6.
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4.1.3. External Code

The explicit agent projects are already introduced (cf. Figure 4.6). These projects are the

actual implementation of the agents. They do not de�ne any dependency to other agents.

The external code module group gathers all the agent code that have been modi�ed in

this thesis. Thus, the external code module contains the agents that are able to generate

hypotheses. The external code modules depend on the Agent Analysis Port as the agents

provide the methods for the AgentHypothesisSpecification interface. The external code

modules are examined in detail in Chapter 6 during the implementation of the actual

hypotheses gathering and application.

4.1.4. Agent Analysis

The last module is the actual Agent Analysis. It is responsible for the actual implementation

of the execution and exploration of the agents, respectively the hypotheses of the agents.

Therefore, the module is divided into the two parts: On the one hand, the execution of
agents. This part manages the actual invocation of the PARSE agents. On the other hand,

the exploration of hypotheses. The second part contains the di�erent rating functions,

selection providers, and the actual exploration management. The realization of the agent

analysis is discussed in Chapter 5, 6, and 7.

4.2. 3-Phases Approach

As already mentioned in the introduction, this approach is divided into three phases. The

three phases are covered in Chapter 5, 6, and 7. The overall goal of this thesis is the

improvement of the results of existing agents in a multi-agent system for natural language.

The underlying algorithms of the agents shall not be changed to achieve that goal. Instead,

di�erent combinations of generated hypotheses shall be generated and assessed to �nd

new results for the agents.

Phase 1: Analysis of Agents In a �rst step, the existing agents shall be analyzed. This

analysis provides information about the presence or absence of hypotheses. Furthermore,

information about di�erent kinds of hypotheses is gathered. Di�erent types of con�dences

are particularly important. These types could be probabilities, real numbers, or ordinal

scaled values. In addition, the mechanics to store results or hypotheses are investigated.

Since the data must primarily be stored in PARSE Graph, the question arises as to how

exactly hypotheses are stored or whether they are stored at all.

After examining and classifying the individual agents with respect to their suitability

for the approach, the second step is to investigate how the agents are related. This is of

particular interest for the approach, since the e�ects of di�erent selections of hypotheses

are investigated. Thus, groups of agents have to be found that depend on each other.

Otherwise, an exploration of hypotheses are not realizable. Furthermore, all agents of such

groups should be able to generate hypotheses. This ensures that selections can also be

made in each layer (respectively for each agent) and thus a search space can be spanned.
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Phase 1 consists of the following tasks:

Phase 1 — Tasks

T1.1: Analysis of existing agents regarding the use and generation of

hypotheses instead of simple results without con�dences

T1.2: Analysis of the generated hypotheses for similarities and di�er-

ences

T1.3: De�nition of all speci�cations of existing agents (dependencies

between agents)

T1.4: Implementation of automated execution of agents according to

their speci�cations

Phase 2: Exploration of Hypotheses In phase 1, the current state of the agents has been

analyzed. The presence or absence of hypotheses has been studied. Furthermore, the

agents and dependencies of the agents are speci�ed. Thus, the automatic invocation of

agents is operational. In phase 2 of this thesis, the actual Agent Analysis Framework is

built. First, a model for hypotheses is created. In addition, a �rst exploration strategy — the

Layered Exploration — is going to be implemented. To accomplish this, selection providers

are implemented. Selection Providers control the growth of the exploration graph.

Besides these activities, hypotheses are also needed for exploration. Therefore, the

handling of hypotheses for some agents is implemented during this phase. Thus, the

external code module group is extended by chosen agents. These agents are extended by

mechanisms to read and apply selected hypotheses to the PARSE Graph. To �nish this

phase, a GUI to show the results of an exploration, including the exploration graph, is

created. Since the tool can be used to visualize the actual exploration graph, the tool can

be used to get insights into explorations.

Phase 2 considers the following tasks:

Phase 2 — Tasks

T2.1: Creation of a model for Hypotheses

T2.2: Realization of the Layered Exploration

T2.3: Realization of Selection Providers

T2.4: Extension of chosen, existing agents by adding handlers for

hypotheses

T2.5: Providing a GUI to visualize the exploration
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Phase 3: Finding Good Rating Functions In the last phase of the approach, the rating

functions (respectively the assessment mechanisms) are created. Rating functions provide

an assessment for Hypotheses Paths generated by a Hypotheses Exploration. To rate

the performance of the rating functions, the de�nition of what “good rating function”

means has to be set. In order to measure the quality of rating functions, a classi�cation

of hypotheses is necessary, since the metrics for the measurement need them. For this

purpose, a tool is to be created that enables a participant of a user study to classify

hypotheses.

To sum up, the tasks of this phase are:

Phase 3 — Tasks

T3.1: De�nition of “Good Rating Functions”

T3.2: Realization of Rating Functions

T3.3: Creation of a tool for classi�cation of Hypotheses
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This chapter deals with the analysis of existing agents of PARSE and INDIRECT. The

existing agents of PARSE and INDIRECT are inspected with respect to the use and genera-

tion of hypotheses. In particular, the identi�cation of similarities and di�erences of these

hypotheses is focused. This allows us to get a �rst insight into the present occurrence of

hypotheses in natural language agents. In addition to this analysis of the hypotheses, the

dependencies between agents are investigated.

This chapter is structured as follows: First, the agents of PARSE and INDIRECT are

introduced. In this introduction, each agent will be analyzed according to its purpose and

the kind of information provided by the agent. At the end of the introduction of PARSE

agents or INDIRECT agents, the dependencies between the agents are summarized. After

introducing the agents of PARSE and INDIRECT, the found information on hypotheses

used or generated by the analyzed agents is gathered. In a last section, the gained infor-

mation is used to realize the �rst parts of the Agent Analysis Framework. These parts

include the speci�cation of agents and the automatic execution mechanisms for their agent

speci�cations.

5.1. PARSE Agents

In the following di�erent PARSE [31] agents are analyzed. First, the core agents are

examined. These agents are those that are directly referenced in the project page [28].

They represent the agents that are taken over into the PARSE project. Furthermore,

additional PARSE agents are analyzed. These include the agents that have not been

included in the project but are executable. All agents are listed in Table 5.1 together with a

short description. As mentioned above, this table separates core agents and further agents.

5.1.1. Core Agents

There are the core agents in the PARSE project main page [28] that are listed and described

brie�y in the following.

Action Recognizer The Action Recognizer agent built by Ou [19] aims at the detection

of actions in spoken natural language. In the work of Ou, an action is de�ned by the

actor, the predicate, and the parameters of the action. Therefore, they uses POS Tags,

Chunking, and an instruction number that is generated by the Shallow NLP (SNLP) during

the pre-processing pipeline of PARSE. Furthermore, the agent uses semantic roles to extract

the �nal actions. After �nding the actions of an input, the agent modi�es the PARSE Graph

and stores the information in it. The agent does not pass hypotheses into the PARSE Graph.

27



5. Analysis of Agents

Name Description

Action Recognizer [19] Detection of actions in a text

Concurrent Action [29] Detection of concurrent actions in a text

Condition Detection [23, 27] Detection of conditions in a text

Loop Detection [29] Detection of loop control structures

Word-Sense Disambiguation Disambiguation of words based on Babelfy

Context [30] Generation of a context model from spoken utterances

CoRef [13] Detection of co-references

Wiki WSD [14] Disambiguation of words based on Wikipedia

Topic Detection [14] Detection of Topics of an input

Ontology Selection [14] Selection of Ontologies based on Topics

Method Synthesizer [24] Synthesis of Method De�nitions

Table 5.1.: An overview on the PARSE Agents.

No hypotheses are generated internally either. The obtained information is used by the

agent to de�ne a list of actions directly. The actions also have no assigned con�dence

levels. Thus, the agent does not represent a use case for this work.

Concurrent Action Based on the result of the Action Recognizer [19], the Concurrency

Agent by Weigelt, Hey, and Steurer [29] determines that actions are concurrently executed.

Therefore, the agent creates new nodes in the PARSE Graph for each concurrent action. A

concurrent action encapsulates a set of actions that are performed concurrently. The agent

optionally uses information on co-references provided by the CoRef agent (cf. CoRef).

Like the actions determined by the action recognizer, the concurrent actions have no

con�dence or score. Therefore, the results of the concurrency agent are not usable to

examine a search space of hypotheses.

Condition Detection Like the Concurrency agent, the Condition Detection agent [23, 27]

is based on the results of the Action Recognizer [19]. The agent aims to detect conditional

sentences in natural language text. Therefore, various heuristics are used [23]. The

condition detector stores information on the if statement, the then statement, and the else
statement into the PARSE Graph. Among these, the else statement is an optional part.

Together, these two (or three) parts form a so-called “Condition Container” [23]. Similar to

the concurrency agent, this agent can also use the information on co-references provided

by the CoRef Agent. Like the actions and the concurrent actions, the conditions have no

con�dence or score. Therefore, the results of the Condition Detection Agent are not usable

to examine a search space of hypotheses.

Loop Detection The work of [29] covers the detection of program loops in natural lan-

guage text. Therefore, the agent is based on the results of the Action Recognizer [19]. The

agent is able to detect di�erent types of loops, such as for loops, while loops or do until loops.
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This kind of loops are typical structures known from programming. The loop detection

stores information on the loops directly into the PARSE Graph. Like the concurrency agent

and the condition detection agent, this agent can also use the information on co-references

provided by the CoRef Agent. This agent is not usable to examine a search space of

hypotheses, as the agent neither uses con�dences or scores internally, nor provide any

con�dences.

Word-Sense Disambiguation The default Word-Sense Disambiguation Agent of PARSE

uses Babelfy [18] to disambiguate words. Therefore, the agent adds attributes to the nodes

of the PARSE Graph. The agent stores the best sense of a word directly as an attribute.

Furthermore, a score for this sense is stored. Apart from this information, the agent stores

other senses together with a score as attribute of the actual PARSE Graph node. Thus, this

agent already uses hypotheses in a basic manner. The agent selects the most probable sense

from a set of possible senses, but also stores possible further senses of a word (together

with a score) for subsequent agents.

Context The work of Weigelt, Hey, and Tichy [30] aims at the generation a context

model from spoken utterances. Therefore, information like concepts, actions, entities, and

states are added to the PARSE Graph. This allows other agents to capture the more precise

relationships within a sentence. The Context Analyzer Agent uses some con�dences for

di�erent relations between concepts, such as entities or actions. These con�dences are used

to �nd the most likely instance of such relations. The agent stores the information together

with the con�dence data in the graph, so agents that build on it can access the con�dence

data. The application of the hypothesis approach would therefore be conceivable, since

the agent already uses con�dences.

CoRef The CoRef Agent by Hey [13] aims to detect co-references in an input text. For

this purpose, the agent uses the information stored in the context model provided by the

Context Analyzer Agent. The references found by the agent are stored as arcs between

nodes generated by the context analyzer. Internally, the agent generates candidates for

possible relations. This set of candidates is then reduced based on various properties until

it is stored in the graph structure. As with the context analyzer, con�dences are also used

here. In this case, the arcs that represent the relations have the con�dences as an attribute.

Thus, the application of the hypothesis approach would be conceivable, since the agent

already uses con�dences.

5.1.2. Further Agents

This subsection covers the agents that are not directly mentioned in the PARSE project main

page [28]. The agents form the second part in the overview in Table 5.1. All mentioned

agents are at least runnable on the current version of PARSE.

Wiki WSD The Wikipedia Word-Sense Disambiguation (Wiki WSD) Agent by Keim [14]

provides a disambiguation of words based on Wikipedia articles. Similar to the default
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Word-Sense Disambiguation Agent of PARSE, this agent stores the information on the

actual meaning of a word into an attribute of the respective PARSE node. Internally, the

agent uses logarithmic scores for each possible meaning of a word. After the agent has

decided which sense is correct, the agent only stores the result without the con�dence into

the attribute. Special attention is paid to the fact that this is a logarithmic score, because

you cannot simply compare such a score with a probability. For the further progress of this

thesis it is important to know that there are various ranges of con�dences. As the agent

uses scores and generates multiple possible hypotheses internally, this agent is suitable

for the hypothesis approach of this thesis.

Topic Detection Based on the Wikipedia Word-Sense Disambiguation (Wiki WSD) Agent,

the Topic Detection Agent by Keim [14] provides possible topics of an input text. Therefore,

the agent uses concepts from Wikipedia as topics of a text. The agent stores the information

on the Top-8 topics into the PARSE Graph. This amount of the topics defaults to eight, but

is con�gurable. Each topic contains a con�dence and its name. The Topic Detection Agent

already generates hypotheses including scores and stores them directly as hypotheses

into the graph structure. Thus, the agent is compatible to the hypotheses approach of this

thesis.

Ontology Selection The last agent by Keim [14] provides a selection of suitable ontologies

for an input text. Keim distinguishes “Actor Ontologies” and “Environmental Ontologies”.

Based on the Topic Detection Agent, this agent chooses ontologies that represent the

actor mentioned in a text, as well as ontologies that represent the environment, the text

is about. Internally, the agent uses scores for all possible ontologies and selects the best

ones according to internal heuristics and strategies. Similar to the Topic Detection Agent,

this agent stores the information on the selected ontologies into a new type of node for

the whole input graph. Since the agent uses scores, this agent is also suitable for the

hypothesis approach of this thesis.

Method Synthesizer The Method Synthesizer by Steurer [24] aims to generate methods

for a target system. This agent interprets statements in an input speech that aim to extend

an existing system by new methods. Therefore, the agent has to identify actions, sequences
of actions, as well as instructions. To identify these entities, the agent needs data about

semantic roles, co-references and context information from the Context agent. The agent

generates candidates for method calls. These candidates are stored as nodes into the PARSE

Graph. Each candidate has a score that is used as con�dence. In addition, candidates

for possible function parameters are stored to the graph. The method and parameter

candidates are connected by arcs. Since the agent stores candidates for the method calls

and parameters, the agent is also suitable for the hypothesis approach of this thesis.

5.1.3. Dependencies in PARSE

The previous sections provided information about the existence and absence of hypotheses

in the agents itself. In the following the mandatory dependencies between the agents
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are examined. Figure 5.1 shows these dependencies. Every agent is dependent on the

Figure 5.1.: Dependencies between PARSE agents

pre-processing pipeline execution of PARSE. Each agent that is located above another

agent depends on the output of the agent below. Therefore, you can see three important

dependency hierarchies that do not only consist of the pre-processing pipeline and one

agent. First, the concurrent action agent and the loop detection agent depend on the action

analyzer agent. This hierarchy is not usable for the approach of this thesis, as none of the

agents generates or uses any hypothesis. The second hierarchy starts with the context

agent, followed by the CoRef agent and the method synthesizer agent. These agents are

suitable for the hypothesis approach of this thesis and could be considered later. The last

hierarchy of agents to consider consists of the Wiki WSD, the Topic Detection, and the

Ontology Selection agent. These three agents can also be used in the hypothesis approach

of this thesis, as all agents can generate hypotheses. Furthermore, the Topic Detection

agent already generates some kind hypotheses. In summary, you can see that no cyclic

dependencies occurred. But in general one could build the hypothesis graph also with

the presence of cyclic dependencies between agents. In this case a �xed number of runs

through the cycle should be de�ned. By this an agent would appear in several layers. This

way, especially the development of hypotheses could be observed. Also new variants of

selectors and rating functions would be possible (cf. Chapter 6, 7).

5.2. INDIRECT Agents

After analyzing the PARSE agents in the previous section, this section covers the agents

of INDIRECT [11] that were considered for this thesis. These agents are either directly

referenced in the INDIRECT project [12] or agents that could be interesting for this work.

The agents to consider are listed in Table 5.1. Like in the preceding section this table shows

the agents together with a short description and separated into core agents and additional

agents. This section is structured in the following way: First, the agents are analyzed in

detail. After that, the dependencies between the agents are studied.
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Name Description

Dependency Parser Port of Stanford Core NLP’s Dependency Parser

Entity Recognizer Detection of entities

Conceptualizer Combination of actions and/or entities to concepts

Text NER Port of Stanford Core NLP’s NER

Const Parser Port of Stanford Core NLP’s Constituency Parser

Synset Mapping [10] Links between Models and Text based on Synsets

Table 5.2.: An overview on the INDIRECT agents

5.2.1. Agents

The next paragraphs cover the agents of INDIRECT that were considered for this the-

sis (cf. Table 5.2). Possible sources of hypotheses as well as the structures used to store

information are analyzed.

Dependency Parser The Dependency Parser agent ports the dependency information

from Stanford Core NLP [16] to INDIRECT. Therefore, the agent simply invokes the

Stanford Core NLP’s dependency parser and stores the information to the PARSE Graph.

Dependencies in Stanford Core NLP are characterized by the start word and end word as

well as the type/name of the dependency. The agent transforms that information into an

arc between the corresponding words in the PARSE Graph. The actual information like

the name are stored as attributes into the arc. No score or con�dence is provided by the

detected dependencies itself.

Entity Recognizer Based on the work of Hey [13] and Weigelt, Hey, and Tichy [30] the

entity recognizer detects mentioned entities in an input text. Therefore, the agent uses

the context model as de�ned in [13]. This context model does also include actions. The

di�erent elements in the context model, namely entities, actions, and their sub types are

important for the next agent to mention. The entity recognizer uses Wordnet [8] to detect

the entities. Furthermore, it uses the dependencies detected by the dependency parser

agent. The entities are stored as new type of node to the graph. The node contains di�erent

attributes, as the name of the entity. In addition, the node is connected by an arc to its

original nodes. This detection of entities does not use any con�dence, but on a second

level the entities can be connected to other entities, states, or concepts. These connections

are parameterized by a con�dence. The next paragraph covers more information on these

connections.

Conceptualizer Like the entity recognition of INDIRECT, the Conceptualizer agent is

also based on the work of Weigelt, Hey, and Tichy [13, 30]. The agent has the task to

combine actions, entities, and states to concepts. Furthermore, the agent can combine

concepts to super concepts. Therefore, the agent uses the same context model as the entity

recognition. Thus, a concept itself does not use scores or con�dences. The candidates used
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during connecting concepts use con�dences in relations and word similarities. Hence,

one can generate multiple hypotheses for di�erent relations or connection candidates.

Currently, the agent uses the best candidates to connect di�erent concepts or entities.

Since candidates already have ratings, this agent is applicable for this approach.

Text Named Entity Recognition (NER) The Text Named Entity Recognition agent uses the

NER information from Stanford Core NLP [16] and ports them to the PARSE Graph. There-

fore, the agent invokes the toolkit to annotate the input text. After that, the information on

named entities are stored to the utterance nodes (TokenNode) as attribute. The NER agent

does not use any con�dence or score. Thus, the agent is not suitable for this approach.

Constituency Parser The Constituency Parser agent ports the constituency information

from Stanford Core NLP [16] to INDIRECT. Therefore, the agent invokes Stanford’s

constituency parser and uses the annotations to rebuild the constituency tree in the

PARSE Graph. The tree itself is represented by a new node type and a new arc type. The

information like labels or tree level are stored directly as attributes of the new node type.

As the agent does not provide any con�dences, it is not suitable for hypotheses exploration.

Synset Mapping (WSD Link Agent) The last agent of INDIRECT to mention is the Synset

Mapping agent or WSD Link agent. The agent has been developed by Heine [10] and

aims the connection of architectural models and textual documentation. To build links

between model elements and elements mentioned in the documentation, the agent uses

Babelfy [18]. Each detected model element will be added as node to the PARSE Graph. To

connect model elements and textual elements, the linked elements are connected via an

arc. Currently, the agent does not use con�dences or scores for its results, but it uses word

distance metrics to compare identi�ers for model elements. It may be possible to use these

distances to generate hypotheses for the mappings later.

5.2.2. Dependencies in INDIRECT

After the di�erent agents of INDIRECT have been considered in detail, a closer look is

taken to the dependencies between the agents. Figure 5.2 shows these dependencies. Every

agent is dependent on the pre-processing pipeline execution of INDIRECT. Each agent that

is located above another agent depends on the output of the lower agent. In contrast to

the dependencies in PARSE you can see only one interesting dependency hierarchy. This

hierarchy consists of the dependency parser, the entity recognizer, and the conceptualizer.

As analyzed above, the only two agents in this hierarchy that uses some scores for internal

calculations are the entity recognizer and the conceptualizer. Since the integration of

hypotheses is rather complex, the next sections will mostly refer to other hierarchies.

5.3. Hypotheses in PARSE and INDIRECT

In the previous sections you have gained information about the agents of PARSE and

INDIRECT. It has been shown that there are dependencies between the di�erent agents. It
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Figure 5.2.: Dependencies between INDIRECT Agents

became clear that only few agents actually use hypotheses. In most cases results are stored

directly. Nevertheless, there are also some agents that already use hypotheses and can

therefore potentially be used for the approach of this thesis. In the following, the current

�ndings on hypotheses are discussed.

RangeofHypotheses The �rst result of the analysis of the agents of PARSE and INDIRECT

is the so-called Hypothesis Range. There are two of them among the agents. On the one

hand, there are the agents that generate results or hypotheses for single words or nodes.

One of these is the Word-Sense Disambiguation. It generates possible means per word.

Ont the other hand, results or hypotheses may refer to the entire input. This includes

topic extraction, as an example. Because of the di�erent ranges of in�uence it makes sense

to record this property and to choose the selection procedure for hypotheses depending

on it. A more detailed description of the procedure is carried out in Chapter 6.

Confidences of Hypotheses The second observation that emerged during the analysis of

the agents is the di�erent types of con�dences or scores that were used. On the one hand,

probabilities have occurred. These have a co-domain or value range of [0, 1] and would

allow the use of probabilistic methods. These have been noticed, for example, during topic

extraction, or during the evaluation of words by Babelfy [18]. On the other hand, there

are for example logarithmic scales of values too. These are used in the Wiki WSD agent.

The realization that scores are not only to be equated with probabilities has an impact

on evaluation procedures, because it is clear that one cannot necessarily use probabilistic

methods directly but normalization must take place. This task is discussed in more detail

in Chapter 7.

5.4. Conclusions for the Agent Analysis Framework

After the analysis of agents in the previous sections, the �rst two tasks of the �rst phase

are achieved (cf. Section 4.2). The agents are analyzed regarding the use and generation

of hypotheses (Task T1.1). Furthermore, the concepts of the range of a hypothesis and
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the di�erent types of con�dences of hypotheses have been found (Task T1.2). The two

remaining tasks focus on the actual implementation. These tasks are discussed in detail in

the following sections. In a �rst step, the de�nition of all speci�cation of existing agents

and their dependencies is realized in Section 5.4.1 (Task T1.3). After that, the automated

execution of agents according to their speci�cations are �nished in Section 5.4.2 (Task T1.4).

This concludes the �rst phase of this work and in the following chapters the hypotheses

of some agents will be utilized to evaluate the approach.

5.4.1. Agent Specification

In the following, a core feature of this thesis is discussed, the so-called Agent Speci�cations.
The purpose of these speci�cations has already been introduced in Section 4.1.1. In general,

the speci�cation of a PARSE agent or INDIRECT agent accomplishes the task of de�ning

the dependencies between the agents explicitly. The necessity for this is that without

explicit tracking of the necessary dependencies and with manual execution of the agents,

errors can easily be made.

With the knowledge from the analysis of the agents, the de�nition of an agent spec-

i�cation from Section 4.1.1 is re�ned. The �nal de�nition of a speci�cation of an agent

(IAgentSpecification) is shown in Figure 5.3. A speci�cation is de�ned for a speci�c type

1

�interface�
IAgentSpeci�cation

getInstance() : A

A : AbstractAgent

�enum�
InformationId

WSD

. . .

�enum�
PrePipelineMode

PARSE

INDIRECT

1..*

provides

0..*

requires

Figure 5.3.: Implementation: InformationId & IAgentSpeci�cation (Agent Analysis Port)

of agent. PARSE and INDIRECT agents inherit from the class AbstractAgent. Therefore,

the speci�cation is parameterized by a generic type A, that is restricted to sub types of

an abstract agent. As de�ned in the architectural chapter, the dependencies between

the agents are characterized by so-called information identi�ers (InformationIds). Each

speci�cation provides methods to get the required and provided information of an agent.

If the agent only depends on the information provided by the pre-processing pipeline,

the list of required information is empty. In contrast to that, the provided information

identi�ers may not be empty.
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An information identi�er contains no information about the actual type of information

provided by the agent. Therefore, the information identi�er is an enumeration of constants.

No further methods are provided by the information identi�er class (InformationId).

In order to add new information, only the a�ected speci�cations and the constants in

InformationId have to be extended. This ensures that changes in the hierarchy or agent

dependencies can be handled mostly locally.

The agent speci�cation (IAgentSpecification) also needs to provide access to the

actual agent. The method to get the instance does not create a new instance but uses the

con�gured instance of this speci�cation.

The last information provided by the speci�cation is the so-called PrePipelineMode. The

PrePipelineMode de�nes di�erent modes to generate a PARSE Graph. Currently two modes

are implemented: PARSE and INDIRECT. Both modes refer to their corresponding default

pre-processing pipeline con�gurations. These two are di�erent since one is designed for

spoken and the other for written language.

Pre-processing pipelines are represented by the IPrePipeline interface. They are part

of the Agent Analysis Speci�cation Platforms (AAS Platforms) module. The structure of

pre-processing pipelines is shown in Figure 5.4. A pre-processing pipeline is characterized

�interface�
IPrePipeline

getMode() : PrePipelineMode

createGraph(text : String) : IGraph

IndirectPrePipeline

IndirectPrePipeline()

getMode() : PrePipelineMode = INDIRECT

createGraph(text : String) : IGraph

PARSEPrePipeline

PARSEPrePipeline()

getMode() : PrePipelineMode = PARSE

createGraph(text : String) : IGraph

Use Tokenizer,
TextSNLP, and Graph-
Builder

Use Tokenizer,
TextSNLP, and Graph-
Builder

Use ShallowNLP,

NERTagger, SRLabeler,
and GraphBuilder

Use ShallowNLP,

NERTagger, SRLabeler,
and GraphBuilder

Figure 5.4.: Implementation: AAS Platforms — Pipelines

by two methods. First, a getter method for the actual PrePipelineMode. This mode is used

to compare a chosen pre-processing pipeline with the pipeline needed by a speci�cation

of an agent. Second, a creator method of a PARSE Graph. Since a PARSE Graph is

represented as IGraph, the method uses an input string to generate an IGraph. The kind

of the input text does not matter, because all unusable characters are removed. In case

of PARSE these would be punctuation marks. Furthermore, as you can see, for both

modes an implementation of the pre-processing pipeline was provided. These di�er in

the way PARSE Graphs are created, as already mentioned. The IndirectPrePipeline that

represents the default pipeline for INDIRECT agents uses a Tokenizer, TextSNLP and in
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a last step the GraphBuilder to generate a suitable PARSE Graph. A tokenizer splits a

certain text into tokens. After the input text is split into tokens, the TextSNLP (ShallowNLP

optimized for textual input) performs basic tasks of NLP. Finally, the PARSE Graph is

generated. In contrast to that, the PARSEPrePipeline uses ShallowNLP, a NERTagger, a

SRLabeler and in the last step the GraphBuilder to generate the PARSE Graph. Thus, the

default pipeline for PARSE also annotates named entities and semantic roles.

Now that the re�ned concept of speci�cations and pre-processing pipelines has been

introduced, the actual structure of an agent speci�cation has to be considered. Therefore,

the class structure as shown in Figure 5.5 has been created. An abstract super class is

�interface�
IAgentSpeci�cation

getInstance() : A

. . .

A : AbstractAgent

AbstractAgentSpeci�cation

# agent : A

# AbstractAgentSpeci�cation(agent : A)

getInstance() : A

setInstance(agent : A)

A : AbstractAgent

IndirectAgentSpec

# IndirectAgentSpec(agent : A)

getMode() = INDIRECT

A : AbstractAgent

ParseAgentSpec

# ParseAgentSpec(agent : A)

getMode() = PARSE

A : AbstractAgent

Figure 5.5.: Implementation: AAS Platforms — Agent Speci�cations

created for all speci�c actions, this super class �rst of all contains the actual instance of the

agent. This super class AbstractAgentSpecification already implements the interface

for agent speci�cations. As abstract sub types of the general agent speci�cation, two

abstract classes are de�ned — one for each PrePipelineMode. Thus, the creation of agent

speci�cations for existing agents is easy to realize. Consider one of the core agents of

PARSE — the Loop Detection agent. The speci�cation for this agent has to be found in

the Agent Analysis Speci�cation PARSE Core module, as the Loop Detection agent is a core

agent of PARSE. For the realization of the speci�cation, the module needs a dependency on

the implementation of the agent. Furthermore, the speci�cation is completed by creating

the speci�cation class. This class is shown in Figure 5.5. The de�nition of the speci�cation

itself is simple. All that is needed is to inherit from the corresponding speci�cation super

class and instantiate the generic parameter with the corresponding agent. Afterwards,

a new instance of the agent has to be created in the constructor and the required and

provided information must be speci�ed. In case of the Loop Detection agent, Actions are

required and Loops are provided.
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c l a s s LoopDetec t ionAgentSpec extends ParseAgentSpec < LoopDetec t ionAgent >

{

public LoopDetec t ionAgentSpec ( ) {

super (new LoopDetec t ionAgent ( ) ) ;

}

@Override

public L i s t < I n f o r m a t i o n I d > g e t P r o v i d e I d s ( ) {

return L i s t . o f ( I n f o r m a t i o n I d .LOOP ) ;

}

@Override

public L i s t < I n f o r m a t i o n I d > g e t R e q u i r e s I d s ( ) {

return L i s t . o f ( I n f o r m a t i o n I d .ACTIONS ) ;

}

}

Figure 5.6.: Loop Detection Agent Speci�cation (Code)

5.4.2. Agent Execution

The �nal task in this phase is the automatic execution of agents (Task T1.4). In order

to accomplish this, the agent execution interface (IAgentExecution) has been de�ned.

The structure for the automatic agent execution is shown in Figure 5.7. Since some

1

�interface�
IAgentExecution

loadAgents(agents : IAgentSpeci�cation[])

unloadAgents()

execute(graph : EnhancedGraph) : IGraph

�interface�
IAgentSpeci�cation

getInstance() : A

. . .

A : AbstractAgent

�interface�
IPrePipeline

getMode() : PrePipelineMode

createGraph(text : String) : IGraph

EnhancedGraph

graph : IGraph

text : String

Figure 5.7.: Implementation: AgentExecution

preconditions for the execution must be checked, the agent execution does not work on

normal PARSE Graphs (IGraph). Instead, the execution uses enhanced graphs that combines

the actual textual input, the PARSE Graph, and the de�nition of the pre-processing pipeline.

Thus, it can be veri�ed whether the agents are suitable for execution on a graph generated

by a certain type of pre-processing pipeline. The remaining functionality of the design
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is kept simple. It is possible to load and unload the di�erent speci�cations of agents to

be executed. The actual execution creates a normal new PARSE Graph that is created by

executing the agents in a correct order. Here it is important that it is a new instance of the

graph. The decision to use new instances is based on the fact that new graphs have to be

created later during exploration. This ensures that the di�erent explored variants do not

in�uence each other in the common data structure.

The detailed process of sequential execution of agents is described in Algorithm 1. For

the execution, an enhanced graph (input) and a set of speci�cations (agents) are required.

In a �rst step, the execution seeks for invalid agents in the agent hierarchy. Agents can

Algorithm 1 Agent Execution

Require: EnhancedGraph 8=?DC , Set of IAgentSpeci�cation 064=CB

1: function execute(8=?DC )

2: 6A0?ℎ← input.getGraph()

3: ??<← input.getPrePipelineMode()

4: 8=E0;83 ← FindInvalidAgentsInHierarchy(064=CB, ??<)

5: if 8=E0;83 ≠ [] then
6: return =D;; // Fail i� missing information in agent hierarchy

7: end if
8: >A34A43�64=CB ← FindOrder(064=CB)

9: for ordered =4GC ∈ >A34A43�64=CB do
10: =4GC�A0?ℎ← ExecuteAgent(=4GC .64C�=BC0=24 (), 6A0?ℎ)

11: 6A0?ℎ← =4GC�A0?ℎ // Replace current working instance

12: end for
13: return 6A0?ℎ
14: end function

be invalid for two reasons. Firstly, the pre-processing pipeline used may be incompatible

with that of the graph. In this case the agent cannot be used because the agent expects

other information in the graph. The second reason for �nding an invalid agent is that the

required information of the agent is not generated by any other agent. In this case the

agent cannot be executed either. If any invalid agent has been found, the execution aborts.

Otherwise, the execution �rst has to �nd a valid execution order of agents. A valid

order is characterized by the fact that the necessary information of an agent is available

through the already executed agents. Such a de�nition is possible because no cyclic

dependencies occurred during the analysis of the agents. The execution of an agent leads

to a new instance of the PARSE Graph. After execution, the current version of the graph

is exchanged so that the next agent works on the modi�ed graph. Finally, after all agents

have been executed, the graph created in this way is returned as the result.

With this implementation, the last of the tasks (T1.4) in phase one has been achieved. The

existing agents are analyzed regarding the use and generation of hypotheses (T1.1). The

analysis of the generated hypotheses for similarities and di�erences within the hypotheses

is �nished (T1.2). Furthermore, the speci�cations of the existing agents are de�ned (T1.3)

and they empower an automatic execution (T1.4).
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In the previous chapter, the analysis of agents has been �nished. Based on the speci�cations,

this chapter deals with the actual exploration of hypotheses, according to the tasks set in

Section 4.2.

First, a model for hypotheses, �xed sets of hypotheses and selections of hypotheses (T2.1)

is created in Section 6.1. After that, the actual exploration of paths in the Hypotheses

Graph (cf. Section 2.4) is discussed in Section 6.2. This so-called layered exploration

represents the completion of the second task (T2.2). This exploration is mainly controlled

by so-called Selection Providers (T2.3) that are discussed in Section 6.3. Furthermore, the

implementation of the hypotheses of some agents is carried out. Due to the implementation

of handlers for hypotheses of some agents, the fourth task (T2.4) is completed. In a last

step, the Agent Analysis Explorer, a tool to visualize an exploration of an input text (T2.5),

is introduced.

6.1. Hypotheses, Hypotheses Sets, and Hypotheses Selections

The �rst step to deal with hypotheses and to explore the search space created by them, is the

creation of a suitable model of hypotheses. In the previous phase, more detailed information

about the properties and occurrence of hypotheses in MAS for natural language has been

collected. Thus, the basic concepts from Section 2.3 and Section 4.1.1 can be �nalized. The

actual model for hypotheses is shown in Figure 6.1. A hypothesis is de�ned as combination

1..*

1

selected 1..*

1

Hypothesis

value : String

con�dence : double

HypothesesSet

only1HypothesisValid : bool

word : String {optional}

�enum�
HypothesesRange

NODE

SECTION

HypothesesSelection

Figure 6.1.: Model: Hypotheses, Hypotheses Sets, and Hypotheses Selections

of a certain value and a speci�c con�dence. In this thesis, the value is represented by a

string that contains the necessary information. The actual type of representation depends

on the agent. Con�dences are represented as arbitrary �oating-point values. This takes into
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account that, depending on the agent, the values of the con�dence may include uncertain

ranges. In contrast to the initial design during the approach, hypotheses are always part

of a �xed set of multiple hypotheses. Such a set contains related hypotheses. For example,

if you consider word sense disambiguation, you get exactly one set of hypotheses for each

word that is disambiguated. Each set contains the possible meanings for the given word.

Therefore, a property of such a set is the corresponding word. This property is optional,

because the hypotheses of agents do not necessarily have to refer to only one word.

Furthermore, the hypotheses in such a set always refer to a range of the input. Similar

to the previous chapter, two types can be identi�ed. On the one hand those hypotheses

that refer to single words of the input. Since words in the PARSE project are stored in

nodes, this range is called Node range. This includes the hypotheses of WSD. On the other

hand, hypotheses can be related to the entire input text. In this case the range is called the

Section range. A set of hypotheses always refer to exactly one type of hypotheses range.

The last property of a set of hypotheses is an indicator called only1HypothesisValid. This

indicator de�nes whether multiple hypotheses in a set might be correct. The indicator has

an impact on the selection functions later in this chapter. In case that only one hypothesis

of a set can be correct, there is no need to consider combinations within the sets. This

reduces the search space for such sets. The last element of the model of hypotheses is the

selection of certain hypotheses. Like in the �rst design in the approach, a selection contains

selected hypotheses from a �xed set of hypotheses. Therefore, the actual realization of a

selection refers to exactly one set of hypotheses. This set contains the eligible hypotheses.

Furthermore, the selection points to the selected hypotheses from the set.

Pseudo-Hypotheses Concerning hypotheses, a last important term is pseudo-hypothesis.
Path exploration aims to improve the results of agents without changing the way the

agents work. In order to be able to check later on to what extent the results of agents

have been improved by exploration, the results must be comparable regardless of the use

of exploration. Therefore, it is necessary that the results obtained by an agent without

the use of hypothesis-exploration can be transformed into hypotheses. This task is later

taken over by the agents’ speci�cations. Hypotheses derived from the results without

exploration are called pseudo-hypothesis. In particular, these hypotheses have no speci�c

con�dence value.

Through this implementation of the model for hypotheses and the de�nition of pseudo-

hypotheses, the �rst task of this second phase (T2.1) has been completed.

6.2. Layered Exploration

This section discusses the realization of the layered exploration. The layered hypotheses

graph, the result of the layered exploration, has been introduced in Section 2.4. Before

considering the actual exploration, the actual implementation and structure of the graph

will be examined in detail. This realization is shown in Figure 6.2. The realization of

the exploration graph is similar to the expected graph in the fundamentals of this thesis.

It is still a graph that is divided into layers. Each layer is related to exactly one agent

that is responsible for the creation of the hypotheses of the layer. In contrast to the
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Figure 6.2.: Layers & Layer Entries in Exploration

representation at the beginning of this thesis (cf. Figure 2.6), the inputs of each layer are

PARSE Graphs (Graph). These PARSE Graphs contain the information before the execution

of the agent of the layer. The application of the agent leads to another instance of a PARSE

Graph that is used to retrieve the hypotheses. Using selection functions, the layer creates

new so-called layer entries in the succeeding layer. A layer entry contains information

on the generated hypotheses, the input graph, all selections, and references to the next

layer entries in the next layer. Therefore, the actual graph consists of layer entries that

build a tree. After exploration, it can be decided to explore again di�erently, because

the hypothesis graph contains the PARSE Graphs as copies. For example, other selection

providers could be used to further extend the explored hypotheses graph. Because the

expansion of the graph and the further exploration is preserved at runtime, exploration

strategies are conceivable that could make use of already explored paths.

In Figure 6.3 you can see the structures needed to explore the Hypotheses Graph.

The �rst important point to mention is the type of result of the exploration process.

0..1

LayeredExploration

root : EnhancedGraph

explore() : (Text, LayerEntry)

LayerEntry

agent : String

hypotheses : HypothesesSet[0..*]

previousSelection : HypothesesSelection[0..*]

input : IGraph {transient}

evaluated : IGraph {transient}

SelectionProvider

�ndSelection(hypotheses : HypothesesSet[]) : HypothesesSelection[][]

children

*

AgentSpeci�cation

Figure 6.3.: Implementation: Layered Exploration

The exploration result is a combination of input text and the �rst layer entry. Thus, it
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contains the whole exploration in the hypotheses graph based on its root layer entry. The

layered exploration knows only the initial PARSE Graph (respectively EnhancedGraph,

cf. Section 5.4.2) and a mapping from agent speci�cation to selection provider. These

mappings de�ne the selection providers for the di�erent layers of the exploration that are

identi�ed by an agent speci�cation. Each Layer can have up to one selection provider. In

the absence of a provider, the agent does not generate any hypotheses, i.e., the usual state

without generating hypotheses. This way, the exploration is not restricted to agents that

are able to generate hypotheses. Instead, the layered exploration is able to deal with a

combination of agents that uses hypotheses, as well as agents that uses no hypotheses.

SelectionProviders are responsible for the creation of hypotheses selections. There-

fore, a selection provider takes all sets of hypotheses for a certain layer and creates di�erent

combinations of selections per set. Thus, the return type of the findSelection function

of the selection provider is a list of multiple selections (HypothesesSelection[][]). Each

HypothesesSelection[] has the same size as the amount of sets of hypotheses (param-

eter hypotheses). Hence, every selection belongs to exactly one set of hypotheses. The

realization of some selection providers is going to be discussed in Section 6.3.

The actual layer entry as stated in Figure 6.3 consists of serialized and transient prop-

erties. Properties that have to be serialized are those that represent the result of the

exploration. The �rst property for serialization is the agent. The agent property refers to

the agent that is responsible for layer of the layer entry. Secondly, the hypotheses sets

that are generated by the corresponding agent are located in the layer entry. The selection

from the previous layer entry that lead to this layer entry is also needed for the serialized

version of the layer entry. In order to complete the serialized version of the exploration

graph, the layer entry contains the successive layer entries as children. Information like

the PARSE input graph or the resulting PARSE Graph (evaluated) are not stored in the

serialized version of the exploration result.

The realization of the exploration process is illustrated in Algorithm 2. The layered

exploration needs an initial PARSE Graph to start exploration (root). Furthermore, the

mapping between the speci�cation of agents and selection providers has to been known.

The exploration process starts with the creation of the layers according to the con�gured

agent speci�cations. During the creation of the layers, the steps already known from the

agent execution (cf. Section 5.4.2) are performed. These include the checks for a valid

speci�cation hierarchy. Besides the valid speci�cation hierarchy, the exploration has to

check, whether the con�gured agents with hypotheses have suitable selection providers.

Otherwise, an exploration cannot be executed.

After checking all constraints, the next step is the creation of the root layer entry in the

�rst layer. This root layer entry is the �rst part of the exploration result at the end of the

exploration. The creation of the root layer entry includes the invocation of the �rst agent

on the root PARSE Graph.

With the completion of the generation of the �rst entry, the actual exploration begins.

The actual steps of the exploration of the layers (exploreLayers()) is separately shown

in Algorithm 2. The exploration of the layers iterates over all layers according to their

order, starting with the root layer. This kind of exploration (layer by layer) is only possible,

due the fact that no cycles have been found in the previous phase (cf. Chapter 5). As
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Algorithm 2 Layered Exploration — explore

Require: EnhancedGraph A>>C , AgentSpec × SelectionProvider (064=CB × B4;42C>AB)
1: function explore(A>>C, 064=CB)

2: ;0~4AB ← createLayers(064=CB)

3: createRootLayerEntry(;0~4AB, A>>C )

4: exploreLayers(;0~4AB)

5: return createExplorationResult(A>>C, ;0~4AB)

6: end function
7: function exploreLayers(;0~4AB)

8: for ordered ;0~4A ∈ ;0~4AB do
9: B4;42C8>=%A>E834A ← getSelectionProvider(;0~4A, B4;42C>AB)

10: for 4=CA~ ∈ ;0~4A .4=CA84B do
11: ℎ~?>Cℎ4B4B ← GetHypotheses(4=CA~.8=?DC, ;0~4A .064=C )

12: B4;42C8>=B ← FindSelections(ℎ~?>Cℎ4B4B, B4;42C8>=%A>E834A )

13: for B4;42C8>= ∈ B4;42C8>=B do
14: 6A0?ℎ← CloneGraph(4=CA~.8=?DC )

15: 6A0?ℎ← ApplySelection(;0~4A .064=C, B4;42C8>=, 6A0?ℎ)

16: createChildrenBySelection(;0~4AB, 4=CA~, 6A0?ℎ, B4;42C8>=)

17: end for
18: end for
19: end for
20: end function

already known, each layer that produces hypotheses using its agent has a speci�c selection

provider to �nd the selections of hypotheses for the next layer.

Thus, the next step during the exploration of the current layer is the application of

the suitable selection provider to the hypotheses of each layer entry. Therefore, the

speci�cation of the agent is used to retrieve the actual hypotheses from the input graph.

The application of a selection provider then provides an amount of di�erent selections for

the current hypotheses. After retrieving the selections, the layered exploration clones the

input graph of the current layer entry and applies the selection to it. The resulting new

PARSE Graph is now used as input graph for a new child layer entry in the successive

layer.

The exploration �nishes after all layers have been explored. The result of the layered

exploration is created by the actual layers and the input text in a last step. With this imple-

mentation of the exploration, the second task of the second phase (T2.2) was successfully

completed.

6.3. Selection Provider

In the next step, the focus lies on the coordination of the exploration. The control of the

exploration in the approach of this work is carried out by so-called Selection Providers.
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Selection Providers take the sets of hypotheses of a certain layer entry and provide

selections of hypotheses. The particular challenge here is that the providers can only

rely on information from the hypotheses. The reason for this lies in the structure of the

approach. One requirement during the design was that the mechanisms for exploring

hypotheses should be reusable. This means that the selection provider is not adapted

directly to a speci�c agent. Instead, the idea is that a certain selection strategy should

be chosen for a certain agent. The �nding of suitable strategies is partly covered in the

following chapters. However, the �nal �nding of strategies will go beyond the scope of

this thesis and is rather to be seen in the future work. The strategies are thus related to

aspects of the hypotheses themselves. Only the values, ranges, con�dence and de�ned

properties of the general hypothesis are available as information. In the following, various

implemented providers are presented.

6.3.1. Full Exploration Strategy

The simplest variant of a selection is the complete exploration. A full exploration uncovers

all combinations of hypotheses and uses the whole possible search space for the approach.

However, the search space can be exponentially large. Depending on the size of the input,

the search is then not practical. Especially the property only1HypothesisValid must be

considered. In cases where more than one hypothesis of a �xed set of hypotheses may be

valid, a complete exploration of the search space is di�cult. Besides the actual selection,

there would be a variable number of hypotheses to consider. Because of that, the full

exploration strategy is restricted to sets of hypotheses that contain only one hypothesis that

can be valid in a selection. Therefore, the strategy covers only the combination of all found

hypotheses in the sets of hypotheses of a certain layer entry. To clarify what the strategy

actually selects, Algorithm 3 shows the procedure reduced to the essential. As shown in

Algorithm 3 Selection Providers — Full Exploration

Require: List of IHypothesesSet B4CB (∀ sets: only1HypothesisValid = true)

1: function fullExplore(B4CB)

2: 2>D=CB : int[]←<0? (_B. 2>D=C (B .ℎ~?>Cℎ4B4B), B4CB)
3: B4;42C8>=B : IHypothesesSelection[][]← []

4: for 8=3824B ∈ {; | 0C 402ℎ 8=34G : ; 2>=C08=B 0 E0;D4 ;4BB Cℎ0= 8= 2>D=CB} do
5: B4;42C43 : IHypothesis[]← SelectByIndices(B4CB, 8=3824B)

6: B4;42C8>=B ← B4;42C8>=B ∪ {�~?>Cℎ4B4B(4;42C8>=(B4;42C43)}
7: end for
8: return B4;42C8>=B
9: end function

the algorithm, all combinations of hypotheses are built. Therefore, the algorithm stores the

amount of di�erent hypotheses per set in counts. After that, it generates combinations of

indices. Hence, the algorithm selects exactly one hypothesis from each set. These indices

de�ne the selected hypothesis per set and is used to generate the actual selection. At the

end, the full exploration strategy returns all generated selections.
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This realization allows the full exploration of hypotheses sets that contain only one

correct hypothesis. The actual search space is not reduced. Therefore, the practical use of

such kind of exploration has to be checked.

6.3.2. Top-X Confidence & Top-X Sliding Window

The full exploration strategy is only applicable if the actual hypotheses sets contain only

one valid hypothesis. Furthermore, the full exploration strategy does not control the

search space. In the following, two selection providers are introduced: Top-X Con�dence
and Top-X Sliding Window.

First, the Top-X Con�dence provider. Like the full exploration provider, this provider is

applicable to hypotheses sets that contain only one valid hypothesis. Instead of building

all combinations of hypotheses and therefore not controlling the search space, the provider

explores only a part of the search space. The provider is parameterized by a natural

number that indicates the amount of rankings to generate. This number de�nes the

maximum amount of selections provided by the selection provider. The Top-X Con�dence
selection provider generates selections according to the con�dences of the hypotheses in

the hypotheses sets. First, the provider selects the top scored hypothesis of each set of

hypotheses. After that, the provider generates selections of the second best hypotheses,

and so forth. The provider stops the generation of new selections either if it reaches the

provided maximum amount of selections or if any of the sets of hypotheses does not

contain any unused hypothesis anymore. Therefore, the provider is the �rst mentioned

provider that actually restricts the search space. The strategy considers the presence

of a ranking within the hypotheses. Thus, it selects not all hypotheses or just the best

hypotheses. Rather, second-best (or third-best, etc.) �ndings are considered to be taken

into account.

The second selection provider that has been created, is called Top-X Sliding Window.

This provider focuses on sets of hypotheses that contain more than one correct hypothesis.

It is parameterized by two values. First, the amount of selections to generate at maxi-

mum. Second, the amount of hypotheses per set that shall be considered as correct. The

selection provider itself generates selections per set of hypotheses. Thus, you may build

combinations of selections if more than one set of hypotheses is provided for the selection

process. The selection process starts with the creation of a window that will shift through

the sorted hypotheses of a hypotheses set. The size of the window is initially set to the

provided amount of hypotheses that are considered as correct. After creating this window,

the selector takes the hypotheses that lay inside the window as selection. Subsequently,

the sliding window is shifted. A shift means that e.g. with a window of size two the

top-1 and top-2 hypothesis is no longer covered but the top-2 and top-3 hypothesis. After

shifting, the next selection is generated according to the hypotheses in the window. This

procedure is executed until the amount of the selections reaches the maximum amount or

no hypotheses are located inside the current window.

This two providers realizes two simple selection mechanisms that control the search

space. The actual performance in contrast to other selectors or no exploration is going to

be compared in the evaluation.
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6.3.3. RandomHypothesis Selection Provider

The next selection provider to be mentioned is the Random Hypothesis Selection Provider.
This provider empowers randomness to control the search space provided by the full

exploration provider mentioned above. The provider takes advantage of the fact that

with full exploration, the exploration itself is not practicable, but the de�nition of the

possible paths is. Therefore, this selector uses the de�nitions of the paths as provided

by the full exploration strategy but �lters them. The provider is parameterized by two

possible restrictions of the amount of selections provided by it. First, you can restrict the

actual amount of selections that are provided by the selection provider. Second, you can

specify a ratio within (0, 1] that de�nes the amount of chosen selections from the full

exploration strategy. In addition, you can specify both limits, where then the minimum of

both is used as actual limit. Whenever a selection is requested, the provider generates all

possibilities. After that, the provider calculates the actual maximum for this amount of

selections. In a last step, the selection provider deletes random selections until the amount

of selections is smaller than the maximum calculated. Thus, a random set of selections is

provided by the selector. It is important to note that this provider, like the full exploration

strategy, is only built for sets of hypotheses that contain only one correct hypothesis.

6.3.4. Same-Word-Same-Decision Decorator

After considering di�erent selection providers in the previous subsections, this subsection

deals with a speci�c Decorator. Decorators de�ne a special type of selection provider. They

are realized using the decorator pattern. Therefore, it is possible to combine di�erent

decorators. A decorator executes three steps:

1. Filtering of input hypotheses

2. Generation of selections by delegation to another selection provider

3. Remapping of selection to original hypotheses

In the �rst step, the decorator can change the hypotheses for the creation of the respective

selections. This is the step of �ltering. After �ltering the hypotheses, the decorator

delegates the hypotheses to another selection provider. This selection provider creates the

actual selections. In the last step the decorator modi�es the selections it has received. This

post processing allows the decorator to create valid selections for the original hypotheses.

In the following, the so-called Same-Word-Same-Decision Strategy is introduced. This

strategy is actually a special decorator for hypotheses that are related to single words. It

aims to ensure that every occurrence of a word has the same selected hypotheses for a

certain selection. Therefore, the decorator groups the sets of hypotheses by their respective

words from the input text. After grouping the sets, new sets will be generated per group. A

set for a certain word contains all the hypotheses from the occurrences of the word in the

text. Thus, this decorator ensures that di�erent hypotheses sets for di�erent occurrences

of a word in a text choose the same hypotheses in a selection. For example, for WSD you

can use the assumption that the sense of a given word is always the same over the whole

document. More details will be given in the next section.
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With the realization of these di�erent selection providers, the third task of the second

phase (T2.3) is completed.

6.4. Hypotheses for Agents

Since the exploration of hypotheses is possible now, hypotheses have to be generated

in the following. Therefore, existing agents have to be extended. In the �rst part of this

section, the actual structure of the speci�cations for agents that provide hypotheses is

introduced. After that, the concrete implementation for three agents is presented. The

realization of handling mechanisms for hypotheses of three agents completes the fourth

task of this phase (T2.4).

6.4.1. Agent Hypothesis Specification

In Section 4.1.2 the coarse structure of an Agent Hypothesis Speci�cation has been in-

troduced. The following paragraphs deal with the actual realization of this type of spec-

i�cations. An overview is given in Figure 6.4. As you can see, the Agent Hypothesis

�interface�
IAgentSpeci�cation

getInstance() : A

. . .

A : AbstractAgent

�interface�
IAgentHypothesisSpeci�cation

getHypothesesRange() : HypothesesRange

A : AbstractAgent

�interface�
IHypothesesManager

getPseudoHypotheses(graph : IGraph) : IHypothesesSet[]

getHypotheses(graph : IGraph) : IHypothesesSet[]

applyHypotheses(graph : IGraph, hypotheses : IHypothesesSelection[])

Figure 6.4.: Implementation: Agent Hypothesis Speci�cations (Agent Analysis Port)

Speci�cation is a specialization of a normal agent speci�cation. Furthermore, the speci�-

cation inherits the methods of a Hypotheses Manager. A Hypotheses Manager de�nes the

interface of an agent that can handle hypotheses. Therefore, it provides three methods:

First, a method to generate pseudo-hypotheses from the “old” version of the agent. Thus, it

is possible to compare the exploration with the original results of an agent (cf. Section 6.1).

Second, a method to retrieve the actual hypotheses from a PARSE Graph. To be able to

read the hypotheses, the corresponding agent has to be executed. The last functionality
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provided by a Hypotheses Manager is the application of hypotheses selections to a PARSE

Graph. Besides the functions of the Hypothesis Manager and the Agent Speci�cation,

the Agent Hypothesis Speci�cation provides an auxiliary method to obtain the range

of hypotheses generated by the speci�cation. This function is a simpli�cation for the

implementation. The information about the type of hypothesis ranges can be obtained

directly from the hypotheses.

After describing the structure, the construction of the super class for general agent

hypothesis speci�cations is brie�y discussed below. The class itself is shown in Figure 6.5.

As shown in the de�nition of the class, this abstract super class �xes the generic agent

abs t rac t c l a s s A b s t r a c t A g e n t H y p o t h e s i s S p e c <A extends A b s t r a c t A g e n t &

IHypothesesManager > implements IAgentHypothes i sSpec <A> {

protected f ina l A agent ;

pr ivate A b s t r a c t A g e n t S p e c i f i c a t i o n <? super A> spec ;

protected A b s t r a c t A g e n t H y p o t h e s i s S p e c (

A b s t r a c t A g e n t S p e c i f i c a t i o n <? super A> spec , A agent ) {

th i s . agen t = agen t ;

th i s . spec = spec ;

th i s . spec . s e t I n s t a n c e ( th i s . agen t ) ;

}

@Override

public f ina l A g e t I n s t a n c e ( ) { return agen t ; }

/ / D e l e g a t i o n s t o spec : getMode ( ) , g e t [ P r o v i d e d | R e q u i r e d ] I d s ( )

@Override

public f ina l L i s t < I H y p o t h e s e s S e t > ge tHypothese s ( IGraph graph ) {

return agen t . ge tHypothese s ( graph ) ;

}

/ / F u r t h e r d e l e g a t i o n s t o agen t :

/ / app lyHypotheses ( . . ) , ge tPseudoHypotheses ( . . )

}

Figure 6.5.: Abstract Agent Hypothesis Speci�cation (Code)

parameter to a class that extends an AbstractAgent (the super class of all PARSE agents)

and implements a Hypotheses Manager. Furthermore, the speci�cation combines the

instance of an PARSE agent and a suitable (normal) Agent Speci�cation, as it were created

in Chapter 5. The agent speci�cation used by the Agent Hypothesis Speci�cation is

parameterized so that the instance of the agent can be set to A. Thus, the agent speci�cation

is de�ned as AbstractAgentSpecification<? super A> (cf. Section 5.4.1). During creation

of the Agent Hypothesis Speci�cation, the instance of the inner agent speci�cation is

set to the same as the agent of this speci�cation. As indicated in the code excerpt, the

speci�cation delegates the necessary methods to the instances of the old speci�cation
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or the instance of the agent. The use of this super class is described in the following

implementations for the agents.

6.4.2. Wiki WSD

In the following, the Wiki WSD agent will be extended with the handling of hypotheses.

As already known from Chapter 5, the Wiki WSD agent [14] is a PARSE agent that uses

information from Wikipedia to provide the senses of words in an input text. To classify

an input, the agent �rst loads a pre-trained classi�er for classi�cation. After loading the

classi�er, the agent is initialized.

The interpretation of an input starts with the creation of an attribute type in the PARSE

Graph. The attribute “wsd” is added to the token nodes in the PARSE Graph. As already

introduced in Chapter 2, Token nodes represent the actual text within the PARSE Graph.

Thus, the agent is able to add the actual sense of a word to the respective token as simple

string attribute. For example for the word “bass” the meaning “bass (�sh)” could be

annotated to the token (cf. Chapter 1).

The agent simply creates a classi�cation for each noun identi�ed. A classi�cation of

the agent consists of the value (e.g. “bass (�sh)”) and a score for that classi�cation. The

classi�cation can produce multiple classi�cations per word but selects exactly one per

noun. In the following the agent will be extended to provide the di�erent classi�cations as

hypotheses. Each noun is going to be represented by one �xed set of hypotheses.

Therefore, the current agent is used as base class for a new agent. This new agent is

called MultiHypothesisWSD. Furthermore, this class implements the IHypothesesManager

interface to provide the actual hypotheses. The following steps have to be taken to realize

the MultiHypothesisWSD:

1. Preparation of the PARSE Graph

2. Latching into the classi�cation mechanism

3. Storing of found senses as hypotheses

4. Realization of retrieval and application of hypotheses from the graph

5. Realization of retrieval of pseudo-hypotheses

In the �rst step, the new agent adds a further attribute to the token node type. This new

attribute is used for storing multiple senses of a word in a serialized representation. The

second step injects the necessary code to get the actual classi�cations of a word directly.

Thus, the new agent calls the existing classi�cation service of the old agent. After obtaining

multiple classi�cations for one word, the classi�cations are serialized and stored into the

new de�ned attribute of the token nodes. Afterwards, the classi�cation of the old agent is

resumed by redirecting the control �ow to the old agent’s methods. In summary, the old

functionality is retained and the Liskov substitution principle is not violated. Only further

classi�cations are stored in a new attribute in the nodes of the words.

What is still missing are the mechanisms for processing the hypotheses of the WSD.

As explained above, the di�erent classi�cations of a word is stored in the corresponding
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token node in the PARSE Graph. Therefore, the retrieval of the actual hypotheses has

to parse the information stored in the nodes to generate the �xed sets of hypotheses per

word. In Figure 6.6 you can see the de�nitions of the hypotheses provided by the Wiki

WSD agent. The speci�cation of the agent, creates a HypothesesSet for each word that is

annotated with WSD information. Such a �xed set of hypotheses contains the information

about the actual word for disambiguation as well as a set of WSDHypotheses. In addition,

the property only1HypothesisValid is set to true as a word has only one sense in a �xed

context. As shown in the picture, a WSDHypothesis stores exactly the same information

�interface�
IHypothesis

getValue() : String

getCon�dence() : double

. . .

WSDHypothesis

classi�cation : String

con�dence : double

toClassi�cationString() : String

getValue() : String

getCon�dence() : double

Figure 6.6.: Implementation: Speci�c Hypothesis for Wiki WSD

as a classi�cation from the unmodi�ed agent: the actual classi�cation as string and the

con�dence of the classi�cation as �oating-point value. In addition to the needed methods

of IHypothesis, the WSDHypothesis provide a function to generate the classi�cation string

that represents the value of the hypothesis. This classi�cation string is needed as the

original Wiki WSD agent stores the classi�cation of a word as that kind of string into an

attribute of the respective word. Thus, the agent hypothesis speci�cation is able to apply

a selection that selects speci�c word senses (as WSDHypotheses).

In order to compare the results of an exploration to the original behavior of the agent the

speci�cation has to provide pseudo-hypotheses for the executed original Wiki WSD agent.

Therefore, the annotated sense of a word that is stored as attribute to the respective token

node, is used as value of a WSDHypothesis. Since the information about the con�dence is

not stored, but only one value is possible per word, NaN is set as con�dence. Thus, the

mechanisms for the retrieval of real hypotheses can be used to get the pseudo-hypotheses.

c l a s s WikiWSDHypothesisSpec extends
A b s t r a c t A g e n t H y p o t h e s i s S p e c <MultiHypothesisWSD > {

public WikiWSDHypothesisSpec ( ) { th i s (DEFAULT_HYPOTHESES ) ; }

public WikiWSDHypothesisSpec ( in t maxHypotheses ) {

super (new WikiWSDSpec ( ) , new MultiHypothesisWSD ( maxHypotheses ) ) ;

}

public Hypothes i sRange getHypothesesRange ( ) { return NODE ; }

}

Figure 6.7.: Wiki WSD Agent Hypothesis Speci�cation (Code)
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The realization of the actual agent hypothesis speci�cation is shown in Figure 6.7.

As shown in the code excerpt, the speci�cation allows to set the amount of hypothe-

ses generated per word. Furthermore, the speci�cation de�nes the base speci�cation as

WikiWSDSpec — the old speci�cation of the original Wiki WSD agent. The actual imple-

mentation of the agent is set to MultiHypothesisWSD the new agent. In addition, the Wiki

WSD agent does only provide hypotheses that belong to a node (Hypotheses Range: Node).
For the following agents the speci�cation is structured analogously. Therefore, they are

not explicitly described in the following sections.

6.4.3. Topic Detection

As shown in Chapter 5, the Topic Detection agent [14] depends on the Wiki WSD agent.

Thus, the following deals with the changes needed to use the hypotheses approach for the

Topic Detection agent. The Topic Detection agent uses the senses in the attributes of the

token nodes to determine a common topic of the input text. Concepts from Wikipedia are

used to provide the topics.

By default, the Topic Detection agent uses online resources to obtain the necessary

information about the concepts. After initializing the agent, the PARSE Graph is extended

with a Topic Node Type. A topic node is a PARSE node that contains one attribute that

stores the found topics. Exactly one node of this type is created by running the Topic

Detection agent. Also, the node is not connected to anything. It therefore serves as data

storage. The actual processing of the agent consist of three steps: First, the agent extracts

all annotated senses of the Wiki WSD agent from the PARSE Graph. After that, the agent

creates a so-called “Topic Graph” [14]. The topic graph, is created using the senses found

in the PARSE Graph. Afterwards, the topic graph provides a list of topics that are related

to the input text. Each topic consists of a label, a score, and the related senses used for

this topic. The obtained topics are stored in the attribute of the topic node to provide the

information for successive agents. This completes the execution process of the normal

Topic Detection agent.

In the following the agent is extended to work with hypotheses. Similarly to the changes

regarding the Wiki WSD agent, the extension of the Topic Detection agent is done by

adding a sub class to the original agent. Like the changes for the Wiki WSD agent,

the extended agent latches into the preparation of the PARSE Graph, and the storing

mechanisms to obtain the necessary information. The �rst step of the new agent is the

addition of a new attribute to the topic node type. This attribute contains the di�erent

topics for the hypotheses provided by the speci�cation of the new Topic Detection agent.

Using this attribute, the new agent stores a set of topics found during the creation of the

topic graph. The actual processing of the topics is not changed. Therefore, the new agent

behaves in the same way as the old agent. It only adds more information to the topic node.

Thus, the Liskov substitution principle is not violated.

With this state, only the mechanisms that generate and process hypotheses from the

available information are missing. For this purpose, Figure 6.8 shows how the hypotheses

for the Topic Detection agent are structured. A topic hypothesis represents exactly one

topic. Therefore, it contains this topic. The value of the hypothesis refers to the label of

the topic. The hypothesis’ con�dence is equal to the topic’s score.
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1

�interface�
IHypothesis

getValue() : String

getCon�dence() : double

. . .

TopicHypothesis

getValue() : String

getCon�dence() : double

Topic

label : String

score : double

relatedSenses : String[]

. . .

Figure 6.8.: Implementation: Speci�c Hypothesis for Topic Detection

The speci�cation of the Topic Detection with hypotheses has to provide methods to

generate these hypotheses from the topics stored in topic node. Therefore, the agent creates

exactly one �xed set of hypotheses. This is de�ned by all topic hypotheses stored as topics

in the topic node. The �xed set represents hypotheses with the Hypotheses Range Section.

This is necessary, because the topics refer globally to one input. In addition, the �xed set

contains the information that multiple hypotheses could be correct (only1HypothesisValid

is set to false). Eventually, a sentence can cover several topics. For the extraction of the

pseudo-hypotheses the same mechanisms can be used. Only the old attribute in the topic

node must be used. The application of hypothesis selections then consists in describing

the topic attribute with the topics in the selected hypotheses. With this implementation,

the hypotheses of Topic Detection can now also be used for this approach.

6.4.4. Ontology Selection

The last agent in the hierarchy starting at the Wiki WSD agent is the Ontology Selection

agent [14] (cf. Table 5.1). Therefore, in the following the handling of hypotheses of this

agent is discussed. The Ontology Selection uses the found topics to determine suitable

ontologies for the input text. Thereby, the ontologies are divided into Actor Ontologies and

Environment Ontologies. As the names already imply, the �rst type of ontologies are those

that represent di�erent actors. Actors present would be for example a robot, a virtual

assistant, or a drone. The environmental ontologies that exist so far are e.g. a kitchen, a

garden, or a children’s room.

The initialization of the agent starts with the loading of the con�gured ontologies.

This is important because it limits the number of possible hypotheses for the selection of

ontologies. Neither the WSD nor the TD agent have this characteristic. During the loading

process, the topics of the ontologies are extracted. Therefore, the ontologies contain

concepts that can be used by the internal mechanisms of the Topic Detection agent to

obtain the topics by these concepts. Like other agents, the �rst step during execution is the
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preparation of the PARSE Graph. The agent adds a new node type — the Ontology Node

Type. Similar to the Topic Node of the Topic Detection, this node type is only used as

data storage. In the case of the Ontology Selection the node contains two attributes: First,

the selected ontologies. In addition, the agent creates a merged ontology that contains all

selected ontologies. This merged ontology is the second attribute of the ontology node.

After the preparation of the PARSE Graph is �nished, the actual processing starts. First,

the Ontology Selection detects the stored topics of the input text provided by the Topic

Detection agent. In the next step, the agent calculates the conformities for the di�erent

ontologies. This leads to a score for each ontology. Afterwards, the ontologies are �ltered

by a selection method (e.g. a threshold for the score). In a last step, the selected ontologies

are stored to the respective attribute, the ontologies are merged to one ontology, and the

merged ontology is annotated to the ontology node. This completes the execution process

of the normal Ontology Selection agent.

In the following the agent is extended to work with hypotheses. Similarly to the changes

regarding the agents before, the extension of the Ontology Selection agent is done by

adding a sub class to the original agent. The extended agent latches into the preparation

of the PARSE Graph and the storing mechanisms to obtain the necessary information.

After the creation of the Ontology Node Type, the updated agent adds two new attributes

to the node type: An attribute to store the found actor ontologies and an attribute to

store the found environmental ontologies. During the execution of the agent, the present

ontologies are rated regarding the topics of the input text. Afterwards, the new agent

stores the information about the ontologies and scores into the two new attributes. Thus,

the information about the scores of the ontologies is saved to the PARSE Graph and is

accessible for the generation methods of the hypotheses.

Like already known from the Topic Detection agent, the information stored to the

respective node is used to generate the hypotheses. The Ontology Selection agent uses a

speci�c model for its hypotheses. This model is shown in Figure 6.9. You can see that the

1

1..*

�interface�
IHypothesis

getValue() : String

getCon�dence() : double

. . .

OntologyHypothesis

ontologyPath : String

score : double

getValue() : String

getCon�dence() : double

OntologyHypothesesSet

only1HypothesisValid : bool = false

range : HypothesesRange = SECTION

. . .

�enum�
OntologyType

ACTOR

ENVIRONMENT

Figure 6.9.: Implementation: Speci�c Hypothesis for Ontology Selection
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hypotheses of the Ontology Selection simply encapsulating the path to the ontology and its

score. Furthermore, the Ontology Selection de�nes its own type of HypothesesSet. Besides

the usual attributes of such a set, the set is also characterized by the type of ontology of

the hypotheses. More precisely, Range and only1HypothesisValid are already de�ned.

Since the information in ontologies might overlap, the sets are not restricted to contain

only one valid hypothesis. The range of the hypotheses of the Ontology Selection is set to

Section.

After its execution, the Ontology Selection agent provides exactly two �xed sets of

hypotheses: First, a set that represents to possible actor ontologies. Secondly, a set that

contains the possible environmental ontologies. If a selection of ontology hypotheses is

given, the agent loads the selected ontologies by its path in a �rst step. After loading, the

agent creates a merged ontology and sets the ontology attribute of the ontology node.

Thereby, the application of the selection is completed.

The last functionality that is still missing is the generation of pseudo-hypotheses. This

generation uses the attribute in the ontology node that contains all merged ontologies.

Using that information the agent generates one �xed set of ontology hypotheses that

contains all actor and environmental hypitheses. As no score is present, the agent uses#0#

as score.

6.5. Agent Analysis Explorer

After the extension of existing agents has been completed in the previous section (T2.4),

this section introduces the Agent Analysis Explorer. This explorer aims to complete the

�fth task of this second phase — providing a GUI to visualize the exploration graph. The

example for the whole section is the sentence “okay Armar go to the table grab popcorn

come to me give me the popcorn which is in your hand”. That sentence is taken from the

evaluation of Keim [14].

Before de�ning the actual graphical interface, the data that shall be visualized has to

be considered. In the case of the Agent Analysis Explorer that data is an exploration

result. An exploration result is the combination of the input text and the exploration

graph (cf. Figure 6.3). In Figure 6.10 you can see an excerpt of the actual data for the example

sentence. Like shown in the picture, the data is stored as JSON. The representation as JSON

is only possible since the exploration graph is a tree. In general an exploration result has

two root nodes: the input text (represented as string) and the root node of the exploration

graph (explorationRoot). Each node of the exploration graph contains the declaration of

the agent speci�cation and a unique id that de�nes the node. Furthermore, it contains a set

of HypothesesSelection called selectionsFromBefore. This set contains the selections of

the previous layer that lead to this hypothesis. Therefore, the root layer entry (root node)

does not contain any selection. In addition, a layer entry contains its actual hypotheses

sets as a list. The example shown in Figure 6.10 contains exactly one hypotheses set. This

set contains hypotheses for the word “hand”. Each hypothesis is characterized by the value,

the con�dence, and a human readable representation. The latter is omitted for clarity.

In addition to the hypotheses, the hypotheses set contains the information about range,
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{

"inputText": "okay Armar go to the table ...",

"explorationRoot": {

"agent": "WikiWSDHypothesisSpec",

"id": "WikiWSDHypothesisSpec-0",

"selectionsFromBefore": null,

"hypotheses-sets": [

{

"hypotheses": [

{

"value": "hand",

"prettyInformation": "...",

"confidence": -263.36559750419855

},

{

"value": "hand (unit)",

"prettyInformation": "...",

"confidence": -267.4772987635863

}, ...

],

"only1HypothesisValid": true,

"hypothesesRange": "NODE",

"shortInfo": "hand",

"wordOfHypotheses": "hand"

}, ...

],

"children": [...]

}

}

Figure 6.10.: The exploration result of the sentence (Simpli�ed)

word, and validity of multiple hypotheses (only1HypothesisValid). There is also a short

description that contains in this case only the word the hypothesis refers to.

In summary, the GUI has to display the several information: The Exploration Tree (Layer

Entries, Hypotheses, Selections), the input text, and the information about a speci�c element

of the exploration tree (selected by a user in the tree). Figure 6.11 shows the actual GUI to

represent the exploration of the Hypotheses Graph. The user interface is separated into

several parts. First, the menu that allows the loading of exploration results via a File menu.

Second, the graphical representation of the exploration graph. Since the exploration graph

is a tree, the representation is a typical tree view as known from �le explorers. Like the

JSON data, the tree starts with the root layer entry (“Layer Entry 0”) and contains two sub

nodes. On the one hand, the hypotheses sets (“hypotheses”) of the current layer. And on

the other hand, the child entries of the current layer entry. The child nodes itself contain
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Figure 6.11.: The Agent Analysis Explorer

the successive layer entries. A third optional sub node of a layer entry is the “Selections”

node that contain the selections from the previous layer that lead to the current layer

entry. Like shown in the picture the root layer entry has no selections as no predecessor

exists. The third part of the GUI simply shows the input text that is used for the loaded

exploration. The last part of the interface is responsible to show the information from the

node selected in the exploration graph. Di�erent types of nodes must be distinguished:

Layer Entries, Hypotheses Selections, and Hypotheses Sets. If you select a layer entry,

the table shows information about the actual agent that is executed. Currently the only

information shown is the name of the agent. If a selection of hypotheses is marked, the

table shows the selected hypotheses along with their con�dences. The last option of

selections is the selection of a �xed set of hypotheses. Such a selection is shown in the

�gure. Like shown in the picture the selection of a set of hypotheses lead to the viewing

of the hypotheses of this set together with its con�dences. In the �gure you can see the

hypotheses for the word “hand” that are known from the JSON (cf. Figure 6.10). This GUI

completes the work on the second phase of the approach.
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In the last chapters, the exploration of hypotheses of some agents was implemented. It

is therefore possible to generate paths for a combination of agents and selectors. Each

path represents a possible result of the agents. The last question that is still unanswered is

how to distinguish good paths from the bad ones. In particular, it is not yet clear what

“good” actually means. In the following, I will �rst discuss what “good hypotheses” mean

in this thesis. Subsequently, a class of rating functions is proposed, that was implemented

in this thesis. Finally, the Agent Analysis Evaluator is introduced as a tool for the rating of

hypotheses that is later necessary for the evaluation.

A path in a given Hypotheses Graph consists of the hypotheses of each layer and the

selections within each layer. The results of the actual agents are de�ned by the selections

and the hypotheses in the following way: If the hypotheses of an agent are �ltered by

a selection provider, the result of the agent is de�ned by the selected hypotheses. Thus,

the de�nition of a result respects the actual selections within a Hypotheses Path. If the

hypotheses of an agent are not �ltered by a selection provider, the result of the agent is

de�ned by all generated hypotheses of the agent. Typically, this is the case if the agent is

the last agent in the hierarchy. This is so, because no selection on the hypotheses of this

agent is executed. With this de�nition of how to derive results from paths, the de�nition

of “good” paths is now quite clear.

Good Rating Functions identify good paths. Good paths are those paths whose

results can be interpreted as good based on a metric.

With this de�nition the same metrics can be used to evaluate paths that are used for the

original execution. By using the same metrics as the original execution, a Path (respectively

the results in a Path) can be compared to the execution without hypotheses.

7.1. Rating Functions for Hypotheses Paths

After getting insight about the quality of Paths, this section deals with a group of rat-

ing functions. This type of rating functions is called Normalized Aggregate. Chapter 5

introduced that con�dences of hypotheses have arbitrary ranges, depending on agents.

For example, the Wiki WSD agent uses logarithmic scales, whereas the Topic Detection
agent uses a probability. A rating function has to use some mechanism to handle the

di�erent types. In case of the Normalized Aggregate Rating Functions this is achieved by

normalizing the con�dence values.

The details of the algorithm is shown in Algorithm 4. As you can see, the rating function
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Algorithm 4 Normalized Aggregate — ratePaths

Require: List of LayerEntry[] ?0CℎB , LayerEntryEvaluation ;44 , LayerCombination ;2

1: function ratePaths(?0CℎB)

2: if ?0CℎB = [] then
3: return []
4: end if
5: ?0Cℎ!4=6Cℎ←<0G (_?. ?.;4=6Cℎ, ?0CℎB)
6: <8=B ← [∞,∞, . . . ,∞] // pathLength times +∞
7: <0GB ← [−∞,−∞, . . . ,−∞] // pathLength times −∞
8: findMinMaxPerEntryPerPath(<8=B,<0GB, ?0CℎB)

9: =>A<0;8I43'0C8=6B ← []
10: for ?0Cℎ ∈ ?0CℎB do
11: =>A<0;8I43%0Cℎ← Normalize(?0Cℎ,<8=B,<0GB)

12: 4=CA~(2>A4B : double[]← LayerEntryEvaluation(=>A<0;8I43%0Cℎ, ;44)

13: ?0Cℎ(2>A4 : double← LayerCombination(4=CA~(2>A4B, ;2)

14: =>A<0;8I43'0C8=6B ← =>A<0;8I43'0C8=6B + [?0Cℎ(2>A4]
15: end for
16: return =>A<0;8I43'0C8=6B
17: end function

needs a list of hypotheses paths that shall be rated. In addition, algorithm is parameterized

by two parameters: First, the Layer Entry Evaluation and secondly the Layer Combination.

Both parameters will be discussed in the successive paragraphs. For now the parameters

de�ne the actual aggregation of the scores of hypotheses. The overall idea behind the whole

algorithm is that paths are evaluated according to the generated con�dence. Actually, the

evaluation of a path is done in relation to all other paths that are passed to the algorithm.

The full details are explained in the following.

The algorithm starts with a check whether any path is supplied. If no path is supplied,

the rating function skips any processing. Otherwise, the algorithms starts by determining

the length of the paths. During exploration, it is possible, that a selection of hypotheses

lead to no further hypotheses in the successive layers of the hypotheses graph. Thus, the

length of the corresponding path would be less than the expected length. Therefore, the

length of the paths is determined by �nding the longest path within the supplied paths.

After determining the length of the paths, the algorithm starts its work on normalizing

the con�dences. To normalize the con�dences, the con�dence intervals are mapped to a

speci�ed range. The standard range in this procedure is [0 + Y, 1 − Y] for a small Y. The

small value Y is due to the Layer Combination mechanism. During the introduction of

the Layer Combination it will be explained in more detail what this value is about. In the

following it will be considered as 0 for simplicity.

Thus, the idea is to map any range of values that can be taken by the con�dence of an

agent, to the probability range [0, 1]. The Normalized Aggregate algorithm performs this

transformation by a linear mapping from the original interval to the destination interval.

To create this mapping, the algorithm determines the maximum and minimum values of
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the hypotheses per layer of all paths (line 6-8). This information is enough to establish the

mapping. In detail, the maximum and minimum values are used to calculate the actual

value in the interval [0, 1] as follows:

E ↦→ E −<8=
<0G −<8=

As you can see that transformation ensures that any con�dence value E is mapped to the

target interval. For simplicity, a linear mapping was used in the algorithm. In general,

however, the idea of the algorithm does not depend on it.

After determining, the maximum and minimum con�dence values in each layer, the

algorithm initializes the result list. The goal of the algorithm is to return a list of �oating-

point values that represents the rating of each path of the input.

The actual rating of a path consists of three steps: First the con�dences of the hypotheses

in the path are normalized using the stored minimum and maximum values of each layer.

After normalizing, the Layer Entry Evaluation and Layer Combination are used to determine

the score of the path. A Layer Entry Evaluation function provides a score for the hypotheses

per layer. Therefore, the result of the Layer Entry Evaluation is a list of �oating-point

values that has the same length as the path. The actual functions to generate these values

will be discussed in one of the following paragraphs. To obtain the �nal rating of the path

a Layer Combination function combines the scores provided by the Layer Entry Evaluation.

Some of these functions are discussed in one of the later paragraphs. Finally, the score

of the path is added to the result list. After all paths are rated, the algorithm returns the

score of each path.

Layer Entry Evaluation As already introduced above, a Layer Entry Evaluation refers to a

function that takes the normalized con�dences of the hypotheses of one layer. Thus, the

function provides a rating for exactly one layer. In Table 7.1 you can see some functions

that are considered for the Layer Entry Evaluation. A layer entry can consider multiple

Name Description

AVERAGE Build the average score of all normalized hypotheses in the layer entry.

MEDIAN Build the median score of all normalized hypotheses in the layer entry.

MAXIMUM Use the maximum score of all normalized hypotheses in the entry.

MINIMUM Use the minimum score of all normalized hypotheses in the entry.

SIGMA Use the standard derivation of all normalized hypotheses in the entry.

Table 7.1.: An overview on functions for Layer Entry Evaluation.

hypotheses. Therefore, a combination of the di�erent con�dences is necessary. If you

consider WSD for example, you get a selected hypothesis for each disambiguated word.

If you consider Topic Detection, you get a hypothesis for each selected topic. The �rst

option in the table takes the normalized con�dences of a layer entry and calculates their

average value as score. The idea of this function is to consider a layer as good (in terms of

con�dence) if it is good on average. Instead of the average, the second function uses the
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median value. Although the idea is the same, the median is more robust against outliers.

The next two functions only consider the extreme values of the con�dence values in a

layer. However, because the maximum and minimum of all normalized con�dence values

within an entry on the path are considered once, outliers are weighted signi�cantly. Of

both functions the minimum function is more interesting, because a good value (value

near 1) here has a potentially strong importance: If the minimum value represents a good

rating, all hypotheses in the current layer entry have a good normalized con�dence. The

last function di�ers slightly from the previous ones. Instead of combining the value of the

con�dence directly, the last function determines the standard deviation of the normalized

con�dence. In this context, the idea is that potentially the variance of the normalized

values of the hypotheses of a layer entry provides an indication of the quality of the

hypotheses. What kind of such a relation could be, will be part of the evaluation later.

Layer Combination After generating the ratings for the layer entries of a path, the Layer
Combination function combines the ratings to a single rating for the whole path. In

Table 7.2 you can see the desired functions to combine the scores to one score. The �rst

Name Description

ADD Add Layer Entry Evaluation Scores as �nal score of a path.

MULTIPLY Multiply Layer Entry Evaluation Scores as �nal score of a path.

Table 7.2.: An overview on functions for Layer Combination.

possibility to combine the ratings is to sum up the ratings of a path. The idea behind adding

the scores is that the di�erent layers have equal priority on the �nal score. Finally, the

score for paths of length ; then lies somewhere in [0, ;]. The second alternative combines

the scores of the layer entries using multiplication. The idea here is that the individual

values can in�uence the �nal result more. Since the individual scores of the entries are

between zero and one, a score will be immediately at most low as soon as one of the entries

is scored zero. To mitigate this fact, a small epsilon was introduced during normalization.

This was already mentioned above. This means that the �nal value range for paths of

length ; lies in [(0 + Y); , (1 − Y); ].

7.2. Agent Analysis Evaluator

The last section of this chapter deals with the so-called Agent Analysis Evaluator. This tool

provides an interface for the classi�cation of hypotheses for evaluation. Furthermore, the

evaluator is responsible for storing information about the classi�ed hypotheses. Figure 7.1

shows the model for the classi�cation of hypotheses. As you can see, the EvaluationData

contains the actual classi�cation of the hypotheses. Therefore, the instance holds multiple

maps that map a speci�c Classification to multiple Hypotheses. Each map refers to

a speci�c layer in the exploration result that is currently evaluated. The actual map

contains a list of hypotheses for each type of classi�cation. This classi�cation data can be
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EvaluationData

classi�cationPerLayer : Map<Classi�cation, Hypothesis[]>[]

getClassi�cation(layer : int, hypothesis : Hypothesis) : Classi�cation

setClassi�cation(layer : int, hypothesis : Hypothesis, classi�cation : Classi�cation)

�enum�
Classi�cation

CORRECT = 2

RATHER_CORRECT = 1

RATHER_WRONG = −1
WRONG = −2

getBool(cls : Classi�cation) : bool?

Figure 7.1.: Implementation: Classi�cation of Agent Analysis Evaluator

accessed by supplying the number of the current layer and the hypothesis from the current

layer that shall be classi�ed. To perform a new classi�cation you have to set the layer,

the hypothesis, and its actual classi�cation. Currently, four classi�cations are possible:

CORRECT, RATHER_CORRECT, RATHER_WRONG, and WRONG. Each type within the classi�cations

is assigned a unique integer value. This value is used later in the evaluation to combine

di�erent EvaluationData.

The actual meaning of a classi�cation is con�gurable. Decisive for the later metrics

in the evaluation is whether the hypothesis is considered correct or incorrect. How this

mapping to correct or incorrect is performed for the existing types in the classi�cation is

adjustable. The mapping is accessible via getBool(..). This function has three possible

values as return: true, false, and null. Where true means, that this kind includes correct

hypotheses, false means, that this kind includes false hypotheses and null means, that

this kind includes neither correct nor incorrect hypotheses. With this mapping, metrics can

then be used in the evaluation that require a binary classi�cation of the hypotheses. As in

the previous chapters, the EvaluationData was designed to be stored as JSON. Therefore,

the model does not contain any cyclic dependencies.

For the actual evaluation, the Agent Analysis Evaluator is designed to handle the clas-

si�cation of Exploration Results that are stored as JSON �les (cf. Figure 6.10). As it is

possible to explore a sentence multiple times, the evaluator needs the ability to handle

multiple exploration result �les of the same sentence. Therefore, you can supply a single

exploration result as �le or a folder that contains multiple exploration results as JSON.

First, the evaluator checks whether EvaluationData already exists. In this case, the

evaluator loads the respective �le and extends the data if necessary. Otherwise, the

evaluator creates a new empty EvaluationData to start the classi�cation.

The classi�cation itself consists of multiple classi�cation requests for a human. You

can see such a request in Figure 7.1. As shown in the picture, the evaluator provides the
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Figure 7.2.: Agent Analysis Evaluator — Request for Classi�cation

sentence for the current classi�cation, the layer of the hypotheses, and the actual value

of the hypothesis. In addition, the respective word of the hypothesis is shown if a word

is present. The user of the evaluator has to classify the current hypothesis by selecting

the desired Classification with the buttons. After classi�cation of all hypotheses in

the exploration results, the evaluator stores the EvaluationData. This completes the

classi�cation process.
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In this chapter, the individual components of the work are evaluated. The �rst step is

the creation of a GQM plan based on the research questions. After that, the di�erent

experiments or experimental runs are introduced. Subsequently, a gold standard is created,

which is needed for the evaluation of the experiments. After the results have been evaluated,

threats to validity are discussed.

8.1. GQM Plan

The evaluation of the thesis re�ects the research questions stated at the beginning of

this thesis in Chapter 1. Before the de�nition of goals and questions of the GQM plan,

I introduce the metrics that will be used. Nevertheless, a summary of the GQM Plan

can be found in Table 8.1. The more detailed information can be found in the following

paragraphs.

Goal G1: Improvement of the result of agents
Question 1.A: Are new correct results found?

→Metric: Recall of “normal” results

Question 1.B: Do paths exist that show better results than the original variant?

→Metric: Precision, Recall, F1 score of the best paths

Goal G2: Handling of the huge search space by partial explorations
Question 2: How many correct hypotheses are found via partial exploration?

→Metric: Comparison of Recalls of partial explorations

Goal G3: Identi�cation of the good paths
Question 3: Are there rating functions that predict the correct paths well?

→Metric: Normalized Rankings of the best Paths

Goal G4: Applicability of the approach
Question 4: Does the approach improve the agents’ results?

→Metric: Precision, Recall, F1 score compared to base line

Table 8.1.: Goals, Questions, & Metrics of the GQM Plan
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Metrics for Classification Tasks The �rst metric to mention is the Recall (Equation (8.1)).

The Recall de�nes the ratio of identi�ed relevant elements (so-called true positive) and all

relevant elements (including true positive and false negative) in a certain classi�cation

task. Thereby, a true-positive (tp) is de�ned as element that has been correctly identi�ed

as relevant. A false-negative (fn) is de�ned as element that has not been recognized as

relevant, but should have been recognized.

'420;; = ' =
C?

C? + 5 = (8.1)

As this thesis deals with hypotheses and their exploration using selection providers (cf. Sec-

tion 6.3), the relevant elements are correct hypotheses. The determination of the correct-

ness of hypotheses are introduced in Chapter 7 as part of the Agent Analysis Evaluator. The

actual determination by using a user study is discussed in Section 8.2. In general, the Recall
metric needs the amount of missed elements (fn) for its calculation. In the context of the

thesis this value is not necessarily calculable. For example, if you consider topic detection

agent, many correct topics may still be unknown after exploration. Therefore, the experi-

ment setup includes a con�guration that performs an an almost full exploration. Thus,

the search space should be approximated as detailed as possible. Instead of calculating all

possible misses, the recall is then determined by using the detected misses.

The Precision de�nes the ratio of identi�ed relevant elements and all selected elements

for a given classi�cation. A selected element is either a true positive (tp) or a false

positive (fp). False positives are those elements that are wrongly assumed to be relevant.

In Equation (8.2) the precision metric is de�ned.

%A428B8>= = % =
C?

C? + 5 ? (8.2)

In terms of hypotheses exploration, the metric de�nes the proportion of correct hypotheses

within a given path or selection.

A typical way to combine precision and recall is the F1 Score. As de�ned in Equation (8.3),

the F1 Score is the harmonic mean of precision and recall.

�1 = 2 ∗ ?A428B8>= ∗ A420;;
?A428B8>= + A420;; (8.3)

Goals and Questions After de�ning the necessary metrics, the goals and questions of the

GQM plan will be stated. As a reminder, the research questions are listed again below:

Research Questions

RQ1: What types of hypotheses are found in agents of an MAS for

natural language?

RQ2: Can the results of agents be improved through partial explo-

ration without changing the underlying mechanisms of the

agents?

RQ3: Can correct hypotheses be identi�ed after exploration?
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The �rst research question is not measurable and is going to be discussed in Chapter 9.

Nevertheless, the goals of the GQM plan are directly related to the second and third

research question. Two goals of the GQM plan are related to the improvement of the

results of agents (RQ2): First, the actual achievement of improvements (G1). Second, the

handling of the huge search space by partial explorations (G2). A general improvement

without control of the search space would be di�cult to use in practice.

Regarding the improvement, the �rst question (Q1.A) to answer is whether the explo-

ration process unveiled new correct hypotheses in contrast to the execution of the agents

without exploration of the search space. To evaluate the improvement, you measure the

recall for the execution for some sentences without exploration of the search space. The

lower the recall of these executions in relation to exploration performed, the more sense

the exploration potentially makes, as new correct hypotheses are discovered. The second

question regarding the improvement of the results is whether the exploration leads to

paths that are better than the original “normal” result of the agents (Q1.B). These results

can be directly extracted from the paths (cf. Chapter 7). To compare the results (generated

by the paths) to the original result for a given input, you can compare the precision, the

recall, and the F1 score of the di�erent layers. As di�erent inputs lead to di�erent values

for precision and recall, the interesting value is the trend of this metrics.

After considering the questions regarding the �rst goal in the GQM plan, the next

goal has to be considered. The handling of the large search space of hypotheses (G2) is

performed by using selection providers that build only some combinations of hypotheses

and not all combinations. The question to be answered is how many correct hypotheses

are found in relation to a gold standard (Q2). Di�erent con�gurations for exploring the

search space are then examined (cf. Section 8.2). The metric used to measure the quality

of di�erent types of exploration is the Recall. It indicates how many correct hypotheses

can be found compared to all hypotheses that have been found during all explorations.

After de�ning the goals for the second research question, the next goal is related to

the third research question: The third goal of the GQM plan is the identi�cation of the

good paths of an exploration (G3). Rating functions have been introduced in Chapter 7 to

identify these paths. The question is whether one of the de�ned Rating Functions is able

to identify the best paths (Q3). A metric to measure the classi�cation performed by the

rating functions is a Rank. If you consider the best paths according to the F1 score, you

can determine the rank of this paths in the ranking performed by rating functions. The

lower the rank (if you assume the best is 0), the better the rating function has identi�ed

the good paths. Since the number of paths can vary depending on the input, a normalized

rank of a Path ? is de�ned below:

#>A<0;8I43'0=: (?) 34 5= '0=: (?)
#(%0CℎB) (8.4)

As you can see the normalized Rank sets the actual rank in relation to the amount of paths

that have been rated. If you consider a normalized Rank of 0.05 for the best path that

would mean that the best path can be found by considering only the top 5% of the ranking.

The lower this normalized rank is, the better the rating function is performing in terms of

detection of the best path.
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The last goal of the GQM plan is the actual applicability of the approach (G4). The

question that shall be answered is whether the overall approach can improve the results

of agents (Q4). To answer this, the precision, recall, and F1 measure shall be compared to

a base line experiment (No Exploration). Thus, the selection providers and rating function

are �xed.

8.2. Experiments

After de�ning the goals, questions, and metrics for evaluation, the actual experiments are

stated in this section. In a �rst step, the machine that has been used for the evaluation is

speci�ed. After that, the con�guration of the used agents is described. At the end of this

section, the four experimental runs are explained.

Evaluation Machine Specs All the following experiments are performed on the same

machine. The operating system of the machine is Microsoft Windows 10 Version 2004 (OS
Build 19031.572). It operates on an Intel(R) Core(TM) i7-5820K CPU @ 3.30GHz and uses

32 GB RAM. As Java Virtual Machine (JVM), the computer uses the pre-compiled version of

OpenJDK 14.0.1 x64. The JVM has been allowed to use up to 30 GB of the RAM (cf. -Xmx30g).

Configuration of the Agents For evaluation, the following agents have been used: Wiki
WSD, Topic Detection, and Ontology Selection. The realization of the hypothesis speci-

�cations for these agents has been discussed in Section 6.4. The only parameter that

needs to be de�ned for the Wiki WSD (WSD) agent is the amount of senses of a word

that is going to be transformed to a hypothesis. For this experiment this value is set to

5. Considering the Topic Detection (TD), the number of topics to be used as hypotheses

has to be de�ned here. For the experiments, this value is set to 10. For the Ontology
Selection (OS) the con�guration is somewhat more complex. First the number of maximum

hypotheses is limited to 10, as in the TD. Since less than ten ontologies (per ontology type)

are loaded, this ensures that the number of ontologies is not limited. The value 10 was

chosen because the OS agent uses an internal instance of the TD agent that should be

initialized exactly like the instance for the experiment. The second part of the OS agent

con�guration concerns the loaded ontologies. You can �nd the used ontologies in the work

of Keim [14]. The following actor ontologies were loaded: robot.owl, virtual_assistant.owl,
drone.owl, lego_mindstorms.owl. In addition, the following environmental ontologies have

been loaded: kitchen.owl, bedroom.owl, bar.owl, laundry.owl, garden.owl, childrens_room.owl,
heating.owl, music.owl.

Experimental Runs There are four experimental runs. One of the runs is used to create

the gold standard (cf. Section 8.3) and represents an almost full exploration. Furthermore,

the data is used to answer the questions of the GQM plan in Section 8.4. All experimental

runs use di�erent selection providers to explore the exploration graph. The sentences for

this evaluation originate from a evaluation by Keim [14]. In addition, they are listed in

Appendix A.1.
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The four experimental runs are used to gain some information about the actual per-

formance of the exploration. Therefore, di�erent levels of exploration are considered.

Starting at completely no exploration and ending at an almost full exploration. As di�erent

amount of threads are used during the experimental runs, the runs are not completely

comparable in terms of the actual run time. This will be discussed further in Section 8.4. In

the following, the actual con�guration of the di�erent experimental runs are introduced.

ExperimentalRun 1: BaseLineExperiment—NoExploration The �rst experimental run

de�nes the base lines. Therefore, the original agents are executed and pseudo-hypotheses

are stored. Thereby, one path per sentence is created. By default, the Wiki WSD agent

annotates exactly one sense to each disambiguated word. The Topic Detection is con�gured

to store the best three topics that have been found using the senses of the words of a

sentence. Finally, the Ontology Selection agent selects multiple ontologies. The number of

selected ontologies is not restricted.

Experimental Run 2: Gather Hypotheses — Full Exploration The second experimental

run represents the most extensive exploration. This run is designed to �nd as many

hypotheses as possible to create a suitable gold standard. For this second experimental

run, the WSD agent uses the Full Exploration Strategy introduced in Chapter 6. The search

space that originates from the hypotheses of the WSD agent is only restricted due to the

use of the Same-Word-Same-Decision Decorator. The Topic Detection uses a Top-X Sliding
window. This selection provider is con�gured to create a maximum of three combinations

using three hypotheses (Topic Hypotheses). As the ontology selection is the last agent in

the hierarchy, no speci�c selection provider needs to be applied. The agents themselves

are con�gured like described in a previous paragraph. The goal of this exploration is to

cover a large search space in order to make the recall metrics as accurate as possible. Due

to the time required for this exploration, this exploration is not suitable for a regular run.

Experimental Run 3: Top-X Exploration After considering an almost full exploration,

the third run restricts the exploration graph by using only Top-X candidates for the

exploration. In comparison to the second experimental run, the only change is the use of

another selection provider for the Wiki WSD agent: The Wiki WSD agent uses a Top-X
Con�dence Strategy that is decorated with the Same-Word-Same-Decision Decorator. The

con�guration of the Top-X Con�dence Strategy de�nes a maximum of ten selections. This

value is chosen to regard the amount of hypotheses per word, which is also set to ten. The

con�gurations for the Topic Detection and Ontology Selection stay the same.

Experimental Run 4: Random Exploration The fourth experimental run uses random-

ness for the exploration of the exploration graph. Therefore, the Wiki WSD agent uses a

Random Hypothesis Selection Provider that is again decorated with the Same-Word-Same-
Decision Decorator. The restriction performed by the selection provider is set as follows:

In total, a maximum of 250 paths can be created by Wiki WSD. In addition, the number of

paths may not exceed 20% of the paths of the Full Exploration. To ensure reproducibility,

the seed of the randomness generator is �xed. The other agents are con�gured as before.
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8.3. Definition of the Gold Standard

In the previous sections, the GQM Plan and experiments that shall be performed, are

introduced. All metrics that are considered have the need of a classi�cation of hypotheses

regarding the correctness of them. The acquiring of the gold standard has been performed

after the actual execution of the explorations. Therefore, all generated hypotheses are

known. The classi�cation of the hypotheses has been realized by a user study. Two points

are therefore important for the creation of the gold standard: Firstly, the conducting of

the user study. Secondly, the creation of the gold standard by using the results of the user

study.

The User Study The whole study took place virtually. In the appendix you will �nd

questionnaires that had to be �lled out by the participants (cf. Appendix A.2). The user

study was performed by three masters students of computer science respectively media

informatics. At the beginning, they had to �ll in a short form about themselves. The actual

results of this questionnaire is also available in the appendix (cf. Appendix A.3).

After the questionnaire has been answered, a participant had to download an archive �le

that contains all the necessary data for the evaluation. Directly after unpacking, the idea

of hypotheses, layers, and the three agents were explained to the participants. This was

made possible by a two-page introduction with text and illustrations. This introduction

can be found in the appendix (cf. Appendix A.4). The instructions also explains how to

use the Agent Analysis Evaluator.
After they have read the instructions, the evaluation actually starts. The participants

have started the classi�cation process for all hypotheses by using the Agent Analysis
Evaluator. The evaluation has ended after the participants have submitted an archive

containing the data of the evaluator.

The Aggregation of the Data The user study provided a unique classi�cation of all hy-

potheses generated for the sentences for each participant. These classi�cation data are

represented as EvaluationData objects as introduced in Chapter 7. The goal of aggregating

the results is to create exactly one gold standard for each sentence. For this purpose the

following scheme has been used used to combine the classi�cations:

1. If two or more participants have classi�ed a hypothesis equally, this classi�cation is

used for the hypothesis.

2. Otherwise, add the values of the classi�cations of a hypothesis and use the classi�-

cation represented by the sum as the gold standard.

The creation of the gold standard thus considers majorities. If no majorities exist, trends

are considered. Two examples show how the schema works: Assume that the following

classi�cations are available for a hypothesis: 2x CORRECT, 1x RATHER_CORRECT. In

this case, the �rst rule of the schema applies and the �nal classi�cation is CORRECT.

As a second example it is assumed that a hypothesis is classi�ed as both CORRECT and

RATHER_CORRECT, as well as RATHER_WRONG. The �nal classi�cation has to be calcu-

lated by adding the values of these classi�cations (cf. Figure 7.1). The calculation would
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be 2 + 1 + (−1) = 2, which represents CORRECT. It is important to note the calculation

takes all opinions into account. If the last classi�cation would be WRONG instead of

RATHER_WRONG the result changes to RATHER_CORRECT because 2 + 1 + (−2) = 1. This

schema allows the creation of exactly one classi�cation for all hypotheses of the sentences.

Therefore, explorations can be evaluated in the next step.

8.4. Experimental Results

The preceding sections have de�ned the metrics, goals, and questions that shall be answered

due to this evaluation. Furthermore, the di�erent experiments or experimental runs have

been introduced. This section follows the GQM plan and works through the goals and

questions of the GQM plan one by one. However, before the GQM plan is elaborated, some

general data on the experiments are �rst collected.

8.4.1. Statistical Data of the Exploration Experiments

The experimental setup allows to gain some statistical data about characteristic values

like the number of paths of an exploration and the duration of the exploration process. A

summary of the gathered values is shown in Table 8.2.

Experiment Sentences Threads # Path (∅) Duration
(
�DA0C8>=
(4=C4=24

)
No All Sentences

}
1 1

}
13<8= (16 B)

Full Num Sentences

}
3 10 − 2250 (647)

}
23.3 ℎ (39<8=)

alexa1.1

}
2

1875

}
7.3 ℎ (3.7 ℎ)

bedroom1.1 375

garden1.1
 2

375
 1.6 ℎ (24<8=)

heating1.1 10

heating2.1 375

music1.1 375

drone2.1
 2

9375
 31.3 ℎ (10.4 ℎ)mindstorm1.1 3000

childrensroom1.1 9375

if4.1

}
1 9375

}
20.6 ℎ (20.6 ℎ)

if5.1
 1

≈ 84375
 —bar1.1 ≈ 46875

drone1.1 ≈ 328125

Top-X All Sentences

}
3 10 − 16 (15)

}
73<8= (89 B)

Random All Sentences

}
3 2 − 750 (213)

}
10.3 ℎ (13<8=)

Table 8.2.: Statistical Data for the Experimental Runs
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In the �rst data line of the table you can see the statistical data of the base line experi-

ment (No Exploration). As you can see, the experiment has been performed sequentially

and produces exactly one path per sentence. The whole experimental run took 13 minutes

for all 49 sentences, which equals 16 seconds per sentence.

The next groups of rows in the table represent the full exploration experimental run.

To speed up the exploration process, multiple sentences have been analyzed in parallel

using multiple threads. During the experiment a limiting factor has been identi�ed: The

available RAM. As the full exploration experiment creates a huge amount of paths, multiple

instances of PARSE Graphs are created. Thus, the limit of 30 GB has been reached quickly.

To prevent a memory over�ow, the sentences have been grouped together. This is shown

by the di�erent blocks of rows that you can see in the table.

For example, you see that the full exploration experimental run for the sentences whose

identi�er consists of a number (“Num Sentences”), has been calculated on three cores

in parallel (cf. data row 2). Furthermore, it is stated that the amount of paths for this

group lies within 10 and 2250 paths per sentence. The average amount of paths that were

generated in that group of sentences is 647. A total of 23.3 hours were needed for the

exploration of these sentences.

One group of sentences is particularly important: The sentences that could not be

explored with the full exploration strategy. This group consists of if5.1, bar1.1, and drone1.1.

The exploration of these sentences were not possible on the machine speci�ed above, as

the memory has been exceeded during the exploration. For each of the sentences, the

30 GB of memory were not enough to hold the tree that was built up along with the PARSE

Graphs. The number of paths was estimated by the amount of branches for the WSD layer

and the con�guration of the selection provider of Topic Detection. As you can see, the

number of sentences in the comparison to the other sentences di�ers strongly.

The time for exploration can be reduced by restricting the exploration. You can see

this for the two remaining experimental runs in the two last data rows. The best results

in terms of time were thus achieved for the Top-X con�guration, since on average the

smallest number of paths has been explored.

In summary, the whole experiment had a computation time of approximately four days.

Especially the memory consumption, which restricted the parallel execution of agents on

the machine, was responsible for the overall long runtimes of most groups. In addition,

the paths for a sentence are always only explored sequentially. For paths as well as for

the three sentences that could not be fully explored, it should be checked in particular

whether the exploration itself can parallelized. This is especially interesting from the point

of view of the INDIRECT Project [12], because one idea at INDIRECT is to load whole

documents and not just single sentences.

8.4.2. Results regarding the Improvement of Agents

The �rst goal of the GQM plan is the improvement of agents by using the exploration

of hypotheses. Therefore, two questions have been formulated. The �rst one is whether

new correct results can be found. This leads to the question of what correct and incorrect

hypotheses are in this evaluation. For this evaluation, the correct hypotheses are those

hypotheses that are classi�ed as CORRECT according to the gold standard. Incorrect
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hypotheses are those that are classi�ed as WRONG. The hypotheses that are classi�ed

as RATHER_CORRECT or RATHER_WRONG are not taken into account to calculate the

classi�cation metrics. This decision is based on the fact that in order to use these hy-

potheses, you would have to check the individual hypotheses; you would have to decide

whether a hypothesis is really correct or false. Especially, the aggregation might have to

be reconsidered.

Recall for No Exploration The �rst question is measured by the recall of the �rst exper-

imental run (No Exploration). An excerpt of the precision, recall and F1 score for the

base line experimental run is shown in Table 8.3. The whole table is available in the

appendix (cf. Appendix A.5.1).

Sentence WSD TD OS
P R F1 P R F1 P R F1

1.1 1.00 1.00 1.00 0.67 0.40 0.50 1.00 0.67 0.80

2.1 1.00 1.00 1.00 0.33 0.33 0.33 1.00 1.00 1.00

3.1 1.00 0.60 0.75 0.00 0.00 — 1.00 1.00 1.00

...
...

...
...

...
...

...
...

...

alexa1.1 0.67 0.40 0.50 0.00 0.00 — 1.00 0.33 0.50

bar1.1 0.50 0.50 0.50 0.00 0.00 — 1.00 1.00 1.00

bedroom1.1 0.67 0.50 0.57 0.00 0.00 — 1.00 1.00 1.00

childrensroom1.1 0.40 0.50 0.44 0.00 0.00 — 0.00 0.00 —

drone1.1 0.71 1.00 0.83 0.50 0.33 0.40 0.50 0.50 0.50

drone2.1 0.00 0.00 — 0.00 — — 0.00 0.00 —

garden1.1 0.67 0.50 0.57 0.00 0.00 — 1.00 1.00 1.00

heating1.1 1.00 0.50 0.67 0.50 0.33 0.40 0.50 0.50 0.50

heating2.1 1.00 0.33 0.50 1.00 0.75 0.86 0.50 0.50 0.50

if.4.1 0.50 0.50 0.50 0.00 0.00 — 1.00 1.00 1.00

if.5.1 0.80 0.57 0.67 0.00 0.00 — 1.00 0.67 0.80

mindstorm1.1 0.50 1.00 0.67 0.00 — — 0.00 0.00 —

music1.1 0.67 0.40 0.50 0.00 — — 1.00 1.00 1.00

Average 0.84 0.80 0.82 0.28 0.26 0.40 0.63 0.84 0.74

Table 8.3.: Precision, Recall, and F1 for No Exploration [A.5.1]

As you can see, the value of the recall (R) varies depending on the di�erent agents. On

average, you see that about 80% of all correct hypotheses of the Wiki WSD agent can be

found without exploration. Nevertheless, especially the more complex sentences have

lower values for the recall.

A di�erent picture emerges by looking at the Topic Detection agent. On average the

recall value for all sentences is 26%. This means that the exploration has identi�ed 74%

new correct topics compared to no exploration. If you look at the more complex sentences

at the end of the table, you can see that many do not have a single correct topic. This can

be concluded from the zero values for the recall of the respective sentences.
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Regarding the ontology selection, the recall values are similar to ones for the Wiki

WSD agent. Especially note that the selection of the hypotheses of the last layer does not

exist, because no further agent follows. The consequences of this are discussed in the next

paragraph. Nevertheless, the recall value indicates that 84% of the correct hypotheses are

found without exploration.

In summary, the simple answer regarding �nding new correct hypotheses with the

help of exploration is: Yes, one �nds new correct hypotheses. However, the amount of

found hypotheses depends largely on the agent. With WSD you consider an agent, where

actually only one WSD hypothesis out of a set of hypotheses should be correct. Here the

gain of new correct hypotheses is rather small. With regard to TD, the largest increase can

be observed. This is especially due to the fact that several hypotheses can be correct. Also,

it can be seen that there are sentences, where no correct topics were found before. The

OS agent is an agent whose hypotheses are known in advance (besides the con�dences)

and only the selection is interesting. This is because the ontologies are all known. As

with the WSD agent, many hypotheses have already been found without exploration.

Nevertheless, there are some sentences where no correct hypothesis has been selected

without exploration.

Precision, Recall, and F1 score of the best paths The second question regarding the im-

provement of the results of agents is whether paths exist that represent better results than

the results without exploration. To answer this question, three paths are selected for each

sentence. The selected paths are shown in Table 8.4 (Full Table: Appendix A.5.2).

Sentence WSD TD OS
P R F1 P R F1 P R F1

1.1 F1 WSD 1.00 1.00 1.00 0.67 0.40 0.50 1.00 0.67 0.80

1.1 F1 TD 1.00 1.00 1.00 1.00 0.60 0.75 1.00 0.67 0.80

1.1 F1 OS 1.00 1.00 1.00 0.67 0.40 0.50 1.00 0.67 0.80

...
...

...
...

...
...

...
...

...

alexa1.1 F1 TD 0.50 0.40 0.44 1.00 0.67 0.80 1.00 0.33 0.50

alexa1.1 F1 OS 0.00 0.00 — 0.00 0.00 — 1.00 1.00 1.00

bar1.1 F1 WSD 1.00 0.50 0.67 0.00 0.00 — 0.25 1.00 0.40

bar1.1 F1 TD 0.20 0.17 0.18 1.00 0.33 0.50 1.00 1.00 1.00

bar1.1 F1 OS 0.50 0.50 0.50 0.00 0.00 — 1.00 1.00 1.00

...
...

...
...

...
...

...
...

...

Table 8.4.: Precision, Recall & F1 of the best Paths [A.5.2]

The �rst path of a sentence represents the best path regarding the F1 scores for the Wiki

WSD hypotheses of a sentence. For example this would be 1.1 F1 WSD for the sentence

with identi�er 1.1. The second path represents the best path according to F1 score for

the Topic Detection (TD). The third one is the best path if you look at the F1 score for

Ontology Selection (OS). This selection of paths should serve as an indication whether the

newly found hypotheses are also present in the paths.
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In the context of the OS the question arises, how the hypotheses of the ontology

selection agent can be interpreted as selection. This was already mentioned above and

is now explained here. Within the context of this evaluation, the selection of these

hypotheses takes place through the use of con�dence. The OS agent creates two �xed sets

of hypotheses per path. The �rst set contains the hypotheses regarding the actor ontologies.

In the second set, the hypotheses for the environmental ontologies are contained. As in

most of the cases only one ontology �ts to a certain sentence (one for the actor and one

for the environment), the evaluation uses the best rated hypothesis as selected hypothesis.

In the case that there are multiple best hypotheses with the same con�dence, all those

hypotheses get selected.

In order to get insights into how these best sentences from Table 8.4 behave in relation

to the base line experiment without exploration, the changes in precision, recall and F1

are considered below. In Table 8.5 you can see the these changes.

Metric WSD TD OS

Δ Range Δ∅ Δ Range Δ∅ Δ Range Δ∅
P [±0.00,+0.50] 0.03 [±0.00,+1.00] 0.51 [±0.00,+1.00] 0.29
R [±0.00,+1.00] 0.04 [-0.25,+1.00] 0.34 [±0.00,+1.00] 0.08
F1 [±0.00,+0.29] 0.02 [-0.19,+0.60] 0.31 [±0.00,+0.50] 0.23

Table 8.5.: Changes for Precision, Recall, F1 Score for the best Paths (cf. Table 8.4)

For each value whose change is observed, i.e. the precision, the recall, and the F1 score

for each of the layers, an interval and an average are calculated. The interval describes the

range of the di�erence of the three best paths of exploration to the one without exploration.

This interval is designated Δ Range in the table. If you consider these intervals for the

Wiki WSD agent, you can see that neither the precision, nor the recall, nor the F1 score

are negatively in�uenced for these best sentences. In particular, the +1.00 at the recall

of the WSD’s Δ Range shows that there is at least one sentence that has a maximum

improvement for the recall value. The average describes the mean of these di�erences for

all 49 sentences. This average of the di�erences is designated Δ∅ in the table.

To summarize the changes in of the precision, recall, and F1 score for the �rst layer,

you can see that all scores slightly increased for the WikiWSD agent. The increase

regarding the metrics for the Topic Detection is substantially higher on average for the

best paths. For the OS layer, you can also see that especially the precision and the F1

measurement are potentially greatly improved. In particular, the values for the best

paths do not deteriorate compared to the paths without exploration. In summary, the

picture that emerges is that the consequences of exploration are agent dependent. The

best paths were considered according to the F1 measure of the agents’ hypotheses. In all

measurements, improvements could be achieved for all three agents on average. Especially

the F1 score for Topic Detection, which increased by 31 percentage points on average,

is worth mentioning. Likewise, the improvements of 23 percentage points in Ontology

Selection are worth mentioning. Thus, exploration itself o�ers the potential to improve

agent results, substantially.

75



8. Evaluation

8.4.3. Results regarding the Handling of the Search Space

After analyzing the improvement of the results in general, the next paragraphs deal with

the second goal in the GQM plan: The handling of the search space. Regarding this second

goal, one question has been formulated that gives insights: “How many correct hypotheses

are found via partial exploration?” Therefore, the recalls for the two di�erent exploration

strategies will be compared. In Table 8.6 you can see the actual recalls by agent and per

sentence. The full table is part of the appendix (cf. Appendix A.5.3).

Top-X Recall Random Recall
Sentence WSD TD OS WSD TD OS

1.1 1.00 0.60 0.67 1.00 0.60 0.67

2.1 1.00 0.67 1.00 0.50 0.33 1.00

3.1 1.00 0.17 1.00 1.00 0.50 1.00

4.1 1.00 0.29 1.00 1.00 0.71 1.00

...
...

...
...

...
...

bar1.1 1.00 0.11 1.00 1.00 0.78 1.00

...
...

...
...

...
...

Average 1.00 0.59 0.92 0.82 0.69 0.93

Table 8.6.: Recall per Experiment per Sentence [A.5.3]

As you can see, two experimental runs are represented as column groups in the table.

Furthermore, the data is divided into the recalls for each layer. An important point to

mention here is that the recall was calculated by using the selected hypotheses in the

paths of the explorations. It can be seen that by using Top-X exploration all the correct

hypotheses of WSD have already been covered. In contrast, some correct hypotheses for

WSD are lost through Random Exploration. It also shows that for the �nal layer there is

almost no di�erence in the recall of the two strategies. Regarding the TD, the Random

strategy selects more correct topics on a path.

In summary, it can be stated that the combination of the WSD hypotheses in�uences the

correct TD hypotheses found. At the same time, they play a rather minor role in hitting

the correct ontologies on average over all the sentences. The search space covered by

Random Exploration covers more of the topics and ontologies that had to be found than

the simple combination of the Top-X word senses. For the control of the search space the

combination of the hypotheses is crucial. This is clearly visible, since the Top-X strategy

considers each hypothesis at least once, but still �nds less correct topics than Random

Exploration.

8.4.4. Results regarding the Identification of Good Paths

In the previous sections, it was found that exploration �nds new correct hypotheses, the

paths can also represent better results than the original results, and that the combination

of hypotheses is crucial. The third goal of the GQM plan is the identi�cation of good paths.
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The question that is asked in relation to this goal is whether one of the rating functions can

predict correct paths. To answer this question, the Random Exploration Strategy is used as

a basis, since it is the strategy that generated more paths than Top-X. In Section 8.4.2 the

best paths according to F1 score for the di�erent layers have already been presented. In

order to answer the question about the detection capability of rating functions, the ranks

of these paths are determined in the following. Furthermore, the range of values of ranks

as well as the average rank over all sentences are determined. In addition, the average

size of the groups that arise by the rating is determined. A group contains several paths

that have the same rating according to the Rating Function. Ideally this size would be one,

because then every path would be assessed di�erently. The following tables are shown as

excerpts. The full tables are available in the appendix (cf. Appendix A.5.4 & A.5.5).

In Table 8.7 you can see the (absolute) ranks for the paths with the best F1 score

for the Wiki WSD agent. The column Method (LC-LEE) de�nes the Layer Combina-

Best WSD Paths (F1)

Method (LC-LEE) Rank Group-Rank Group Size Avg
Range ∅ Range ∅ Range ∅

ADD-MEDIAN [0, 711] 33.57 [0, 706] 32.86 [1.00, 1.14] 1.01

ADD-SIGMA [0, 714] 103.53 [0, 714] 103.53 [1.00, 1.33] 1.01

ADD-AVERAGE [0, 598] 32.45 [0, 598] 32.45 [1.00, 1.00] 1.00

ADD-MAX [0, 511] 46.84 [0, 503] 46.10 [1.00, 1.32] 1.01

ADD-MIN [0, 604] 41.57 [0, 592] 40.35 [1.00, 2.00] 1.11

...
...

...
...

...
...

Table 8.7.: Rank, Group-Rank, & Group Size Avg (Absolute Ranks, WSD) [A.5.4]

tion (LC) and Layer Entry Evaluation (LEE) that is used to rate the sentences. The Y of

the NormalizedAggegate Rating Function is set to 10
−8

. As you can see, Table 8.7 shows

three characteristics: First, the rank of the best path. As already done before, the data has

been summarized over all sentences. Therefore, the range of ranks and the average rank is

provided. Second, the rank of the group that contains the best path is stated. Again, you

can see the its range and its average group rank. The third column deals with the average

group size generated by Rating Functions.

The �rst �nding is that ranks can vary greatly depending on the method. If you look

more closely at the results, you will see that the most accurate evaluations are produced

on average by using ADD-AVERAGE. In particular, the average group size in the evaluation

is constantly 1.00. Thus, this procedure di�erentiates the paths well. A problem in

considering the absolute ranks is the number of paths per sentence. As the number varies

from sentence to sentence, an average makes no sense. Thus, the Normalized Rank was

already introduced in the GQM Plan. In the following only normalized ranks are considered.

In Table 8.8 you can see the normalized ranks for the best WSD paths. You can see that

regarding the normalized ranks, ADD-AVERAGE still performs well. On an average, you

have to consider only the best 11% of the rating to �nd the best WSD path. If one regards
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Best WSD Paths (F1)

Method (LC-LEE) Rank Group-Rank Group Size Avg
Range ∅ Range ∅ Range ∅

ADD-MEDIAN [0.00, 0.95] 0.12 [0.00, 0.95] 0.12 [1.00, 1.14] 1.01

ADD-SIGMA [0.00, 0.95] 0.41 [0.00, 0.95] 0.41 [1.00, 1.33] 1.01

ADD-AVERAGE [0.00, 0.92] 0.11 [0.00, 0.92] 0.11 [1.00, 1.00] 1.00

ADD-MAX [0.00, 0.91] 0.16 [0.00, 0.90] 0.16 [1.00, 1.32] 1.01

ADD-MIN [0.00, 0.95] 0.16 [0.00, 0.95] 0.16 [1.00, 2.00] 1.11

...
...

...
...

...
...

Table 8.8.: Rank, Group-Rank, & Group Size Avg (Normalized Ranks, WSD) [A.5.5]

the values of the ranks, in particular also the absolute ranks, it becomes clear that there

are quite possible candidates for good rating functions for the Wiki WSD agent. At the

same time you can also see that these functions should rather be used as another �lter

to limit the possible paths from an exploration. But even this restriction is helpful in the

variety of paths that are created by the full exploration strategy.

In Table 8.9 you can see the normalized ranks for the best paths according to the F1

score at the TD agent’s hypotheses. According to the ranks, the best performing rating

Best TD Paths (F1)

Method (LC-LEE) Rank Group-Rank Group Size Avg
Range ∅ Range ∅ Range ∅

ADD-MEDIAN [0.00, 0.68] 0.12 [0.00, 0.68] 0.12 [1.00, 1.14] 1.01

ADD-SIGMA [0.00, 0.99] 0.43 [0.00, 0.99] 0.43 [1.00, 1.33] 1.01

ADD-AVERAGE [0.00, 0.68] 0.12 [0.00, 0.68] 0.12 [1.00, 1.00] 1.00

ADD-MAX [0.00, 0.94] 0.18 [0.00, 0.94] 0.18 [1.00, 1.32] 1.01

ADD-MIN [0.00, 0.64] 0.12 [0.00, 0.64] 0.12 [1.00, 2.00] 1.11

...
...

...
...

...
...

Table 8.9.: Rank, Group-Rank, & Group Size Avg (Normalized Ranks, TD) [A.5.5]

functions are ADD-MEDIAN, ADD-AVERAGE, and ADD-MIN. The size of groups does not

change as I use the same sentences as already for the WSD. You can see that on average,

you have to take the best 12% into account to �nd the best path according to the F1 score

for TD. Special attention should be paid to the ADD-AVERAGE function. This was the most

precise for the WSD paths. For the TD, the range of normalized ranks is between 0.00 and

0.68. This means that there was at least one sentence for which this procedure performed

the rankings rather bad. It becomes apparent that the rating functions may have to be

adapted to the properties of the hypotheses or the agent to be optimized. Especially when

using the Layer Combination MULTIPLY there is no combination that reaches the values

that the Layer Combinations with ADD have achieved.
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After considering the best paths for the F1 scores of Wiki WSD and Topic Detection, the

remaining paths belong to the Ontology Selection agent. The normalized ranks for these

paths are shown in Table 8.10. As shown in the table, ADD-MIN represents a combination

Best OS Paths (F1)

Method (LC-LEE) Rank Group-Rank Group Size Avg
Range ∅ Range ∅ Range ∅

ADD-MEDIAN [0.00, 0.95] 0.16 [0.00, 0.95] 0.16 [1.00, 1.14] 1.01

ADD-SIGMA [0.00, 0.99] 0.44 [0.00, 0.99] 0.44 [1.00, 1.33] 1.01

ADD-AVERAGE [0.00, 0.86] 0.18 [0.00, 0.86] 0.18 [1.00, 1.00] 1.00

ADD-MAX [0.00, 0.88] 0.28 [0.00, 0.88] 0.28 [1.00, 1.32] 1.01

ADD-MIN [0.00, 0.88] 0.14 [0.00, 0.87] 0.14 [1.00, 2.00] 1.11

...
...

...
...

...
...

Table 8.10.: Rank, Group-Rank, & Group Size Avg (Normalized Ranks, OS) [A.5.5]

that performs quite well on the given data for the OS agent. Using the ADD-MIN rating

function leads to a localization of the best paths within the �rst 14% on average. However,

it must also be emphasized that this is the average over 49 sentences. As the upper limit

of the range indicates, there were also sentences where the best path was scored rather

bad by the rating function.

In summary, it must be said that the choice of the rating function depends on what you

want to optimize. For optimizing the OS you would probably use ADD-MIN. This function

also works for the TD. For the WSD layer you would rather use ADD-AVERAGE. Especially

good is that all paths could be separated and only small groups of sentences are created by

the rating functions. Therefore, the paths can be di�erentiated. The number, how many

paths must be considered, are similar for each layer. On average, the best results were

achieved here for the WSD with 11%, the TD with 12%, and the OS with 14%. Extending

the search range to the second and third best paths improves the results of the selection.

In this case you would �nd one of the best three paths of the WSD on average in the 2%

range, the TD on average in the 4% range, and the OS on average in the 4% range of best

rated paths (cf. Appendix A.5.6). Nevertheless, the values also show that a re�nement of

the rating functions is necessary for successful detection. The existing functions show

potential for an initial �ltering of the results. It should also be remembered that the paths

of Random Exploration were used for calculation.

8.4.5. Results regarding the overall Approach

The �nal goal of the GQM Plan is that the overall approach is applicable and also improves

results. Thus, the entire approach is evaluated, from exploration, to the application of

rating functions, to the selection of the best path. From the previous evaluations it was

already found out that the rating function ADD-MIN should be used for the optimization

regarding the ontology selection. Therefore, this Rating Function is used. With regard to

the runtimes, the Top-X strategy is used for exploration. This strategy is more realistic
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than the runtime of the Random Exploration because the runtime is much shorter. The

results for the 49 paths thus selected are shown in Table 8.11.

Sentence WSD TD OS
P R F1 P R F1 P R F1

1.1 1.00 1.00 1.00 0.67 0.40 0.50 1.00 0.67 0.80

2.1 1.00 1.00 1.00 1.00 0.67 0.80 1.00 1.00 1.00

3.1 1.00 0.60 0.75 0.33 0.17 0.22 1.00 1.00 1.00

4.1 1.00 1.00 1.00 0.67 0.29 0.40 0.50 1.00 0.67

...
...

...
...

...
...

...
...

...

garden1.1 0.67 0.50 0.57 0.33 0.13 0.18 1.00 1.00 1.00

heating1.1 — 0.00 — 1.00 0.33 0.50 0.33 0.50 0.40

heating2.1 1.00 0.33 0.50 0.67 0.50 0.57 1.00 1.00 1.00

...
...

...
...

...
...

...
...

...

Average 0.82 0.77 0.82 0.50 0.37 0.49 0.69 0.86 0.79

Table 8.11.: Precision, Recall, and F1 for the overall Approach [A.5.7]

On average for all sentences, the table shows that precision and recall of the WSD

has slightly decreased compared to the base line experiment. The F1 measurement has

remained the same on average. In contrast to this, you can see that all three metrics have

improved for both the Topic Detection and the Ontology Selection. For the TD, the F1

score increased by 9 percentage points. Regarding the OS, the F1 score increased by 5

percentage points. If you look at garden1.1, you can see that there are at least some correct

topics in the selected path. No correct topic has been found before for this particular

sentence. On average over all sentences, it can be said that the overall approach already

contributes to an improvement in the results at this stage. At the same time, it must also

be said that the potential that can be seen in Table 8.5 has not yet been exhausted.

8.5. Threats to Validity

This section discusses the threats to validity of the evaluation. These are mainly to be

found in the creation of the gold standard and the realization of the user study.

Threats to Construct Validity In context of construct validity, one point to consider is

to keep the experimenter e�ect as low as possible. The experimenter e�ect refers to

in�uences that the experimenter has on the participants of a study. These in�uences

should be minimized. To make this possible, the interaction with the participants was kept

to a minimum. The in�uence of the experimenter was tried to minimize by using textual

instructions as well as by supporting the actual classi�cation by a program. However, due

to the online format, the experimenter was always available for the participants and also

regularly checked the current progress. Therefore, in�uences of the experimental e�ect

on the study cannot be completely eliminated.
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8.5. Threats to Validity

The construct validity is threatened by sequence e�ects. For example, the participants

had to perform virtually the same task for each sentence. In addition, learning e�ects may

have occurred because some sentences were similar. This is not critical for this study, since

it was a �rst estimation of the suitability of the approach. However, if the study is repeated,

one possibility to reduce sequence e�ects is the permutation of sentences. Furthermore,

the hypotheses that have to be classi�ed de�nitely as WRONG could be classi�ed before

the actual study.

Threats to External Validity With regard to the external validity of this user study, there

are two main issues to consider: First, the selection of participants. The selection was not

randomized. Also, only students were used for the study. In general, the question is who

uses such an MAS. Since this question depends strongly on which agents are considered,

it is not clear which group of people is a representative group. In the most cases, students

are not the representative group that use a multi-agent system for natural language.

Second, the number of participants and agents (in this study: three each) that were used

in the evaluation are an issue for external validity in this thesis. For general conclusions,

more agents and their hypotheses have to be considered. Regarding the amount of partici-

pants, only three classi�cations were used to de�ne a common gold standard. Instead of

calculating the common gold standard, strategies such as group sessions would also be

possible. Through such sessions, the participants could exchange their opinions and thus

�nd a common consensus. For a �rst estimation and with only three participants this was

not necessary yet.

Threats to Internal Validity The most crucial threat to internal validity of the study and

thus to the gold standard is found in the maturation of the participants. The study took

several hours (≈ 3 ℎ>DAB/?0AC828?0=C ) in total and the task of classi�cation did not change

over this time. As a result, the task was perceived as tiring and monotonous. Such a

study has to be shortened for later repetitions. One last point that was mentioned by one

participant was the conception of the GUI. On some screens the text was small. Also, it

was easy to click the wrong way because they clicked WRONG much more often. This

imbalance resulted from the fact that the majority of hypotheses had to be classi�ed as

WRONG. The hypotheses were therefore not balanced from the classi�cation point of view.

If this study will be repeated, the GUI should be adapted. In addition, a pre-classi�cation

of the hypotheses that are surely wrong should be done in order to shorten the evaluation

time.
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9. Conclusion

This thesis addresses the problem of error propagation within results of agents of multi-

agent systems (MAS) for natural language. For this purpose, the thesis introduces the

concept of hypotheses and the exploration of the hypotheses’ search space. The explo-

ration of the search space opened up three main questions that were examined in this

thesis: Firstly, which types of hypotheses can be distinguished in an MAS for NLP (RQ1).

Secondly, whether a partial exploration o�ers the potential to improve the results of

agents (RQ2). Finally, it had to be clari�ed whether the correct results can be identi�ed

from an exploration (RQ3).

The analysis of the existing agents of PARSE and INDIRECT has led to insights regarding

existing hypotheses. It became clear that hypotheses are always combined to a set of

hypotheses that de�nes certain properties of the contained hypotheses. The most important

property regarding the search space is the number of correct hypotheses within such a set.

In general, one can distinguish between sets of hypotheses that contain at most one correct

hypothesis and sets that contain an arbitrary number of correct hypotheses. Of these

two type of sets, the exploration for exactly one correct hypothesis is easier to perform.

Another property of hypotheses sets is their Range. A range describes the entity to which

hypotheses refer. The hypotheses can refer either to the whole input (cf. SECTION) or to a

single word (cf. NODE). In this thesis, the property has not yet been used extensively, since

the e�ects on the search space are unknown. An investigation how the range a�ects the

search space of the hypotheses is a possible future work. The last property of hypotheses

is the co-domain or range of values of their con�dences. This work has shown that the

range of values vary, depending on the agent. In order to be able to handle di�erent

co-domains, a normalization for con�dences was introduced. Regarding the �rst research

question (RQ1), three characteristics of hypotheses have been identi�ed for classi�cation:

The number of maximum correct hypotheses of a set (cf. one or arbitrary), the entity to

which the hypothesis refers (cf. Node or Section), and the co-domain of the con�dence.

With the information about hypotheses of an MAS for NLP, the mechanisms for the

exploration and assessment of hypotheses has been developed. For this purpose, speci�ca-

tions have been created in order to specify the dependencies between di�erent agents. An

algorithm has been developed on the basis of these speci�cations to examine the di�erent

layers in the search space of the hypotheses. In addition, a group of assessment functions

has been de�ned based on the normalization of hypotheses: The Normalized Aggregate
Rating Functions. In summary, these functions normalize the con�dence of a layer, combine

the normalized con�dences of hypotheses within a certain layer entry, and determine the

rating of a path by combining the assessment of its layer entries.
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9. Conclusion

Three PARSE agents were used to evaluate the approach: Wikipedia Word-Sense Disam-

biguation (Wiki WSD), Topic Detection (TD), and Ontology Selection (OS). The evaluation

was designed to answer the last two research questions. As a starting point, 49 already

existing sentences were used for the evaluation of the original agents. These sentences

were used to explore the hypotheses graph in di�erent ways and �nally extract found

hypotheses. Four experimental runs were performed: First, a base line experiment has

been executed in order to determine the hypotheses and results without exploration.

Subsequently, an almost complete exploration was conducted to obtain a large yield of

possible hypotheses. However, this exploration does not represent a realistically feasible

strategy, as it took several days to process the sentences. In order to produce results in

a more feasible manner, two further runs were performed: Top-X Exploration and the

Random Exploration. Both limit the search space and thereby they shorten the runtime.

During the evaluation, several questions regarding the second and third research ques-

tion have been answered. It was found that the recall of the agents without exploration was

between 26% and 84%. This means that up to 74% of the correct hypotheses of the explored

hypotheses space are not found without exploration. This value di�ered signi�cantly

between the agents. Subsequently, the best paths within the exploration were examined

and compared to the results without exploration. It was found that the results of each

agent got improved on average across all sentences. The improvement was particularly

noticeable for Topic Detection (F1: +0.31) and Ontology Selection (F1: +0.23). Considering

the recall for the two exploration strategies (Top-X and Random), no signi�cant di�erence

could be identi�ed for the �nal agent (Ontology Selection). If one considers the runtimes

for the two explorations, one can conclude that in practice, Top-X Exploration is the better

choice for the agents used. The Top-X Exploration was about ten times faster than Random
Exploration. Regarding the identi�cation of good paths (RQ3), it has been shown that a

certain subset of rating function generates a rather good classi�cation of exploration paths.

Nevertheless, the results indicate that a rating function is just a further step of �ltering

the paths (at least for the random exploration).

After evaluating the individual building blocks of the approach, the last step was to

evaluate the entire approach. Top-X Exploration and a �xed Rating Function were used

for this purpose. This evaluation has shown a consistently good F1 score for the WSD. In

addition, the approach improved F1 scores for the Topic Detection (+0.09) and Ontology

Selection (+0.05). Therefore, it can be stated that the approach also leads to an overall

improvement in the results.

During the realization of this work several future works have emerged. The evaluation

showed that the exploration has further potential. Therefore, especially further Selection
Providers should be developed that explore the search space di�erently. In particular,

multiple ideas arose: On the one hand, one can observe the development of con�dences of

certain hypotheses during the exploration process. Such observations could facilitate the

measurement of the impact of individual hypotheses and selection decisions. On the other

hand, the exploration could consider similarity of paths. For this purpose, e�ects caused by

changing hypothesis selections should be investigated. In particular, cross-layer evaluation

would be possible. Such an evaluation could be used to control the exploration process.

You could either trace similar paths or as di�erent paths as possible. However, it is unclear

which paths should be explored. In addition, the model of hypotheses could consider
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which hypotheses were used to generate subsequent hypotheses. For Topic Detection, such

a mechanism is already possible in the original code since the used senses are stored to

the topics. Tracking the hypotheses could provide a better understanding of the processes

involved in exploration. Thereby, the decisions would become more comprehensible. In

summary, future work can primarily work on exploring the search space more e�ectively.

Another point for future work is the creation of new assessment functions. In this thesis,

Rating Functions were created that operate purely on the con�dences of hypotheses. In

the future, the values of the hypotheses should also be considered. Furthermore, the use

of tracking of hypotheses mentioned above would also be conceivable. In this thesis, the

e�ectiveness of exploration could be demonstrated. Therefore, further agents should be

used in the future to evaluate the approach. Especially the relevance of agents that form

hypotheses for a �xed selection, such as Ontology Selection (OS), may be important for

future work. Since the paths are evaluated only on the basis of their con�dence, one should

check whether agents like OS are needed for this.
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A. Appendix

A.1. Evaluation — Sentences

The sentences that are used for this evaluation (cf. Chapter 8). The sentences are taken

from the work of Keim [14].

ID Text

1.1 okay Armar go to the table grab popcorn come to me give me the

popcorn which is in your hand

2.1 Armar can you please bring me the popcorn bag

3.1 Armar could you bring me the popcorn from the kitchen table please

4.1 Hey Armar can you go to the table and grab me the popcorn bag please

and then yeah can you bring it back to me

5.1 Hey Armar go to kitchen table take the popcorn bag and bring it to me

6.1 Armar please bring me the popcorn bag from the table

7.1 Can you grab me the box of popcorn on the table it is next to the cereal

box

8.1 Hey Armar bring me the popcorn bag from the table

9.1 Please go to the kitchen table and pick up the popcorn bag and bring it

to me

10.1 Can you bring me the popcorn from the kitchen table

11.1 Hey Armar please go to the kitchen table on the right side and hand

me the popcorn

12.1 okay go to the kitchen table ehm get the popcorn and bring it to me

13.1 go to the table in front of the window and take the popcorn and bring

it to me

14.1 hey armar go to the table grab the popcorn and bring it to me

15.1 go to the table and grab the popcorn bag

16.1 Armar go to the table and give me the popcorn bag

17.1 Armar would you please pass me the popcorn

18.1 go to the table take the popcorn give it to me

19.1 can you please give me the popcorn it is uhm in front of you on the

table

20.1 hey Armar go and get the popcorn bag for me please

21.1 can you bring me the popcorn from the table

22.1 hello Armar uhm I need some popcorn could you please go to the table

grab the popcorn box turn to turn to me and then come back and hand

it to me
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23.1 Hey Armar i need some popcorn could you please bring me some

popcorn thank you

24.1 Hello Armar bring me the popcorn bag from the table

25.1 Armar bring me the popcorn which is on the table please

26.1 Hello Robot bring me the popcorn

27.1 Hello Armar please bring me the popcorn from the table

28.1 Armar could you please bring me the popcorn which is on the left side

of the green cup Thank you

29.1 Armar could you please bring me the popcorn it is on the black table

between the cereals and the green cup

30.1 Hi Armar bring me the popcorn from the table

31.1 Hey Armar bring me the popcorn from the table

32.1 Hallo Armar bring me the popcorn bag from the table

33.1 Armar bring me the bag of popcorn from the table

34.1 Armar bring me the popcorn from the table

35.1 Hello Armar bring me the popcorn from the table He stands between

Vitalis and cup Thank you very much

36.1 Hello Armar please bring me the popcorn from the table

alexa1.1 alexa turn up the temperature of the radiator by two degrees then start

playing my favorite playlist

bar1.1 Go to the Fridge take the tonic water and mix it in the glass with the

gin that is on the counter

bedroom1.1 go to the closet open it and grab the sweater and the trousers and bring

them to me

childrens-

room1.1

tidy up by grabbing the dolls and action �gures and putting them on

top of the cabinet

drone1.1 start and accelerate as fast as possible until you �y through the gate

then slow down and turn left by sixty degree accelerate again and dodge

the table by ascending �rst and descending afterwards �y through the

greenhouse then turn left and �y above the pond if you crossed the

pond break and descend down to the lawn and �nally turn o�

drone2.1 start and ascend to �fty meters then start the recording accelerate until

you are over the target zone stop the recording and return

garden1.1 hey armar grab the lawn mower and use it to cut the grass

heating1.1 alexa turn on the radiator

heating2.1 go to the radiator and use the thermostat to increase the temperature

if.4.1 hey armar could you please have a look at these dishes if they are dirty

put them into the dishwasher if they are not dirty put them into the

cupboard

if.5.1 hey armar could you please open the fridge if there are fresh oranges

bring them with the vodka else bring the orange juice and the vodka

mindstorm1.1 follow the line on the carpet at the end of the carpet turn until you see

the rattle grab the rattle and afterwards release it again

music1.1 alexa please play my metal playlist in a random order
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A.2. Evaluation —Questionnaire

Each participant in the evaluation completed the following questionnaire.

Evaluation: Agent Analysis Framework 
 

Welcome to the evaluation of my master thesis. The evaluation runs as follows:  

0) Make sure that you have Java and Bash installed (you can get help from the evaluation manager)  

1) First, some questions are asked to get some information about you  

2) You will then receive the link for a ZIP file. After the file is unpacked, you will find information about 

the actual evaluation 

 

What is the ID that was assigned to you? 

__________________________________________________________________________________ 

Are you a student? If so, which subject / course of studies / semester? 
 

__________________________________________________________________________________ 

Are you familiar with the "PARSE" or "INDIRECT" project for processing natural language? 
o Yes, I have already worked on it 

o Yes, I have already heard about it 

o No 

 

What is your native language? 
 

__________________________________________________________________________________ 

How do you rate your English skills? 
o Native speaker 

o Business fluent 

o Fluent 

o Basic knowledge 

o No language skills 

Now download the ZIP from the given URL and follow the instructions inside of it. 
o Downloaded 

o Extracted 

Upload the results as a ZIP at the following link. Also include your ID in the ZIP. 
o ID added to the name of the ZIP 

o Uploaded 
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A.3. Evaluation — Results of Questionnaire

Evaluation: Agent Analysis Framework 
 

Welcome to the evaluation of my master thesis. The evaluation runs as follows:  

0) Make sure that you have Java and Bash installed (you can get help from the evaluation manager)  

1) First, some questions are asked to get some information about you  

2) You will then receive the link for a ZIP file. After the file is unpacked, you will find information about 

the actual evaluation 

 

What is the ID that was assigned to you? 

01__________________________________________________________________________________ 

Are you a student? If so, which subject / course of studies / semester? 
 

Media Informatics, Master, 3________________________________________________________________ 

Are you familiar with the "PARSE" or "INDIRECT" project for processing natural language? 
o Yes, I have already worked on it 

o Yes, I have already heard about it 

o No 

 

What is your native language? 
 

German_________________________________________________________________________________ 

How do you rate your English skills? 
o Native speaker 

o Business fluent 

o Fluent 

o Basic knowledge 

o No language skills 

Now download the ZIP from the given URL and follow the instructions inside of it. 
o Downloaded 

o Extracted 

Upload the results as a ZIP at the following link. Also include your ID in the ZIP. 
o ID added to the name of the ZIP 

o Uploaded 
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Evaluation: Agent Analysis Framework 
 

Welcome to the evaluation of my master thesis. The evaluation runs as follows:  

0) Make sure that you have Java and Bash installed (you can get help from the evaluation manager)  

1) First, some questions are asked to get some information about you  

2) You will then receive the link for a ZIP file. After the file is unpacked, you will find information about 

the actual evaluation 

 

What is the ID that was assigned to you? 

02__________________________________________________________________________________ 

Are you a student? If so, which subject / course of studies / semester? 
 

Computer Science M.Sc. 5th Semester________________________________________________________ 

Are you familiar with the "PARSE" or "INDIRECT" project for processing natural language? 
o Yes, I have already worked on it 

o Yes, I have already heard about it 

o No 

 

What is your native language? 
 

German_________________________________________________________________________________ 

How do you rate your English skills? 
o Native speaker 

o Business fluent 

o Fluent 

o Basic knowledge 

o No language skills 

Now download the ZIP from the given URL and follow the instructions inside of it. 
o Downloaded 

o Extracted 

Upload the results as a ZIP at the following link. Also include your ID in the ZIP. 
o ID added to the name of the ZIP 

o Uploaded 
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Evaluation: Agent Analysis Framework 
 

Welcome to the evaluation of my master thesis. The evaluation runs as follows:  

0) Make sure that you have Java and Bash installed (you can get help from the evaluation manager)  

1) First, some questions are asked to get some information about you  

2) You will then receive the link for a ZIP file. After the file is unpacked, you will find information about 

the actual evaluation 

 

What is the ID that was assigned to you? 

03__________________________________________________________________________________ 

Are you a student? If so, which subject / course of studies / semester? 
 

yes, Computer Science, 5th Semester________________________________________________________ 

Are you familiar with the "PARSE" or "INDIRECT" project for processing natural language? 
o Yes, I have already worked on it 

o Yes, I have already heard about it 

o No 

 

What is your native language? 
 

German_________________________________________________________________________________ 

How do you rate your English skills? 
o Native speaker 

o Business fluent 

o Fluent 

o Basic knowledge 

o No language skills 

Now download the ZIP from the given URL and follow the instructions inside of it. 
o Downloaded 

o Extracted 

Upload the results as a ZIP at the following link. Also include your ID in the ZIP. 
o ID added to the name of the ZIP 

o Uploaded 
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A.4. Evaluation — Instructions

Instructions for the participants. Information about the ontologies are from Keim [14].

Evaluation Instructions 
 

Your task is to evaluate hypotheses of agents. Agents are independent small programs, 

which fulfill a specific task. In our case they are divided into three layers: 

Layer 0: Word Sense Disambiguation 

The first layer tries to identify the sense of a word. For example, the word “bass” can be a 

fish or an instrument, depending on the context. 

Layer 1: Topic Detection 

The second layer tries to identify the topic of a sentence. Keep in mind that multiple topics 

may be suitable for a sentence. 

Layer 2: Ontology Selection 

The third layer tries to identify a knowledge base (ontology) for the input sentence. You 

distinguish two types of ontologies for this study: Actor Ontologies and Environmental 

Ontologies. Actor ontologies refer to possible actors like robots or smart assistants. 

Environmental Ontologies refer to the environment of a sentence like the kitchen or a 

garden. The following ontologies exist: 

Type Name Description 

Actor Household Robot (Robot API) Household Robots like ARMAR 

Actor Virtual Assistant Virtual Assistants like Alexa 

Actor Drone Drones like Quadcopters 

Actor Lego Mindstorms LEGO Mindstorm Robot 

Environment Kitchen Kitchen with Kitchen appliances, kitchen 
furniture and food 

Environment Bar Bar with cocktails, bar furniture, etc. 

Environment Garden Garden with plants, furniture, etc. 

Environment Bedroom  

Environment Children’s room  

Environment Music Topic Music (Instruments, Genres, etc.) 

Environment Heating Topic Heating (Air Conditioners, Heating 
systems, etc.) 

Environment Laundry Topic Laundry (washing machine, dryer, 
etc.) 

 

Your Task is the classification of the hypotheses provided by the agents. 

In layer 0, the system provides senses for different words. In layer 1, the system provides 

topics for sentences. In layer 2, the system supplies ontologies for actors and environment 

for a sentence. 
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You can classify a hypothesis into the following categories: 

• CORRECT: The hypothesis is correct. 

• RATHER_CORRECT: The hypothesis is rather correct. 

• RATHER_WRONG: The hypothesis is rather wrong. 

• WRONG: The hypothesis is wrong. 

 

Example 

Sentence: “armar bring the beer from the table” 

Layer 0: 

The systems provide the following hypotheses for “beer”: “beer”, “wheat beer”, “dowry” 

In this case “beer” could be classified as correct and “dowry” as wrong. Regarding “wheat 

beer” you have to decide whether you think that the correct or rather correct is a good 

classification. 

The classification is done via a GUI: 

 

Layer 1: 

The system provides the following topics of the sentence: “beer”, “furniture” 

Again you have to decide whether a hypothesis is correct. In that case both hypotheses may 

be correct, as a user requests a robot to bring a beer from a table. 

Layer 2: 

The last layer provides the following ontologies: 

“http://www.semanticweb.org/roboapibase”, 

“http://www.semanticweb.org/environment_music”  

And again you have to decide which hypotheses are correct. In that case roboapibase is 

suitable as “ARMAR” is a robot. But the second hypothesis (music) is definitely wrong. 

 

To start your task simply run “start.sh”. After completion please create a ZIP and upload it. 
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A.5. Evaluation — Results

A.5.1. Precision, Recall & F1 for No Exploration

Sentence WSD TD OS
P R F1 P R F1 P R F1

1.1 1.00 1.00 1.00 0.67 0.40 0.50 1.00 0.67 0.80

2.1 1.00 1.00 1.00 0.33 0.33 0.33 1.00 1.00 1.00

3.1 1.00 0.60 0.75 0.00 0.00 — 1.00 1.00 1.00

4.1 1.00 1.00 1.00 0.33 0.14 0.20 0.33 1.00 0.50

5.1 1.00 0.80 0.89 0.33 0.14 0.20 0.50 0.50 0.50

6.1 1.00 1.00 1.00 0.33 0.17 0.22 0.33 1.00 0.50

7.1 1.00 0.80 0.89 0.33 0.09 0.14 0.00 — —

8.1 1.00 1.00 1.00 0.33 0.20 0.25 0.33 1.00 0.50

9.1 1.00 1.00 1.00 0.33 0.17 0.22 0.50 0.50 0.50

10.1 1.00 0.75 0.86 0.00 0.00 — 1.00 0.67 0.80

11.1 0.75 1.00 0.86 0.00 0.00 — 0.50 0.50 0.50

12.1 1.00 0.75 0.86 0.00 0.00 — 1.00 1.00 1.00

13.1 0.75 0.75 0.75 0.00 0.00 — 0.50 1.00 0.67

14.1 0.67 1.00 0.80 0.33 0.33 0.33 1.00 1.00 1.00

15.1 1.00 1.00 1.00 0.33 0.25 0.29 0.50 1.00 0.67

16.1 1.00 1.00 1.00 0.33 0.20 0.25 0.50 1.00 0.67

17.1 1.00 1.00 1.00 0.50 1.00 0.67 1.00 1.00 1.00

18.1 1.00 0.67 0.80 0.67 0.67 0.67 1.00 1.00 1.00

19.1 0.67 0.67 0.67 0.33 0.33 0.33 1.00 1.00 1.00

20.1 1.00 1.00 1.00 0.33 0.50 0.40 1.00 1.00 1.00

21.1 0.50 1.00 0.67 0.67 0.67 0.67 0.50 1.00 0.67

22.1 1.00 1.00 1.00 0.33 0.20 0.25 0.33 1.00 0.50

23.1 1.00 1.00 1.00 0.50 1.00 0.67 0.50 1.00 0.67

24.1 1.00 1.00 1.00 0.33 0.14 0.20 0.50 1.00 0.67

25.1 1.00 0.67 0.80 0.67 0.67 0.67 0.50 1.00 0.67

26.1 1.00 1.00 1.00 0.00 0.00 — 0.50 1.00 0.67

27.1 1.00 1.00 1.00 0.33 0.17 0.22 0.50 1.00 0.67

28.1 0.67 1.00 0.80 0.00 0.00 — 1.00 1.00 1.00

29.1 1.00 0.67 0.80 0.00 0.00 — 1.00 1.00 1.00

30.1 0.50 1.00 0.67 0.67 0.67 0.67 0.50 1.00 0.67

31.1 1.00 1.00 1.00 0.67 0.67 0.67 0.50 1.00 0.67

32.1 1.00 1.00 1.00 0.33 0.20 0.25 0.33 1.00 0.50

33.1 1.00 0.75 0.86 0.33 0.20 0.25 0.33 1.00 0.50

34.1 0.50 1.00 0.67 0.67 0.67 0.67 0.50 1.00 0.67

35.1 1.00 0.80 0.89 0.00 0.00 — 0.50 1.00 0.67

36.1 1.00 1.00 1.00 0.33 0.20 0.25 0.50 1.00 0.67

alexa1.1 0.67 0.40 0.50 0.00 0.00 — 1.00 0.33 0.50

bar1.1 0.50 0.50 0.50 0.00 0.00 — 1.00 1.00 1.00
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bedroom1.1 0.67 0.50 0.57 0.00 0.00 — 1.00 1.00 1.00

childrensroom1.1 0.40 0.50 0.44 0.00 0.00 — 0.00 0.00 —

drone1.1 0.71 1.00 0.83 0.50 0.33 0.40 0.50 0.50 0.50

drone2.1 0.00 0.00 — 0.00 — — 0.00 0.00 —

garden1.1 0.67 0.50 0.57 0.00 0.00 — 1.00 1.00 1.00

heating1.1 1.00 0.50 0.67 0.50 0.33 0.40 0.50 0.50 0.50

heating2.1 1.00 0.33 0.50 1.00 0.75 0.86 0.50 0.50 0.50

if.4.1 0.50 0.50 0.50 0.00 0.00 — 1.00 1.00 1.00

if.5.1 0.80 0.57 0.67 0.00 0.00 — 1.00 0.67 0.80

mindstorm1.1 0.50 1.00 0.67 0.00 — — 0.00 0.00 —

music1.1 0.67 0.40 0.50 0.00 — — 1.00 1.00 1.00

Average 0.84 0.80 0.82 0.28 0.26 0.40 0.63 0.84 0.74

A.5.2. Precision, Recall & F1 for best Paths

Sentence WSD TD OS
P R F1 P R F1 P R F1

1.1 F1 WSD 1.00 1.00 1.00 0.67 0.40 0.50 1.00 0.67 0.80

1.1 F1 TD 1.00 1.00 1.00 1.00 0.60 0.75 1.00 0.67 0.80

1.1 F1 OS 1.00 1.00 1.00 0.67 0.40 0.50 1.00 0.67 0.80

2.1 F1 WSD 1.00 1.00 1.00 0.33 0.33 0.33 1.00 1.00 1.00

2.1 F1 TD 1.00 1.00 1.00 1.00 0.67 0.80 1.00 1.00 1.00

2.1 F1 OS 1.00 1.00 1.00 0.33 0.33 0.33 1.00 1.00 1.00

3.1 F1 WSD 1.00 0.60 0.75 0.33 0.17 0.22 1.00 1.00 1.00

3.1 F1 TD 0.67 0.40 0.50 0.67 0.33 0.44 1.00 1.00 1.00

3.1 F1 OS 1.00 0.60 0.75 0.33 0.17 0.22 1.00 1.00 1.00

4.1 F1 WSD 1.00 1.00 1.00 0.33 0.14 0.20 0.50 1.00 0.67

4.1 F1 TD 1.00 1.00 1.00 0.67 0.29 0.40 0.50 1.00 0.67

4.1 F1 OS 0.00 0.00 — 0.00 0.00 — 1.00 1.00 1.00

5.1 F1 WSD 1.00 0.80 0.89 0.33 0.14 0.20 1.00 1.00 1.00

5.1 F1 TD 1.00 0.80 0.89 1.00 0.43 0.60 0.50 0.50 0.50

5.1 F1 OS 1.00 0.80 0.89 0.33 0.14 0.20 1.00 1.00 1.00

6.1 F1 WSD 1.00 1.00 1.00 0.33 0.17 0.22 0.50 1.00 0.67

6.1 F1 TD 1.00 1.00 1.00 0.67 0.33 0.44 0.50 1.00 0.67

6.1 F1 OS 0.00 0.00 — 0.00 0.00 — 1.00 1.00 1.00

7.1 F1 TD 0.33 0.20 0.25 1.00 0.27 0.43 0.00 — —

7.1 F1 OS 0.25 0.20 0.22 0.00 0.00 — 0.00 — —

8.1 F1 WSD 1.00 1.00 1.00 0.33 0.20 0.25 0.50 1.00 0.67

8.1 F1 TD 1.00 1.00 1.00 0.67 0.40 0.50 0.50 1.00 0.67

8.1 F1 OS 0.00 0.00 — 0.00 0.00 — 1.00 1.00 1.00

9.1 F1 WSD 1.00 1.00 1.00 0.33 0.17 0.22 1.00 1.00 1.00

9.1 F1 TD 0.50 0.50 0.50 1.00 0.33 0.50 0.50 0.50 0.50

9.1 F1 OS 1.00 1.00 1.00 0.33 0.17 0.22 1.00 1.00 1.00
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10.1 F1 WSD 1.00 0.75 0.86 0.33 0.14 0.20 1.00 0.67 0.80

10.1 F1 TD 0.33 0.25 0.29 1.00 0.29 0.44 0.50 0.33 0.40

10.1 F1 OS 1.00 0.75 0.86 0.33 0.14 0.20 1.00 0.67 0.80

11.1 F1 WSD 0.75 1.00 0.86 0.00 0.00 — 0.50 0.50 0.50

11.1 F1 TD 0.67 0.67 0.67 1.00 0.60 0.75 1.00 1.00 1.00

11.1 F1 OS 0.75 1.00 0.86 0.33 0.20 0.25 1.00 1.00 1.00

12.1 F1 WSD 1.00 0.75 0.86 0.33 0.20 0.25 1.00 1.00 1.00

12.1 F1 TD 0.67 0.50 0.57 1.00 0.40 0.57 0.50 0.50 0.50

12.1 F1 OS 1.00 0.75 0.86 0.33 0.20 0.25 1.00 1.00 1.00

13.1 F1 WSD 0.75 0.75 0.75 0.33 0.33 0.33 0.50 1.00 0.67

13.1 F1 TD 0.25 0.25 0.25 1.00 0.67 0.80 0.50 1.00 0.67

13.1 F1 OS 0.75 0.75 0.75 0.67 0.67 0.67 1.00 1.00 1.00

14.1 F1 WSD 0.67 1.00 0.80 0.33 0.33 0.33 1.00 1.00 1.00

14.1 F1 TD 0.33 0.50 0.40 1.00 0.67 0.80 0.50 1.00 0.67

14.1 F1 OS 0.67 1.00 0.80 0.33 0.33 0.33 1.00 1.00 1.00

15.1 F1 WSD 1.00 1.00 1.00 0.33 0.25 0.29 1.00 1.00 1.00

15.1 F1 TD 1.00 0.67 0.80 1.00 0.75 0.86 1.00 1.00 1.00

15.1 F1 OS 1.00 1.00 1.00 0.33 0.25 0.29 1.00 1.00 1.00

16.1 F1 WSD 1.00 1.00 1.00 0.33 0.20 0.25 1.00 1.00 1.00

16.1 F1 TD 1.00 1.00 1.00 0.67 0.40 0.50 1.00 1.00 1.00

16.1 F1 OS 1.00 1.00 1.00 0.33 0.20 0.25 1.00 1.00 1.00

17.1 F1 WSD 1.00 1.00 1.00 0.50 1.00 0.67 1.00 1.00 1.00

17.1 F1 TD 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

17.1 F1 OS 1.00 1.00 1.00 0.50 1.00 0.67 1.00 1.00 1.00

18.1 F1 WSD 1.00 0.67 0.80 0.67 0.67 0.67 1.00 1.00 1.00

18.1 F1 TD 1.00 0.67 0.80 1.00 1.00 1.00 1.00 1.00 1.00

18.1 F1 OS 1.00 0.67 0.80 0.67 0.67 0.67 1.00 1.00 1.00

19.1 F1 WSD 0.67 0.67 0.67 0.67 0.67 0.67 1.00 1.00 1.00

19.1 F1 TD 0.67 0.67 0.67 0.67 0.67 0.67 1.00 1.00 1.00

19.1 F1 OS 0.67 0.67 0.67 0.67 0.67 0.67 1.00 1.00 1.00

20.1 F1 WSD 1.00 1.00 1.00 0.33 0.50 0.40 1.00 1.00 1.00

20.1 F1 TD 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

20.1 F1 OS 1.00 1.00 1.00 0.33 0.50 0.40 1.00 1.00 1.00

21.1 F1 WSD 0.50 1.00 0.67 0.67 0.67 0.67 0.50 1.00 0.67

21.1 F1 TD 0.50 1.00 0.67 1.00 1.00 1.00 0.50 1.00 0.67

21.1 F1 OS 0.00 0.00 — 0.00 0.00 — 1.00 1.00 1.00

22.1 F1 WSD 1.00 1.00 1.00 0.67 0.40 0.50 0.50 1.00 0.67

22.1 F1 TD 0.33 0.33 0.33 1.00 0.60 0.75 0.50 1.00 0.67

22.1 F1 OS 0.00 0.00 — 0.00 0.00 — 1.00 1.00 1.00

23.1 F1 WSD 1.00 1.00 1.00 0.50 1.00 0.67 0.50 1.00 0.67

23.1 F1 TD 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

23.1 F1 OS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

24.1 F1 WSD 1.00 1.00 1.00 0.33 0.14 0.20 0.50 1.00 0.67

24.1 F1 TD 1.00 1.00 1.00 0.67 0.29 0.40 0.50 1.00 0.67

24.1 F1 OS 0.00 0.00 — 0.00 0.00 — 1.00 1.00 1.00
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25.1 F1 WSD 1.00 0.67 0.80 0.67 0.67 0.67 0.50 1.00 0.67

25.1 F1 TD 1.00 0.67 0.80 1.00 1.00 1.00 0.50 1.00 0.67

25.1 F1 OS 0.00 0.00 — 0.00 0.00 — 1.00 1.00 1.00

26.1 F1 WSD 1.00 1.00 1.00 0.33 0.50 0.40 0.50 1.00 0.67

26.1 F1 TD 1.00 1.00 1.00 0.67 1.00 0.80 0.50 1.00 0.67

26.1 F1 OS 1.00 1.00 1.00 0.67 1.00 0.80 1.00 1.00 1.00

27.1 F1 WSD 1.00 1.00 1.00 0.67 0.33 0.44 0.50 1.00 0.67

27.1 F1 TD 1.00 1.00 1.00 0.67 0.33 0.44 0.50 1.00 0.67

27.1 F1 OS 0.00 0.00 — 0.00 0.00 — 1.00 1.00 1.00

28.1 F1 WSD 0.67 1.00 0.80 0.00 0.00 — 1.00 1.00 1.00

28.1 F1 TD 0.67 1.00 0.80 0.67 1.00 0.80 1.00 1.00 1.00

28.1 F1 OS 0.67 1.00 0.80 0.00 0.00 — 1.00 1.00 1.00

29.1 F1 WSD 1.00 0.67 0.80 0.67 0.15 0.25 1.00 1.00 1.00

29.1 F1 TD 1.00 0.67 0.80 1.00 0.23 0.38 1.00 1.00 1.00

29.1 F1 OS 1.00 0.67 0.80 0.67 0.15 0.25 1.00 1.00 1.00

30.1 F1 WSD 0.50 1.00 0.67 0.67 0.67 0.67 0.50 1.00 0.67

30.1 F1 TD 0.50 1.00 0.67 1.00 1.00 1.00 0.50 1.00 0.67

30.1 F1 OS 0.00 0.00 — 0.00 0.00 — 1.00 1.00 1.00

31.1 F1 WSD 1.00 1.00 1.00 0.67 0.67 0.67 0.50 1.00 0.67

31.1 F1 TD 1.00 1.00 1.00 1.00 1.00 1.00 0.50 1.00 0.67

31.1 F1 OS 0.00 0.00 — 0.00 0.00 — 1.00 1.00 1.00

32.1 F1 WSD 1.00 1.00 1.00 0.33 0.20 0.25 0.50 1.00 0.67

32.1 F1 TD 1.00 1.00 1.00 0.67 0.40 0.50 0.50 1.00 0.67

32.1 F1 OS 0.00 0.00 — 0.00 0.00 — 1.00 1.00 1.00

33.1 F1 WSD 1.00 0.75 0.86 0.33 0.20 0.25 0.50 1.00 0.67

33.1 F1 TD 0.33 0.25 0.29 1.00 0.40 0.57 0.50 1.00 0.67

33.1 F1 OS 0.00 0.00 — 0.00 0.00 — 1.00 1.00 1.00

34.1 F1 WSD 0.50 1.00 0.67 0.67 0.67 0.67 0.50 1.00 0.67

34.1 F1 TD 0.50 1.00 0.67 1.00 1.00 1.00 0.50 1.00 0.67

34.1 F1 OS 0.00 0.00 — 0.00 0.00 — 1.00 1.00 1.00

35.1 F1 WSD 1.00 0.80 0.89 0.67 0.29 0.40 1.00 1.00 1.00

35.1 F1 TD 1.00 0.80 0.89 1.00 0.43 0.60 1.00 1.00 1.00

35.1 F1 OS 1.00 0.80 0.89 0.67 0.29 0.40 1.00 1.00 1.00

36.1 F1 WSD 1.00 1.00 1.00 0.67 0.40 0.50 0.50 1.00 0.67

36.1 F1 TD 1.00 1.00 1.00 0.67 0.40 0.50 0.50 1.00 0.67

36.1 F1 OS 0.00 0.00 — 0.00 0.00 — 1.00 1.00 1.00

alexa1.1 F1 TD 0.50 0.40 0.44 1.00 0.67 0.80 1.00 0.33 0.50

alexa1.1 F1 OS 0.00 0.00 — 0.00 0.00 — 1.00 1.00 1.00

bar1.1 F1 WSD 1.00 0.50 0.67 0.00 0.00 — 0.25 1.00 0.40

bar1.1 F1 TD 0.20 0.17 0.18 1.00 0.33 0.50 1.00 1.00 1.00

bar1.1 F1 OS 0.50 0.50 0.50 0.00 0.00 — 1.00 1.00 1.00

bedroom1.1 F1 WSD 0.67 0.50 0.57 0.00 0.00 — 0.25 1.00 0.40

bedroom1.1 F1 TD 0.67 0.50 0.57 0.33 1.00 0.50 1.00 1.00 1.00

bedroom1.1 F1 OS 0.67 0.50 0.57 0.00 0.00 — 1.00 1.00 1.00

childrensroom1.1 F1 WSD 0.60 0.75 0.67 0.00 0.00 — 0.00 0.00 —
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childrensroom1.1 F1 TD 0.20 0.25 0.22 0.33 1.00 0.50 1.00 1.00 1.00

childrensroom1.1 F1 OS 0.50 0.50 0.50 0.00 0.00 — 1.00 1.00 1.00

drone1.1 F1 WSD 0.71 1.00 0.83 0.00 0.00 — 0.50 0.50 0.50

drone1.1 F1 TD 0.14 0.20 0.17 0.67 0.67 0.67 0.00 0.00 —

drone1.1 F1 OS 0.71 1.00 0.83 0.00 0.00 — 0.50 0.50 0.50

drone2.1 F1 WSD 0.25 1.00 0.40 0.00 — — 0.00 0.00 —

drone2.1 F1 TD 0.00 0.00 — 0.00 — — 0.00 0.00 —

drone2.1 F1 OS 0.00 0.00 — 0.00 — — 0.00 0.00 —

garden1.1 F1 WSD 1.00 0.75 0.86 0.33 0.13 0.18 1.00 1.00 1.00

garden1.1 F1 TD 0.67 0.50 0.57 0.67 0.25 0.36 1.00 1.00 1.00

garden1.1 F1 OS 0.67 0.50 0.57 0.00 0.00 — 1.00 1.00 1.00

heating1.1 F1 WSD 1.00 0.50 0.67 0.50 0.33 0.40 0.50 0.50 0.50

heating1.1 F1 TD — 0.00 — 1.00 0.33 0.50 0.33 0.50 0.40

heating1.1 F1 OS 1.00 0.50 0.67 0.50 0.33 0.40 0.50 0.50 0.50

heating2.1 F1 WSD 1.00 0.50 0.67 1.00 0.50 0.67 1.00 1.00 1.00

heating2.1 F1 TD 1.00 0.33 0.50 1.00 0.50 0.67 1.00 1.00 1.00

heating2.1 F1 OS 1.00 0.33 0.50 0.67 0.50 0.57 1.00 1.00 1.00

if.4.1 F1 WSD 0.75 0.75 0.75 0.00 0.00 — 1.00 1.00 1.00

if.4.1 F1 TD 0.25 0.25 0.25 0.00 0.00 — 1.00 1.00 1.00

if.4.1 F1 OS 0.20 0.25 0.22 0.00 0.00 — 1.00 1.00 1.00

if.5.1 F1 WSD 0.80 0.57 0.67 0.33 0.20 0.25 1.00 0.67 0.80

if.5.1 F1 TD 0.50 0.43 0.46 0.67 0.40 0.50 1.00 0.67 0.80

if.5.1 F1 OS 0.25 0.14 0.18 0.00 0.00 — 1.00 1.00 1.00

mindstorm1.1 F1 WSD 0.50 1.00 0.67 0.00 — — 0.00 0.00 —

mindstorm1.1 F1 TD 0.00 0.00 — 0.00 — — 0.00 0.00 —

mindstorm1.1 F1 OS 0.00 0.00 — 0.00 — — 0.00 0.00 —

music1.1 F1 WSD 0.67 0.40 0.50 0.00 — — 1.00 1.00 1.00

music1.1 F1 TD 0.33 0.20 0.25 0.00 — — 0.00 0.00 —

music1.1 F1 OS 0.67 0.40 0.50 0.00 — — 1.00 1.00 1.00

A.5.3. Recall in Experiments

Top-X Recall Random Recall
Sentence WSD TD OS WSD TD OS

1.1 1.00 0.60 0.67 1.00 0.60 0.67

2.1 1.00 0.67 1.00 0.50 0.33 1.00

3.1 1.00 0.17 1.00 1.00 0.50 1.00

4.1 1.00 0.29 1.00 1.00 0.71 1.00

5.1 1.00 0.29 1.00 1.00 0.86 1.00

6.1 1.00 0.33 1.00 1.00 0.67 1.00

7.1 1.00 0.09 — 1.00 0.82 —

8.1 1.00 0.40 1.00 1.00 0.80 1.00

9.1 1.00 0.17 1.00 1.00 0.67 1.00

10.1 1.00 0.29 0.67 1.00 0.57 0.67
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11.1 1.00 0.60 1.00 1.00 1.00 1.00

12.1 1.00 0.60 1.00 1.00 1.00 1.00

13.1 1.00 0.67 1.00 1.00 1.00 1.00

14.1 1.00 0.67 1.00 1.00 1.00 1.00

15.1 1.00 0.50 1.00 1.00 0.75 1.00

16.1 1.00 0.40 1.00 1.00 0.80 1.00

17.1 1.00 1.00 1.00 0.00 0.00 1.00

18.1 1.00 1.00 1.00 0.33 0.33 1.00

19.1 1.00 1.00 1.00 1.00 0.67 1.00

20.1 1.00 1.00 1.00 0.50 0.00 1.00

21.1 1.00 1.00 1.00 0.00 0.67 1.00

22.1 1.00 0.40 1.00 1.00 1.00 1.00

23.1 1.00 1.00 1.00 0.00 0.00 1.00

24.1 1.00 0.29 1.00 1.00 0.86 1.00

25.1 1.00 1.00 1.00 0.33 0.33 1.00

26.1 1.00 1.00 1.00 1.00 1.00 1.00

27.1 1.00 0.50 1.00 1.00 0.50 1.00

28.1 1.00 1.00 1.00 1.00 1.00 1.00

29.1 1.00 0.31 1.00 1.00 0.69 1.00

30.1 1.00 1.00 1.00 0.00 0.67 1.00

31.1 1.00 1.00 1.00 0.50 0.67 1.00

32.1 1.00 0.40 1.00 1.00 0.80 1.00

33.1 1.00 0.40 1.00 1.00 0.80 1.00

34.1 1.00 1.00 1.00 0.00 0.67 1.00

35.1 1.00 0.43 1.00 1.00 0.86 1.00

36.1 1.00 0.60 1.00 1.00 0.60 1.00

alexa1.1 1.00 1.00 1.00 1.00 1.00 1.00

bar1.1 1.00 0.11 1.00 1.00 0.78 1.00

bedroom1.1 1.00 1.00 1.00 1.00 1.00 1.00

childrensroom1.1 1.00 0.00 1.00 1.00 1.00 1.00

drone1.1 1.00 0.33 0.50 1.00 1.00 1.00

drone2.1 1.00 — 0.00 1.00 — 0.00

garden1.1 1.00 0.50 1.00 1.00 0.88 1.00

heating1.1 1.00 1.00 0.50 0.00 0.00 0.50

heating2.1 1.00 0.75 1.00 1.00 1.00 1.00

if.4.1 1.00 0.00 1.00 1.00 0.00 1.00

if.5.1 1.00 0.20 1.00 1.00 0.80 1.00

mindstorm1.1 1.00 — 0.00 1.00 — 0.00

music1.1 1.00 — 1.00 1.00 — 1.00

Average 1.00 0.59 0.92 0.82 0.69 0.93
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A.5.4. Absolute Rank, Group-Rank, & Group Size Avg for best Paths

Best WSD Paths (F1)

Method (LC-LEE) Rank Group-Rank Group Size Avg
Range ∅ Range ∅ Range ∅

ADD-MEDIAN [0, 711] 33.57 [0, 706] 32.86 [1.00, 1.14] 1.01

ADD-SIGMA [0, 714] 103.53 [0, 714] 103.53 [1.00, 1.33] 1.01

ADD-AVERAGE [0, 598] 32.45 [0, 598] 32.45 [1.00, 1.00] 1.00

ADD-MAX [0, 511] 46.84 [0, 503] 46.10 [1.00, 1.32] 1.01

ADD-MIN [0, 604] 41.57 [0, 592] 40.35 [1.00, 2.00] 1.11

MUL-MEDIAN [0, 723] 80.35 [0, 717] 79.00 [1.00, 1.14] 1.01

MUL-SIGMA [0, 605] 85.04 [0, 605] 85.04 [1.00, 4.00] 1.11

MUL-AVERAGE [0, 653] 71.59 [0, 653] 71.59 [1.00, 1.00] 1.00

MUL-MAX [0, 598] 66.47 [0, 598] 65.63 [1.00, 1.32] 1.01

MUL-MIN [0, 622] 57.22 [0, 610] 55.57 [1.00, 2.00] 1.11

Best TD Paths (F1)

Method (LC-LEE) Rank Group-Rank Group Size Avg
Range ∅ Range ∅ Range ∅

ADD-MEDIAN [0, 390] 34.14 [0, 387] 33.24 [1.00, 1.14] 1.01

ADD-SIGMA [0, 695] 111.18 [0, 695] 111.18 [1.00, 1.33] 1.01

ADD-AVERAGE [0, 401] 37.14 [0, 401] 37.14 [1.00, 1.00] 1.00

ADD-MAX [0, 573] 55.49 [0, 565] 54.80 [1.00, 1.32] 1.01

ADD-MIN [0, 481] 30.02 [0, 472] 28.86 [1.00, 2.00] 1.11

MUL-MEDIAN [0, 681] 79.86 [0, 677] 78.59 [1.00, 1.14] 1.01

MUL-SIGMA [0, 685] 121.55 [0, 685] 121.55 [1.00, 4.00] 1.11

MUL-AVERAGE [0, 708] 84.78 [0, 708] 84.78 [1.00, 1.00] 1.00

MUL-MAX [0, 722] 97.18 [0, 708] 96.14 [1.00, 1.32] 1.01

MUL-MIN [0, 503] 54.16 [0, 491] 52.76 [1.00, 2.00] 1.11

Best OS Paths (F1)

Method (LC-LEE) Rank Group-Rank Group Size Avg
Range ∅ Range ∅ Range ∅

ADD-MEDIAN [0, 599] 33.71 [0, 591] 33.04 [1.00, 1.14] 1.01

ADD-SIGMA [0, 695] 87.35 [0, 695] 87.35 [1.00, 1.33] 1.01

ADD-AVERAGE [0, 629] 34.61 [0, 629] 34.61 [1.00, 1.00] 1.00

ADD-MAX [0, 659] 48.02 [0, 637] 47.16 [1.00, 1.32] 1.01

ADD-MIN [0, 479] 24.94 [0, 474] 24.04 [1.00, 2.00] 1.11

MUL-MEDIAN [0, 485] 47.02 [0, 477] 46.18 [1.00, 1.14] 1.01

MUL-SIGMA [0, 663] 75.47 [0, 663] 75.47 [1.00, 4.00] 1.11

MUL-AVERAGE [0, 570] 49.45 [0, 570] 49.45 [1.00, 1.00] 1.00

MUL-MAX [0, 602] 55.73 [0, 585] 55.08 [1.00, 1.32] 1.01

MUL-MIN [0, 341] 27.41 [0, 339] 26.63 [1.00, 2.00] 1.11
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A.5.5. Normalized Rank, Group-Rank, & Group Size Avg for best Paths

Best WSD Paths (F1)

Method (LC-LEE) Rank Group-Rank Group Size Avg
Range ∅ Range ∅ Range ∅

ADD-MEDIAN [0.00, 0.95] 0.12 [0.00, 0.95] 0.12 [1.00, 1.14] 1.01

ADD-SIGMA [0.00, 0.95] 0.41 [0.00, 0.95] 0.41 [1.00, 1.33] 1.01

ADD-AVERAGE [0.00, 0.92] 0.11 [0.00, 0.92] 0.11 [1.00, 1.00] 1.00

ADD-MAX [0.00, 0.91] 0.16 [0.00, 0.90] 0.16 [1.00, 1.32] 1.01

ADD-MIN [0.00, 0.95] 0.16 [0.00, 0.95] 0.16 [1.00, 2.00] 1.11

MUL-MEDIAN [0.00, 0.96] 0.21 [0.00, 0.96] 0.21 [1.00, 1.14] 1.01

MUL-SIGMA [0.00, 0.87] 0.33 [0.00, 0.87] 0.33 [1.00, 4.00] 1.11

MUL-AVERAGE [0.00, 0.89] 0.18 [0.00, 0.89] 0.18 [1.00, 1.00] 1.00

MUL-MAX [0.00, 0.90] 0.19 [0.00, 0.90] 0.19 [1.00, 1.32] 1.01

MUL-MIN [0.00, 0.89] 0.15 [0.00, 0.89] 0.15 [1.00, 2.00] 1.11

Best TD Paths (F1)

Method (LC-LEE) Rank Group-Rank Group Size Avg
Range ∅ Range ∅ Range ∅

ADD-MEDIAN [0.00, 0.68] 0.12 [0.00, 0.68] 0.12 [1.00, 1.14] 1.01

ADD-SIGMA [0.00, 0.99] 0.43 [0.00, 0.99] 0.43 [1.00, 1.33] 1.01

ADD-AVERAGE [0.00, 0.68] 0.12 [0.00, 0.68] 0.12 [1.00, 1.00] 1.00

ADD-MAX [0.00, 0.94] 0.18 [0.00, 0.94] 0.18 [1.00, 1.32] 1.01

ADD-MIN [0.00, 0.64] 0.12 [0.00, 0.64] 0.12 [1.00, 2.00] 1.11

MUL-MEDIAN [0.00, 0.91] 0.29 [0.00, 0.91] 0.29 [1.00, 1.14] 1.01

MUL-SIGMA [0.00, 0.96] 0.47 [0.00, 0.96] 0.47 [1.00, 4.00] 1.11

MUL-AVERAGE [0.00, 0.94] 0.29 [0.00, 0.94] 0.29 [1.00, 1.00] 1.00

MUL-MAX [0.00, 0.96] 0.33 [0.00, 0.96] 0.33 [1.00, 1.32] 1.01

MUL-MIN [0.00, 0.96] 0.26 [0.00, 0.96] 0.26 [1.00, 2.00] 1.11

Best OS Paths (F1)

Method (LC-LEE) Rank Group-Rank Group Size Avg
Range ∅ Range ∅ Range ∅

ADD-MEDIAN [0.00, 0.95] 0.16 [0.00, 0.95] 0.16 [1.00, 1.14] 1.01

ADD-SIGMA [0.00, 0.99] 0.44 [0.00, 0.99] 0.44 [1.00, 1.33] 1.01

ADD-AVERAGE [0.00, 0.86] 0.18 [0.00, 0.86] 0.18 [1.00, 1.00] 1.00

ADD-MAX [0.00, 0.88] 0.28 [0.00, 0.88] 0.28 [1.00, 1.32] 1.01

ADD-MIN [0.00, 0.88] 0.14 [0.00, 0.87] 0.14 [1.00, 2.00] 1.11

MUL-MEDIAN [0.00, 0.89] 0.25 [0.00, 0.89] 0.25 [1.00, 1.14] 1.01

MUL-SIGMA [0.00, 0.99] 0.44 [0.00, 0.99] 0.44 [1.00, 4.00] 1.11

MUL-AVERAGE [0.00, 0.91] 0.25 [0.00, 0.91] 0.25 [1.00, 1.00] 1.00

MUL-MAX [0.00, 0.96] 0.31 [0.00, 0.96] 0.31 [1.00, 1.32] 1.01

MUL-MIN [0.00, 0.63] 0.19 [0.00, 0.62] 0.20 [1.00, 2.00] 1.11
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A.5.6. Normalized Rank, Group-Rank, & Group Size Avg for Top-3 Paths

Top-3 WSD Paths (F1)

Method (LC-LEE) Rank Group-Rank Group Size Avg
Range ∅ Range ∅ Range ∅

ADD-MEDIAN [0.00, 0.33] 0.04 [0.00, 0.31] 0.04 [1.00, 1.14] 1.01

ADD-SIGMA [0.00, 0.41] 0.07 [0.00, 0.41] 0.07 [1.00, 1.33] 1.01

ADD-AVERAGE [0.00, 0.27] 0.04 [0.00, 0.27] 0.04 [1.00, 1.00] 1.00

ADD-MAX [0.00, 0.17] 0.05 [0.00, 0.17] 0.05 [1.00, 1.32] 1.01

ADD-MIN [0.00, 0.33] 0.05 [0.00, 0.36] 0.05 [1.00, 2.00] 1.11

MUL-MEDIAN [0.00, 0.41] 0.05 [0.00, 0.39] 0.05 [1.00, 1.14] 1.01

MUL-SIGMA [0.00, 0.35] 0.08 [0.00, 0.35] 0.08 [1.00, 4.00] 1.11

MUL-AVERAGE [0.00, 0.21] 0.04 [0.00, 0.21] 0.04 [1.00, 1.00] 1.00

MUL-MAX [0.00, 0.17] 0.04 [0.00, 0.17] 0.04 [1.00, 1.32] 1.01

MUL-MIN [0.00, 0.33] 0.02 [0.00, 0.36] 0.02 [1.00, 2.00] 1.11

Top-3 TD Paths (F1)

Method (LC-LEE) Rank Group-Rank Group Size Avg
Range ∅ Range ∅ Range ∅

ADD-MEDIAN [0.00, 0.21] 0.04 [0.00, 0.22] 0.04 [1.00, 1.14] 1.01

ADD-SIGMA [0.00, 0.93] 0.19 [0.00, 0.93] 0.19 [1.00, 1.33] 1.01

ADD-AVERAGE [0.00, 0.38] 0.04 [0.00, 0.38] 0.04 [1.00, 1.00] 1.00

ADD-MAX [0.00, 0.76] 0.07 [0.00, 0.76] 0.07 [1.00, 1.32] 1.01

ADD-MIN [0.00, 0.40] 0.05 [0.00, 0.46] 0.05 [1.00, 2.00] 1.11

MUL-MEDIAN [0.00, 0.52] 0.06 [0.00, 0.52] 0.06 [1.00, 1.14] 1.01

MUL-SIGMA [0.00, 0.79] 0.20 [0.00, 0.79] 0.20 [1.00, 4.00] 1.11

MUL-AVERAGE [0.00, 0.59] 0.06 [0.00, 0.59] 0.06 [1.00, 1.00] 1.00

MUL-MAX [0.00, 0.69] 0.08 [0.00, 0.69] 0.08 [1.00, 1.32] 1.01

MUL-MIN [0.00, 0.33] 0.05 [0.00, 0.38] 0.05 [1.00, 2.00] 1.11

Top-3 OS Paths (F1)

Method (LC-LEE) Rank Group-Rank Group Size Avg
Range ∅ Range ∅ Range ∅

ADD-MEDIAN [0.00, 0.25] 0.04 [0.00, 0.24] 0.04 [1.00, 1.14] 1.01

ADD-SIGMA [0.00, 0.73] 0.11 [0.00, 0.73] 0.11 [1.00, 1.33] 1.01

ADD-AVERAGE [0.00, 0.37] 0.05 [0.00, 0.37] 0.05 [1.00, 1.00] 1.00

ADD-MAX [0.00, 0.33] 0.05 [0.00, 0.33] 0.05 [1.00, 1.32] 1.01

ADD-MIN [0.00, 0.55] 0.06 [0.00, 0.56] 0.06 [1.00, 2.00] 1.11

MUL-MEDIAN [0.00, 0.47] 0.08 [0.00, 0.47] 0.08 [1.00, 1.14] 1.01

MUL-SIGMA [0.00, 0.66] 0.11 [0.00, 0.66] 0.11 [1.00, 4.00] 1.11

MUL-AVERAGE [0.00, 0.48] 0.07 [0.00, 0.48] 0.07 [1.00, 1.00] 1.00

MUL-MAX [0.00, 0.51] 0.07 [0.00, 0.51] 0.07 [1.00, 1.32] 1.01

MUL-MIN [0.00, 0.33] 0.05 [0.00, 0.38] 0.05 [1.00, 2.00] 1.11
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A.5.7. Precision, Recall & F1 for the overall Approach

Sentence WSD TD OS
P R F1 P R F1 P R F1

1.1 1.00 1.00 1.00 0.67 0.40 0.50 1.00 0.67 0.80

2.1 1.00 1.00 1.00 1.00 0.67 0.80 1.00 1.00 1.00

3.1 1.00 0.60 0.75 0.33 0.17 0.22 1.00 1.00 1.00

4.1 1.00 1.00 1.00 0.67 0.29 0.40 0.50 1.00 0.67

5.1 1.00 0.80 0.89 0.33 0.14 0.20 0.50 0.50 0.50

6.1 1.00 1.00 1.00 0.67 0.33 0.44 0.50 1.00 0.67

7.1 1.00 0.80 0.89 0.33 0.09 0.14 — — —

8.1 1.00 1.00 1.00 0.67 0.40 0.50 0.50 1.00 0.67

9.1 1.00 1.00 1.00 0.33 0.17 0.22 0.50 0.50 0.50

10.1 1.00 0.75 0.86 0.33 0.14 0.20 1.00 0.67 0.80

11.1 0.75 1.00 0.86 0.33 0.20 0.25 1.00 1.00 1.00

12.1 1.00 0.75 0.86 0.33 0.20 0.25 1.00 1.00 1.00

13.1 0.75 0.75 0.75 0.33 0.33 0.33 0.50 1.00 0.67

14.1 0.67 1.00 0.80 0.67 0.67 0.67 1.00 1.00 1.00

15.1 1.00 1.00 1.00 0.67 0.50 0.57 1.00 1.00 1.00

16.1 1.00 1.00 1.00 0.67 0.40 0.50 1.00 1.00 1.00

17.1 1.00 1.00 1.00 0.50 1.00 0.67 1.00 1.00 1.00

18.1 1.00 0.67 0.80 1.00 0.67 0.80 0.50 1.00 0.67

19.1 0.67 0.67 0.67 0.67 0.67 0.67 1.00 1.00 1.00

20.1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

21.1 0.50 1.00 0.67 1.00 0.67 0.80 0.50 1.00 0.67

22.1 1.00 1.00 1.00 0.67 0.40 0.50 0.50 1.00 0.67

23.1 1.00 1.00 1.00 0.50 1.00 0.67 0.50 1.00 0.67

24.1 1.00 1.00 1.00 0.67 0.29 0.40 0.50 1.00 0.67

25.1 1.00 0.67 0.80 0.67 0.67 0.67 0.50 1.00 0.67

26.1 1.00 1.00 1.00 0.33 0.50 0.40 0.50 1.00 0.67

27.1 1.00 1.00 1.00 0.67 0.33 0.44 0.50 1.00 0.67

28.1 0.67 1.00 0.80 0.00 0.00 — 1.00 1.00 1.00

29.1 1.00 0.67 0.80 0.67 0.15 0.25 1.00 1.00 1.00

30.1 0.50 1.00 0.67 1.00 0.67 0.80 0.50 1.00 0.67

31.1 1.00 1.00 1.00 1.00 0.67 0.80 0.50 1.00 0.67

32.1 1.00 1.00 1.00 0.67 0.40 0.50 0.50 1.00 0.67

33.1 1.00 0.75 0.86 0.67 0.40 0.50 0.50 1.00 0.67

34.1 0.50 1.00 0.67 1.00 0.67 0.80 0.50 1.00 0.67

35.1 1.00 0.80 0.89 0.67 0.29 0.40 1.00 1.00 1.00

36.1 1.00 1.00 1.00 0.67 0.40 0.50 0.50 1.00 0.67

alexa1.1 0.33 0.20 0.25 0.00 0.00 — 1.00 0.67 0.80

bar1.1 0.50 0.50 0.50 0.00 0.00 — 1.00 1.00 1.00

bedroom1.1 0.67 0.50 0.57 0.00 0.00 — 1.00 1.00 1.00

childrensroom1.1 0.40 0.50 0.44 0.00 0.00 — 0.00 0.00 —
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A.5. Evaluation — Results

drone1.1 0.71 1.00 0.83 0.00 0.00 — 0.50 0.50 0.50

drone2.1 0.00 0.00 — 0.00 — — 0.00 0.00 —

garden1.1 0.67 0.50 0.57 0.33 0.13 0.18 1.00 1.00 1.00

heating1.1 — 0.00 — 1.00 0.33 0.50 0.33 0.50 0.40

heating2.1 1.00 0.33 0.50 0.67 0.50 0.57 1.00 1.00 1.00

if.4.1 0.50 0.50 0.50 0.00 0.00 — 0.50 0.50 0.50

if.5.1 0.80 0.57 0.67 0.33 0.20 0.25 1.00 0.67 0.80

mindstorm1.1 0.00 0.00 — 0.00 — — 0.00 0.00 —

music1.1 0.67 0.40 0.50 0.00 — — 1.00 1.00 1.00

Average 0.82 0.77 0.82 0.50 0.37 0.49 0.69 0.86 0.79

109


	Abstract
	Zusammenfassung
	Introduction
	Fundamentals
	Multi-Agent Systems (MAS)
	Natural Language Processing (NLP)
	Result vs. Hypothesis
	Hypotheses Graph & Hypotheses Paths
	Programming Architecture for Spoken Explanations (PARSE) &Intent-Driven Requirements-to-Code Traceability (INDIRECT)

	Related Work
	Trust & Confidence in Multi-Agent Systems
	Uncertainty in Natural Language & Natural Language Processing
	Exploration of large Search Spaces

	Overview of the Approach — The Agent Analysis Framework
	Architecture
	3-Phases Approach

	Analysis of Agents
	PARSE Agents
	INDIRECT Agents
	Hypotheses in PARSE and INDIRECT
	Conclusions for the Agent Analysis Framework

	Exploration of Hypotheses
	Hypotheses, Hypotheses Sets, and Hypotheses Selections
	Layered Exploration
	Selection Provider
	Hypotheses for Agents
	Agent Analysis Explorer

	Finding Good Rating Functions
	Rating Functions for Hypotheses Paths
	Agent Analysis Evaluator

	Evaluation
	GQM Plan
	Experiments
	Definition of the Gold Standard
	Experimental Results
	Threats to Validity

	Conclusion
	Bibliography
	Appendix
	Evaluation — Sentences
	Evaluation — Questionnaire
	Evaluation — Results of Questionnaire
	Evaluation — Instructions
	Evaluation — Results


