
Prototyping Methodologies and Design of
Communication-centric Heterogeneous

Many-core Architectures

Zur Erlangung des akademischen Grades eines

DOKTOR-INGENIEURS (Dr.-Ing.)

von der KIT-Fakultät für
Elektrotechnik und Informationstechnik,

des Karlsruher Instituts für Technologie (KIT)

genehmigte

DISSERTATION

von

Dipl.-Inform. Leonard Jannik Masing
geb. in Heidelberg

Tag der mündlichen Prüfung: 5.3.2020

Hauptreferent: Prof. Dr.-Ing. Dr. h. c. Jürgen Becker
Korreferent: Prof. Dr. sc.techn. Andreas Herkersdorf

Abstract

The age of parallel processing and heterogeneous architectures is upon us. Fu-
eled by the end of Dennard scaling, such architectures are the only way to keep
the power wall in check until entirely new technologies such as quantum com-
puting or new material breakthroughs might change the entire playing field.
High performing heterogeneous many-cores interfaced by scalable networks-
on-chips are one promising approach that has emerged in this context. However,
these architectures come in many possible variations as the manifold applica-
tion domains, from embedded and Internet of Things(IoT) to high performance
computing, make customized computing architectures desirable. This in turn
raises design efforts and complexity. At the same time, design size, complex
interconnects and heterogeneous computing nodes are further straining existing
techniques and methodologies for debugging, verification and validation.

Inspired by these developments, this work presents novel approaches for de-
sign and prototyping of heterogeneous many-core architectures. Three main
aspects, not covered sufficiently by the existing state of the art are targeted.
These aspects encompass early software development, hardware verification
and design automation. A specific scenario that relates to a part in the many-
core design process motivates each aspect. An emphasis is put on a novel
networks-on-chip extension for low latency interconnects that highlights the
major limitation of existing approaches: scalability for large architectures.
As a central concept, virtual platforms on the electronic system level are uti-
lized for early software development and verification tasks due to their binary
compatibility with the target architecture. This allows for software, low-level
function calls, drivers and operating system functionality to be developed in
parallel to hardware design and verification tasks. A virtual platform envi-
ronment is used to model a many-core architecture by extending it towards
support for heterogeneous elements, an abstracted interconnect as well as cam-
era and video I/O. Virtual platforms play another crucial role as part of the
novel multi-level hybrid prototyping methodology that is introduced to provide

i

abstract

a scalable answer for hardware verification tasks. In this approach, a prototype
is built consisting of an FPGA part and a virtual part, interfaced by high speed
PCIe. It reduces synthesis times and enables prototyping of large architectures
that would otherwise not fit on available FPGA-board prototypes. Finally,
the hardware/software codesign and design automation are also considered.
Specifically, a framework that improves High-Level Synthesis (HLS) flows is
introduced. It starts from OpenCL input and automatically generates a virtual
platform representation as an intermediate step. This saves costly synthesis
time and allows for optimizations on a human readable level in SystemC, as
opposed to unintelligible RTL-Code generated by common HLS tools. The
framework is enhanced further by providing an automated conversion among
real number representations. This data representation forms a major trade-off
in the design of customized accelerators, having significant impact on resource
and power consumption. In summary, the presented contributions significantly
speed up design processes and enable scalable prototyping of large heteroge-
neous many-core architectures that was not possible before.

ii

Zusammenfassung

Die Ära der Parallelverarbeitung und des heterogenen Rechnens ist ange-
brochen. Bedingt durch das Ende des Dennard Scalings sind solche Architek-
turen die einzige Möglichkeit um Leistungssteigerungen trotz der Limitierun-
gen durch die Energiedichte zu erreichen, bis völlig neue Technologien wie
das Quantenrechnen oder neue Materialien diese Hürde möglicherweise über-
winden. Hochperformante, heterogene Vielkernarchitekturen die durch ein
Netzwerk auf einem Chip verbunden sind, stellen einen vielversprechenden
Ansatz in diesem Kontext dar. Diese Architekturen existieren jedoch in sehr
unterschiedlichen Variationen, um den vielfältigen Anwendungsgebieten wie
beispielsweise eingebettete Systeme, das Internet der Dinge sowie das Hoch-
performanzrechnen gerecht zu werden. Dies wiederum erhöht die Komplexität
im Entwurf und der Verifikation. Gleichzeitig überfordern die Designgröße,
neuartige Verbindungsinfrastrukturen und die Integration heterogener Rech-
enelemente zusätzlich die bestehenden Techniken und Methodiken für das
Debugging, die Verifikation und die Validierung.

Inspiriert durch diese Entwicklungen werden in der vorliegenden Arbeit neuar-
tige Ansätze für das Design und das Prototyping von heterogenen Vielkernar-
chitekturen vorgestellt. Der Fokus liegt hierbei auf drei Hauptaspekten, welche
bisher im bestehenden Stand der Technik nicht ausreichend betrachtet worden
sind. Diese Aspekte umfassen die frühzeitige Softwareentwicklung parallel
zur Architekturentwicklung, die Hardwareverifikation und die Designautoma-
tisierung. Jeder dieser Aspekte wird durch ein spezielles Szenario aus der
Entwicklung einer Vielkernarchitektur motiviert. Insbesondere wird hier eine
Erweiterung der Kommunikationsinfrastruktur hervorgehoben, welche eine
Latenzreduzierung ermöglicht. Dieser neue Beitrag zur Leistungssteigerung
von Vielkernarchitekturen zeigt ein deutliches Problem bestehender Entwurfs-
und Verifikationstechniken: Die Skalierbarkeit für große Architekturen. Als
zentrales Konzept werden in dieser Arbeit virtuelle Plattformen auf dem Elek-
tronischen System Level (ESL) eingesetzt. Diese ermöglichen die frühzeitige

iii

Zusammenfassung

Entwicklung und Verifikation von Software dank ihrer Binärkompatibilität mit
der Zielarchitektur. Auf diese Weise kann selbst hardwarenahe Software,
wie Treiber oder betriebssystemspezifische Funktionen, entwickelt werden
während ein fertiges Hardwaredesign noch nicht existiert. In dieser Arbeit wird
konkret eine Umgebung für virtuelle Plattformen speziell für die Modellierung
von heterogenen Vielkernarchitekturen, eine abstrahierte Verbindungsstruktur
sowie Kamera und Video Eingabe/Ausgabe erweitert. Virtuelle Plattformen
spielen ebenso eine entscheidende Rolle als Teil der neuartigen hybriden Pro-
totyping Methodik die eingeführt wird um eine skalierbare Lösung für die
Hardwareverifikation zu liefern. Dieser Ansatz sieht vor, den Entwurfsprozess
von einer virtuellen Plattform ausgehen zu lassen und Teile der Architektur
auf einen FPGA zu verlagern. Die virtuelle Plattform wird über hochperfor-
mantes PCIe angebunden um eine niedrige Latenz und hohen Durchsatz zu
ermöglichen. Der hybride Ansatz reduziert die Synthesezeit und erlaubt die
Erstellung von Prototypen für große Architekturen, welche ansonsten derzeit
nicht auf reine FPGA-Lösungen passen würden. Als weiteres großes Thema
in der vorliegenden Arbeit wird das Hardware/Software Codesign und die
Designautomatisierung für heterogene Vielkernarchitekturen betrachtet. Ins-
besondere wird ein Framework vorgestellt, welches den High-Level Synthese
Entwurfsprozess verbessert. Dieser startet auf C Ebene mit OpenCL Quell-
code und generiert automatisiert eine virtuelle Plattform als Zwischenschritt,
im Gegensatz zur direkten Synthese auf Register Transfer (RT) Ebene bei
bisherigen Ansätzen. Dies erspart kostbare Synthesezeit und ermöglicht es,
Optimierungen in der gut verständlichen und übersichtlichen Zwischenebene
vorzunehmen, anstatt des unleserlichen Codes der auf RT Ebene erzeugt wird.
Das Framework wird zudem erweitert durch ein Feature zur automatisierten
Konvertierung von reellen Zahlen. Dies ermöglicht die Evaluierung von Trade-
offs für heterogene Beschleuniger im Sinne des approximativen Rechnens.
Zusammengefasst beschleunigen die vorgestellten Beiträge den Designprozess
signifikant und ermöglichen das skalierbare Prototyping von großen heteroge-
nen Vielkernarchitekturen, was bisher nicht in dieser Form möglich war.

iv

Vorwort

Die vorliegende Doktorarbeit ist in meiner Zeit am Institut für Technik der In-
formationsverarbeitung (ITIV) des Karlsruher Instituts für Technologie (KIT)
entstanden. An dieser Stelle möchte ich mich ganz herzlich bei all jenen
bedanken, die mich in dieser Zeit auf meinem Weg begleitet und unterstützt
haben.

Mein ganz besonderer Dank gilt zunächst meinem Doktorvater Prof. Jürgen
Becker für die Möglichkeit bei ihm am ITIV zu promovieren. Ich bin dankbar
für die inhaltlichen Diskussionen, die Freiheit eigenen Ideen folgen zu können
und alles was ich auf diesem Weg von ihm lernen durfte. Ebenfalls gilt
mein besonderer Dank Prof. Andreas Herkersdorf für die Übernahme des
Koreferats, den inhaltlichen Austausch und die gute Zusammenarbeit mit ihm
und seinem Team über die Jahre. Nicht vergessen möchte ich auch meine
Prüfungskommission, bestehend aus Prof. Ivan Peric, Prof. Laurent Schmalen
und Prof. Ahmet Cagri Ulusoy, welchen ich für Ihre Zeit danken möchte.

Mein weiterer Dank gilt insbesondere allen die mich auf meinem Weg be-
gleitet haben. Dies sind zunächst einmal meine ehemaligen und aktuellen
Kollegen vom ITIV, mit denen ich spannende Diskussionen, eine gute Zusam-
menarbeit in Projekten, Lehre, etc. hatte und die mir auch darüber hinaus
eine tolle Zeit am Institut ermöglicht haben. Genauso danke ich allen Part-
nern von anderen Institutionen aus den vielen Projekten an denen ich beteiligt
war für den angeregten und guten Austausch. Auch all meinen Studenten bin
ich sehr dankbar, denen ich nicht nur etwas beibringen durfte sondern die
auch andersherum mich immer wieder auf neue Ideen oder Erkenntnisse ge-
bracht haben. Nicht zu vergessen sind auch alle weiteren Mitarbeiter aus der
Verwaltung und insbesondere dem Sekretariat, die immer unkompliziert bei
Problemen geholfen haben. Ohne all diese Leute wäre die vorliegende Arbeit
nicht möglich gewesen.

v

Vorwort

Zu guter Letzt gilt mein spezieller Dank meiner Familie, meinen Eltern und
meinem Bruder, die stets an meiner Arbeit interessiert waren und mich immer
unterstützt haben.

Karlsruhe, im September 2020
Leonard Masing

vi

Contents

1 Introduction . 1
1.1 Motivation . 3
1.2 Goals . 6
1.3 Outline . 7

2 Fundamentals . 9
2.1 Many-core . 9

2.1.1 Shared Memory vs Distributed Memory 12
2.1.2 Memory Hierarchy 14
2.1.3 Existing Many-core Architectures 16

2.2 Networks on Chip . 21
2.2.1 Topologies . 26
2.2.2 Switching Schemes 27
2.2.3 Existing Networks on Chip 28

2.3 Heterogeneous Computing 29
2.4 Design Languages . 32

2.4.1 VHDL/Verilog . 32
2.4.2 SystemC . 33
2.4.3 OpenCL . 34

3 State Of The Art in Computer Architecture Prototyping . 37
3.1 Classifications . 38

3.1.1 Abstraction Levels 38
3.1.2 Prototyping Scopes 42

3.2 Electronic System Level 43
3.2.1 Transaction Level Modeling 43
3.2.2 Instruction Set Simulators 44

vii

Contents

3.2.3 Virtual Platforms 46
3.2.4 High-Level Synthesis 47

3.3 Hardware Simulation . 48
3.3.1 Co-Simulation . 49

3.4 Hardware Emulation . 49
3.4.1 FPGA . 50
3.4.2 FPGA Virtualization 51

3.5 NoC Prototyping . 52
3.6 Full System Simulators/Emulators 53
3.7 Hardware/Software Codesign 54

4 Prototyping of Heterogeneous Many-core Architectures 57
4.1 Requirements . 57

4.1.1 Programming . 58
4.1.2 Processing . 60
4.1.3 Data . 61
4.1.4 Communication . 62

4.2 Motivating Scenarios . 63
4.2.1 Dynamic Task Mapping and Runtime System 63
4.2.2 Providing a Low-latency on-Chip Interconnect . . . 64
4.2.3 High-Level Design Flows for Accelerators and Inter-

connects . 65
4.3 Analysis and Conceptual Approaches 66

4.3.1 Early Prototypes for Software Development 66
4.3.2 Hardware Verification and Validation 68
4.3.3 Design Automation and Abstraction 69

4.4 Summary . 70

5 Virtual Platforms for Heterogeneous Many-core 73
5.1 Building a Basic Many-core Prototype in OVP 73
5.2 Accelerator Modeling in Virtual Platforms 74
5.3 Real-world I/O for Virtual Platforms 78

5.3.1 PSE Callback Method 79
5.3.2 VMI Runtime . 80
5.3.3 Native Mapping . 81

viii

Contents

5.3.4 Synchronization and Overhead Reduction 82
5.4 OVP Parallelization . 85
5.5 Summary . 87

6 Scalable Hardware Design and Verification 89
6.1 The In-NoC-Circuits . 90

6.1.1 Extended Router Architecture 94
6.1.2 Traffic Monitoring and Analysis 96
6.1.3 Circuit Setup . 97
6.1.4 Routing . 98
6.1.5 Evaluation . 99
6.1.6 INC Parameters . 100
6.1.7 Benchmarks . 101

6.2 Multi-FPGA Prototyping 106
6.3 FPGA-Host Interface . 108
6.4 Multi-Level Hybrid Methodology 109

6.4.1 Interface Stack . 114
6.4.2 Parallelized Host Execution 117
6.4.3 Timing Accuracy and Synchronization Mechanisms . 118
6.4.4 Bandwidth Considerations 125

6.5 Hybrid Prototype for In-NoC-Circuit Design and Verification 127
6.6 Summary . 131

7 High-level EDA supported Design 133
7.1 A Virtual Platform Centered Design and Verification Method-

ology . 134
7.2 HLS for Heterogeneous Many-cores 137

7.2.1 HLS for Networks-on-Chip Design 138
7.3 OpenCL Based Framework for Many-accelerator Architectures 141
7.4 Automated Conversion for Approximate Accelerators 145

7.4.1 Real Number Representation 146
7.4.2 Realization in the Framework 147
7.4.3 Evaluation . 150

7.5 Summary . 154

8 Conclusion . 157

ix

Contents

Indexes . 161
List of Figures . 161
List of Tables . 165

Acronyms . 167

External Literature . 173

Supervised Student Works . 189

Own Conference Articles . 191

Own Journal Articles . 193

x

1 Introduction

For many years a steady increase in raw processing power of computer archi-
tectures has been observed. Figure 1.1 highlights this development in relation
to a VAX11-780 machine. For the most time, this increase followed the prin-
ciple set by Gordon Moore that transistor counts integrated onto a single chip
would double roughly every one and a half year [87]. Increasing transistor

1980 1985 1990 1995 2000 2005 2010 2015100

101

102

103

104

105

CISC
RISC

End of
Dennard
Scaling

Amdahl’s
law

Pe
rfo

rm
an
ce

(v
s.
VA

X
-1
1/
78
0)

Figure 1.1: 40 years of processor performance [58]

counts was mostly achieved by shrinking the circuitry to ever smaller feature
sizes. Smaller feature sizes in turn meant that wire and transistor switching
delays could be cut down which, together with deeper pipelines and the move
towards Reduced Instruction Set Computers (RISC), helped to increase clock
rates and subsequently performance. The transistor shrinking had many posi-
tive side-effects, most notably reduced supply voltage required to operate the
circuits leading to reduced power consumption. This was also labeled Dennard

1

1 Introduction

scaling which claims that power density is constant as transistors shrink since
the increased number of transistors per area is offset by lower voltage and
current required to operate them [37]. Average power dissipation is calculated
according to the following equation [114]:

Pavg = Pswitching + Pshort−circuit + Pstatic

Pavg = αCLV2
dd f + IscVdd + IleakageVdd

The dynamic component of power in this equation is Pswitching, which calcu-
lates according to the node transition activity factor α, the load capacitanceCL ,
the supply voltageVdd and the frequency f . Since transistor shrinking allowed
lower Vdd that is squared in this equation and also reduced CL , increases to
frequency were possible without the risk of rising power density. The second
component Pshort−circuit emerges when both the NMOS and PMOS transis-
tors are simultaneously active. The third component in the equation above
has been neglected for a long time. Static leakage power Pstatic results from
multiple sources that had rather insignificant impact in larger semiconduc-
tor technology nodes but have become a fundamental problem in the latest
nodes. With shrinking transistor size, static power dissipation overtakes dy-
namic power dissipation and will start to dominate the overall impact on power
density in the future. On scales below 10nm, physical effects appear or amplify
to a degree that they can not safely be ignored anymore. In order to keep a
circuit stable when quantum effects start to cause problems, voltage cannot
be reduced the same as before on new technology nodes. This amplifies the
power problem as the shrinking process continues. The only available answers
to this development are either limiting or even reducing clock frequencies and
clock/power gating circuits for certain intervals. At the horizon, entirely novel
concepts such as quantum computing can be seen that might overcome these
issues and propel the performance of processing towards much higher levels
again. Yet today no one can say for sure when such a technology will be
ready for commercial use and it is even disputed whether quantum computing
can replace general purpose processing at all or only fill in a very specific
computing niche [98]. There is also hope that breakthroughs on topics such
as new materials, optic networks/processing and 3D-stacking will improve the
situation yet the outcome is still unclear and often results are not expected to
be seen in the near future [107].

2

1.1 Motivation

In the light of this situation, developments on the architectural level need
to provide solutions for further performance improvements. The problem of
power densities has been observed even before the more recent difficulties on
smaller feature sizes, as frequencies have plateaued at around 3GHz since the
year 2002 when the first commercial processor achieved this mark [34]. The
approach since then is clear: Limit clock rates and improve performance via
more parallelism. This lead to the beginning of the multi- and many-core
era [19]. Yet according to Amdahl, parallelism can only improve the fraction
of an application that can be parallelized [8]. Furthermore, even when limiting
clock rates, the aforementioned difficulties when scaling transistors in recent
technology nodes still move circuits closer towards the power-wall. This re-
sults in a situation nowadays where only a fraction of a chip can be switched
at the same time since otherwise the chip would melt. This phenomenon
is labeled dark-silicon, referring to the fact that at all times some parts of a
chip need to remain ”dark”, i.e. not active and powered. All these develop-
ments substantially increase the need for efficient data processing which can be
achieved by very customized and specialized architectures - tailored towards a
single task. These specialized optimizations must not necessarily target more
performance as some approaches value power efficiency as most important
metric nowadays [125]. These heterogeneous architectures are not improved
on a technology level but instead by clever optimization towards their intended
task. Consequently, progress must come from the architectural level since it
can not be provided by technology scaling anymore [41]. Adhering to the
concept of dark silicon, designs are not only becoming more parallel, but also
more specialized and heterogeneous - only activating parts of the chip that can
deal with a task in the most efficient manner.

1.1 Motivation

As far back as the late 90s, surveys discovered a development that was labeled
the design productivity gap. As Figure 1.2 shows, design complexity due to
more and more transistors integrated into a single chip was rising much faster
than the productivity of individual design engineers. More than a decade
later, it became obvious that the predictions of a design crisis never really
came to pass. An analysis showed that several factors played a role, yet
most importantly design reuse through Intellectual Property (IP) cores was

3

1 Introduction

Figure 1.2: The design productivity gap. Source: SEMATECH.

able to keep complexity in check [45]. However, it was also shown that
while design efforts could be kept almost at a stable level, verification efforts
increased by a large degree, meaning the problem was never fully avoided but
more shifted towards a verification problem. Furthermore, even IP reuse and
improved design tools1 are expected to reach their limits, resulting in the need
for progress on a methodology level.

The design productivity gap and its solutions are still closely connected to
the old ways of transistor scaling, homogeneous designs and general purpose
processors. The IRDS report2 acknowledges this history of semi-conductor
industry but notes a shift in the semi-conductor world that occurred in recent
years [61]. Information processing is nowadays omnipresent in fields such
as mobile communication, server farms, cloud computing or the Internet of
Things (IoT). Yet according to the IRDS, the driver for advances in processing
power is more and more the application field itself, triggering novel architec-
tures that are increasingly heterogeneouswhile continuously scaling up number
of cores and parallel processing. The growing number of separate application
domains together with the limitations and challenges of the power-wall men-

1 Significant efforts have been spent on parallelization of tools in order to speed up their operation
to cope with increasing design sizes

2 The International Roadmap for Devices and Systems. The report serves as a follow up of the
ITRS semiconductor roadmaps

4

1.1 Motivation

tioned earlier have lead to a large diversity in architectural features and systems
that are often tailored for certain fields of application. This growing diversity
and the growing number of transistors and processor cores on a single chip
have led to a steep increase in design complexity of computing architectures.
Integrating multiple IP cores, handling HW/SW trade-offs and design space
exploration, developing novel architecture extensions and application specific
accelerators all need to be considered when realizing efficient heterogeneous
multi- and many-core platforms which are needed to overcome the aforemen-
tioned limitations and challenges. Since building a new chip is very costly,
designing an architecture that does not meet the requirements, that fails due to
errors and bugs or does not solve its tasks efficiently can decide about success or
failure in the market for a product or even a whole company. As such, methods
and techniques that enable design space exploration, verification, debugging
and system validation become more important than ever before. A major role
in the initial and intermediate stages of design is played by the concept of
prototyping. A prototype represents an early available, functional version of a
design. It serves the purpose of steering development of the actual product by
observing and evaluating the prototype. Prototyping has been a major driver
that helped closing the productivity and verification gap that the rising com-
plexity in circuit design has caused. Yet prototyping must also evolve in order
to stay up to date with new developments and changes in the semi-conductor
world towards future computing architectures.

The recent trends that affect the prototyping can be considered as a) the move
towards multi- and successively many-cores b) the increasing degree of het-
erogeneity brought by custom architectures and accelerators. These trends
formulate the basic question and set the theme of this work: How can such
architectures be prototyped successfully? How do the established techniques
and methods cope with these developments and will they have to evolve?

Since these questions relate to a huge field, this work will introduce some
restrictions and limitations on its scope. Firstly, this work specifically targets
the concept of prototyping as it is used for feature development, debugging,
verification and validation tasks. Other approaches that try to achieve the
same or similar goals by different means, such as formal verification, will
not be part of this document. Secondly, some recent developments in the
underlying technologies will not be covered, most notably the trend towards
3D stacking. This is mostly due to the fact that real 3D stacking (without

5

1 Introduction

an interposer or the like) is currently only feasible for memory chips while
Integrated Circuits (ICs) struggle with the power-wall in 3D even more than in
2D. Furthermore, from the architectural perspective 3D does not contain new
and interesting design trade-offs and will be constrained by the cooling method
which needs to be developed first before considering it in a prototype makes
any sense. Similarly, any future technology that is not within reach and is thus
not yet well understood, needs their very own, specialized form of prototyping
which can not be covered together with the more common and well understood
technologies.

1.2 Goals

Based on the motivation, the fundamental goals of the work presented in this
document are formulated. The major goals and thus the contribution of this
work to the state of the art can be summed up as the following:

• Give an overview and analyze the current state of the art regarding
computer architecture prototyping.

• Assess the major requirements for prototyping heterogeneous many-core
and analyze the state of the art in regard to these newkind of architectures.

• Extend, adapt, enhance existing and develop novel prototyping concepts
and design methodologies towards the major requirements posed by
heterogeneous many-core.

• Develop and evaluate these new concepts and methodologies in close re-
lation to novel heterogeneousmany-core architecture designs and feature
extensions.

Despite not being limited by it, this work shall focus on two aspects that
affect performance of future computing architectures significantly: The in-
terconnect, which requires entirely different solutions in a many-core, and the
heterogeneous computing aspect which is tightly connected to large many-core
or many-accelerator platforms. The presented work shall discuss hardware and
software aspects, their codesign and the trend towards abstraction that is real-
ized by increased levels of design automation.

6

1.3 Outline

1.3 Outline

The work is organized as follows. In chapter 2, fundamental terms, definitions,
tools and techniques are presented that need to be understood in order to follow
the later works and contributions. Most notably, the basics about many-core
architectures will be introduced including a number of example architectures
that are available as of today. Additionally, networks-on-chip, heterogeneous
processing elements and a selection of design languages are discussed that
will appear in later chapters. In chapter 3, state-of-the-art approaches for the
prototyping of traditional computer architectures are introduced. This chapter
will highlight recent research works and lay the groundwork for the following
chapter 4, that analyses the requirements of a heterogeneousmany-core towards
prototyping methodologies and also discusses the applicability of the state-of-
the-art techniques. The chapter also introduces three examples, highlighting
challenges and novel techniques in heterogeneousmany-core architectures, that
motivate the need for the novel methodologies presented in this work. The
individual contributions of this work are explored and explained in more detail
in the following three chapters. The first of these in chapter 5 introduces the
modeling ofmany-core architectures in virtual platforms and presents a number
of novel extensions and improvements. The focus of this chapter lies on the
prototyping of system software and applications in an early design stage. In
contrast, chapter 6 introduces techniques that focus on prototyping approaches
that enable test, debug and verification/validation tasks of many-core hardware
components in a full systemenvironment. This chapter ismotivated specifically
by a NoC extension for latency reduction in large many-core architectures that
requires such a novel approach for enabling its verification. The third of these
in chapter 7 deals with high-level design and Electronic Design Automation
(EDA) tool supported methodologies for the hardware design that raises the
abstraction level of design processes. Finally, the results of this work are
summarized and the initial questions answered in a quick an concise way in
the concluding chapter 8.

7

2 Fundamentals

This work presents prototyping approaches and methodologies for future het-
erogeneous many-core and many-accelerator architectures. In the following,
basics for understanding the shape and needs of such architectures shall be laid
out and a number of clarifications and definitions will be introduced. Among
the topics discussed are many-core architectures which can be considered a
focal topic of this work. Such architectures necessitate the employment of
a Networks-on-Chip (NoC) since traditional bus-based interconnect schemes
do not scale. This on-chip communication is one of the major factors which
distinguishes many-core architectures from single- and multi-core execution
or compute clusters. Consequently, this topic is also a major topic in this work
and the fundamental concepts of NoCs will be introduced and discussed here
as well. Afterwards, heterogeneous processing and accelerators will be dis-
cussed. These form the second big focal topic of this work and understanding
of the basic concepts is required to follow the contributions later on. The topic
is highly relevant since future architectures will move towards more custom
computing and specialized accelerators integrated into a heterogeneous plat-
form. Finally, some well established languages and tools will be described
which were used in some of the contributions and have a direct impact on
evaluations and results.

2.1 Many-core

A many-core architecture can broadly be defined as follows:

Definition: A many-core system is a computing architecture that tightly inte-
grates a large number of general purpose processor cores into a single chip

9

2 Fundamentals

GPP GPP GPP GPP

GPP GPP GPP GPP

GPP GPP GPP GPP

GPP GPP GPP GPP

GPP1 GPP1 MEM GPP2

DSP MEM GPP1 GPP1

FPGA DSP GPP1 GPP1

GPP1 GPP1 FPGA GPP2

TILE TILE TILE TILE

TILE TILE TILE TILE

TILE TILE TILE TILE

TILE TILE TILE TILE

(a) Homogeneous (b) Heterogeneous (c) Tile-based

Figure 2.1: Conceptual layout of many-cores. From left to right: (a) homogeneous, (b) heteroge-
neous and (c) tile-based many-core.

At first glance there seem to be many similarities with multi-cores that inte-
grate a much smaller number of cores. However, a deeper look shows that
by increasing the number of cores, many new challenges arise and entirely
different architectural solutions are required as the interconnect and memory
quickly become a bottleneck. Many-cores have some similarities but also a big
differentiation with SIMD-based (Single Instruction Multiple Data) process-
ing that units such as GPU (Graphics Processing Unit) provide: A many-core
tightly integrates full scale General-Purpose Processor (GPP) cores instead of
simplified minimal cores or functional units that make up the shader cores in
a GPU. Thus, a many-core inherits the strength of GPPs for handling control
flow dominated tasks. Both Reduced Instruction Set Computer (RISC) and
Complex Instruction Set Computer (CISC) based GPP variants are possible.
Despite a general trend towards RISC architectures that ease the hardware
design, recent studies show that both GPP variants can provide good perfor-
mance/power ratios and may thus be included in a many-core design [17]. If an
architecture contains more than one kind of GPP core, i.e. cores with differing
Instruction Set Architecture (ISA), it is called heterogeneous. The differenti-
ation becomes less clear regarding other, non-GPP processing elements that
may be part of a many-core. In general, common components, such as Direct
Memory Access (DMA) or ISA extensions that are directly integrated into all
GPPs or tiles of the system, are not considered as heterogeneous elements. In
contrast, if the many-core contains either Digital Signal Processors (DSP), a
reconfigurable fabric or standalone computing accelerators in only some parts
of the architecture, it can also be considered as heterogeneous.

10

2.1 Many-core

Based on this broad definition, a large number of variants can be considered as
many-cores. Consequently, a number of categorizations and differentiations
exist. One such differentiation is according to the alignment, clustering and
interfacing of processing elements. A conceptual view of three layouts is high-
lighted in Figure 2.1. In (a), a homogeneous many-core is shown. The GPP
are aligned in a 2D mesh topology, each connected to a global interconnect.
Memory and I/O are often at the borders of such a design. In (b), a hetero-
geneous variant is shown that contains other computing units such as FPGA
and DSP or different kinds of GPP. Since memory takes up large amounts of
space and close integration with compute logic can be difficult, only small
SRAM-based memories can be found within the tiles or close to the cores.
However, recent advances in 3D stacking technology also allow the placement
of large DRAM-based memories close to logic. Stacking memory on top of
a GPP has been investigated, resulting in improved performance due to faster
memory access times [75]. Consequently, a memory tile in a many-core could
host a memory controller and a network interface, stacking the memory cells
in 3D for lower access times. Finally in (c), a many-core is shown that employs
so called tiles. These are clusters of compute logic or memory that introduce
a level of hierarchy. They consist of multiple processing elements and often
contain additional components that are shared among the cores within a tile.
The components are interfaced either by a sublayer of a NoC or use more
traditional bus-based interconnects. Since a tile typically does not host a large
amount of processing nodes, buses are still a valid option on this level of the
hierarchy. The tiles may access the global network via a common network
interface, yet communication within a tile and accesses to tile-local memories
are typically much faster. While a many-core does not need to be aligned in
a meshed fashion as presented in the examples above, it eases the hardware
design of the interconnect and the placement of components.

A common and essential feature of a many-core are on-chip networks. This
kind of interconnect scheme is indispensable since more traditional bus-based
or crossbar interconnects do not scale well - an essential property that is
required when interfacing a large number of nodes. Since the interconnect
plays a major role in the design of a many-core, it will be highlighted in a
separate section later on.

11

2 Fundamentals

P P P P

Memory

Interconnect

P P P P

Figure 2.2: Memory access in an architecture
with shared memory.

P P P P
Memory Memory Memory Memory

Interconnect

Figure 2.3: Memory access in an architecture
with distributed memory.

2.1.1 Shared Memory vs Distributed Memory

A major distinction among many-core architectures can be made according
to the memory model they employ. The major variants will be discussed in
the following. Traditional single-core architectures provide one large block
of main memory with a singular address range. In a multi- or many-core
however, the main memory may be physically divided into several blocks,
mostly due to space limitations and placement restrictions on a chip. Similarly,
memories may also be split on a logical level into multiple individual entities
so that cores or tiles may have only limited access to a restricted subset of the
architecture. Conceptually, physical and logical separation are independent of
each other, meaning a logically combinedmemory can operate on an underlying
separated physical memory and vice versa. The terms shared memory and
distributed memory refer to the logical separation of memories, each having
their advantages and disadvantages [11].

The concepts are illustrated by two comparative figures. In Figure 2.2, a
shared memory architecture is shown, where all processing elements have a
direct or indirect access via an interconnect to the same memory. Communi-
cation among Processing Elements (PEs) is handled directly via memory, by
operating on the same memory locations. Synchronization primitives such as
semaphores, barriers and locks need to be employed to guarantee deterministic
behavior.

In Figure 2.3, a distributed memory architecture is shown. In this case, each
processing element has direct access to their own, private memory that is

12

2.1 Many-core

unreachable for the other processors. Data exchange is only possible via direct
communication, typically message based via the global interconnect.

In a sharedmemory architecture, all processing elements have the same address
space and can access the same memories at fixed locations in their memory
map. A distributed memory architecture on the other hand provides a separate
address space for each processing element. Consequently, there is no way
for one processing element to directly access the memory of another. PEs

0x0

0xFFFFFFFF

P1 P2

0x0

0xFFFFFFFF

0x0

0xFFFFFFFF

Memory

Physical memory 1

Physical memory 2

Figure 2.4: The memory map of two processors P1 and P2 in a shared memory architecture.

may also be grouped into locally shared, globally distributed architectures.
This is often the case in tile-based many-core architectures. Furthermore,
there are so called Distributed Shared-Memory (DSM) architectures which
provide a singular address space, although the underlying hardware consists
of multiple physically separated memories [99]. The memory maps for shared
memory and specifically DSM architectures is highlighted in Figure 2.4. Both
processors P1 and P2 access the exact same physical memory location when
they request a certain address, independent of their location or interfacing with
the memory. Depending on whether the access latency to the physical memory
is the same for all cores, the architectures are called Uniform Memory Access
(UMA) or Non-UniformMemory Access (NUMA) architectures. In DSM, the
physical memory is split into multiple (e.g. two in the figure) memories that
form a contiguous memory range together. There is no indication or restriction
to where those memories reside physically, it only needs to be ensured that

13

2 Fundamentals

processors can directly request an address and the interconnect will handle all
steps necessary to retrieve the data on said address. Due to the limited space
for memories that are close to the processing elements there are also variants
called Cache-Only Memory Architecture (COMA) which refers to the fact that
local memories only hold copies of a far away physical main memory.

In contrast to the shared memory approach, distributed memory architec-
tures typically follow a MPI-based (Message Passing Interface) communica-
tion scheme [112]. MPI is based on the exchange of messages, either directly
between individual nodes or via broadcast/multicast1 messages. The commu-
nication is always push based, meaning a node can never directly access another
nodes memory unless it sends a request via a message that is handled on the
receiving side accordingly. Shared memory architectures on the other hand
allow many styles of communication and synchronization. As a downside,
consistency and coherency issues need to be addressed in such systems.

2.1.2 Memory Hierarchy

Since memory cells can easily cover large parts of a chip, their location, size
and underlying implementation technology are of critical importance. In order
to improve the trade-off between size and locality (which typically translates
into access latency) a memory hierarchy can be employed. A typical memory
hierarchy in a single- or many-core system is shown in Figure 2.5. Closest
to a processor are its registers that operate at full core speed and need to be
accessed directly ir implicitly via corresponding instructions. Due to their
location, integrated into the core itself, only a very limited amount of registers
are available. All following levels in the hierarchy are accessed via addresses.
Each directly accessible physical memory block needs to be part of thememory
map that links memory blocks to address ranges. Larger physical memories are
typically located further away from a processor core and are implemented in
more cost efficient technologies due to their capacity. This results in increased
access latencies typically proportionally to their size and location. In order
to find a balance between size, speed and location, caches are often employed
in a memory hierarchy. A cache has no physical address range and does not

1 Broadcast refers to a stlye of communication that targets all available nodes while multicast
targets subset of nodes that needs to be specified

14

2.1 Many-core

L1 CacheRegisters

P
ro

ce
ss

o
r

L2 Cache

Memory

Remote
Cache

Remote
Memory

I/O
Cache

BG
Memory

Speed Size

Figure 2.5: Speed versus size tradeoff in memory hierarchies.

hold any unique data but instead "hides"2 other physical memories by taking
in selected copies. The motivation behind this is that a cache is smaller and
much faster than the memory it hides but contains only the most relevant data
that a processor is currently operating on. Caches are fully transparent to a
processor, i.e. the processor is not aware whether a cache is present but will
have improved performance when data is fetched much quicker due to being
stored in a cache. Caches come in several levels and different variations, again
differing in size and access speeds. Common are Level 1 (L1) caches, but some
architectures use L2 or even L3 caches in their design. These may also differ
by having either shared or separate caches for instruction and data. A DSM
architecture that allows direct access to remote memories often also employs
a remote cache (sometimes also labeled in the "L" + number format). These
avoid costly data transfers over the interconnect network. Similarly, large
Background Memories (BG Memory) that are not directly memory mapped,
but only accessible via some form of I/O might employ some form of caching.

Even though memory hierarchies are introduced by adding hardware compo-
nents such as caches which are transparent to a processor, making good use
of the underlying memory hierarchy on the software level can have a major
impact on performance. As a well known example, a programmer should take
good care when implementing a matrix multiplication with two loops since the
order of the loops decides whether there will be many cachemisses or not. This

2 The word originates from the french verb "cache", translating to "hide"

15

2 Fundamentals

lead to the development of special languages that enable a memory-hierarchy
aware form of programming [43].

Cache Coherence

If some data is shared among multiple caches, any update on said data needs
to trigger a synchronization among the caches and possibly also the memory
location that is mirrored in the cache line. This so called cache coherence
can be seen in shared memory architectures that employ caches since they
need to consider the coherence in order to avoid operating on wrong data. In
order to provide a coherent view on the data for all processing elements, a
coherence scheme is employed. A multitude of schemes exist, for example
bus-snooping protocols as used in the pentium processors [9] or directory
based cache coherence protocols [27]. Most coherence protocols do not scale
well, causing problems in a many-core architecture. Without coherence, the
software layers need to make sure no data corruption may occur, eliminating
many of the benefits that a shared memory architecture exhibits. A solution
for the problem of scalability is provided by a concept called Region-Based
Cache Coherence (RBCC) [116]. In order to avoid the problem that all caches
in a system need to be synchronized, RBCC selects only a subset of caches
in a system that are kept coherent. This reduces hardware complexity and
overhead while keeping limitations for the software layers low. It does however
necessitate that the regions do not grow too large since this would again impact
scalability negatively.

2.1.3 Existing Many-core Architectures

Several commercial architectures that can be considered true many-cores have
been released over the past few years. Among them are attempts to tap into
this new form of massively parallel processing from well known processor
companies like Intel, but also architectures that were designed by smaller
start-ups or initiated by government funded research programs. The presented
commercial architectures in the following serve mostly as a motivation for
further research in this field and highlight the diversity that is already available.

16

2.1 Many-core

Furthermore, several research many-core architectures exist in the academic
world. Since these are pure research architectures, no physical chip implemen-
tation exists. Instead, simulations and FPGA prototypes are used for feature
development, performance evaluation and verification. Due to the fact that
only prototypes exist, these architectures are not fixed and come in variations
containing more or less cores and accelerators or using different configura-
tions for components such as the interconnect. Two such architectures, namely
FlexTiles and InvasIC, will be highlighted specifically. The analysis of many-
cores in this work was inspired greatly by these architectures and many of the
proposed techniques and methodologies introduced later on were developed
with these architectures in mind and are based on the experiences during their
development process.

Intel SCC and Xeon Phi

As a major manufacturer of single- and multi-core processors, a number of
research teams at Intel set out to investigate many-core processing following
different angles of approach. Among the more recent architectures are the
Single-chip Cloud Computer (SCC) [59] and the Xeon Phi [113]. The SCC
is based on the concept of bringing the processing power of a whole server
cluster into a single chip. The name stems from its intended use as a hardware
backbone for cloud computing in the server market.

In contrast, the more recent Xeon Phi architecture has more similarities with
a GPU and their SIMD/vector processing approach. It hosts simplified cores
that are better suited for SIMD processing while easing integration of many
cores into a chip.

The SCC has 48 physical cores while the Xeon Phi comes in variants with up
to 72 cores - both classifying these architectures as many-cores.

Kalray MPPA

Kalray is a company dedicated to the research and development of chips for
massively parallel processing. Despite being supported by the french govern-
ment and public research organizations, the kalray Multi-Purpose Processor
Architecture (MPPA) was released including all software support packages as

17

2 Fundamentals

Figure 2.6: A schematic view of the Kalray MPPA3 Coolidge many-core architecture [2].

a commercial architecture. The MPPA consists of a family of architectures
that have been released over the past few years [39]. The latest development is
the MPPA3 Coolidge architecture as seen in Figure 2.6, which is produced in
16nm FinFet technology. It comprises up to 160 64-bit cores with another 160
co-processors for computer vision and deep learning applications. The chip
consists of compute clusters with 16 regular 5-issue Very Long Instruction
Word (VLIW) compute cores, some cluster local memory and a number of
special accelerators like crypto cores or DMA.

Adapteva Epiphany

In 2016, Adapteva taped out their latest many-core chip: the Epiphany-V [92].
The chip contains 1024 64-bit RISC processors, each with a small amount of
SRAM and a network-on-chip interconnect. The chip also hosts custom ISA
extensions for deep learning, communications and cryptography. Adapteva re-
leased their Epiphany chip as part of a board solution, containing a Zynq FPGA
including an ARM A9 dual core running the Linux operating system. The
many-core can be programmed either bare metal or with common frameworks
and languages such as OpenCL or MPI. Since the on-chip network imple-
mentation provides a distributed shared memory environment, even OpenMP
programming is possible.

18

2.1 Many-core

FlexTiles

The FlexTiles architecture was developed within an European FP7 project by
the same name introduced in an overview paper [74]. The architecture itself
is a pure research architecture based on the CompSoC platform developed by
the TU Eindhoven [52]. CompSoC utilizes the concept of virtual execution
platforms that provide composable isolation i.e. each platform can be ana-
lyzed independently for performance, Worst Cast Execution Time (WCET),
etc. since the platforms are executed side-effect free. Composability does
not only give upper bound guarantees, instead it is based on the promise that
program execution will always happen exactly as if no other tasks or virtual
execution platforms are present in the system. A CompSoC platform contains
a number of microblaze cores that can be clustered in tiles. The tiles and
peripherals such as memory or I/O are interfaced via the Æthereal NoC [50].
In FlexTiles, the CompSoC platform is extended towards a flexible, heteroge-
neous many-core architecture. The conceptual layout is shown in Figure 2.7,
yet the platform may contain an arbitrary number of processing nodes. Flex-
Tiles introduces a generic concept for harnessing the computing power of

Figure 2.7: A schematic view of the FlexTiles many-core architecture [74]. The number of nodes
is scalable and thus not representative of an actual chip implementation.

19

2 Fundamentals

heterogeneous accelerators. Towards this goal, a flexible Accelerator Interface
(AI) is added to the platform that can be accessed and configured by a control
GPP core over the NoC. The AI can interface a multitude of accelerator cores,
most notably specialized DSP cores and an eFPGA domain that provides a
runtime-reconfigurable hardware.

InvasIC

The InvasIC architecture [57] is a many-core design that is developed within
the Invasive computing transregional collaboration research center 89 (TCRC
89) [121]. The participants of this DFG funded research cluster come from
the Karlsruhe Institute of Technology (KIT), the Technical University Munich
(TUM) and the Friedrich-AlexanderUniversity of Erlangen-Nuremburg (FAU).
InvasIC investigates novel massively parallel programming and processing
paradigms on all levels from algorithms and language through software and
operating system down to the hardware level.

The hardware architecture of InvasIC is a heterogeneous tile-based many-core
architecture that adheres to the Partitioned Global Address Space (PGAS)
model by providing a distributed shared memory [126]. A tile in InvasIC can
take many shapes, among them are regular compute tiles, memory or I/O tiles,
and special tiles containing accelerators such as the Tightly-Coupled Processor
Array (TCPA).

Most prevalent is the regular compute tile, which is a multi-core architecture
by itself. It typically consists of a number of cores, a Tile Local Memory
(TLM) and a number of peripherals. All components within a tile are inter-
faced by a tile local bus. Most components of a compute tile are taken from
the cobham gaisler IP library. This library is an open source collection and
Hardware Description Language (HDL) library for building multi-core archi-
tectures. It comprises of the LEON3 processor core (a sparc v8 ISA), several
peripheral components including caches, bridges, I/O and local memories,
all connected via an Advanced High Performance Bus (AHB). On top of the
gaisler components, several additional components have been added as part of
the InvasIC research efforts. These include the run-time reconfigurable i-Core
special processor that may replace a regular processing core in a tile or the
TCPA accelerator.

20

2.2 Networks on Chip

CPU CPU

CPU CPU

Memory

CPU CPU

CPU CPU

Memory

CPU CPU

CPU CPU

Memory

CPU CPU

CPU CPU

Memory

CPU CPU

CPU CPU

Memory

CPU CPU

CPU CPU

Memory

CPU CPU

CPU CPU

Memory

CPU CPU

CPU CPU

TCPA

CPU CPU

CPU CPU

Memory

Memory

CPU iCore

iCore CPU

CPU iCore

iCore CPU

MemoryI/O

CPU CPU

CPU CPU

NoC
Router

NoC
Router

NoC
Router

NoC
Router

NoC
Router

NoC
Router

NoC
Router

NoC
Router

NoC
Router

Memory

Memory

MemoryMemory

CPU CPU

CPU CPU

Memory

NoC
Router

NoC
Router

NoC
Router

NoC
Router

NoC
Router

NoC
Router

NoC
Router

Figure 2.8: A typical configuration of the InvasIC many-core architecture [55].

An example of the InvasIC architecture can be seen in Figure 2.8. All tiles are
arranged in a 2D meshed layout. Each tile has a local network adapter that
interfaces the tiles via a NoC, called the i-NoC, to each other. The i-NoC and
the tile based approach creates a scalable framework for building many-core
architectures. Since the InvasIC architecture is not realized as an Application
Specific Integrated Circuit (ASIC), it is not fixed and can come in many
variations. However, FPGA prototyping limits the size of the architecture.
Recent multi-FPGA prototypes can host up to 16 tiles with a total maximum
number of 80 cores.

2.2 Networks on Chip

A Network on Chip (NoC) takes concepts from the Internet infrastructure
and High-Performance Computing (HPC) interconnects in order to solve the

21

2 Fundamentals

scalability limitations of more traditional crossbar or bus-based on-chip inter-
connects [13]. As more and more nodes are interconnected with one another,
providing only a single data line that needs to handle all data transfers quickly
becomes a bottleneck in any processing architecture. Similarly for the other
extreme, all-to-all connections are no solution either, since they do not scale
due to exponential growth in the number of resources. Reducing the amount
of accesses over shared interconnects, for example by employing caches, can
alleviate but not prevent this bottleneck and can thus delay but not solve the
underlying issue. A scalable solution that remains is to separate all interfaced
nodes logically and physically. Networks on chip provide such a separation that
still allows all nodes to communicate with one another. A NoC offers multiple
paths between connected nodes. As a single data transfer uses only a part of
the whole network, the remaining network resources are free for other data
transfers that may happen in parallel. The ability to handle multiple transfers
from different source/destination pairs in parallel results in increased through-
put that scales with the size and topology of the network. It also enables a large
degree of freedom when integrating multiple processing, memory, accelerator
or peripheral components [6].

A NoC consists of two parts: the routers which form the communication
backbone and a Network Interface (NI), sometimes called Network Adapter
(NA), that bridges the gap between routers and tiles. The NI is responsible for
handling packet creation and reception and automatically translates requests
from the processing elements in the tiles into remote data fetch or data push
operations on remote memories and buffers. Although most NoCs operate
clock synchronous, some follow the GALS approach (Globally Asynchronous
Locally Synchronous) by operating theNoC internals completely asynchronous
and leaving only the compute units in a synchronous domain [16]. In this case,
the network interface is responsible for splitting the two domains. Multiple
routers are interconnected to one another depending on a chosen topology.
Routers in a NoC are typically copies of the same architectural template,
although optimized designs sometimes introduce different router architectures
within the same NoC. This can help reducing bottlenecks for example by
increasing the link width3 close to the memory or near I/O regions.

3 The link is the physical connection between two nodes. Link width typically refers to the width
of the data line, not including any control lines.

22

2.2 Networks on Chip

O
u

t P
o

rtsIn
 P

o
rt

s
Routing

Reservation
Table

Transmission
Control

BufferBufferBufferBuffer

BufferBufferBufferBuffer

REQ

ACK 4

1

VC

DATA
33

2

Flow
Control

REQ

ACK
4

1

VC

DATA
33

2

Figure 2.9: Layout of a packet-switched router with virtual channels and flow control based on the
i-NoC router [55].

An abstracted architecture view of a packet-switched router is shown in Fig-
ure 2.9. The figure is based on the i-NoC router and will be used to highlight
several basic NoC features and concepts [55]. The interface signals and all es-
sential components within the router are shown. In general, a packet-switched
router needs to handle the following tasks:

• Buffering of incoming data

• A routing unit that decides the outgoing port for each packet

• A crossbar for connecting all input ports to the output ports

• A Link arbitration if multiple packets compete for the same output port

• Flow control to avoid data loss

Buffering of packets may be handled in different locations of the router, typ-
ically either on the input, the output, or both. Using multiple buffers can be
beneficial for reducing the critical path, allowing higher clock frequencies in
the design. However, it is a trade off and is often discouraged since buffers take
up a significant amount of space and power so any additional buffers should

23

2 Fundamentals

generally be avoided. Routing is handled by a routing unit that is triggered
when a new packet arrives at a router. Depending on a network protocol, the
output port for a given packet is chosen and an entry in a reservation table is
made. Based on this reservation table, all active packets in a router can be
arbitrated onto the links of the output ports. The transmission control con-
figures the crossbar so that packets from the input are forwarded towards the
output port4. Flow control is a concept for avoiding overflows in network
buffers for traffic flows between routers. It may be realized by some form of
handshaking or acknowledgment. It is an imperative feature for NoCs since
packet loss must be avoided at all cost as network protocols usually do not con-
sider re-transmission and error detection. Flow control counters are a solution
for non-blocking operation since the sender can determine the available buffer
space in a neighboring node.

The interface between two routers in Figure 2.9 contains four signals which are
duplicated for bidirectional operation. One such interface is shown at the input,
yet the same interface is used at the output. This bidirectional interface exists
for all connected routers and network interfaces, depending on the topology of
the NoC. For example, in a meshed topology this would mean one for each of
the following: north, west, south, east, and local. The bit width of the interface
signals may vary depending on the actual router implementation. The data line
is used for transferring the packets andmay contain extra bits for distinguishing
the packet headers. The request line (REQ) has a bit width of 1 and indicates
that there is valid data on the data lines in the current clock cycle. The virtual
channel (VC) line indicates, to which virtual channel the currently active data
belongs. The concept of virtual channels essentially splits the input buffers
into multiple smaller buffers that can hold independent packets or data streams.
This reduces blockage in the routers since a blocked data streamwill not hinder
another independent data stream. It furthermore enables the implementation
of Quality of Service (QoS) features. Finally, an acknowledge line (ACK)
signals flow control credits back to the upstream5 router.

A packet is composed of one or more flits, which in turn consist of one or more
phits. A phit refers to the amount of data that can be physically transferred

4 Depending on the location of buffers in the router, the crossbar can connect buffers and/or ports
directly

5 Upstream refers to a neighboring router that has sent the data to the current router

24

2.2 Networks on Chip

TypeRouter protocol SRC DST QoS Custom

NI protocol Type Address Length Custom

Figure 2.10: Generic components of the router- and the NI-protocol.

between two nodes in a single cycle. It is thus equal to the width of such a
physical connection. A flit is a logical unit, referring to a flow control unit,
which may consist of several phit. A packet in its simplest form is only a chunk
of data that is transferred from one end to another. Yet in order to do so, the
routers need to know how to forward the packet. For this task, packets must
either include information about their target location or follow a pre-established
connection.

Besides the structural layout, a network protocol is required that defines how
the end-to-end communication is handled and how each packet is interpreted.
A NoC essentially implements the four lower layers of the OSI reference
model [60]. The lowest level, the physical layer, is represented by the physical
links between two routers. Layer two, the data-link layer, is realized by the
flow control mechanism. Flow control is required to prevent any data loss due
to overflowing of buffers. The network layer is realized by the routing and
switching within each router. Finally, the transport layer, which is responsible
for the end-to-end data handling, is realized by the network interface. Transport
and network layer are also reflected by a router protocol or network interface
protocol respectively. A generic example is shown in Figure 2.10. The NI and
router protocol wrap around the actual data that is transmitted. The outermost
layer is the router protocol since it is required to handle transmission among
the routers. A packet must contain a header flit that specifies its type and either
a packet length field or any other indication that signifies the end of a packet
such as a tail flit. A destination address within the network is also required
for the routing algorithm to make its decision. Additional information for QoS
handling or other custom parameters required for the transmission among the
routers may also be part of the router protocol. The innermost layer represents
the NI protocol and contains information that is required to handle requests in

25

2 Fundamentals

the network interfaces. In a DSM architecture, it must specify the operation
(read or write), the address, potentially the length (in case of DMA accesses)
and other architecture specific custom extensions.

In a distributed shared-memory architecture, all processing elements need to
be able to access every memory and every peripheral that is part of the global
memory map. The network interface needs to support this accordingly. Thus,
the NI needs to listen on the local bus and react once a remote addresses is
accessed. It automatically triggers a remote request over the NoC by creating
a packet according to the original request. The decision, to which tile a
remote request is sent, can be made based on a part of the address that is
accessed. In contrast, a distributed memory architecture does not have no
global addresses and thus the NI does not need to automatically create packets
for remote requests. Instead, the processors need to configure each remote
request manually by writing memory mapped registers.

2.2.1 Topologies

A NoC consists of nodes, called routers, that are physically interconnected to
a number of neighboring nodes. The topology of the NoC decides how the
nodes are interconnected to one another. In theory, NoC routers can be aligned
and connected to form any kind of regular or irregular topology. Yet there
are common topologies that are often used in NoC implementations. This is
mostly due to the fact that routing schemes (i.e. the algorithm that decides
which next neighbor a message is forwarded to) have a strong connection to
the topology. Some desirable routing schemes that are simple to implement
require a specific topology in order to work. Most notably, the Dimension
Order Routing (DOR), also called x-y routing, only works if every node can
be reached from every other node by first following the link in direction of the
x-axis, then in direction of the y-axis. A topology that allows DOR and is thus
among the most commonly used topologies is the meshed NoC. In a mesh,
each node is connected to one neighbor in all cardinal directions. Nodes at
the mesh boundary do not contain any further connection in direction of their
border, leaving them with less physical links than a node in the center. A mesh
can be of any dimension, yet 2D meshes are the most common variant since
chips today are typically 2D integrated which eases placement of the mesh
logic on a chip. However, meshed interconnects work exactly the same in

26

2.2 Networks on Chip

higher dimensions, i.e. when 3D stacking becomes more prevalent new chips
might employ 3D meshed topologies.

2.2.2 Switching Schemes

Switching schemes are another distinctive feature in aNoC.There are twomajor
switching schemes available: circuit switching and packet switching. These
have a major impact on the performance of a NoC and both come with their
advantages and disadvantages. The general concept for both is highlighted in
Figure 2.11. Packet switching refers to a switching style that is based entirely

..BT

Source Router Intermediate Router Destination Router

?
B H

..BB

Source Router Intermediate Router Destination Router

B B

Pa
ck

et

Sw
itc

hi
ng

Ci
rc

ui
t

Sw
itc

hi
ng

B

B Body Flit H Head Flit B Tail Flit

Figure 2.11: Packet versus circuit switching in a NoC.

on packets: single messages consisting of one or more flits that need to be
routed independent of other packets towards their destination. In theory, each
packet may take a different route through the network if the routing algorithm
allows it. This requires routing information in any packet, generating some
overhead in form of a header that has to be transported in addition to the actual
data called payload or body flit. Whenever a head flit arrives at a router, its

27

2 Fundamentals

next hop6 needs to be determined by the routing unit. The benefit of this style
of communication is that it is easy to implement, does not require any setup or
holding of state in the routers, and is very flexible. In contrast, circuit switching
refers to a style of communication that is based on end-to-end connections.
Whenever data is transported over the NoC, a connection (i.e. circuit) that
reaches through all routers from sender to receiver of the message needs to
be established first. Afterwards, no further routing information is required
and no protocol overhead in form of head or tail flits is required. This means
that a circuit does incur less overhead on a continuous stream of packets if
the circuit is kept alive, yet keeping a circuit alive means that the associated
resources in the routers can not be used by any other packets crossing its path.
Thus, circuits may have to be deconstructed in order to free resources for other
circuits or packets. Since circuit establishment and deconstruction induces an
overhead and requires a setup mechanism that needs additional resources, it is
not suited for traffic situations in which many small messages among different
nodes have to be transmitted. Although it is more complex due to the setup
mechanism and the state holding of the circuit, it also assures high throughput
(less bandwidth wasted on headers), low latency on established circuits (no
routing/reservation step required), allows bandwidth and latency guarantees,
and saves buffer space in the routers.

2.2.3 Existing Networks on Chip

The NoC technology can be found as part of an integrated circuit in multiple
forms. There are several companies that provide a NoC as a flexible inter-
connect that can be tailored towards a specific application when integrating
components into a System on Chip (SoC). Among the three biggest competi-
tors are Arteris, Netspeed and Sonics that all offer a commercial product that
has been used in a number of IC designs. Furthermore, there are NoCs that
are specifically developed for many-core computing. These are either linked
to a specific many-core architecture or are developed as independent, generic
architectures for NoC research activities. The latter are of special interest in
this work about many-cores and one such architecture will be presented inmore

6 A hop is a single step in a network, i.e. between two neighboring nodes.

28

2.3 Heterogeneous Computing

detail. It was extended by some special features as described later on in this
work and was also used as a major target for the prototyping methodologies.

The invasive NoC (i-NoC) is a scientific NoC architecture that is developed
within the InvasIC Transregional Collaborative Research Cluster. As a scien-
tific architecture it is a feature rich design that comes in many variations [55].
A typical configuration uses a packet-switched layer on a 2D mesh topology
with four virtual channels. The router is pipelined with up to five stages and
routers operate on a data width of 32 bit. Flow control is realized with counters
that track the fill level of the input buffers of neighboring routers. The flow
control credits are communicated via a separate acknowledge line. A network
adapter serves as interface between the tiles of the invasive many-core and
the routers of the NoC. It provides a distributed shared memory access by
defining global memory addresses that are automatically routed over the NoC
to the correct tile [133]. To enable high-throughput communication among the
tiles a special DMA unit is integrated into the network adapter that can push
large chunks of data over the network. The i-NoC was specifically designed
to enable resource invasion, the core concept of InvasIC. This is realized by
a time slot mechanism that allows the reservation of a certain amount of link
bandwidth in a Time-Division Multiplexing (TDM) manner. These need to be
setup in advance and provide a communication style that is similar to circuits
even though it is built on top of a packet-switched NoC layer that works as the
basic interconnect.

2.3 Heterogeneous Computing

Heterogeneous computing refers to a style of computing that utilizes multiple
different processing elements. In a broad sense this includes many special
cases, for example specific functional units within a processing core.

Single-ISA heterogeneous multiprocessors can provide much higher perfor-
mance than comparable regular multiprocessors of similar size [69]. Architec-
tures based on ARMs BIG.little concept that contains cores with two different
bitwidths are an example for single-ISA heterogeneous multiprocessors [1].
These can be found in several commercial designs today, such as the Exynos
processor from Samsung. They have the benefit of rather simple and already
available software support, only requiring scheduling optimizations in the oper-

29

2 Fundamentals

Figure 2.12: ARM big.LITTLE architecture [1].

ating system to reap the benefits of these architectures. The idea of integrating
similar processors that differ in their performance and power consumption
promises to mitigate the limitations imposed by Amdahl’s law. The unavoid-
able sequential part of an application can benefit from a high-performance
processor while the parallel parts can be handled by a large number of power-
efficient cores [68]. Using an entirely different ISA or pairing cores with
accelerators promises even more performance per watts and will be a crucial
part in the fight against the dark silicon problem and the powerwall. Such archi-
tectures fulfill a more strict definition in the sense that they are heterogeneous
or asymmetric as defined in [85] if they either contain multiple GPP cores with
differing ISA or they contain GPP cores and detached special accelerator tiles
that host either fixed hardware blocks or a reconfigurable fabric. Accelerators
in this case are considered to be hardware blocks that are designed to fulfill a
predefined function without requiring or allowing any software programming.
When building such a heterogeneous computing system, it is imperative to
consider all other bottlenecks that may arise when using massively parallel and
highly optimized processing elements. Specifically, such architectures often
prove very data intensive which results in bottlenecks in the interconnect or the
memory controllers that should be considered during the design process [97].

30

2.3 Heterogeneous Computing

Both scientific many-core architectures presented earlier in section 2.1.3 and
section 2.1.3 are heterogeneous. FlexTiles introduced the accelerator interface
(AI) that provides a common interface for a multitude of accelerators including
DSP cores and eFPGAs. The design exhibits inherent heterogeneity by includ-
ing the reconfigurable eFPGA and is designed to be scalable to a multitude
of nodes, forming a many-core architecture. Similarly, InvasIC utilizes the
i-Core that extends the processor pipeline with a reconfigurable fabric [56].
Furthermore, the tile based design allows many different computing units in-
cluding some special accelerators such as the TCPA, making InvasIC designs
heterogeneous in nature. Both examples introduce heterogeneity in the form

Memory
Controller

Dual Core
ARM

P
erip

h
erals

(I/O
, etc.)

Processing System

Programmable Logic

A
xi P

o
rts

FPGA: Logic Cells,
DSP, BRAM

Figure 2.13: Xilinx Zynq introduces heterogeneity by combining an ARM core with a reconfig-
urable fabric (FPGA) [131].

of FPGA based reconfigurable elements. The i-Core is based on a LEON3
core that was extended with a reconfigurable fabric. This fabric allows the
instantiation of so called Special Instructions (SI) that extend the regular sparc
ISA. It can also be considered as a special case of heterogeneity, since it can
adapt its instruction set dynamically, thus providing a different ISA.

Similar to the i-Core or the eFPGA, other architectures include FPGA tech-
nology in order to enable heterogeneous computing. The Zynq from Xilinx
tightly integrates hardwired ARM cores with a reconfigurable FPGA fabric
into a multiprocessor system on chip (MPSoC) as shown in Figure 2.13. It
enables a multi-core ARM platform to exploit the massive parallelism that

31

2 Fundamentals

an FPGA based accelerator provides. This makes it a prime example of a
heterogeneous massively parallel platform although it is typically not labeled
as being many-core. Its biggest challenge is providing an efficient interface
between the host core and the reconfigurable fabric [110]. Xilinx utilizes an
AXI interface that can automatically be instantiated in the reconfigurable part
when using their FPGA design tools.

One of the most extreme variants of heterogeneous computing are accelerator-
rich architectures. These host a large amount of potentially different accel-
erators that promise very high performance and efficient execution yet prove
difficult to handle [31]. The limitations of fixed accelerators that might not fit
well to different applications can be circumvented by including reconfigurable
fabrics in such architectures as well [30].

2.4 Design Languages

Hardware design and development has been enabled by the emergence of tools
and languages that help in coping with the growing design complexity.

In the following, a selection of relevant languages that are in widespread use
as of today will be presented.

2.4.1 VHDL/Verilog

VHDL and Verilog are Hardware Description Languages (HDL) that were de-
veloped in an effort to raise the level of abstraction in hardware design. Instead
of manually designing circuits on the transistor or gate level and dealing with
the placement of logic, HDL typically operate on the Register-Transfer Level
(RTL). The assumption behind RTL descriptions is that any digital circuit con-
sists of clocked elements that hold state (i.e. registers) and combinatorial logic
that connects such registers. HDLs allow structural descriptions of modules,
which are defined by their interface and may hierarchically be composed of
other modules down to transistor level. To ease this process, HDLs introduce
so called behavioral modeling which allows a style of hardware design that
describes the behavior on a functional level instead of specifying the structure
of a design. This brings HDLsmuch closer to traditional computing languages,

32

2.4 Design Languages

allowing the use of variables and simple operators. However, hardware still
differs from software in that it is inherently parallel, while most software
languages assume a strictly sequential form of execution incorporating only
explicit forms of parallelism. This has to be considered when designing in
HDLs, since reordering of the code may result in entirely different designs.

In todays digital circuit design, hardware blocks are typically written in
VHDL/Verilog or one of their extensions (e.g. System Verilog, VHDL-AMS).
HDL descriptions may be simulated in HDL simulators that allow quick com-
pilation or serve as input for a number of synthesis tools that target FPGA or
ASIC technologies. HDL simulators provide the means for emulating the in-
herent parallelism of hardware even if they are executed in sequential software.
This provides accurate results, yet in some rare cases they produce different
results from real hardware. However, this typically only happens in code that
does not correctly follow language specifications. Similarly, some tools do a
number of automated optimizations if they detect behavior that was probably
unwanted by a programmer. While this often improves on the quality of result,
it can also hide sources of errors or make debugging more difficult.

2.4.2 SystemC

SystemC is a C library that extends the C language towards system and hard-
ware modeling. Initially, SystemC was designed to mimic HDLs (see subsec-
tion 2.4.1) with strong correlations in their syntax. It introduced new logic
types and the concept of modules and their interfaces. Furthermore, it provides
a simulation core that enforces the parallel execution and evaluation on a clock
cycle basis. As such, it allows the hardware design and verification similar to
the traditional HDL while following C syntax. This means that a regular C
compiler can be used to create the simulator binary. The simulation core is
added by including and referencing the SystemC library during compilation.
The approach of building on top of a software language has several benefits.
Most notably, a large group of people is already familiar with the language
and its syntax. Furthermore, compilers are well optimized and testbenches can
easily be written in native C. On the other hand, designers must be aware that
not all syntactically correct C code that can be simulated is also valid input for
synthesis tools.

33

2 Fundamentals

However, SystemC also enables an even higher level of abstraction from hard-
ware, often called Electronic System Level (ESL). This level is less about
implementation details and timings but instead targets functional verification
and early Design Space Exploration (DSE). This is achieved by focusing on
execution speed and ease of modeling above all else.

2.4.3 OpenCL

OpenCL is an open standard for programming heterogeneous architectures
[88]. The goal of OpenCL is to ease the handling of parallelism and hetero-
geneous architectures at the same time for achieving efficient processing and
execution of applications on all available hardware resources. While originally
used for harvesting the raw parallel processing power of GPUs in conjunction
with the CPU, support by tools and vendors for DSPs and FPGAs has con-
tinually increased. Performance-wise, OpenCL can achieve similar results to
purely GPU targeted languages such as CUDA [42]. OpenCL is based on a
subset of the C language, yet the recent version extends this towards a C++14

Host OpenCL Context
Control

CPU
Device
(CPU, GPU,
FPGA, etc.)Host

Memory

Global Memory /
ConstantsWrite

Buffer

Read
Buffer

Kernel
Exec.

Sync.
Event

Work Group
Local Memory

Work
Item

Private
Mem.

Work
Item

Private
Mem.

Work
Item

Private
Mem.

...

Work-Item

Dimension 0

D
im

en
si

o
n

 2

Work-Item Organization + Memory Hierarchy

Work Group
Local Memory

Work
Item

Private
Mem.

Work
Item

Private
Mem.

Work
Item

Private
Mem.

...

Work Group
Local Memory

Work
Item

Private
Mem.

Work
Item

Private
Mem.

Work
Item

Private
Mem.

...

Global Memory / Constants

Work-
group

Figure 2.14: The OpenCL execution and memory model as shown in [SXMX+18].

34

2.4 Design Languages

subset. In OpenCL, programs are split into so called ”compute kernels” and
a host application as shown in Figure 2.14. The latter controls the execution
of the application and triggers the compute kernels that are executed on the
available accelerators. Such an accelerator can be anything that is supported
by a toolchain that can translate the kernel code and handle the interfacing.
GPU have seen the best tooling support and are the most common use-case,
yet even cores in a Commercial Off-The-Shelf (COTS) multi-core can be used
for executing the kernels. More recently, support for FPGA-based accelerators
has been introduced by the major FPGA vendors. Tools that target FPGA
have to use some form of High-Level Synthesis (HLS) which translates the
kernel code (written in C) into netlists on the FPGA. Each kernel is split into
a number of work groups which in turn are split into individual work-items
that are executed on a functional unit. OpenCL defines a number of memories
that organize and optimize processing and interaction between host and ker-
nels. Among those are global memories and constants, local memories that
are shared within a working group, and private memory that is only accessible
for a single work-item.

35

3 State Of The Art in Computer
Architecture Prototyping

Prototyping has been a major enabler for the design of computer architectures
and information processing systems. A prototype helps in the tasks of design
verification and validation from the system level down to the physical level.
These tasks are increasingly challenging as the complexity of computer ar-
chitecture designs is rising in the era of multi/many-cores and heterogeneous
systems comprising a multitude of customized accelerators. The term ’proto-
typing’ or ’prototype’ will be used in this document according to the following
definition:

Definition: A prototype is an early functional version on which the further
development of a product is based

In the context of IC design, a prototype always follows the goal of providing
a computing system that can fulfill a predetermined set of computing tasks.
Prototyping is by no means the only technique that has been employed for
IC design as other approaches such as formal verification can be employed
as well. However, todays computing systems are becoming too complex for
pure formal approaches and they need to consider both hardware and software,
making prototyping one of the best suited options.

In the following, state-of-the-art prototyping methods for computer architec-
tures will be presented. In a first step, an overview is given, highlighting
the general angles of approach. Specifically, classifications according to the
level of abstraction and the scope are discussed. Afterwards, many individual
methods are presented that are underlined by a number of cited research works
which either make use of these methods or develop them further. This chapter
lays the groundwork for the following chapter and the contributions of this
work by giving an overview of relevant existing approaches and techniques.
These will be analyzed further in the context of heterogeneous many-core in

37

3 State Of The Art in Computer Architecture Prototyping

the next chapter, where the state of the art will be criticized to determine areas
that are lacking as of today.

3.1 Classifications

Prototypes may be classified according to their scope or according to their level
of abstraction from a physical implementation. Although there are connections
and correlations among some prototypingmethods based on their classification
in these two areas, they are generally orthogonal.

3.1.1 Abstraction Levels

A major distinction among prototypes can be made according to their level of
abstraction from a physical implementation. More abstract prototypes serve the
purpose of software development rather than hardware design and are suitable
for very early coarse-grained design space exploration. Gajski et al introduced
their famous Y diagram in Figure 3.1 back in 1983, giving an overview of
the levels of abstraction in IC design [47]. The Y diagram contains three
axes, splitting the design process into the domains of behavioral, structural
and physical. The abstraction levels are represented by circles that cross these
axes. The innermost circle depicts the most accurate level while the outermost
circle represents the most abstract level. A design flow based on the Y diagram
starts from the outer layer and iteratively moves towards the inner layers while
switching between the axes as needed.

While these classifications still hold as of today, many of the lower levels of
abstraction are fully automated by Electronic Design Automation (EDA) tools
nowadays and the separation of the axes is rather inflexible. Reality is much
more practical and the trend towards more and more automation and design
on higher levels of abstraction continues in order to keep the so called design
productivity gap in check. Consequently, state-of-the-art design processes are
not strictly bound by the abstraction levels introduced with the Y-diagram.

A more realistic view on the levels of abstraction in todays design processes is
shown in Figure 3.2. The individual techniques will be discussed inmore detail
in the following sections and are only shortly introduced here to highlight their

38

3.1 Classifications

Circuit
Logic
RTL

Algo
System

Behavioral Structural

Physical

Figure 3.1: Y diagram according to Gajski et al [47].

interactions and interrelations. The figure relates to the level of abstraction
from top to bottom as it is also often roughly followed in IC design. The color
scheme gives an estimate on the operation speed of the respective technique,
red taking comparatively long while green is relatively fast. Yellow represents
speeds that often depend on the situation and can vary greatly, however they
are typically intermediate in comparison to red and green. Double-ended
arrows depict interfacing techniques while single-ended arrows depict design
or simply execution steps, the latter of which are colored in black. The figure
depicts a simplified view since in reality there are many interrelations and even
potential feedback loops or re-spins involved in design processes. Similarly,
the operation speeds may depend on many factors and should not be seen
as absolute. In any case, the design process needs to be built on some kind
of specification that defines the goals and requirements of a design. The
specification can be split into a hardware and a software part by means of
partitioning. A good design flow will follow a hardware/software codesign

39

3 State Of The Art in Computer Architecture Prototyping

PartitioningHW SW

ISS

Virtual Platform

ESL
R
TLHW Simulation

Sp
ecificatio

n

HW Emulation (FPGA)

C
us

to
m

 d
e

si
gn

s

Co-Simulation

IP
 li

br
ar

y

H
LS Host

SystemC

TLM

Behavioral
Modeling

Figure 3.2: Elements and abstraction levels in a state-of-the-art IC design process.

approach that yields a well harmonized and efficient implementation through
a carefully selected partitioning. Although this topic will be touched in this
work, it is mostly out of scope and a field of research on its own. The two
other major levels are the Electronic System Level (ESL) and the Register-
Transfer Level (RTL). The ESL evolved in recent years as an overarching
concept that includes modeling of hardware on an abstract level for enabling
software developments to start early before a finished hardware implementation
is realized. Although strict definitions are lacking, ESL revolves around the
concept of behavioral modeling, Virtual Platforms (VP) and the interfacing of
simulators and components. It is also closely related to design automation tasks
that take models on abstract levels as input. A virtual platform may include an
Instruction Set Simulator (ISS) that provides binary translation. This enables
a VP to execute software that is binary compatible with a yet to be developed
hardware architecture of which only the Instruction Set Architecture (ISA)
is already defined. SystemC models are also often considered to operate on

40

3.1 Classifications

ESL, either as independent components or as part of a VP. Abstract interfacing
among components in a VP is provided by interconnection methodologies such
as Transaction Level Modeling (TLM).

On the other end of abstraction is a very accurate level that is mostly used in
hardware simulation and emulation. These prototyping techniques typically
serve the purpose of low-level hardware design and verification. On this level,
absolute cycle accuracy and correctness plays a crucial role. Accurate designs
are closely related to the register-transfer level that serves as input for software
based cycle-accurate HW simulators or synthesize into bitstreams for FPGA
based HW emulators. As a downside, prototypes on an accurate hardware
level are often difficult to implement and debug. Furthermore, accuracy comes
at the cost of execution speed, making it often unfeasible to evaluate large
designs or applications. Since FPGA allow full parallel operation of hardware
resulting in comparatively fast execution, full system prototypes are typically
realized on FPGA boards.

A number of attempts have been made to establish intermediate levels between
the two, yet none has fully caught on. SystemC introduced approximately
timed and loosely timed abstraction levels in order to provide such an interme-
diate level. The criticism states that intermediate levels can not provide full
correctness and can thus not be used for hardware verification tasks while at
the same time providing much less execution speed and increased modeling
effort compared to the higher abstraction levels.

Hardware design and verification is still a process that often involves a large
amount of manual steps. The major factor that kept hardware design efforts
under control despite growing design sizes was the increased use of IP cores
and libraries. However, whenever required IP blocks are not available or if
multiple blocks have to be interfaced, manual efforts have to be made. Well
defined interconnect standards help in interfacing, yet might also introduce
inefficient structures due to their generic nature.

Despite the abstraction from hardware, there is a move towards tool supported
synthesis of ESL-based system descriptions that allow skipping any lower
abstraction level design steps in some cases [48]. ESLmodels or even software
on a purely algorithmic/functional level can thus also be used as input for tools
that are able to generate hardware layouts or FPGA bitstreams. This recent
trend in EDA is closely connected to the term High-Level Synthesis (HLS).

41

3 State Of The Art in Computer Architecture Prototyping

Still, the defining goals for abstract simulators and prototypes are execution
speed and ease of use. They allow the definition of interfaces according
to fixed specifications, creating a so called golden reference that hardware
implementations and more accurate prototypes must later adhere to. This
enables software development efforts to start early, even including low level
software and driver codes.

A panel discussion at DAC asked the question: "System Prototypes: Virtual,
Hardware or Hybrid?" [18]. The panelists share their opinions on this question
but seem to agree on the fact that virtual prototypes operating on an abstract
level will provide a new addition to the well established accurate hardware
prototyping. Hybrids can also be seen as a future development that is triggered
by the emergence of virtual prototypes as they may bridge the gap between
VP and hardware prototypes. In contrast to intermediate abstraction levels,
a hybrid is never on an intermediate level but instead combines accurate and
abstract models into one system.

3.1.2 Prototyping Scopes

The purpose of a prototype is directly related to its scope that defines what
elements a prototype encompasses. Although theremay be an arbitrary number
of different scopes, there are a few distinct scopes that are often chosen for a
prototype in computer architecture design. A typical prototype can either be
restricted to the compute core itself or include other elements that a computer
architecture needs to function. Specifically, this includes caches, memories
and some form of I/O. The term System on Chip (SoC) has been coined
which extends this scope even more. In a SoC, many different IP blocks
are integrated into a single chip. Such a SoC may include multiple cores,
interconnect networks, heterogeneous accelerators, multiple levels of memory
hierarchy, etc. A prototype may represent a full SoC which encompasses all
these elements for verification and validation purposes. Yet it can prove useful
to employ independent prototypes for individual components as well. This is
mostly seen when multiple parties provide a contribution to a full SoC design,
since a full system prototype is only available at later stages in the design
process. Prototypes that target single components or features may also focus
on aspects specific for their design and are typically less complex and thus

42

3.2 Electronic System Level

easier to implement. In summary, there is a distinction between a full system,
a subsystem (multiple components) and individual components.

Another major scope for computing architectures are the distinctions between
hardware and software. The term "computer architecture" in this document
is used synonymous with processor architectures that contain both hardware
and software. A prototype may target only the functional or algorithmic level,
enable software development on a physical or virtual hardware, deal with the
hardware verification and validation, or provide an environment to investigate
both software and hardware in full detail.

3.2 Electronic System Level

The term Electronic System Level (ESL) encompasses a large amount of
different techniques and approaches [80]. In this document the term will
be used for describing techniques and methodologies on the highest level of
abstraction, whether they target hardware design and verification, software
design or early design space exploration. In the following, a selection of
the most relevant ESL related techniques will be introduced and described in
regard to latest developments in the scientific world.

3.2.1 Transaction Level Modeling

Transaction Level Modeling (TLM) first appeared in the system language and
modeling domain [24]. However it only found widespread acceptance after
it was adopted by SystemC [103]. As introduced earlier in subsection 2.4.2,
SystemCwas originally established as an environment for cycle-accurate hard-
ware simulation of designs written in the C programming language. Yet as of
version 2.0, the modeling of the system level came more and more into focus,
creating the need for inclusion of methodologies that could handle this higher
level of abstraction.

Despite its name, TLM is less a real abstraction level itself and more a style
of implementing interfaces between components on an abstract level. The
concept in comparison to interfacing in RTL is shown in Figure 3.3. It is used
for separation of communication and computation which eases integration of

43

3 State Of The Art in Computer Architecture Prototyping

RTL

RTL

Pin accurate,
cycle accurate

Functional
Model

Functional
Model

write(address, data)

Transaction level-
function call

Figure 3.3: RTL versus TLM interfacing.

different components. In RTL designs, every component or module must be
interfaced exactly according to a well defined set of pins and any interaction
must follow a specified pattern or protocol. Special considerations must also
be taken depending on synchronous or asynchronous operation when interfac-
ing components. In contrast, interactions in TLM are handled by so called
transactions. These essentially map to well defined and standardized function
calls that allow the interfacing of arbitrary blocks written in SystemC or even
other languages that adhere to the TLM specification. Data is transferred as
so called payloads with any detail of accurate hardware implementation and
interfacing hidden in the transactions.

3.2.2 Instruction Set Simulators

Instruction Set Simulators (ISS) represent a CPU on an entirely functional
level. Their goal is to allow execution of application code compiled for a
certain ISA even though the simulator itself is executed on a physical CPU
with an entirely different ISA (typically x86 or x64). The ISS achieve high
execution speeds by translating or mapping each instruction of an application
onto one or more instructions taken from the hosts ISA. ISS have been an
invaluable part of computer architecture design, mostly for design space ex-

44

3.2 Electronic System Level

Application Code

addi 0x32000056

Decoder

Dictionary

Pre-morphed
blocks

Intermediate
representation

Disassembler

Text string
representation

Morpher

Assemble
instructions

Native Code
execution

0x12000044
0x12000044
0x12000044

Figure 3.4: Dynamic code morphing in an Instruction Set Simulator (ISS).

ploration, partitioning and feature evaluation in early design stages. ISS can
be categorized by their underlying implementation [134]. Interpretation-based
simulators provide internal processor state and execute instructions by cycling
through fetch, decode, dispatch and execute steps. Compilation-Based simu-
lation basically does all these steps at compile-time already, translating every
instruction into a series of native instructions. Lastly, binary translation does
this translation dynamically, reusing dynamically translated code in a Transla-
tion Lookaside Buffer (TLB) for higher performance. An example for dynamic
binary translation is shown in Figure 3.4. The input is a binary representation
of application code compiled for a target architecture. If the code segment has
not been processed before, it is dynamically translated by first decoding it into
an intermediate representation. This serves as input for the text disassembly
and the morpher stages. The latter generates a set of instructions in the native
ISA of the host processor on which the ISS is executed. Previously translated
instructions or code blocks are stored in a dictionary so that a lookup is suf-
ficient in subsequent calls to this code segment. Depending on the modeled
architecture, a single instruction may need to be decoded into a sequence of
native instructions, affecting performance. The achievable performance also
depends on a number of other factors, most notably the closeness between the
two instruction sets1 (simulated ISA and physical host-ISA). While ISS can

1 Two ISA are close if the mapping of instructions in an application does not increase the required
total amount of instructions significantly. This happens if many instructions are similar and can
be directly translated into a single host instruction

45

3 State Of The Art in Computer Architecture Prototyping

work stand-alone, they are often part of a larger system and can be integrated
in many other modeling or simulation environments such as SystemC [93].

3.2.3 Virtual Platforms

The term Virtual Platform (VP) is a rather generic term that is used in a num-
ber of different contexts. Virtualization is an approach that can be used for
splitting available hardware resources and provide isolation of the access to
these resources among several virtual platforms. This purely software oriented
use case is often seen in todays many server clusters where virtualization has
become an essential technique, allowing multiple customers to share server
resources and dynamically scaling/changing the VP sizes [111]. Having mul-
tiple VPs on one physical machine may require some form of arbitration or
management, a task that is handled by a so called hypervisor. Virtualization
in this regard is closely related to operating system functionalities. So called
virtual execution platforms may also be used to allow composable and thus
predictable operation of multiple applications [51].

In contrast to the server and operating system domain, virtualization can also
be used for prototyping and architecture research. In this work, the term VP is
directly connected to this second use case and will be defined as follows:

Definition: AVirtual Platform is a virtual prototype of a full processing system
which exists only virtual and is executed on top of an actual hardware platform

In this context, a virtual platform makes it possible to investigate non available
or even non existing hardware. At the core of such a VP is often an ISS, which
allows the execution of applications compiled for their respective ISA.A virtual
platform can be adjusted or extended entirely on a software level compared to
actual hardware prototypes, making it useful for early evaluations [90]. The
prototyping use case is enabled by modeling schemes for new ISS models and
peripherals that some virtual platforms such as Open Virtual Platforms (OVP)
provide [3]. A VP also typically contains predefined models for common
components such as bus and memory. Many commercial virtual platforms
target the servermarket, howeverVPs such as the TheQuick Emulator (QEMU)
and OVP are also used for prototyping, especially in the scientific community.

46

3.2 Electronic System Level

A virtual platform is intended to represent a full computing system at execution
speeds that aim to match an actual system. While this is not always achievable,
it distinguishes a VP from accurate simulation of hardware models. Despite
using a high level of abstraction to gain fast execution speeds, it is possible to
extendVirtual Platforms towardsmore accurate execution. However, providing
accuracy never comes for free as the execution speed is slowed down by a factor
of 150-170 [106]. Virtual platforms can also be extended with power models
that enable early estimates based on their architecture and application patterns
although the high level of abstraction inevitably results in some inaccuracies
in the predictions [35].

3.2.4 High-Level Synthesis

The rising complexity in hardware design calls for new methodologies in de-
sign and verification. Design automation plays a major role in dealing with this
complexity that cannot be handled by human developers by themselves any-
more. A multitude of tools and frameworks exist for this purpose but it is also
reflected even earlier, in the definition of enhanced languages and methodolo-
gies. High-level Synthesis (HLS) is a term that describes a methodology that is
realized by tools for generating hardware using design descriptions on abstract
levels as input. The history and evolution of HLS can be roughly split into three
generations [79]. The first generation was more of a by-product of research in
the data-path domain. The second generation developed these initial steps into
commercial, albeit rather unsuccessful, tools. These EDA tools would take a
behavioral model and automatically translate it into a representation on a lower
abstraction level such as RTL [81]. Hardware description languages, closely
related to RTL, include such behavioral modeling in their language. These
languages share many similarities with programming languages, yet there is
still a major difference since in hardware, everything is executed in parallel by
default while in software everything is expected to happen sequentially. The
third generation developed the tools and methodology even further towards
the software domain. As such, EDA companies provide new HLS tools which
target SystemC, OpenCL or even plain ANSI-C/C++ as input language and can
provide HDL code as a result. This C based synthesis has also been promoted
as part of a solution for the design productivity gap [118]. However as of today,
even though the abstraction level was raised significantly, HLS is still far from

47

3 State Of The Art in Computer Architecture Prototyping

the universal tool that enables hardware design for anyone. This is mostly for
two reasons, firstly the tools typically only provide good results for data-path
driven designs with a high degree of trivial parallelism. Secondly, there is still
knowledge about hardware architecture and supported language constructs re-
quired when designing with HLS as the tools need to be steered by a developer
to produce good results [32]. A panel discussion at DAC highlights the most
common input languages and their advantages respectively disadvantages [46].
The panelists stress the fact that if HLS is to succeed, it is not enough to work
on synthesizeable subsets. Furthermore, HLS must come as part of a complete
solution including virtual platforms for early software development, inclusion
of IP cores in the design process and solutions for verification tasks. Solving
these issues and supporting control-flow oriented tasks will decide the future
and lead to a fourth generation of HLS.

Recent HLS tools that have been used for the design of hardware blocks include
catapult-C from mentor [83] and Vivado HLS by Xilinx [130]. The latter is
an extension of the Vivado simulation and synthesis framework by Xilinx that
is provided together with the FPGA boards produced by the company. In the
research community, the LegUpHLS framework has risen to some prominence
as an open source alternative. LegUp also describes an intended design flow
that profiles an application and subsequently synthesizes heavily used parts
into a special accelerator [25]. High-level synthesis has also been investigated
in conjunction with virtual platforms [20]. The goal is to use HLS for the full
system design so that only a single platform description has to be written, in
contrast to the process of developing an abstract virtual platform and later on
manually designing a matching hardware design accordingly.

3.3 Hardware Simulation

In contrast to abstract simulators where execution speed and early DSE are the
most important goals, there is also a need for fine grained prototyping on amuch
lower level that allows for verification, validation and debugging of a hardware
design under test. Hardware simulators provide these features by taking HDL
sources as input and compiling a simulation environment, in which all mod-
ules including their signals can be visualized. Since hardware is inherently
parallel but a simulator is essentially software that is executed sequentially,

48

3.4 Hardware Emulation

these simulators need to provide a means for handling pseudo-parallel execu-
tion. Input languages depend on the simulator support, yet VHDL and Verilog
are commonly used. SystemC models on their cycle accurate level may also
be used as a valid input. Since hardware simulators are typically very slow
and show bad scalability with increased design sizes, efforts towards simulator
parallelization have been made [29]. Since in hardware simulation, all sig-
nals and registers in a synchronous design change in parallel, this task seems
promising. However, due to the interfacing of components all signals cross-
ing two partitions require synchronization in each cycle. Furthermore, even
powerful server machines only boast a limited number of physical processing
cores, limiting parallelization efforts.

3.3.1 Co-Simulation

In some cases such as Cyber-Physical Systems (CPS), several domains such as
the electrical and physical need to be covered by a prototype. In an attempt
to enable prototypes that encompass multiple domains at the same time, the
term co-simulation was coined for standards and techniques that allow the
integration and interaction of entirely different simulators. Independent of
multiple domains being involved, it allows parallelization and even distributed
execution of simulations. It furthermore also allows the mixing of differ-
ent simulators with a different level of abstraction. High-Level Architecture
(HLA) is such a standard that, despite originally not being developed for com-
puter architecture simulation and prototyping, has been applied in this field
in recent years [104] [91]. HLA defines three major elements, the Run-time
Infrastructure (RTI), the federates and the Federation Object Model (FOM).
The RTI is the central component that manages and operates the distributed
simulations. Federates are individual instances that interact with the RTI. The
FOM specifies the object structure that is used to exchange data.

3.4 Hardware Emulation

Hardware emulation targets a similar goal to hardware simulation: verification
and debugging of hardware designs. In contrast to simulation, emulation
overcomes the scalability issues since it is based on fully parallel execution of

49

3 State Of The Art in Computer Architecture Prototyping

a hardware design. On the downside, this results in a long mapping stage of a
design under test onto an emulator. Furthermore, hardware emulators are often
extremely costly and require experienced operators to use them efficiently.
Despite some core differences, FPGA prototyping fills a similar role and is
thus sometimes considered another form of hardware emulation. Since FPGA
prototyping is faster and much cheaper, this work will focus on this technique.

3.4.1 FPGA

Field Programmable Gate Arrays (FPGA) are a type of circuitry that can
change its function even after production and deployment. While abiding
resource constraints, any kind of logic can be mapped onto an FPGA. This
enables them to be used as reconfigurable hardware since a design that is
mapped onto an FPGA can be changed afterwards. FPGA provide a target
technology for hardware designs on the same level as ASICs. Compared to
ASICs however, FPGA have the benefit of allowing updates to the hardware
design even after production and rollout has finished. Furthermore, the same
FPGA can bemass produced but host a multitude of different designs, reducing
product cost due to the economies of scale. This leads to FPGA being used
as target technology for hardware implementation and deployment in many
different application domains [102].

However, FPGA are not only used as a target for hardware designs but also
prove to be a prime technology for prototyping of hardware architectures. In
this context the term simulation acceleration is sometimes used since both
hardware simulation as well as FPGA prototyping typically take the same
HDL input for generating their designs but the FPGA executes orders of mag-
nitude faster. Yet despite using the same input languages and hardware design
descriptions, there is a major conceptual difference between hardware simula-
tion and FPGA prototyping. A hardware simulator is a piece of code that is
executed sequentially on a host PC or a custom architecture for fast simulation.
An FPGA on the other hand provides a fully parallel execution, the same that
any real hardware integrated circuit implementation exhibits. Due to this fact,
FPGA prototyping is also sometimes referred to as hardware emulation.

Generating a design for an FPGA from a HDL description takes up several
steps, most notably the synthesis of hardware modules, the placement onto the

50

3.4 Hardware Emulation

target FPGA and the routing (i.e. connecting) of modules and pins. Synthesis
and place and route can easily take several hours for large designs and has to
be re-done for each small change in the architecture. One technique that can
improve this situation is partial-reconfiguration which allows the selection of
regions which will not be changed in a re-synthesis. However, this technique
is more often intended for live updates, i.e. changes to the hardware while it is
running. Partial synthesis or checkpoint-based design are further techniques
that slowly find adoption.

If a single FPGA does not provide enough resources for a design, multi-
ple FPGA can be interfaced in order to provide a larger multi-FPGA plat-
form. There are several proprietary variants of such multi-FPGA platforms
on the market, developed by companies like proDesign, Synopsys or Cadence.
Some scientific publications also present custom setups that consist of specifi-
cally tailored FPGA boards and generic interconnection schemes, for example
FORMIC [77].

3.4.2 FPGA Virtualization

Virtualization is a concept that can be applied to FPGAs in a similar way as
a virtual platform is used for a full system. The general goal of virtualization
is to allow resource sharing or prototyping and evaluation of architectures
which are not physically available. In the context of FPGA there are two major
approaches for virtualization:

• Virtual FPGA (VFPGA)

• Resource virtualization

Since an FPGA is reconfigurable hardware it can inherently be used to model
any kind of architecture for prototyping reasons as long as resource constraints
are not a limiting factor. This means, a physical FPGA can also be used for
hosting the logic that makes up an FPGA. The hosted FPGA is called a virtual
FPGA or short VFPGA [44]. A VFPGA allows to keep an FPGA design in-
dependent of the underlying hardware and also enables FPGA related research
since features that may not be supported by the physical FPGA may be emu-
lated in the virtual FPGA. An example for this would be partial reconfiguration,
which is not available for all FPGA, especially in earlier versions.

51

3 State Of The Art in Computer Architecture Prototyping

Virtualized Router

Virtualized Logic

Router State

Credits
Route Tables

Scheduler State

Credits
Route Tables

Scheduler State

Credits
Route Tables

Scheduler State

Flit Buffers
Credits

Route Tables
Scheduler State

Traffic generationTraffic generationTraffic generationRouter I/O

Traffic

Figure 3.5: Resource virtualization on FPGA for emulation of a NoC design.

Resource virtualization on the other hand tries to virtualize a hardware design
itself. This technique can be used when large, reoccurring structures exist in
the design. As an example, a Networks-on-Chip (NoC) architecture can be
chosen. In a NoC, the routers themselves fit the description of a reoccurring
structure, since a NoC typically hosts many routers that are just duplicates of
the exact same logic design. Such an approach for a virtualized NoC on an
FPGA has been successfully realized in literature, enabling larger NoCs to be
prototyped on an FPGA [95]. The concept can be seen in Figure 3.5. The NoC
architecture is split into several virtual regions that run on a single physical
instance of such a region. Thus, the logic exists just once and only the state
holding elements are duplicated to exist physically for each virtual region. A
control logic handles the clocking and switches among these memories in a
round robin fashion so that all virtual routers are handled and synchronized
before the next global cycle takes place. The same approach can also be applied
towards other hardware components, as long as they contain large reoccurring
logic structures. Besides the NoC, the cores of a Multi-core are an example
for such a situation [105].

3.5 NoC Prototyping

NoCs are a recent development for interconnecting the components in SoC
designs, mostly when multiple processing cores are integrated into a system.
Since the trend towards such architectures continues, many prototypes special-
ize entirely on the NoC, independent of the system that is built around them
when integrating the NoC into a full SoC. In fact, it can be argued that the
interconnect is one of the most important aspects of modern computer archi-

52

3.6 Full System Simulators/Emulators

tectures since it can easily become a bottleneck since the processing elements
need to be fed with data from I/O or memories. NoC prototypes can be ab-
stract, cycle accurate or FPGA based implementations. A recent publication
shows an overview including a comparison of several FPGA based NoC simu-
lators [64]. Major distinctions among FPGA-based simulators are made based
on virtualization techniques (as mentioned earlier in subsection 3.4.2), traffic
generation and the decoupling of simulator and network. Traffic generation
refers to the method that is used for generating input for a NoC. This input
can be generated by application code running on soft-cores on the FPGA [76].
Another approach is to utilize a C-based generator on a host machine [127]. A
more software oriented approach that forgoes FPGA implementations allows
fast design space exploration and architectural changes. Some software-based
simulator frameworks try to achieve accuracy that is close to a real hardware
implementation at the same time, yet it always comes at the cost of perfor-
mance [63]. SystemC-based simulators have also been extended by including
OVP models for attaining realistic traffic patterns [128]. This is possible since
the OVP processor models allow the execution of unmodified application code,
resulting in compatibility with actual benchmarks.

3.6 Full System Simulators/Emulators

A well known example for a widely used full system simulator is the Gem5
framework [15]. Gem5 provides a modular platform for computer architecture
research and design space exploration. Historically, gem5 is the results of a
merger between the M5 and GEMS simulation frameworks. Together, they
provide a large number of CPU models with a differing ISA and furthermore
an extension for interconnects and cache coherence protocols. Gem5 is de-
signed to be flexible and extensible, making it useful as a basis for research
in the field of computer architecture. The processor models and the memory
subsystem can each be executed on different levels of accuracy. For CPUmod-
els, the differentiation is made whether full out-of-order execution is modeled,
only in-order execution is modeled or whether even more abstractions from
the micro-architecture are made. The simulator supports several features for
software development and evaluation, such as a system-call emulation mode
that emulates most syscalls and devices. Further extensions provide a language
or environment for defining cache coherence protocols or novel ISA.

53

3 State Of The Art in Computer Architecture Prototyping

The most accurate configuration of GEM5 can be compared against a real
system [23]. The evaluation shows, that even this accurate configuration
results in a mismatch regarding execution time that varies between 1.39%
and 17.94%. This is due to a correlation between L2 cache misses and the
magnitude of the mismatch, pointing towards inaccurate modeling of DDR
accesses in GEM5. It highlights the fact that even fully cycle accurate models
do not behave exactly as a real system if not every component or aspect of it is
modeled correctly.

Several attempts have been made on improving performance of full system
simulators since they are typically used for design space exploration, a task
that benefits from high execution speeds. One approach is introduced by the
Sniper multi-core simulator [26]. It features so called interval simulation that
splits the simulation into a functional part and an analytical model that does not
necessarily represent the exact order of instructions executed. Instead it relies
on the observation that miss events such as branch mispredictions or cache and
TLB misses interrupt the otherwise steady streaming of instructions through a
processor pipeline. These misses are simulated via special models and divide
the flow of execution into intervals. For each interval, the simulated time is
then calculated based on the analytical model of the architecture.

QEMU is also often referred to as full system emulator [12]. In this case the
name is mostly attributed due to the ability of running the full Linux operating
system on top of an emulated machine. However, it can also be considered
a virtual platform similar to OVP introduced earlier, yet with less ability to
model custom peripherals and architectural features.

3.7 Hardware/Software Codesign

A well designed computer architecture needs to coordinate and synergize its
hardware and software components. If the design process splits these fields into
two separate procedures, it is difficult to achieve good results. Thus, the term
Hardware/Software Codesign (HSC) was coined, describing methodologies
that try to achieve a well coordinated development of hardware and software.

A survey of the history and challenges of co-design claims that it evolved over
three generations [122]. The first generation mostly dealt with the partitioning

54

3.7 Hardware/Software Codesign

problem by designing algorithms that can provide good partitions of hardware
and software components for a problem that is described on a functional
level. In the second generation, multi-threaded execution and co-simulation
extended the rather limited capabilities of co-design in the first generation.
The third and current generation covers a broad range of new challenges,
mostly the increased heterogeneity of computer architectures and the increased
complexity in hardware and software. In this context, ESL and cross-level
design have emerged and can be seen as closely related to the HSC. These
specifically include some of the topics introduced earlier, namely HLS and
virtual platforms. Further, a technique called co-emulation mixes emulators
for hardware design with simulation for software design similar to the co-
simulation approach [109].

55

4 Prototyping of Heterogeneous
Many-core Architectures

Prototyping of heterogeneous many-core architectures introduces a new set of
challenges where the existing techniques and methodologies for prototyping
of computer architectures do not suffice. Thus, existing techniques must be
adapted under consideration of these challenges and entirely new approaches
need to be investigated.

In this chapter, requirements for successful and efficient heterogeneous many-
core prototyping will be identified. The requirements will be categorized
according to four major aspects that any computer architecture needs to cover.
These are: software and programming, processing (elements), data (memories)
and finally communication among all elements. Scenarios from the develop-
ment of heterogeneous many-core platforms are introduced that emphasize the
need for novel approaches. The state-of-the-art techniques presented earlier
will be discussed in the context of the requirements and scenarios in order
to reveal the limitations of existing approaches and show how they can be
overcome.

4.1 Requirements

A multitude of prototypes may exist for the same many-core architecture since
a single prototype might not fulfill all requirements and goals by itself. In the
following, such requirements and goals for heterogeneous many-core proto-
types will be discussed. Even though not all of these requirements must be
met by a single prototype, they are all relevant towards the successful design
of a new computing system.

57

4 Prototyping of Heterogeneous Many-core Architectures

4.1.1 Programming

One of the major reasons why many-cores have not found widespread accep-
tance in nowadays computing world yet is the challenge of programming such
architectures. The trend towards more and more parallelism is unbroken, yet
even at comparably low levels of parallelism, languages and software devel-
opment tools and efforts often fail. Race conditions and general unexpected
behavior caused by interleaved execution are not easy to detect and result in
errors that are much harder to resolve since they can be difficult to reproduce
and pinpoint their location due to the inherent lack of determinism in execu-
tion. Some models of computation or specialized parallel languages exist that
alleviate this problem, yet they always bring major limitations, inefficiencies
or difficulties along with them. Consequently it is important to be able to
investigate such interleaved execution and synchronization mechanisms. Yet
even aside such issues, not every program can achieve significant speedups
through parallelization in the first place. According to Amdahl’s law [8], the
sequential part of the application provides an upper bound on the speedup that
can be achieved as follows:

Speedup =
1

rs +
rp
n

The sequential part rs is constant, independent of the number of available cores
while the parallel part rp (calculated as 1 − rs) is sped up by the factor n, i.e.
the number of processors. This equation assumes trivial parallelism, i.e. the
overhead due to synchronization or resource contention is not covered. Real
performance evaluations will require a prototype that does model these aspects
as well. In an extension to Amdahl’s work, Gustafson argues that with higher
parallel processing power, so does the parallelism in tasks and applications
grow [53]. Similarly, if multiple independent applications are executed, it
generates trivial parallelism that can easily benefit from a large number of
cores. In both cases however, efficient execution depends on many factors, the
mapping onto cores and resources, scheduling of processes, etc. These may
not be possible in a fully static analysis but may require a prototype.

Programming requirements may also be more fundamental: On the lower
software layers the hardware interfaces need to be developed based on specifi-
cations that should not be changed afterwards as this may cause major redesign

58

4.1 Requirements

efforts and introduce additional faults. If an early prototype exists however, it
may influence the specification process in a positive way. Conversely, driver
and low level software development is error prone since there is often no safety
net and design mistakes often cause fatal errors.

Considering all these challenges, it is imperative to start working on the soft-
ware implementation as early as possible. If a physical architecture is available,
the software development can take place on such existing system. However, if a
novel hardware architecture is designed, a prototype of the hardware is required
which is available as soon as possible in the development cycle. Such a proto-
type needs to mirror the actual hardware as close as possible on a functional
level. This means it must provide the correct hardware interfaces according
to a fixed specification and also adhere to the specified ISA so compiler cus-
tomizations or optimization tasks can be handled. As the whole software stack
including an operating system needs to be designed, tested, and evaluated, it
is furthermore of utmost importance to provide a prototype that allows very
fast execution speeds. This can be a challenge due to the size of a many-core.
While an ASIC implementation would handle all transistor switching in the
platform in parallel, a prototypemight have to rely on sequential execution. For
extensive testing, hardware components and interfaces for I/O, memory, etc.
also must be modeled accurately. Lastly, it is not enough to have a prototype
that has a singular output: success or failure. Instead, the progress, state of the
prototype, and potential error conditions and situations need to be visible and
analyzable.

To summarize the prototyping requirements that come from the programming
of many-cores:

• Early availability

• Modeling of fixed/defined interfaces (golden reference)

• High execution speeds

• Visibility and debugging capabilities

59

4 Prototyping of Heterogeneous Many-core Architectures

4.1.2 Processing

A heterogeneous many-core system contains a large number of processing el-
ements. They range from various GPPs which might exhibit entirely different
ISA, GPPs with ISA extensions (e.g. the i-core as introduced earlier in sec-
tion 2.3) and many special accelerators with task specific functionality. They
can be clustered and grouped in tiles or work independently as a single entity,
i.e. a node in the system that is directly interfaced to an interconnect layer such
as a NoC.

Since any processing element in a many-core could also operate on its own
or in tandem with a single master, prototyping the individual element can be
accomplished entirely by traditional means and will not be discussed in more
detail here. Instead, the prototyping requirements when integrating processing
elements into a heterogeneous many-core have to be formulated according to
their interaction and interfacing towards a full system. Thus, one important
aspect is the interaction among processing elements based on contention and
limited access to shared resources. Another aspect is handling of heterogene-
ity and accelerators in general, which adds another level of complexity for
the software layers as well as the design-space exploration and architecture
optimization tasks.

From a software perspective the requirement mostly lies in functional ver-
ification of application mappings or operating system functionality such as
schedulers and drivers. Yet from an architecture or hardware/software code-
sign perspective the performance aspect is of major importance. In order to
evaluate the performance of a system, some form of monitoring can be used.
On a software level it is typically sufficient to do a profiling or tracing within
the application code. On a hardware level however it is important to inspect
the operation within and among the processing elements on a much more fine-
grain level. Thus, a requirement for the prototyping of processing elements
in a many-core is the provision of good visibility of their current state for
acquiring and assessing performance metrics. This is of special importance in
the development phase, since debugging efforts rely on good accessibility and
visibility of the processor state.

To summarize the prototyping requirements that come from the processing
elements in a many-core:

60

4.1 Requirements

• Handling of heterogeneity and accelerators (functional and design pro-
cess)

• Evaluation of impact on shared resources

• Accessibility and visibility of hardware state

4.1.3 Data

Any form of information processing requires some form of data to operate
on. The data can represent either input/output data, configuration data or
temporary data that processing elements need for their operation. A processor1
furthermore requires a program, i.e. a sequence of instructions that can be
fetched and executed. In both cases, amemory needs to exist that can store these
programs and all required data. A many-core prototype requires memories
holding this data that can be accessed by the processing elements. Furthermore
it should provide a means of accessing continuous input data not only statically
from a memory but also through I/O interfaces towards sensors, actors, or
remote systems.

On the most abstract level, it does not matter where the data comes from
or where it resides - as long as a sufficient amount of memory is available.
If the prototype shall allow accurate evaluations of a real platform however,
the exact timing behavior, the memory hierarchy, sizes and access patterns
(e.g. burst accesses) need to be considered. Furthermore, memories need to
be initialized (typically zeroed) to guarantee a known and well-defined initial
state. Afterwards there must be a mechanism for loading the memory with
appropriate data and programs before the actual execution starts. These actions
need to be considered and provided by a prototype.

All of these mentioned data requirements are the same in any single- or multi-
core system. Yet in a many-core, the situation becomes more complex and
demanding, making data accesses and memories another major limiting factor
for many-core adoption. The tight integration of cores often does not leave
much space for memories and the memory resources can quickly become

1 In this work, a processor is defined by the capability and requirement to execute software.
Typically this refers to either a GPP or an ASIP

61

4 Prototyping of Heterogeneous Many-core Architectures

a bottleneck if multiple cores have to share their accesses. Furthermore, a
many-core often introduces additional challenges due to the distributed nature
of memories, consistency and coherency issues, or simply the size of the
architecture (and thus the prototype).

To summarize the prototyping requirements regarding data handling in amany-
core:

• Provide easy to initialize memories of sufficient size (functional)

• Provide means for I/O with sensors, actors, and remote systems

• Allow the investigation of timing details and coherency/consistency is-
sues

4.1.4 Communication

The communication infrastructure is of special importance in a heterogeneous
many-core system. In more traditional architectures often only a single master
(i.e. the CPU) exists that has full control over its interconnect. The master
can decide how and when to use the interconnect in order to access attached
slave devices such as memory controllers, I/O, etc. This simple concept was
developed further into multi-master systems by adding multiple masters (either
several CPU or accelerators like DMA, etc.) on a single bus. In a many-core
or many-accelerator system the situation changes even more drastically. Here,
a multitude of (often independent) masters require access to a multitude of
shared slaves. Many interconnect and communication techniques that have
been established in the past (e.g. buses and crossbars) can not be applied to
a many-core or many-accelerator system due to their limited scalability. The
emergence of networks-on-chip can be seen as an answer towards these scal-
ability issues. These novel interconnects also directly impact the prototyping
requirements. Most notably, it is not enough to prototype only small designs
and then expect the same behavior when the design is scaled towards larger
sizes. A NoC behaves entirely different depending on load scenarios and larger
NoCmay introduce bottlenecks that need to be considered when designing and
parameterizing the interconnect. Thus, a prototype is required to host large
designs and scale well with the increased design size.

62

4.2 Motivating Scenarios

The location and mapping of processing elements but also the characteristics
of application running on these processing elements have a direct impact on the
requirements towards the interconnect. Thismeans it is not sufficient to observe
basic functionality with artificial test cases. Prototyping the communication
in a heterogeneous many-core has to cover the full software stack and use real
applications to create realistic scenarios.

To summarize the prototyping requirements regarding on-chip communication
in a many-core:

• Allow investigations of large number of nodes

• Allow investigation of interactions among heterogeneous nodes

• Enable fast evaluation of real application patterns including the full
software stack

4.2 Motivating Scenarios

In the following, three motivating scenarios are presented that highlight the
requirements shown previously by providing real examples of novel designs
and features of heterogeneous many-core as developed in various projects.
These examples highlight specifically the major challenges that either emerge
or which are much more critical in the design process of heterogeneous many-
cores compared to more traditional computing architectures.

4.2.1 Dynamic Task Mapping and Runtime System

Heterogeneous many-core adoption still suffers from an abundance of possible
bottlenecks and inefficiencies. Thesemake such platforms often performworse
than more traditional architectures, despite having much more throughput and
performance potential due to the increased number of processing cores. One
such major bottleneck is on the system software level. A many-core requires
some kind of runtime system that provides a means for loading the application
code, initializing the hardware and starting the execution. However, the full
potential of a many-core can only be realized by providing more features than

63

4 Prototyping of Heterogeneous Many-core Architectures

this since a purely statical execution is not able to adapt according to application
patterns or environment changes. For example, the image processing of a
camera-based obstacle detection on a moving vehicle might require a different
framerate depending on the velocity. A more elaborate runtime system is
thus desirable that can handle dynamic task mapping among tiles as well
as scheduling and threading on individual cores. This in turn requires a
management unit that is implemented either centralized, decentralized or as a
mixture of both. The management unit needs several basic functionalities that
have to be provided by the runtime system: the ability to communicate among
its distributed instances, the ability to gather status information potentially also
including an API to the application code, and in general the ability to schedule,
move and control application execution. Developing such a runtime system
including a management unit is a major software development task that is
closely correlated with the underlying hardware architecture. Specifically the
number of cores, the interconnect, the memories including their hierarchy and
beyond all that fundamental design decisions such as the model of computation
play a role. Waiting for hardware design teams to implement a set specification
and finish all integration tasks wastes valuable time in the design process,
requiring approaches that allow system software development to start early
and in parallel to hardware design and integration tasks.

4.2.2 Providing a Low-latency on-Chip Interconnect

Increasing the amount of processing elements that are tightly integrated as
in a many-core system impacts both the interconnect and memory subsys-
tems2. For instance, interconnects have evolved from bus to on-chip networks
to promote scalability. The memory hierarchy also needs to evolve as the
processing elements beyond tile borders require a coherent view over their
caches. Coherence must be enforced by a coherence scheme and supported
by fast interconnects. This claim is based on observations reported at NOCS
conference that show a significant impact of network latency on coherence
messages and schemes [62].

2 This motivating scenario was described in a publication by the author of this work in [MSK+18].
In this subsection, some parts of the text are taken from said publication with or without
modification and will not be identified further.

64

4.2 Motivating Scenarios

Traditional inter-tile cache coherence schemes offer global coherence that does
not scale. Authors in [116] proposed a novel region-based cache coherence
that uses a divide-and-conquer methodology to provide scalable and efficient
inter-tile coherence for many-core systems. Due to inherent NUMA patterns
of tile-based systems, these coherency regions need to be confined spatially to
achieve optimal performance. Consequently, a NoC that can not only alleviate
the spatial constraints of region-based cache coherence, but also accelerate
the inter-tile coherence messages is desirable for increasing the overall per-
formance of a many-core. While lower communication and memory access
latencies will always be a design goal, the potential for gains depends on sev-
eral factors. In a NoC based many-core, the largest benefits can be expected
when a large amount of nodes are interfaced by the NoC since long distances
yield the biggest potential for improvements on latency. Long distances impact
the amount of hops in the NoC, directly increasing the amount of cycles spent
for the communication. At the same time, circuits that enable a direct way of
communication can not be kept active since large parts of the communication
channels and resources would be blocked. Since future many-cores are ex-
pected to grow in size and amount of cores that need to be interconnected, it is
imperative to find scalable solutions for this development. However, the design
and verification of techniques that could handle or improve this situation and
provide low-latency interconnects creates a challenging environment. Large
many-core platforms hosting many nodes and a large meshed NoC do not fit
in available FPGA boards while taking immense amounts of time in hardware
simulation. This calls for novel approaches in the design and verification of
such architectures.

4.2.3 High-Level Design Flows for Accelerators and
Interconnects

On software level, the runtime system is the most challenging part for hetero-
geneous many-core while on the hardware side the interconnect and memories
have a large impact on performance. However, as motivated in the introduc-
tion and backed up by the IRDS roadmap, until entirely new technologies
may disrupt the field, future performance gains in computing architectures
will emanate from the applications and application domains. These trigger
the development of specialized architectures that still show growth potential

65

4 Prototyping of Heterogeneous Many-core Architectures

when progress on the technological level has nearly come to a halt. Since such
architectures will make use of optimized interconnects, memory hierarchies
and especially custom accelerators, they can no longer be implemented entirely
by IP-based reuse of existing components. This leads to more abstraction and
automation which will gain ever more importance. Consequently, the design
processes and methodologies will follow a top-down approach with the elec-
tronic system level at its core. Yet, these methodologies still struggle in many
regards as they often produce sub-par results, calling for novel contributions
and improvements.

4.3 Analysis and Conceptual Approaches

Based on the requirements and motivating scenarios, approaches towards a
holistic solution for the challenges in design and prototyping of heterogeneous
many-core are formulated.

4.3.1 Early Prototypes for Software Development

To overcome the challenges of many-core programming, threading libraries
such as pthread or specific programming languages (e.g. IBMs x10) that target
parallel execution in their language as a core concept, have been devised [84].
Similarly, heterogeneous architectures can be programmed by languages such
as OpenCL, which has also been further developed in literature for handling
distributed systems that include accelerators [65]. Research towards support
of more commonmatlab/scilab or C language for automated parallelization are
also ongoing [38]. On a more basic level, the underlying hardware architecture
may support concepts like shared memory programming in order to simplify
the distributed nature of memories in a many-core.

Despite all these approaches to ease programming, the process remains error
prone and requires prototyping to help in debugging and verification tasks.
While software can be developed hardware independent by adding a hardware
abstraction or intermediate layer [132], this often results in lower performance
and compute efficiency. In recent years, a number of full-system simulators
have emerged to help in this task [15]. These are often built for fast execution

66

4.3 Analysis and Conceptual Approaches

speeds and early design space exploration, yet some also operate on more ac-
curate levels. Even though not natively targeted towards it, simulators such as
Gem5 have been extended to enable many-core prototyping [21] [22]. How-
ever, their focus typically lies on micro-architectures, making the environment
less suited for interconnect simulation and multiple core interactions. At the
same time, they typically do not provide the same execution speeds as true
Electronic Systems Level (ESL) prototypes. Specifically virtual platforms that
incorporate an ISS have mostly been overlooked in the context of many-cores,
despite having some appealing characteristics. Most notably, they provide the
highest execution speed possible, nearly at the same speed as a native execution
on a host-PC. Performance is only limited by the amount of physical cores on
the host system, which is typically less than the prototyped virtual platform3.
This makes multiplexing necessary, resulting in performance degradation de-
pending on howmany virtual cores and other virtual components need to share
a physical core. A virtual platform that uses an ISS at its core also enables
heterogeneous architectures to be build. If a modeling scheme for arbitrary
components such as interconnect or accelerators is present, a VP can provide
all the tools necessary for simulating a heterogeneous many-core. This allows
the software development efforts to start early, reducing overall development
cycles and also enables the hardware/software codesign (i.e. the software
development can influence the development of the hardware architecture and
vice versa). Abstract prototypes also offer further benefits that can make them
useful even when a physical architecture already exists: they can be executed
on regular and widely available COTS processors, they can be better observed
and instrumented non-intrusively and performance can even be higher (when
the target is a low clock rate embedded device for example). Finally, a virtual
prototype allows to introduce different timings, thus triggering race conditions
and improper coding more easily. A prototype that enables design, verification
and validation of software and programming needs to be fast enough to handle
high levels of parallelism and large applications and data sets. However, these
platforms also need to provide real world data input from sensors or I/O devices
such as cameras to enable the efficient prototyping of the full software stack in
real scenarios.

3 This is due to the fact that the prototyped design represents a many-core while the simulation
host in most cases is a COTS system

67

4 Prototyping of Heterogeneous Many-core Architectures

4.3.2 Hardware Verification and Validation

While virtual platforms are deemed to be suitable for software development
and early prototyping, by itself they cannot be used for hardware design and
verification. Instead, hardware simulation is the common approach for the
verification, validation and debugging in integrated circuit design. Its benefits
are relatively fast recompilation after design changes even in large designs, good
visibility of signal and register states, and overall cycle-accurate behavior. In
a many-core architecture, hardware simulation still plays an integral role, yet
its weaknesses are even more prevalent. The sheer size of a many-core makes
hardware simulation incredibly slow since it has to scale with the increased
amount of logic. Parallelizing the simulators can alleviate the situation and
is investigated in many scientific works. Yet there is still the limitation of
available physical cores and synchronization that needs to be applied on a
cycle-by-cycle basis in order to guarantee accurate and deterministic behavior
as required for verification tasks. The slow speed and lacking scalability makes
it infeasible to use hardware simulations for more than some debugging tasks of
individual components and logic blocks. Overall integration into a full system
and performance evaluations need to be carried out another way. While it is
possible to simulate memories and put real binaries in them, the requirements
regarding programming can not be fulfilled by hardware simulation simply
because it is far too slow. Similarly, even the other requirements can barely
be fulfilled for the same reason, since complex interactions of heterogeneous
processing elements often only show in extended use-cases triggering corner
cases.

FPGAbased prototyping does provide scalability due to the fully parallel nature
of FPGA execution. Yet at the same time, resources are limited and largemany-
core designs do not fit onto todays FPGA chips. Virtualization of resources
can help, yet it reduces performance significantly while increasing design
complexity. Multi-FPGA solutions on the other hand can host reasonably
large many-core designs, yet there is extra complexity due to the mapping
step onto the individual FPGA. Furthermore, these prototyping systems are
very expensive and come with a number of limitations, such as the number of
pins on each FPGA that not only limit I/O but also inter-FPGA connections.
Additionally, synthesis times grow with design size, resulting in extensively
long iterations for design changes.

68

4.3 Analysis and Conceptual Approaches

Instead of a full system, single components of a many-core can also be proto-
typed. Many individual components of a many-core do not require adaptations
in their prototyping approach. However, the situation is entirely different for
the network-on-chip interconnect. This core component of a many-core has a
large impact on performance, non-functional properties and provision of QoS
guarantees. A NoC is a highly flexible component that may come in many
variations that perform better or worse depending on several factors such as
network load, network size, topology and application patterns. Consequently,
there is a selection of pure interconnect simulators, typically targeting network-
on-chip interconnects. However, most of these simulators only use application
traces or synthetic traffic as input. Some simulators use an interface to the host
processor for executing application code and feeding live input data through
a wrapper into the interconnect simulator. This approach however discards
any timing synchronization or accuracy in the process. Furthermore, a custom
interface to the simulator is required which has no relation to the physical
interface that a full system uses after the NoC has been integrated into a many-
core platform. This means low level driver code will not be compatible and
even the end-to-end network protocol stack might be different in the prototype
compared to a physical implementation. Similarly, the software will also not
be binary compatible, making the critical task of driver and low level software
development impossible. While unit-testing is an important and established
design technique, the full system view on an abstract and on a detailed level
is required during the design process as well. Thus, these approaches are not
sufficient for a many-core prototype since neither the performance, nor the
functionality can be evaluated by isolated prototypes.

4.3.3 Design Automation and Abstraction

Coping with rising design complexity not only means the target technology for
a prototype needs to keep up with this development but also the design tools
and the design methodology itself needs to do so. This is mostly achieved
by novel languages and advances in Electronic Design Automation (EDA).
Introduction of theRegister Transfer Level (RTL) and support for it by synthesis
and hardware simulation tools was a major step in this direction. Yet the
productivity ceiling needs to be raised again by introducing even more abstract
modeling and descriptions that are accordingly supported by EDA tools. The

69

4 Prototyping of Heterogeneous Many-core Architectures

electronic system level can be considered as an overarching title for many
different approaches towards more abstraction. Yet many of the techniques on
that level still do not work well as Quality of Result (QoR), input language
support and design cycle times are still far from optimal. In this context, it
is important for the many-core design and development process to investigate
which technologies and languages promise increased productivity and ease
in the design process towards a large degree of parallelism, heterogeneity,
optimized interconnect and a well crafted memory hierarchy.

4.4 Summary

The following conclusions are drawn from the analysis of the requirements and
state of the art:

Many traditional techniques for IC design are still going strong for heteroge-
neous many-cores. Yet in the face of sheer design size, they reach their limit
and start to struggle due to scalability issues. Even though there are ways
to improve scalability such as simulation parallelization or multi-FPGA plat-
forms, these cannot fully solve the situation and often come with additional
overhead, limitations or simply added cost and complexity. Novel approaches
such as virtualization, known mostly in the server domain, are already in use
for single core design prototyping but promise further potential also for many-
cores. Lastly, raising the abstraction level and increasing design automation
is a constant ongoing process, yet many-cores might push the need for further
advances in this process forward due to their high level of complexity.

In summary, three major topics for improving the process of many-core design
are determined as follows:

• Provide an early available Virtual Platform representation that allows
the definition of clear hardware interfaces, allowing software develop-
ment to run in parallel to the HW design and enable HW/SW codesign
techniques.

• Enhancing HW design and verification that is traditionally based on
hardware simulation and emulation by moving towards hybrid multi-
level prototyping.

70

4.4 Summary

• Fighting the complexity by raising the abstraction level and automation
in many-core design by enhancing and extending existing languages and
toolflows for design space exploration and automated hardware genera-
tion.

These three topics set the theme for the following chapters and will each be
discussed in more detail in a separate chapter. For each it will be described
how they can be realized, what challenges must be overcome, and what can
be added to improve the current state of the art. The second topic will also
introduce a novel concept for reducing latency in a NoC, which motivates the
novel hardware prototyping approach that is the central element of this chapter.
The final chapter will also include a description of the envisioned design and
verification methodology that is realized by a specialized framework.

71

5 Virtual Platforms for
Heterogeneous Many-core

In this chapter, the prototyping ofmany-core architectures on an entirely virtual
level is presented. The focus of this chapter will be on prototyping methods
that enable early available models for software development and interface
specification. Based on the requirements and analysis of existing approaches,
Virtual Platforms (VP) have been determined as the most promising method
for achieving these goals. Thus, in the following it will be described how a
VP can be efficiently used for many-core prototyping, what extensions and
enhancements are necessary and how the resulting platforms perform.

5.1 Building a Basic Many-core Prototype in OVP

In this section, the extension of a virtual platform towards a full many-core
architecture will be described. The Open Virtual Platforms (OVP) framework
is selected for this task [3]. OVP supports a wide range of different ISA in
form of Instruction Set Simulators (ISS) and is available in a free of charge
version. It also contains a special modeling environment for peripherals that
is executed by the Peripheral Simulation Engine (PSE) and furthermore allows
the definition of custom ISA processor models. Native host execution through
semihost functionality that can be included as part of a platform enables even
more functionality and performance. All these features result in full flexibility
and extensibility as it is needed for modeling a heterogeneous many-core while
still providing the fast execution speeds of a fully boosted virtual platform
utilizing binary translation at its core.

When designing a many-core in OVP, the first step is to instantiate a CPU and
connect it to a local bus. Similarly, multiple CPU can be connected onto the
same bus system, creating a multicore design. The bus serves more as a logical

73

5 Virtual Platforms for Heterogeneous Many-core

connection, since no real bus contention is modeled in OVP. It does however
provide a separation of the memory maps which allows the modeling of tile-
based architectures with distributed or distributed shared-memory. The CPU
are chosen from a list of available models in the OVP library, among which
are ARM, or1k, MIPS and Microblaze models. In a multi/many-core VP, a
mix of designs with different ISA can be chosen to introduce heterogeneity. In
this case, each processor must load a separate binary that is cross-compiled for
the respective ISA. It is also possible to extend the OVP library by using the
binary translation scheme of OVP. This means writing a CPU model and the
according mapping of all instruction from its ISA to the host ISA (x86). Such
a custom CPUmodel enables the investigation of any architecture for scientific
purpose.

In the most simple architecture, there are a number of CPUs connected to a
memory via the bus. The memory can be directly loaded with an application
code and the so createdmulti-core tile can be executed by theOVP simulator. In
order to build a full many-core in OVP, at least a custom peripheral needs to be
added that can take over the shape and functionality of a NoC. Such a peripheral
is introduced in [MWB15] and briefly mentioned in [JSK+15]. There, a so
called ”communication device” represents an interconnect peripheral. It can be
designed according to a hardware specification of a NoC. The goal is to provide
the exact same interface to the software as the actual hardware implementation.
Thus, no extra glue code or an additional hardware abstraction layer is required
when executing applications on either platform (VP or hardware). Even drivers
that handle communication can be operated on the virtual prototype exactly
as on real hardware. For a more detailed NoC implementation beyond a
functionally correct interface, the OVP environment can also be interfaced to
a SystemC based NoC simulator [100].

5.2 Accelerator Modeling in Virtual Platforms

Future computing architectures are expected to become more heterogeneous,
hosting a variety of processing elements and accelerators. A major difficulty is
the handling of these accelerators, i.e. when to map and execute which parts of
an application onwhat accelerator, how to handle low level interfacing and data
exchange efficiently and how to integrate accelerators into the HW platform

74

5.2 Accelerator Modeling in Virtual Platforms

and the SW stack. Thus, there is a need for prototyping of accelerator-rich
many-cores and many-accelerator systems. Many of the difficulties can be
investigated on the SW level independent of hardware details, making virtual
platforms a suitable prototyping environment. As described previously, OVP
can easily be extended towards many-core prototyping due to their peripheral
modeling environment. Accelerators are not specifically foreseen in the OVP
framework, yet they can also be introduced nonetheless as described in the
following. In this case, the approach will be investigated on a much more
detailed level, to highlight the various options and possibilities of virtual
platforms. The presented work was published in [MWB15]1.

semihosted function libraryOVP Platform

Comm.Device

Function
1

Function
3

Function 5

Function
2

Function
4

Function
6AI

Control/Status Ch.

Config.Ch.

Input Ch.

C
al

lb
ac

k

Configuration LUT

Tile 1

I/O

CPU
mem

Tile 3

periph.
Dev.

shared
mem

Tile 2

CPU

mem Output Ch.

Figure 5.1: Modeling of the FlexTiles architecture including the AI in a virtual platform.

In Figure 5.1, an excerpt of a many-core architecture based on FlexTiles as
introduced in section 2.1.3 is shown that is modeled within OVP. Depicted are
a monitoring tile (Tile 1), a regular computing tile (Tile 2) and a memory tile
(Tile 3), all interconnected by the communication device. The architecture
may contain many more computing or memory tiles yet these are not relevant
in this example. To the right is the Accelerator Interface (AI), which serves as a
configurable interface to a reconfigurable fabric. This fabric hosts a number of
run-time reconfigurable accelerators. The AI provides a well-defined interface
to the NoC and is thus accessible remotely by the software on the regular
computing tiles. The interface consists of a control and status channel, a
configuration channel, an input and an output channel.

In OVP, the AI can be modeled as a peripheral that is hooked up to a dummy
tile. The dummy tile is then connected to the rest of the platform via the

1 Extracts from [MWB15], which were completely written by the author of the work in hand, are
used verbatim in this section without further identification

75

5 Virtual Platforms for Heterogeneous Many-core

communication device. The AI peripheral models its interface including all
channels according to the hardware specification. To model the actual recon-
figurable fabric, either the PSE environment or the semihosted functionality of
OVP can be used. However, PSE execution blocks the platform and is typically
much slower than native execution in the semihosted environment. Thus, the
semihosted implementation is preferable.

Figure 5.2: Sequence diagram highlighting the execution order of the different OVP environments.

The sequence of execution in an optimized implementation is shown in Fig-
ure 5.2. In the OVP environment, the application code that is executed on a
virtual CPU calls an AI driver function to start a calculation on a specified
accelerator. This first triggers the callback of the communication device in the
PSE which listens to a memory range which is accessed by the function call.
The communication device in turn handles the request of the triggering func-
tion and forwards the trigger to the AI peripheral in the PSE. The AI peripheral
then instantiates a PSE thread and returns operation to the OVP simulation to
continue its execution. The PSE thread has a library of pre-compiled functions
(seen in Figure 5.1) that are executed in the semihosted environment. When
the accelerator execution is finished, the PSE thread provides the result back
to the CPU and destroys itself afterwards.

In Table 5.1 an investigation of several algorithms is carried out to determine
the speeds when they are executed either on an ARM model, a microblaze

76

5.2 Accelerator Modeling in Virtual Platforms

Algorithm Variant Sim time in s Instructions Speedup factor

Susan

Semih 0.04 <1000 45x
PSE 0.23 <1000 8x
ARM 0.23 176,408,769 8x
uB 1,81 508,252,089 1x

Quick-sort

Semih. 0.44 <1000 14x
PSE 2.23 <1000 3x
ARM 2.24 2,512,431,935 3x
uB 6.34 2,670,876,722 1x

LZ77

Semih. 0.1 <1000 17x
PSE 0.63 <1000 3x
ARM 0.55 702,362,833 3x
uB 1.69 662,720, 033 1x

DCT

Semih. 0.15 <1000 49x
PSE 0.48 <1000 15x
ARM 0.37 381,480,972 20x
uB 7.28 2,702,877,555 1x

Table 5.1: Execution time measurements comparing various implementation alternatives in OVP.

model, a PSE accelerator or finally the optimized semihosted accelerator. The
results show that the ARM model is superior to the microblaze model in OVP,
yet this is also partially due to a better compiler support which results in less
instructions necessary for the same task. The PSE accelerator achieves similar
speeds to the ARMmodel. The semihosted accelerator however achieves much
faster speeds, up to 49x faster than the microblaze model in the DCT algorithm.
This means by employing a semihosted implementation, the execution of the
VP is actually sped up when using accelerators. It does not mean however
that a direct correlation between total execution time and performance of a
hardware implementation exists. Instead, the goal is to provide a means of fast
debugging and functional verification. Still, similar to other approaches that
bring some level of accuracy to OVP, the accelerators can also be annotated or
extended by delaymodels that provide ameans for assessing their performance.

77

5 Virtual Platforms for Heterogeneous Many-core

5.3 Real-world I/O for Virtual Platforms

Any useful information processing system needs to operate on some form of
input data and produce some output data. In High-Performance Computing
(HPC), the data sets are often provided through a streaming interface or they are
fetched ahead of execution into a large memory block. In a CPS or embedded
multi/many-core however, the input typically comes from a user, sensor or
camera while the output can be visualized to a user or serve as an input trigger
of another connected device or system. The previous chapters described how
OVP can be used and extended towards heterogeneous many-core architectures
but it never touched the question any real system needs to answer: which data
does it operate on and where does that data come from. In OVP, programs
and data can be loaded directly into a virtual memory in the platform. For
simple test cases this form of I/O is sufficient, since a VP can be observed via
debugging channels and the memories can be read out manually. A real system
however needs to operate on live data - a prototype without this capability is
severely limited by often artificial input data. This necessitates a mechanism
for connecting physical I/O devices to a virtual platform. The work presented
in the following was published in [WMLB15]2.

The major difficulty when solving this issue is the encapsulation of a virtual
platform. The situation when using OVP can be seen in Figure 5.3. Any data

data input data output

Host

simulated platform

CPU
memory

semihosting peripheral (PSE) peripheral (PSE) semihosting

Figure 5.3: Encapsulations in an OVP platform. The red circles mark the borders that must be
crossed to access host resources such as connected I/O devices.

2 Extracts from [WMLB15], which were completely written by the author of the work in hand,
are used verbatim in this section without further identification

78

5.3 Real-world I/O for Virtual Platforms

input and output must at least cross two interfaces, i.e. one towards the host
system and one towards the virtual platform. When designing a real-world
I/O device for OVP, an essential requirement is that the I/O behaves exactly
as it would on a physical hardware, at least from a processor and software
perspective. For this task, the Peripheral Simulation Engine (PSE) in OVP
can be used to model an interface exactly according to hardware specifications.
The PSE environment however is still an encapsulated part of the simulator and
does not have direct access to the host’s file system. Therefore, the semihosting
functionality of OVP needs to be employed. This feature works with function
interception on function calls in the PSE and gives access to all the features of
the hosts operating system. When a function call is intercepted, the simulator
executes a corresponding function available in the semihost library, which runs
natively on the host and can access its resources like files stored on the host by
using standard C functions, for instance fopen() and fgets(). The PSE together
with the semihost functionality can be used to model a custom peripheral that
provides I/O data from the hosts file system. However, it is also possible to
extend this feature by using the ”everything is a file” principle of Linux/Unix
to include device files as a source. These kind of files represent real hardware
devices in the Linux file system and allow similar access to every type of
character device available on Linux as on text files

OVP allows three methods for realizing the access to the host’s file system.
These will be presented and discussed in the following.

5.3.1 PSE Callback Method

Host

simulated platform

CPU

memory

PSE Semihosting

OS-API

Observed
region

Callback

Figure 5.4: Callback method.

79

5 Virtual Platforms for Heterogeneous Many-core

The first method is based on PSE callbacks as highlighted in Figure 5.4. In
OVP, the common way peripherals work is through callback functions that
are associated with a certain memory range. When a bus request takes place
(typically initiated by a CPU) it is checked whether the memory range of a
peripheral is accessed. In such a case, the registered callback is triggered,
passing the address and assigned value as a parameter. Since the callback is
still within the encapsulated PSE environment, the use of additional simulator
API functions or a function interception is required for getting access to host
resources. Such a semihosted function that intercepts a PSE call runs outside
the simulated platform but all parameters of the call from within the simulator
are passed to it.

A big advantage of the callback approach is, that some functions like endi-
aness conversion can be implemented to automatically apply during operation.
Furthermore only copies are transferred and thus the simulation environment
cannot be corrupted. However, the ”call-by-value”-fashion leads to a high
overhead as well. On one hand the memory requirement doubles, on the other
hand additional intercept functions are needed. Another disadvantage is the
missing option of remapping existing callback regions. Thus, the method is
only suitable if little amount of data is transferred or if the memory region does
not change.

5.3.2 VMI Runtime

Host

simulated platform

CPU

memory

PSE Semihosting

OS-API

Observed
region

vmirtReadNByteDomain

Figure 5.5: Special semihost function call.

By accessing the Virtual Machine Interface (VMI) runtime, the semihost has
access to the virtual memory management of the OVP simulator. The function

80

5.3 Real-world I/O for Virtual Platforms

vmirtReadNByteDomain() for instance can be used to transfer data frommem-
ory of the virtual platform into an array which is allocated in the semihosting.
Compared to the callback method, transferring large memory ranges is possi-
ble and remapping is trivial, since only the source address has to be adapted.
A potentially big disadvantage is the fact that the whole memory area must be
copied resulting in a big overhead if there were only little changes since the
last transfer. Furthermore, the memory use is doubled because the semihost
holds a copy of the guest memory. Transfers with VMI-runtime functions are
fast and a good choice for large data blocks, which are often modified and have
to be transmitted as a whole. Figure 5.5 depicts the corresponding schematic.

5.3.3 Native Mapping

Host

simulated platform

CPU

memory PSE

semihost

native memory

timer

Figure 5.6: Native mapping.

A final method is able to completely avoid any memory copy operations by
providing a single memory that is directly accessible from within and from
outside of the simulated platform. This method is called ”native mapping”
and is shown in Figure 5.6. In this approach, part of the memory map in
the simulated platform is mapped onto a memory range on the host system,
circumventing the memory management of the simulator entirely. This allows
the direct access of host resources from within the virtual platform. However,
this also means that a developer needs to ensure that there is a valid map-
ping during the simulation. To perform a remapping, it is needed to unaliase
a previously mapped memory region using vmirtUnaliasMemory() and con-
figure it again as regular memory which is managed by the simulator using
vmirtMapMemory(). Since the (re)mapping is performed during runtime and
vmirtMapNativeMemory() does not copy data, values stored at the location to

81

5 Virtual Platforms for Heterogeneous Many-core

be mapped must be copied into the native memory manually. Otherwise, the
data will be lost. Similarly, data stored in the native buffer must be copied in the
internally managed memory when the buffer is unmapped. This approach has
the benefit of requiring less memory (no copies need to exist) and remapping
of memory regions at runtime is possible.

5.3.4 Synchronization and Overhead Reduction

There are two methods to synchronize the communication of the virtual plat-
form with its environment. The simplest one is to implement waiting time
within a peripheral using bhmWaitDelay() to force the PSE to wait and perform
a callback after a predefined period of time. The waiting time is proportional
to the simulated time. Another option is the use of multi-threading in the semi-
host to allow using POSIX threads. These threads are executed independently
of the simulation. This can be used to implement waiting times relative to the
host machine clock by calling standard functions like usleep(). This is useful
when interacting with hardware devices connected to the host or working with
fixed frequency device like cameras which update the framebuffer every 40ms
(25fps). Additionally, this method allows performing tasks in the semihosting
without triggering an intercept function.

Since external I/O devices may run at specified frame rates or provide new
inputs only after long delays in real time, an application may spend a long
time idle. On a host system with a real I/O device attached this can not be
prevented, however sleep calls at least allow other processes to take over the
available processing resources. However, this situation changes in a virtual
platform when using files with prerecorded data as input. Here, the wait times
and the performance can be optimized with a tuning factor. The concept is
shown in Figure 5.7. The top chart shows the default implementation that
is calling bhmWaitDelay() according to the input delay of the I/O device.
This delay can be reduced with the tuning factor, effectively providing new
input updates much quicker to the platform. It can be seen as fast-forwarding
a simulation when the physical processing power is potent enough to allow
running faster than real-time. Although this is not possible in a live system, it
does speed up the evaluation process in a prototype, especially if the modeled
hardware is an embedded system without much processing power.

82

5.3 Real-world I/O for Virtual Platforms

application

time

work polling / waiting

application

work polling / waiting work

PSE execution

application

work

application

work

application

work

application

work

bhmWaitDelay(t) bhmWaitDelay(t)

bhmWaitDelay(t) /
tuning factor

bhmWaitDelay(t) /
tuning factor

bhmWaitDelay(t) /
tuning factor

bhmWaitDelay(t) /
tuning factor

Figure 5.7: Thread interleaving and tuning factor.

Method Data rate (native)

Callback frequency 1,579,778 Callbacks/s
Initializing internal memory 32.18 MiB/s
Writing in internal memory 345.72 MiB/s
Callback copy 5.78 MiB/s
vmiRtReadNByteDomain() 355.80 MiB/s
Native mapping 481.73 MiB/s

Table 5.2: Throughput measurements of OVP methods.

A performance evaluation of the different methods allowing data exchange
between the virtual platform and the host is shown in Table 5.2. A minimized
virtual platform consisting of a MicroBlaze system and a peripheral with an
internal buffer of 64 MiB is used to perform the data transfers and measure
throughputs. The application executed by the MicroBlaze fills the buffer ten
times with random numbers. To determine and remove the overhead caused

83

5 Virtual Platforms for Heterogeneous Many-core

Done by Output mode Framerate [fps] Data rate [MiB/s]

PSE
SDL 242 283,59
DLO 20.2 23,67

Microblaze SDL 61.88 72.52
(calculated) DLO 71.33 83.59
Microblaze SDL 22.83 26.75
(output) DLO 12.20 15.46

Table 5.3: Performance measurements of video output.

by the callback mechanism itself from the measurement of the throughput,
the application calls 10,000 times a dummy function in the semihosting after
start up. Besides the performance of the three methods, the throughput of the
memory management of OVP is measured as well, to serve as a reference.

Using memory natively allocated in the semihosting provides the highest
throughput of the proposed methods. Due to avoiding any overhead caused by
the simulator it is even faster thanmemory accesses within the virtual platform.
Another advantage is, that no additionalmemory is needed. However, using the
native mapping of memory allocated in the semihosting into the virtual plat-
form, the developer is responsible for managing the memory. He must ensure
its validity during the simulation, since OVP cannot perform any checks. The
biggest benefit of this method is the possibility to allocate memory from the
Linux kernel space using mmap() in the semihosting and making it available
to the simulated system in the virtual platform. Compared to regular memory
allocations in user space as performed by the OVP simulator, this memory
is physically contiguous as needed by network adapters and graphics cards
usually used in conjunction with DMA devices, connected to the host. After
measuring the pure throughput, the native memory method is implemented
in a peripheral simulating the DVIoutput IP-core provided by Xilinx which is
added to the minimized virtual platform mentioned before. With this setup
the maximum performance of the video output is measured and serves as a
reference to determine a possible slow down caused by image processing ap-
plications executed by a virtual platform. The DVI-out peripheral is connected
to a virtual screen emulated by Simple Directmedia Layer (SDL) and to an
external graphics card using DisplayLink (DLO). For evaluation purposes an

84

5.4 OVP Parallelization

application is used which draws a contiguous moving rainbow. This ensures
that each pixel is changed compared to the previous frame and no compression
side effects caused by external driver codes affect the measurements since all
data has to be transferred in each iteration. The results are shown in Table 5.3.
At first, this application is implemented directly in the peripheral to determine
the maximum performance possible. When using the virtual screen, the virtual
platform writes the rainbow with more than 240 fps. When the peripheral is
connected to the external DisplayLink device, the achievable framerate is low-
ered to about 20 fps. In contrast to the SDL connection, this method does not
load the internal graphics card of the host machine and the CPU load is at 5%.
The slow down can be explained by the fact that the implementation uses the
open source version of the DisplayLink drivers only allowing uncompressed
data transfer via USB 2.0. The achieved framerate equals an achieved data rate
of 23.67 MiB/s. In contrast to the native semihosted execution performed by
the peripheral, the maximum output performance is measured when the rain-
bow application is executed on the simulated processor as well. In this scenario
two framerates are measured for SDL and DLO output. The first framerate
indicates the maximum framerate the virtual platform can provide without
any interaction with the host system, since it is determined by measuring the
time needed to write 1,000 frames in the framebuffer. The second framerate
shows the number of frames effectively written by the DVI-out peripheral. As
expected, the output on the virtual screen is faster than the output via external
graphics card (22 fps to 13 fps). An interesting effect is, that the number of
frames calculated by the virtual platform (”MB (calculated)”) is higher when
using the DisplayLink adapter due to less CPU load, while the number of
frames written (”MB (output)”) is less due to the overhead for interacting with
the USB subsystem.

5.4 OVP Parallelization

The binary translation used byOVP allows very fast simulation of CPUmodels.
In the previous sections it is shown that also accelerators and peripherals for
modeling of other vital parts of a many-core platform can be realized in a
high-performing manner. However, when scaling up the number of cores
and elements in a many-core, the simulation still has to share the underlying
host resources of the physical machine it is running on. This creates a physical

85

5 Virtual Platforms for Heterogeneous Many-core

limitation of the performance inmemory and processing for large architectures.
Selecting a host machine with higher processing power helps to alleviate this
problem but it also means the simulation needs to make use of this higher
processing power. Since such increased performance is typically achieved by
parallelization, the simulator must also be able to parallelize its execution onto
the available physical cores on the host.

Parallelization of a many-core platform in OVP requires splitting of the archi-
tecture into several independent parts. The available cores of a host system
are a reasonable target number of partitions that a platform is split into since
it reduces context switching while employing all available compute resources.
However, it may also make sense to partition virtual cores according to some
other metric in order to improve load-balancing. Each partition can be exe-
cuted either by a separate thread within an OVP wrapper or as an individual
linux/unix process. When splitting an architecture, the cuts must be consid-
ered in all parts. Specifically, in a tile-based architecture the cut can be either
within a local bus or within the NoC interconnect. Since the former is only
a logical construct, the cut implies that any memory and any peripheral that
is connected to this bus must be shared among all partitions that contain a
CPU connected to the same bus. In both cases, the semihosted functionality
of OVP is required to implement the sharing of resources among partitions.
Semihosting allows access to host resources and thus the interfacing of inde-
pendent processes and threads. For memories, the semihosting is used to map
native memory into the memory map of each partition. This allows a seamless
shared memory approach while giving full independent execution of the CPU
split into their respective partitions. Peripherals on the other hand have two
options: Either duplication in each partition or a shared implementation in
the semihost. Duplication is the trivial approach that gives full functionality
and full execution speed in each partition. However, it also means accesses
to the peripherals are completely isolated. Furthermore, peripherals may hold
physical resources on the host machine that cannot be shared. If either of these
conditions collide with the intended functionality of a peripheral, duplication
cannot be used. Instead, a shared implementation in the semihost has to be
utilized. In such a case, each partition is extended by a dummy peripheral
that is instantiated in their respective platform. This peripheral then triggers
a shared single entity of this peripheral in the semihost. In order to provide
synchronization, a client-server approach is used between dummy peripheral
and the shared master peripheral. Each dummy registers as a client with the

86

5.5 Summary

shared master and can post requests towards the master. Since the master is a
single instance, it is able to hold non-shareable resources of the host system,
enabling access for all partitions to such resources.

5.5 Summary

In this chapter, a virtual platform based onOVPwas extended towards themod-
eling of a heterogeneous many-core platform. Specifically, a communication
device, an accelerator interface and a real-world I/O interface were introduced
and described. By incorporating these new components, virtual platforms can
be used as early available and high performing prototypes that are required for
early design space exploration and software development. The communication
device abstracts the NoC implementation but provides the exact same interface
and behavior of a hardware design, making the software binary compatible.
The accelerator interface allows the modeling of generic accelerators that be-
have the same as hardware IP blocks while even speeding up simulation due to
the native code execution that is utilized. The real world I/O interface allows
direct access to input data from files on the host including device files as used
by cameras and video screens, providing live data for evaluating the virtual
architecture and the software stack. Virtual platforms are not only fast, but also
enable and ease debugging and evaluation tasks. In order to retain scalability
in the context of many-cores, approaches for parallelization of the VP were
presented.

87

6 Scalable Hardware Design and
Verification

In this chapter, prototyping methodologies for hardware design and verifi-
cation are presented. According to the analysis earlier in subsection 4.3.2,
hardware simulation does not provide the execution speed to handle many-
core architectures and can thus only be used in the development process of
small sub-components and in debugging efforts when the root cause has been
narrowed down significantly. Consequently, hardware emulation techniques
need to be employed. However, specialized hardware emulators induce large
overheads and come at immense cost. More generic and easily available
FPGA based prototypes are the remaining solution that does not suffer from
bad scalability regarding execution times. However, the massive design size
and complexity of many-cores even pushes FPGA prototyping to its limits,
requiring multi-FPGA solutions that come alongside additional limitations,
challenges and costs. In order to overcome this situation and provide a differ-
ent approach that is cost efficient and easily available while being scalable and
high performing, a novel multi-level prototyping approach is introduced in this
chapter. To give a further motivation of this approach, a novel hardware feature
for many-core architectures is introduced in the following that emphasizes this
challenge. The feature extends a NoC to enable low latency communication
that unfolds its potential only in larger architectures with many interconnected
nodes or tiles. While first evaluations were carried out in a cycle accurate but
non-synthesizable SystemC simulation, the RTL design, debugging and verifi-
cation required the support of FPGA prototyping. Since state-of-the-art FPGA
methodologies did not suffice, the aforementioned novel hybrid prototyping
approach was developed and successfully used in this context.

89

6 Scalable Hardware Design and Verification

6.1 The In-NoC-Circuits

In this section, a novel architecture for low latency NoC interconnects based
on shortcuts in a hybrid NoC is introduced. This work was published in
[MSK+18]1.

State-of-the-art hybrid NoCs have in common that they are always employed
for taking advantage of the positive aspects of both circuit and packet switching.
Circuit switching can offer strict QoS guarantees, low latency (on established
circuits) and lower area/power consumption, mostly due to less buffer space
that is required in the routers. Packet switching on the other hand typically
has a better link utilization, simple implementation and no circuit setup/tear
down delay. Contrarily, these are the major downsides of circuits since in
many situations they have to be established and teared down often, leading
to higher latency. Alternatively, they are kept alive even when data is not
continuously transferred which in turn decreases link utilization since each
end-to-end circuit that is kept alive blocks its share of the link (i.e. either time
slots in case of TDM or link resources in case of SDM).

The advantages and disadvantages of packet, respectively circuit-switched on-
chip interconnects are well understood and have led to the publication of
numerous techniques trying to alleviate the disadvantages of each approach.
Alongside specific optimizations for packet or circuit switching individually,
hybrid architectures try to combine both approaches in a best of both world
scenario towards the perfect interconnect. In one such early work the authors
analyze optimal on-chip interconnects and then present a packet-switched ar-
chitecture which is capable of also establishing circuits, called Express Virtual
Channels (EVC) [67]. These EVC may circumvent the stages of the router
pipeline in the packet-switched network and thus improve latency. Another
approach of a hybrid NoC focuses on the splitting of link resources between
a so called Pnet and a Cnet [86]. Packets may travel on one such network
and switch between them multiple times in order to reach their destination.
The same authors later present shortcut paths in [124] as well as partial cir-
cuits [123], which can be seen as extensions to their initial work. The shortcut
paths include a traffic monitoring unit to help in the construction of shortcut

1 Extracts from [MSK+18], which were completely written by the author of the work in hand, are
used verbatim in this section without further identification

90

6.1 The In-NoC-Circuits

flows. The partial circuits introduce packets, that constantly request circuits
towards their destination while being transmitted over the packet-switched
network.

These works have in common that they specifically have a synchronous packet-
switching architecture in mind, which uses synchronous circuit switching in
order to reduce cycles in the routers by skipping pipeline stages. Such tech-
niques are rather simple to implement, yet do not allow for large reductions in
overall latency. A major goal of these works is thus the low power design of
the NoC, instead of a focus on latency as it is needed for cache coherence mes-
sages and remote read operations. Furthermore, the works are purely based on
common interconnect simulators and do not portray a real HDL implemented
and FPGA prototyped many-core architecture.

Cache coherent many-core architectures have also been investigated in regards
to a networks-on-chip interconnect. Significant research effort is put into
solving the challenge of cache miss prediction and the design of advanced
coherence protocols. One approach is to characterize communication behavior
based on synchronization points and use a small hardware unit to observe and
predict the target of each coherence message at run-time [36]. In [62], the
authors reaffirm the significant impact of network latency on performance in
a cache-coherent chip multiprocessor (CMP) system. In order to improve
latency, they propose to use circuit switching in combination with a specially
tailored coherence protocol that allows for a better prediction of coherence
traffic. Their circuits start from injecting routers and improve latency due to a
pipeline bypass that achieves better results especially in high-load scenarios. In
[7], the authors specifically target remotememory access latency improvements
by using circuits that are established ahead of time. Their circuit setup is
triggered by a memory request and is aligned with the delay in the memory
controller, achieving circuits that are only active in the exact cycles when the
data is provided by the memory controller. The authors in [66] present a
new approach for single-cycle multi-hop circuits within a synchronous router
with a single link. The idea is based on an asynchronous setup network that
will configure a multi-hop path from a source router to a destination that uses
asynchronous repeaters within the crossbar of each router to transmit the data
in a single cycle. This approach can provide near instant communication
even over several hops even when only a single link is available. However,
there is still a small setup delay for the circuits since they are not kept alive

91

6 Scalable Hardware Design and Verification

and the PS-links on the circuit path are blocked for any other traffic during
transmission.

In the following, a novel concept for low latency interconnects called In-NoC-
Circuits (INC) is introduced. The INC concept blends well with multiple
regions/clusters of cache coherent tiles as it can service two adjacent yet
different coherency regions as opposed to more costly all-to-all circuits. The
INC were developed as part of the InvasIC many-core architecture introduced
in section 2.1.3 that consists of a tile based MPSoC where every tile houses
several processing elements coupled with their private L1 caches connected
via a bus interface. The intra-tile L1 caches are kept coherent using a bus
snooping protocol. The tile also contains a shared L2 cache along with a
Tile Local Memory (TLM). Region-based cache coherence is used to maintain
coherence beyond tile borders, i.e. between inter-tile L2 caches. The primary
goal of the INC concept is to monitor the inter-tile coherence traffic within
and/or between different coherency regions to dynamically create dedicated
INCs that accelerate the performance of the overall system.

The INCs are intended to enhance and improve specifically hybrid networks-
on-chip (NoC) interconnects for many-core architectures. Hybrid NoCs have
been proposed in many different variations, however in this work, the general
definition of a hybrid NoC as a combination of packet-switching (PS) and
circuit-switching (CS) schemes in the same on-chip network is assumed. In
a hybrid NoC, these two schemes may be implemented by sharing the same
physical link utilizing sub-links based on TDM or SDM techniques. Alter-
natively, they can be implemented based on a separate physical link (i.e. a
separate layer) for each network. There are further variations based on syn-
chronous or asynchronous control and datapath in the routers. In this case and
in contrast to the state of the art, a separate physical link and a synchronous
router architecture together with asynchronous transfers on the datapath in the
circuit-switched network are used. This is due to the fact that the proposed
technique shows its largest potential in an architecture where transmission de-
lay in the circuits is only limited by the wire delay. The concept however is
applicable to all such variations and will only differ in the magnitude of its
latency gains.

As discussed earlier, a common approach to counter the downside of circuit
switching is to employ predictive techniques to reduce setup and tear-down
delay. The in-NoC-circuits follow a different approach with the goal of setting

92

6.1 The In-NoC-Circuits

Tile 10

Router

Tile 11

Router

Tile 0

Router

Tile 4

Router

Tile 1

Router

Tile 5

Router

Tile 8

Router

Tile 12

Router

Tile 9

Router

Tile 2

Router

Tile 6

Router

Tile 3

Router

Router

Tile 7
CPU

L1
Cache

L1
Cache

CPU

L1
Cache

CPUCPU

L1
Cache

L2 Cache TLM

Tile 14

Router

Tile 15

Router

C
ac

he
 C

oh
er

en
t R

eg
io

n

Packet-switched Layer
Circuit-switched Layer
In-NoC-Circuit (INC)

Router Router
INC

entry
node

INC
exit

node

Tile 13

Router

Figure 6.1: An example 4x4 architecture with a packet and circuit layer as well as two INCs that
form a direct one-cycle connection between the entry node and its connected exit node.

up circuits that are not constantly replaced. Instead, they increase the utilization
of existing circuits by making them sharable among communication streams
and partners. To allow this sharing of circuits, they are established directly
between routers in the NoC and not between tiles in the many-core architecture.
An example 4x4 architecture including two INCs is shown in Figure 6.1.

The packet-switched layer is primarily used for forwarding regular data pack-
ets that do not need any form of QoS guarantees (i.e. best-effort traffic).
The circuit-switched layer is used for asynchronous and bufferless end-to-end
connections, setup by messages in the packet layer. The traditional end-to-
end circuits give applications a means of communicating with fixed latency
and throughput bounds. However, many applications on a general-purpose
many-core do not need such strict guarantees and can be served by the packet-
switched layer alone. In such a case there are unused resources in the circuit

93

6 Scalable Hardware Design and Verification

layer, which can be used by the INC in order to improve overall performance
of the network. The INCs are circuits that start and end in a router, yet they
can span multiple hops, skipping all nodes in between. An INC is not lim-
ited in length but its usefulness entirely depends on utilization and hop count
reduction for the traffic transported by it. The fundamental part of an INC is
the link between the PS and CS layer to inject flits coming from the packet-
switched layer into the circuit-switched layer and eject the flits at the endpoint
of the INC vice versa. The second aspect is the circuit establishment procedure
which in turn consists of the traffic monitoring to find relevant communication
patterns and the actual circuit establishment process. The final element is the
extended routing unit, which needs to accommodate to the fact that packets
may be forwarded faster either over the INC or the regular ports in all cardinal
directions.

6.1.1 Extended Router Architecture

The extended router architecture is shown in Figure 6.2. It consists of a
synchronous packet-switched layer and an independent circuit-switched layer.
The router is a variant of the i-NoC router presented in subsection 2.2.3 that is
developed as part of the InvasIC architecture introduced in section 2.1.3. Since
the InvasIC architecture exists as a (reconfigurable) prototype, its components
do not have a fixed design but come in several variations. Most notably, the
NoC can be configured to solely use the packet-switched layer, enable the
circuit-switched layer and use a reduced packet-switched layer only for circuit
setup, or use a fully hybrid approach which utilizes a mixture of both. For the
INCs, the last option is assumed. This is due to the fact that a fully hybrid
architecture benefits the most from the proposed technique.

The packet-switched layer features wormhole switching, multiple virtual chan-
nels (VCs), round robin arbitration, dimension order routing and is imple-
mented in a pipelined fashion allowing synthesis tools to achieve high fre-
quency targets. The pipeline stages of the router consist of the following:
Input Buffering, Routing, Reservation, VC Scheduling and Output Buffering.
Using all five pipeline stages reduces the critical path in physical synthesis
below 1ns in a TSMC 45nm worst-case setup, yet it increases latency when the
design is operated in lower frequencies [55]. Thus, some stages are optional
and may be merged or simply omitted, leaving a two stage pipeline at its min-

94

6.1 The In-NoC-Circuits

O
u

t P
o

rtsIn
 P

o
rt

s

P
S-

La
ye

r
CS

-L
a

ye
r

BufferBufferBuffer

Routing
Reservation

Table

Buffer

Transmission
Control

Buffer

Traffic
AnalysisCircuit Control Unit

North
East
South
West
Local

North
East
South
West
Local

North
East
South
West
Local

North
East
South
West
Local

Internal Port

Figure 6.2: The router architecture including the INC extension. Not shown are the virtual channels
and the configuration interface of the circuit control unit which can be accessed via
regular packets or a separate, lightweight layer.

imum configuration since input buffering and the reservation step that assigns
input virtual channels to output virtual channels are mandatory.

In the packet layer, a packetmay arrive at a router through one of the input ports,
i.e. in a meshed NoC from one of the cardinal directions and furthermore from
the local input port of the connected tile. If a head flit is received, the routing
unit performs the routing decision and forwards its results to the reservation
table which handles all the free virtual channel allocations between input and
output virtual channels. The transmission control then arbitrates the crossbar
between all active requests in the reservation table for each output port. The
circuit layer on the other hand is rather lightweight since it does not contain any
buffers and does not require routing. Instead, it only contains the crossbar that
is configured by setup packets transmitted over the packet-switched network.
It typically operates on two channels per port, allowing full duplex operation
but it can also be used for establishing two circuits in the same direction.

For realizing the INC, an additional internal port is added to both crossbars
in the router. Additionally, an input buffer is added for this port on the PS
side so a packet that is transmitted over an INC is buffered in the exit node.
The reservation table now contains an additional entry for the PS crossbar to

95

6 Scalable Hardware Design and Verification

switch any input buffer of the router onto the port towards the CS layer. When
a packet gets transmitted over an INC, it is buffered in the destination router
and can take up slots in the regular reservation table of the packet layer for
further transmission towards its destination tile. Instead of being forwarded in
the packet layer, a packet may also take multiple INCs till its final destination
is reached.

6.1.2 Traffic Monitoring and Analysis

The resources in the circuit layer are limited since any unnecessary wires,
logic and buffer resources in an on-chip network should be avoided. As
such, a limited amount of INC may be established depending on the available
resources. The selection of the best entry and exit point of an INC plays a
major role for the performance and efficiency of the approach. Consequently,
a special hardware unit is proposed to automate the selection process. This
unit can detect dynamic effects such as traffic hotspots and establish suitable
INCs accordingly. To enable scalability, this process must be handled in a
distributed manner.

In order to select the best INC at a current time frame, each router is ex-
tended by a monitoring unit which tracks the outgoing packets and tries to
find communication patterns that could benefit from an INC. The monitoring
unit evaluates the head flits of each outgoing packet, since these contain the
coordinates of their destination. The trivial approach simply counts all packets
going to a specific destination and will establish an INC to the destination that
is most commonly targeted by the packets passing through the router. To avoid
frequent circuit flipping, a threshold needs to be employed, which will enforce
that a new INC is set up only if it holds significantly more promise than an ex-
isting INC. Furthermore, multiple INCs may contend for resources (i.e. links)
in the circuit layer, so establishing an INC might fail if the priority of the new
connection is lower than an existing connection that is using conflicting link
resources anywhere on its path. To reduce complexity and help the scalability
of the traffic monitoring, the meshed topology can be split into virtual sub-
regions. An example is shown in Figure 6.3, where a 10x10 meshed NoC is
split into 25 sub-regions of size 2x2. Choosing larger sub-regions will improve
scalability, yet yields more imprecise results from the traffic analysis.

96

6.1 The In-NoC-Circuits

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

Figure 6.3: The sub-regions and the targets benefiting from an INC on the left and a more scalable
implementation on the right.

The INC selection can be improved by utilizing a metric that takes into account
all regions that would benefit from a certain INC. An example of such a region
is shown in Figure 6.3 on the left. Any packet that arrives at the marked router
in region 3 would benefit from a direct connection to region 17, if its final
destination is in one of the marked green regions. Weights can be utilized to
rate the impact of an INC on the path of a packet, giving a higher weight to
an INC that connects a node very close to its final destination. Since such
an evaluation is rather complex, a simplified version only checks the direct
neighbors of a target node as shown in Figure 6.3 on the right.

6.1.3 Circuit Setup

Once the traffic analysis has found a destination for which the expected gain
is above a certain threshold it will try to initiate the establishment process
of an INC. First, a priority for the INC is calculated and afterwards a setup
packet is created and transmitted towards its destination. For this task, either
a lightweight packet-switched control layer or the regular packet-switched
network can be used. The procedure for each router is shown in Figure 6.4. In
each node along the path of the setup packet, the router will perform a lookup
whether there are free link resources remaining or whether all resources are
blocked by existing circuits. In the latter case, a new request may also trigger a

97

6 Scalable Hardware Design and Verification

Check CS Link
available

Not available

Reserve Link Check destination

Check Prioity of existing Circuits

lower

Send FAIL response
higher

INC
request

Forward request

Send SUCCESS response

FAIL
response

SUCCESS
response Cancel conflicting circuits

ROUTER

Release reservations

Wait for
confirmation

Forward SUCCESS response

Forward FAIL response

confirmed

Figure 6.4: The process of establishing a circuit in a router.

cancellation of existing circuits that have significantly lower priority. Statically
constructed circuits with the purpose of strict end-to-end QoS guarantees have
the highest priority and may never be canceled other than by the creator (i.e.
the application) itself. This is according to the goals of the INC: Improve
utilization by making use of unused resources without interference with hard
application requirements. Other INCs of lower priority may be canceled
however, in which case a cancellation packet is generated and sent along the
way of its circuit. To avoid unnecessary cancellation of existing circuits, a
new circuit request will only trigger a reservation, the actual activation must
wait until a response packet from the downstream router indicates a successful
route to the destination or a blocked link along the path. The new circuit must
also delay its establishment until each canceled circuit is fully deconstructed,
ensuring that no packet loss may occur.

6.1.4 Routing

By adding the additional port connecting the packet and circuit layer, the
routing unit has an additional degree of freedom for its routing decision. Thus,
the dimension order routing (DOR) is extended by a closeness calculation to
select the preferred output port. If the destination router of an INC is closer2 to
the destination tile of a packet compared to the router selected by DOR routing,

2 Regarding the Manhattan distance

98

6.1 The In-NoC-Circuits

it will be chosen as output port. A further extension is able to arbitrate between
the INC and the best output port according to DOR routing in case that the INC
is blocking due to congestion, thus improving throughput. This new routing
scheme is simple to implement, yet it also means the previously guaranteed
order of packets is not necessarily enforced anymore. This situation occurs
when either the routing utilizes the extra arbitration in the case of congestion
or it can happen during setup of the INC. Transmissions that rely on the order
of packets must thus enforce it by other means which can typically be handled
by a suitable protocol in the network adapters.

6.1.5 Evaluation

In order to demonstrate the benefits of the INC concept, a MPSoC architecture
with a relatively high tile count is required. This is limited by regular hardware
prototyping capabilities. Therefore, SystemC simulations are used to evaluate
the concept in the following.

A two-step simulation approach is used that consists of two different SystemC
simulation frameworks viz. a high level system simulator and a cycle accurate
network simulator. The system simulator models the scientific DSM archi-
tecture with region-based cache coherence support and the network simulator
models the NoC with the INC extension. The system simulator contains a
trace-based processor that is fed with memory traces obtained from gem5 [15]
running in full system mode. The system simulator is modified to additionally
generate specific network traces with coherence markers during the course of
its execution. These network traces are then fed to the network simulator which
simulates the effects of the INC.

A subset of workloads from the PARSEC [14] (blackscholes, canneal, flu-
idanimate, swaptions) and SPLASH-2 [129] (fft, lu, radix) benchmark suites
is chosen for the evaluation. The chosen workloads are a mixture of entire
applications and kernels that cover domains such as financial analysis, data
mining, animation, integer sort and matrix operations.

Two sets of evaluations will be presented for the proposed technique and the
motivating scenario. In the first set, the impact of different configuration
options in the router is investigated. Since most of these options only affect
the behavior of the INC in scenarios with high contention for INC resources,

99

6 Scalable Hardware Design and Verification

0% 5% 10% 15% 20% 25% 30%18
19
20
21
22
23
24
25
26
27
28
29
30

Threshold Ratio [Packets/Period]

Av
er
ag
e
La

te
nc
y
[C
yc
le
s/
Pa
ck
et
]

IR 0.025 IR 0.15

0 16 32 48 64 80 96 11212818
19
20
21
22
23
24
25
26
27

Priority Difference [Packets/Period]
Av

g
La

te
nc
y
[C
yc
le
s/
Pa
ck
et
] IR 0.025 IR 0.15

Figure 6.5: The ratio of packets in a time inter-
val, that need to target the same area
in order to trigger the generation of
a circuit request.

Figure 6.6: The priority difference necessary for
a new circuit request to replace an
existing connection.

random traffic can be applied for the traffic generation. The second set of
evaluations uses the benchmarks running within cache-coherent regions in the
meshed architecture.

6.1.6 INC Parameters

The setup for the first set of evaluations is as follows: 10x10 NoC, 3-stage
pipeline routers and a 256 cycle period for the traffic analysis. Two major
parameters that affect the performance of the INC are the threshold, which
controls at what point a circuit request will be generated and the delta between
two circuit weights (called the priority difference), that decides whether a new
INC request will replace an existing circuit.

In Figure 6.5, the establishment of circuits based on different thresholds is
highlighted. The threshold is given as a ratio of packets within a time frame
of 256 cycles that have the same target region. A threshold of 10% for a
certain destination is thus met if at least 26 cycles within an evaluation period
were used for transmitting a packet towards that destination. In a low traffic
scenario with Injection Rate (IR) 0.025 Flits/Cycle/Node, the best results can
be achieved by a very low threshold since there is only little contention among

100

6.1 The In-NoC-Circuits

circuit requests. The curve saturates at 20% and above since in the low traffic
scenario such a threshold is never met, leading to an average delay that is
identical to the delay in the regular packet-switched network without the INC.
In a scenario with a higher load of IR 0.15 this is no longer the case and INC
requests are triggered even at much higher thresholds. However, low ratios
may also impact performance negatively since too many INC requests cause
contention, reducing average delays.

In Figure 6.6 the impact of the minimal priority difference that a new circuit
request needs to fulfill in order to replace an existing connection is shown.
In a low load scenario there is barely any difference between settings of this
parameter. In such a case, the choice of INC is not so important and there are
few "bad" circuits, which are replaced at a later time. In the scenario with IR
0.15 it can be observed that a priority difference which is chosen too high will
have a negative impact on average latency. Choosing a value that is too low
however always bears the risk of "circuit-thrashing", i.e. constant construction
and deconstruction of circuits, resulting in worse overall performance.

6.1.7 Benchmarks

When evaluating the INC concept based on real traffic as in the presented
benchmarks, an essential part is the placement of the cache coherent region.
Any number of tiles can be joined to form a coherent region, yet scalability
limits regions from getting too large. Thus, a typical region can be assumed as
consisting of 4 regular computing tiles and furthermore a special memory tile
containing larger data sets that do not fit into local memories. The memory
tile is located either in the center of the mesh, in order to allow short distance
to all other tiles, or at one of its sides due to placement constraints that a
physical chip would exhibit. An example placement is selected to showcase
their impact, yet the INCs help in providing low latency to any placement, even
completely arbitrary regions. The regular tiles of a region are placed as either
of the following:

• Reference: All tiles of a region are placed right next to each other in a
2x2 area

101

6 Scalable Hardware Design and Verification

• Clustered: Two tiles in the top left and two tiles in the bottom left (as
highlighted in Figure 6.1)

• Maximum spread: The tiles are located in all 4 corners of the mesh,
e.g. Tile 0,3,12,15 in Figure 6.1

Since INCs serve the purpose of reducing the latency of multi-hop messages
while also allowing multiple data streams to profit from the same INC, they
cannot give any latency improvement to packets that are sent from one tile to
its direct neighbor. As such, a reference placement of a coherence region with
minimal hop distances among the tiles will be used as the baseline. However, if
regions get bigger or the placement is conflicting with other regions, if dynamic
scheduling and mapping occurs, hardware resources like I/O or memory tiles
are required, such a mapping is not possible anymore and the INCs can provide
their benefits. It can be assumed that clustered and maximum spread benefit
most from an INC, yet depending on overlapping traffic, other setups could
provide even more latency gains when multiple coherent and concurrently
active regions are evaluated.

In a first step, a single benchmark is analyzed in more detail to show the
impact of the NoC size and potential background traffic on the performance
of the INC. In Figure 6.7 the results based on different NoC sizes are shown.
The traffic pattern is based on the "canneal" benchmark using the clustered
coherence region mapping with the memory tile in the center. In this example,
the delay increases linearly with the size of the mesh when the INC are not in
use. This is due to the fact that the clusters and the memory tile are placed
further apart in a larger mesh. In the variant with INCs enabled, only a slight
increase between a 4x4 and 6x6 mesh and even less increase between 6x6 and
8x8 can be observed. This is close to the optimal usage of the INC, which
will bridge the gap between the two clusters entirely, allowing the same access
latencies between the tiles independent of their distance. In a 10x10 mesh,
there is a noticeable increase in average latency. Investigation of this result
shows that in the 10x10 mesh there is a contention for link resources between
the messages going towards the memory tile and the messages between the two
coherence clusters. This leads to a higher priority in the intermediate nodes,
resulting in a shorter and thus sub-optimal INC. Nonetheless and aside from
such variations, the average latency reduction is typically much higher in larger
meshed architectures.

102

6.1 The In-NoC-Circuits

4x4 6x6 8x8 10x100
2
4
6
8

10
12
14
16
18
20
22
24
26

Dimension Of The Mesh

Av
er
ag
e
La

te
nc
y
[C
yc
le
s/
Pa
ck
et
] no INC with INC

0.1 0.2 0.3 0.4 0.50
2
4
6
8

10
12
14
16
18
20
22
24
26

Injection Rate [Flits/Cycle/Node]

Av
er
ag
e
La

te
nc
y
[C
yc
le
s/
Pa
ck
et
] no INC with INC

Figure 6.7: Latency gains of the INC depending
on the size of the mesh.

Figure 6.8: Impact of random traffic with vary-
ing injection rates on the perfor-
mance of INCs.

In Figure 6.8 it is shown how the INC traffic performs under different load
scenarios. As before, the traffic pattern is based on the "canneal" benchmark
with a clustered coherence region while the size of the mesh is now set to 4x4.
Additionally to the network traffic from the benchmark, all compute tiles now
inject some extra load into the network in a random pattern. The added traffic
is not allowed to compete for INCs but will congest the packet layer. Here,
the latency of coherence messages slowly increases with higher injection rates
at a the same rate for both, the variant with INCs and without. Since there
is rarely contention and congestion in the network in low load scenarios, the
result matches expectations. This changes however in high load scenarios,
where the coherence traffic over the INC is staying stable much longer than
the traffic without the INC. As a result, although overall performance of the
network starts to break down, the latency sensitive traffic that is allowed to use
the INC retains its low latency longer before collapsing.

In Figure 6.9 the full set of benchmarks is evaluated in a 4x4 mesh with a
clustered coherence region. The values are normalized towards the reference
placement, since the goal of the INC approach is to have similar delays as in
the reference, but increase the freedom of choice in placing or adjusting the co-
herence regions. The results show that the INC can achieve a latency reduction
between 3%-12% compared to the reference placement. This improvement is
mostly due to synergy effects among the tiles within a cluster, which can use a

103

6 Scalable Hardware Design and Verification

Bl
ack
sch
ole
s

Ca
nn
eal

Flu
ida
nim

ate

Sw
ap
tio
ns

FF
T

Lu
cb

Lu
nc
b

Ra
dix

0

0.5

1

1.5

1 1 1 1 1 1 1 1

1.43 1.42 1.44
1.52

1.46 1.5
1.42 1.37

0.96 0.97 0.92 0.93 0.88 0.93 0.96 0.94

Av
g
de
la
y
(n
or
m
al
iz
ed
)

reference no INC with INC

Figure 6.9: The normalized average delay for coherence messages with the following setup: 4x4
NoC, clustered coherence region.

shared INC towards the memory tile and shared INCs between the two clusters.
The latency gains are even more significant (up to 40%) when compared to
the clustered placement without the INCs, highlighting the new flexibilities for
coherence regions.

In Figure 6.10 a similar evaluation is shown, yet this time the maximum
spread placement of the coherence region is used. In this case, a performance
degradation compared to the reference placement which stems from contention
for limited INC resources can be seen. Specifically, it is not possible to have a
direct connection between all tiles at the same time. Furthermore, there are less
synergy effects of shared INC among the coherence region and the memory
tile. Degradation can also happen when the traffic pattern frequently changes
or when they bridge too small distances, reducing their impact. However
without using INCs, the latency is reduced even more, almost doubling the
delays compared to the reference. As such, the INCs can increase the latency
by up to 45% in a maximum spread placement coherence region.

An observation about the actual runtime of the investigated benchmark showed
that the INC did not provide a significant impact despite their large latency
reductions. Analysis of this phenomenon hinted towards the issue that in the
selected benchmarks, the largest part of the runtimewas due to the processing in
the tiles and not the network traffic. Even more, since for the evaluations, only

104

6.1 The In-NoC-Circuits

Bl
ack
sch
ole
s

Ca
nn
eal

Flu
ida
nim

ate

Sw
ap
tio
ns

FF
T

Lu
cb

Lu
nc
b

Ra
dix

0

1

2

1 1 1 1 1 1 1 1

1.96 1.94 1.99 2.01
1.92

2
1.86 1.84

1.21
1.06

1.3
1.38

1.19
1.29 1.35

1.17

Av
g
de
la
y
(n
or
m
al
iz
ed
)

reference no INC with INC

Figure 6.10: The normalized average delay for coherence messages with the following setup: 4x4
NoC, maximum spread coherence region.

coherence traffic was allowed to construct INC, all other traffic was banned,
reducing possible performance gains. As a concluding insight based on these
observations it can be stated that parameters like the size of a local memory,
compiler andmapping optimizations, and architectural details play amajor role
for actual performance. Furthermore, the automated traffic analysis requires
multiple data streams and dynamic effects due to e.g. a dynamic scheduler
in order to be superior to static placements of the INCs. As such, for each
architecture and each use-case it has to be evaluated separately whether the
latency gains of the INC warrant the extra cost in area and power for the added
logic.

As the evaluations were carried out in a non-synthesizable SystemC model, no
hardware implementation details were available. In order to attain numbers
on resource consumption for the INC concept and investigate the challenges
during hardware implementation and system integration, a HDL description
was developed. Hardware simulation tools were able to help in low-level
verification of the basic functionality, but could not be used for testing and ver-
ifying large networks and real traffic scenarios due to their lacking scalability.
Consequently, multi-FPGA prototyping was investigated for this purpose yet
in the end, a hybrid prototyping approach was devised that provides the means
necessary for the challenges at hand.

105

6 Scalable Hardware Design and Verification

6.2 Multi-FPGA Prototyping

Using FPGAs for prototyping is sometimes also seen as an enhancement or
extension to hardware simulation, labeled simulator acceleration. Field pro-
grammable gate arrays have a long history in hardware prototyping besides
also being a target technology for hardware implementation and deployment
in many different application domains [102]. FPGA prototypes allows clock
frequencies of up to a few hundred MHz and provide fully parallel hardware
execution, in contrast to sequential execution in any software simulator. This
allows high performance and good scalability with growing design size. How-
ever, this scalability is limited by the available resources on an FPGA. In fact,
a single resource such as LUT, FF or BRAM that exceeds its limit prevents the
placement of the whole design. Additionally, the more resources are in use,
the less likely it is for the tools to provide good routing to achieve high clock
frequencies required for high performing designs.

FPGAFPGA
RR

R R

Tile Tile

Tile Tile

NA

In
te
rf
ac
e

FP
G
A

RR

R R

Tile Tile

Tile Tile

FPGA

FPGA

FPGA

FPGA

FP
G
A

NA NA

NA

NA

NA NA NA

Figure 6.11: Many-core partitioning onto a multi-FPGA system.

Even though FPGAs are growing in size each generation, no single FPGA
can currently host a full many-core design with hundreds of cores on its own.
A common approach for prototyping a many-core architecture is thus based
on a multi-FPGA prototyping platform. Such prototyping systems typically
host a fixed number of FPGAs connected via high-throughput and low-latency
interconnection cables or boards. Partitioning a many-core architecture onto

106

6.2 Multi-FPGA Prototyping

multiple FPGAs as shown in Figure 6.11 needs to minimize cut-signals, i.e.
the amount of signals that cross FPGA boundaries. As many-cores are based
on networks-on-chip interconnects, the most promising cut uses the NoC-links
between routers (R) to separate the design. For generating the least amount of
delay, implementation on the link-level is recommended. However, alternatives
exist that introduce extra logic to form a bridge and handle the cut on the
transport protocol level [89]. Links which cross FPGA boundaries cannot be
operated with the same delay as FPGA-internal links without slowing down the
entire design significantly. These different delays result in restrictions for the
design and potentially even different timing behavior. Furthermore, there is
always an overhead when connecting pins for the FPGA interconnect and doing
delay calibration among all signals on such a link. Another difficulty is the
limited amount of pins on any FPGA, leading to an FPGA I/O bottleneck [120].
The pin count on recent FPGA is rather large and may be sufficient for most
FPGA designs, a partitioned many-core however presents the amount of cut-
signals on the link level as follows:

Pins = linkwidth ∗ NoC_linkscut

The linkwidth typically only refers to the data width. However for counting
the amount of interfacing pins, the control signals need to be considered in this
case as well. A typical configuration of the i-NoC operates on 33bit data bit
width, 4 bit ack signal, 1 bit request signal and 2 bit for virtual channels. The
number of such links depends on NoC_linkscut , i.e. the amount of routers
that are interfaced to a neighboring router on another FPGA and the amount
of ports in those routers that are used to cross the boundaries.

The full amount of physical pins is typically not available for the inter-FPGA
links since there are reserved pins of a multi-FPGA system and further pins
required for extension boards. Thus, scaling a many-core architecture and
partitioning it onto a multi-FPGA system might use all available pins before
all internal logic resources are depleted. In order to overcome this limitation,
pin-multiplexing can be utilized. A simple implementation connects multiple
NoC-links that cross FPGA boundaries onto a set of pins with the size of a
single link. Such an approach has the downside of skewing the clock cycles
any transmission takes when crossing such a boundary. In order to avoid such
skew, the clock of the FPGA design can be decoupled from the FPGA-FPGA
interfacing. This allows to clock the FPGA-link at much higher clock rates

107

6 Scalable Hardware Design and Verification

than the design-under-test. In a best case scenario, all multiplexed signals can
be handled and transported within a single clock cycle of the FPGA design.
Measurements on the proFPGA prototyping system [4] show that the inter-
FPGA links add 4 extra clock cycles for transmitting the data in a 50MHz
design. Clocking the many-core prototype at higher rates would increase the
extra clock cycles required for the multiplexing since the cycle overhead is kept
low by operating the inter-FPGA connections at much higher clock rates that
cannot be increased further. For attaining these numbers, clock counters were
inserted and the request lines of the routerswere connected to an ILA core. This
allows precise delay measurements for packets sent to targets within one FPGA
and between different FPGA.Modern FPGAs also provide additionalmeans for
fast I/O, as some works incorporate GTX transceivers in their design [40]. Yet
there is always a level of delay that introduces inaccuracies in suchmulti-FPGA
approaches.

6.3 FPGA-Host Interface

The previous section described the partitioning of a many-core architecture
onto a multi-FPGA system and discussed the required FPGA-FPGA inter-
connects. A partitioned many-core architecture however also needs a way to
interact with its environment. This includes:

• Initializing and loading of memories with program code and data

• Providing live input/output data

• Allowing debug access and enhancing visibility of the internal state of
the architecture

The first two items are required in any phase of a many-core development,
from an early prototype until deployment in a finished product. The last item
is mostly required during prototyping phase itself but can prove useful for
maintainability even in a deployed architecture. The second item is typically
handled by a number of interfaces to peripherals or other information pro-
cessing systems. There are numerous interfacing standards and specifications
available for this task. FPGA boards as well as multi-FPGA systems provide
IP blocks for integrating such I/O into a design. These either make use of com-

108

6.4 Multi-Level Hybrid Methodology

ponents directly integrated onto the FPGA-board or utilize extension boards
(in the latter case). The availability of live data can be an important aspect of
a prototype for evaluating the performance or other non-functional properties
of a many-core design in a real use-case scenario. However, the other two
items are even more important: A many-core prototype can only work when
its memories are correctly initialized. Furthermore, debugging capabilities
are essential to the successful design of new architectures and architecture
extensions. Some architectures may allow handling of debugging and pro-
gram load via the regular I/O methods that are used for live data. This has to
be supported by the I/O core or a low level system software that can handle
the incoming data appropriately. A much more convenient method however
creates a direct connection to a memory and/or processor. In tiled many-core
architectures this is achieved by hooking a hardware block that contains a new
bus master onto each local bus of all tiles. Such an approach is often called
”transactor” based access to the prototype. The transactor is interfaced either
directly to a host system via a connector (such as USB, PCIe) or indirectly
through a motherboard on a multi-FPGA system. In both cases, there needs to
be a protocol and a low level software driver that allows simple read and write
commands. These are transmitted to the transactor which guarantees valid bus
handling when executing the commands. A transactor may occupy an address
in the memory map and can thus even be configured to handle common I/O
functions or primitives such as printf by redirecting the output stream to the
host system. If multiple tiles are connected via a central interface component,
multiplexing and arbitration of this resource is required.

Depending on the architecture, it is also possible to interface a NoC link instead
of the local buses of each tile. Such an approach requires a fully established
and connected NoC with a network interface that contains a bus master in each
tile to provide full access to the memory or processors on a tile.

6.4 Multi-Level Hybrid Methodology

As central topic in this work, a novel multi-level hybrid methodology for
prototyping of many-core and many-accelerator architectures is presented.
The goal of a multi-level hybrid approach is to gain the benefits of several
prototyping domains by combining or using them in an interleaved fashion.

109

6 Scalable Hardware Design and Verification

Specifically, the goal is to combine tools, languages, simulations and FPGA-
based prototyping for improving metrics towards successful design, debugging
and evaluation of many-core and many-accelerator systems. This work was
published in [MLB19] and [MLB20]3.

In a perfect world scenario, many-core prototypes run at full speed of vir-
tual platforms while still providing the accuracy and debugging capabilities
of hardware simulation and scalable execution speeds of FPGA-based proto-
typing. While it is impossible to build a single prototype that provides all of
this for an entire hardware unit or system the size of a many-core, it is possi-
ble to create a prototype that implements a part of its prototyped architecture
as a virtual platform, while another part is implemented on a fully accurate
level. Historically, a similar challenge emerged several years ago where it was
impossible to fit a single large processing core onto the available FPGA. As
a solution back then, the functional model and the timing model were split
into two parts [28]. This allowed fitting the timing model which required
accuracy onto an FPGA, while the functional model could be executed on a
host processor either natively or in a QEMU full system simulator. Special
computing systems that included hardcore processors and a tightly integrated
FPGA similar to the Xilinx ZYNQ eased this approach and enhanced their
performance. Nowadays, fitting a single processing core onto an FPGA is
not an issue anymore, making this split obsolete. This is beneficial since it
avoids a number of added challenges and downsides that come along with
this technique. However, combining FPGA prototyping with a prototyping
environment on a different level of abstraction is still a promising approach.
Since hardware simulation itself is extremely slow, virtual platforms are the
most promising solution for combining with an FPGA-based prototype. The
fusion of a software based virtual platform (VP) and a FPGA prototype is
called multi-level hybrid prototyping. The application of a hybrid prototype
is motivated by the observation that full level of detail is not always needed
in every component when developing a many-core. The approach is similar
to the concept of testbenches for small sub-components when designing hard-
ware in cycle accurate simulators. In this case however, the goal is to execute
real applications and prototype the full many-core architecture, yet not every
component at the same level of detail. As such, the idea is to implement a part

3 Extracts from [MLB19] and [MLB20], which were completely written by the author of the work
in hand, are used verbatim in this section without further identification

110

6.4 Multi-Level Hybrid Methodology

LUT FF Mux BRAM
1 LEON3 Core 8797 2583 96 16
1 Tile (5 Cores) 61572 27949 733 132
1 Æthereal Router [50] 2658 N/A N/A N/A

Table 6.1: Resource cost comparison of example components present in a many-core architecture.

of the architecture on an FPGA, while modeling the remaining part in a virtual
platform. This allows to have more FPGA resources for critical components
under observation while creating a prototype that encompasses a much larger
many-core architecture in total. As a recent development in the EDA industry,
Synopsys released an extension to their multi-FPGA platforms that interfaces
with their Virtualizer tool [5]. This development highlights the importance
and potential of a hybrid approach. In contrast to the Synopsys tool, this work
describes the concept and implementation as part of a VP-based design and
verification methodology, independent of an expensive special multi-FPGA
platform. Also, the presented approach provides a synchronization mecha-
nism and is targeted towards many-core architectures since these specifically
need novel approaches due to their design size. Many-cores show high suit-
ability for a hybrid approach since design components such as the NoC are
prime examples for a useful design split between VP and FPGA. The only other
remaining solution that can handle prototypes the size of a many-core are spe-
cialized emulation platforms such as Palladium, Veloce or ZeBu. While they
provide good debugging capabilities and scalability, they are very expensive
and can realistically only reach speeds of ∼1 MHz in recent designs [108]. Ca-
dence also follows a hybrid approach as extension of their Palladium emulation
platform. Since the platform is software based, it can easily integrate with a
virtual platform and speed up execution of large software parts, such as booting
an operating system. However, execution speed of the hardware components
that are targeted for verification is still limited in the 1 MHz range. In contrast,
the approach described in the following uses cheap and easily available FPGA
boards and can allow designs with full FPGA speed of 100 MHz and more.

An analysis of the area consumption of a CPU that is available as synthesize-
able HDL description and a multi-CPU tile in a typical configuration, as seen
in the InvasIC architecture in section 2.1.3, is shown in Table 6.1. The core

111

6 Scalable Hardware Design and Verification

is a LEON3 processor from Gaisler Research including 32KB/64KB I/D L1
caches. A typical tile consists of 5 cores, local bus, network interface, Tile
Local Memory (TLM) and debug link. As it can be seen, the LUT require-
ments are the limiting factor for the cores and tiles. Based on the resources
available on the XC7V2000T (1,222M LUTs and 2,443M FFs), theoretically
a full design consisting of 17 tiles and routers would fit onto such an FPGA.
In comparison, there are resource utilization numbers of the Æthereal NoC
available as provided in [50] which hint towards a theoretical number of 459
routers fitting on the XC7V2000T. These theoretical numbers can’t be achieved
in an actual synthesis due to placement constraints and other limitations, yet
this estimation demonstrates the impact of mapping only a subset of an archi-
tecture to the FPGA: The full many-core (even without the routers) could host
only a 4x4 design while focusing purely on the NoC, a 21x21 mesh is possible.

FPGA
RR

R R

In
te

rf
ac

e

V
irtu

al P
latfo

rm

V
irtual Platfo

rm
Virtual Platform

Virtual Platform

Tile Tile

Tile Tile
NA

NA

NA

NA

Figure 6.12: Scenario 1: A subsec-
tion of the Manycore
is implemented in the
FPGA.

Virtual PlatformFPGA

Interface

R R R R R R

R R R R R R

R R R R R R

R R R R R R

R R R R R R

R R R R R R

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Figure 6.13: Scenario 2: The NoC is implemented
physically, tiles reside in the virtual plat-
form.

Based on these area observations, there are two major scenarios for many-core
prototyping that motivate a hybrid approach. The first scenario implements
a spatial fragment of the architecture (i.e. several tiles including their NoC
routers) on the FPGA, while modeling the remaining tiles and routers in a
virtual platform. This approach is shown in Figure 6.12. The connection
between FPGA and virtual platform is located between two routers in the
NoC, i.e. a physical router on the border of the FPGA that is connected

112

6.4 Multi-Level Hybrid Methodology

to a neighboring router in the virtual platform. The interface between the
physical router on the FPGA and the virtual router on the host PC will be
described in detail later. In this setup, the focus is on the investigation of the
tiles, which are prototyped with full FPGA accuracy but can send and receive
their data to respectively from a much larger architecture. This allows the
modeling of different load scenarios, access latencies over the NoC, I/O and
large background memory on the host system.

The second scenario (Figure 6.13) is focused on the network-on-chip inter-
connect itself. In this scenario, a full NoC and all its physical links are
implemented on the FPGA while the tiles are modeled in the virtual platform.
The network interface can either be included in the FPGA or the VP part. In
the former case, the connection between FPGA and VP is at the local port of
each router at which point the data is transferred to the host and processed by a
virtual network interface and the virtual tiles. Since the ”cut” between FPGA
and VP in this case is on regular NoC links and the local port/link typically
behaves exactly the same as the links between two routers, both scenarios can
be handled by the same physical interface implementation and only require
different modeling on the VP side. Shifting the NI into the VP part requires a
custom tile interface for this scenario but opens up additional prototyping and
evaluation opportunities. In any case, this scenario allows the investigation
of much larger NoC architectures under real application traffic, provides re-
sources (e.g. memory, I/O) that might not be available on the FPGA itself and
enables modeling of different (end to end) network protocols and paradigms
in the virtual platform (e.g. shared memory versus message passing).

The hybrid approach is applicable independently of these two scenarios for
any architecture and partitioning of virtual and FPGA part. The reduction in
synthesis time benefits any design and verification effort. The approach can
also be used in more traditional sense in the process of hardware/software
codesign. Partitioning approaches may be used for optimizing the design
into a software and a hardware part [10] [115]. However, in the context
of design verification the partitioning is based on the accuracy needed for
the relevant design component. Thus, the DUT would be mapped onto the
FPGA unless resource constraints or performance bottlenecks force a different
partitioning. For a many-core, the hybrid approach has the added benefit of
allowing prototypes of a size not possible otherwise while retaining FPGA
accuracy at least on a part of the architecture. Furthermore, the two presented

113

6 Scalable Hardware Design and Verification

FP
G

A

A
p

p
li

ca
ti

o
n

V
ir

tu
al

 p
la

tf
o

rm

d
ri

ve
r

NI
model

PCIe

NoC
model Se

m
ih

o
st

in
g

Host-PC

OVP

Threads
Communication

library

Native

Compiler

Scenario 2

Scenario 1

co
ll

e
ct

o
r

p
a

ra
ll

el
iz

e
r

Cross
Compiler

Peripheral
modeling

Platform
modeling

Accelerators

Tile

Tile Tile

Tile

CPU CPU

Memory

Debug
Interface

RR

R R

Tile Tile

Tile Tile
NA

NA

NA

NA

co
ll

e
ct

o
r

p
a

ra
ll

el
iz

e
r

R R R R R R

R R R R R R

R R R R R R

R R R R R R

R R R R R R

R R R R R R

Figure 6.14: The full hybrid prototyping architecture.

scenarios share the same conceptual interface between FPGA and VP (i.e.
the NoC links). Any other scenario would require a custom adaption of the
interface to the DUT.

Figure 6.14 shows the full hybrid prototyping scheme. On the left a Host PC is
shown, on which the virtual platform and the application code running within
the platform reside. A virtual platform can either be abstracted on a functional
level by the use of a communication library that handles the access to the FPGA
or it is provided by a framework such as OVP. The virtual platform uses a direct
access to a low-level driver for the physical interface to the FPGA (in this case
PCIe). On the right the FPGA part is shown, split into three components:
The fragment of the many-core architecture that is prototyped (i.e. the two
scenarios), a NoC Interface which collects/distributes and prepares all the data
from/to the NoC, and the host interface that includes the PCIe.

6.4.1 Interface Stack

The complete multi-level hybrid prototyping methodology consists of a VP
part and an FPGA part. In order to join these very distinct prototyping worlds
together, a number of interfaces need to be handled and suitable components
need to be implemented. This interface stack consists of multiple parts that will

114

6.4 Multi-Level Hybrid Methodology

be introduced and discussed in the following. From a bottom-up view there
are the DUT interface (which corresponds to the NoC interface as motivated
earlier), the host interface, the SW interface and the VP interface. Most of
these interfaces are well defined, e.g. the NoC design defines the NoC interface
while the virtual platform (in this case OVP) defines the VP interface. The
remaining undefined interface is the host interface. The requirements for
this physical interface between FPGA and host are low latency data transfers
and high potential throughput so that large many-core architectures with high
network load can be handled. Multiple FPGA/host interfaces are available on
typical FPGA evaluation boards. PCIe is a preferable choice for this task since
it offers the best performance in comparison to any other typically available
interface between FPGA and host PC. The PCIe interface is clocked with
250MHz and offers 128 bit width for the data transfers. Data is transferred via
DMA into a ringbuffer in the main memory on the host PC. The main memory
hosts two separated ringbuffers, one for the receiving and one for the sending
side.

The NoC interface as shown in Figure 6.15 is responsible for collecting all
the data from the NoC towards the VP, and distributing the data from the VP
to the NoC. For this task a Dummy Network Interface (DNI) is introduced
that is able to handle the communication with the routers. All dummy NIs
are connected to one of the parallelizers, which bundle the data streams of
multiple NIs into 128bit packets that are used by the PCIe Interface. A
configurable amount of dummy NIs can be connected to a parallelizer, yet
with a typical NoC Link bandwidth of 32bit that are converted to 128bit,
the default configuration contains four dummy NIs for each parallelizer. The
parallelizer also adds a header to each packet which indicates the ID of the
router and the virtual channel on which a packet arrived. The parallelizers are
connected to a collector. This unit contains dual clock FIFOs which allow an
arbitrary configuration of the clock frequency of the NoC, while keeping the
PCIe interface at maximum clock speed for best performance. The collector is
then connected to the Host Interface, that contains a Xilinx PCIe core.

When data is copied from the FPGA into the host memory via DMA, an
interrupt is raised to notify the user-space software. A specific driver handles
the low-level tasks for communication of user-space software with the FPGA
design. The driver can reserve memory ranges in the host memory, initialize
the PCIe device and setup DMA and interrupts. It creates a character device

115

6 Scalable Hardware Design and Verification

multi_collector

32
bi
t

dc fifo

dc fifo

parallelizer

rx_fifo

tx_fifo

single
collector

250 MHz 50 MHz

12
8b

it

PC
Ie

In
te
rf
ac
e

DNI

DNI

DNI

DNI

N
oC

In
te
rf
ac
e

Figure 6.15: Components of the NoC Interface.

with the following syscalls: open, close, read, write, ioctl, poll. The driver
makes sure that only valid data is read and supports both blocking as well as
non-blocking calls. This interface allows the creation of user-space libraries
and applications that directly work on the driver in order to send and receive
data to, respectively from the FPGA.

In order to prototype a full many-core system, all the components that are not
placed on the FPGA need to be modeled on the host. As an example, according
to scenario 2 the NoC interconnect is placed on the FPGA while the network
interface and the tiles are modeled in a virtual platform. In order to be fully bi-
nary compatible, an Instruction Set Simulator (ISS) is required. Furthermore, a
modeling and platform generation framework for arbitrary components like the
network interface, memories and local interconnects within a tile is needed.
One existing framework that fulfills these goals is Open Virtual Platforms
(OVP) that was used earlier in chapter 5 for software design and verification.
OVP contains processor models for many different ISA, allows platform and
system generation and the generation of peripherals that can be modeled to
behave exactly like real hardware with fully compatible interfaces to the soft-
ware. These peripherals also allow the use of a semihosting functionality,
which gives access to host resources including drivers. Through semihosting
we can access the low level SW-Interface and our PCIe driver, process the
data within the modeled peripheral and make load/store accesses to data in the
memories of the virtual platform.

116

6.4 Multi-Level Hybrid Methodology

6.4.2 Parallelized Host Execution

In a multi-level prototype, efficient execution relies on a balanced design that
avoids bottlenecks in either domain including their common interface. On the
FPGA, design speed is mostly limited by the DUT, which has to be considered a
parameter that cannot be affected on a methodological level. Speeds of 50MHz
or 100MHz will be assumed in the following as the complexity of full many-
core FPGA designs often prevents achieving higher clock rates. However,
due to the fully parallel nature of FPGA execution, these frequencies can be
achieved independent of design size as long as it can be placed on the FPGA4.
The interfacing introduced with the hybrid prototyping is separately analyzed
afterwards since it is closely related to the issue of synchronization between
the two domains. This leaves the host part containing the virtual platform
as the remaining potential bottleneck. Improving performance can mostly be
achieved via parallelization by using all available physical cores of the host
system and allowing scalability on more powerful host machines that provide a
large number of cores. Section 5.4 highlights steps and considerations towards
a parallel OVP platform. Since peak performance can only be achieved for
simulation of a single core, it must be divided by the number of virtual cores
that are simulated. Furthermore, some additional processing power is required
for the peripherals in the VP.

Yet this leaves one issue that arises in a hybrid multi-level prototype, namely
the fact that hardware resources can only be held by a single entity at the
same time. This means that accesses to the host-FPGA interface need to be
arbitrated in some way. There are two possible approaches for solving this
issue. Firstly, each process may individually request the resource, handle their
operation, and release their control over the resource afterwards. Yet there
are several severe problems that appear when following this approach. Most
notably, fair or ordered arbitration is not guaranteed, possibly resulting in
starvation or generally unfair execution with a high level of indeterminism.
Furthermore, overhead for claiming and releasing resources is typically high,
hindering performance and increasing latencies. A different approach is based
on a client-server scheme. Here, the device driver runs as a server that owns

4 This statement is not fully accurate since the placement tools may struggle under high resource
utilization. In such cases, long routes for the wiring may impact achievable clock rates.

117

6 Scalable Hardware Design and Verification

the resource and handles arbitration of the access to the physical resource.
Every client (i.e. every process) initially connects to the server that assigns
a handler. This handler can then be used to send requests to the server.
Overhead in recent client/server implementations is low, making this approach
the preferable solution that is implemented in the framework.

6.4.3 Timing Accuracy and Synchronization Mechanisms

Fully cycle accurate operation as in a HDL simulator is only provided on the
FPGA part of the hybrid prototype. The host part including the virtual platform
works on instruction accurate processor models and fixed delay peripherals.
This means that the hybrid prototype is inherently not a fully timing accurate
model of a real hardware-synthesized many-core, since it does not consider
processor pipelines, memory access times and any other elements that are
part of the VP. As motivated earlier, this is often perfectly fine when focusing
on a single aspect of the whole architecture, using the hybrid prototype for
functional testing, validation and debugging. However, there are situations in
which a certain level of timing accuracy is desirable for the whole prototype,
mostly considering design space exploration and performance evaluations. In
these cases, synchronization of the two domains (i.e. FPGA and VP) of the
hybrid prototype is of special importance. The term synchronization as it is
used in this document is defined as follows:

Definition: Synchronization is the coordination of events to operate a system
in unison

Synchronization sets the two domains in relation to each other and can be
achieved by variousmeans, depending on the envisioned goal. In the following,
timing delays induced by the interfacing of the two different domains are
investigated and approaches for bringing certain levels of timing accuracy into
the hybrid prototype are described.

Four different modes of operation regarding synchronization of the two do-
mains of the hybrid prototyping can be identified:

• Asynchronous

118

6.4 Multi-Level Hybrid Methodology

• Fully synchronous

• Pseudo synchronous

• Delta-based

The first mode of operation is the default setting for a hybrid prototype. In this
most basic variant, no synchronization mechanism is employed at all. Since
the motivation for such a mode of operation is based on purely functional
verification as presented earlier, it will not be discussed here and this option is
simply listed for completeness.

The fully-synchronous stepping refers to a mode of operation in which all
elements in both domains progress one cycle and synchronize before the next
cycle is processed. It means that there must be a common notion for the small-
est interval of time that is comparable in both domains (such as a cycle) and the
values on any signals or wires that cross the domains must be exchanged after
each cycle. This mode has been investigated in many publications when cou-
pling HDL simulators, typically used for testbenches, with FPGA prototypes
that run the design under test [70]. Similarly to the existing techniques that
use HDL simulators, fully-synchronous operation on a cycle basis can also be
achieved for virtual platform execution. Depending on the level of detail and
accuracy in the VP, there is still a common smallest time interval, i.e. a cycle.
Instruction accurate models provided by OVP lose some accuracy since they
assume that each cycle one instruction will be completed. This does not match
with reality where pipelines, predictive execution and misses, bus contention,
etc. exist. However, it is possible to bring accuracy to instruction accurate
virtual platforms such as OVP at the cost of execution speed that is lowered
by a factor of 150-170 [106]. This shows that accuracy can only be achieved
by sacrificing performance, yet a VP that is slowed down by a factor of 150
is still far superior regarding simulation speed to any comparable technique at
fully accurate levels. Extending these techniques for the synchronization of the
two domains of a hybrid prototype generates a huge amount of overhead. For
understanding the source of this overhead, a delay measurement of the hybrid
prototype is presented in Table 6.2. FPGA to Host and Host to FPGA both
encompass the parallelizer, collector and PCIe interface as described earlier.
They represent the delay between a packet being sent to the local dummy NI
via the NoC, till the processed PCIe packet is located in the ringbuffer in the
host memory. The software delays encompass the interrupt and packet pro-

119

6 Scalable Hardware Design and Verification

Domain Mean SD Min Max
FPGA to Host 0.52µs 0.04µs 0.39µs 1.49µs
Software 4.46µs 0.74µs 3µs 24µs
Host to FPGA 1.54µs 0.33µs 1.28µs 7.24µs
Sum 6.52µs 1.11µs 4.67µs 32.73µs

Table 6.2: Delay measurements for the domain crossing.

cessing on the host, including the access to the virtual platform. Not part of
the measured time is any processing time within the virtual platform. This
would represent a scenario that does not trigger additional operations, such
as accessing a memory in the VP. The processing time will be considered in
the calculations later on, yet it is not relevant for measuring the access times
between VP and FPGA. The Linux RT (real time) patch on the latest kernel
is used to avoid large delays due to the regular linux scheduler. The results
show that the software is the major source of delay. However, the biggest
issue is not the average delay but instead the fact that there are some outliers
with a much larger delay than average. These outliers have been optimized
and improved by the use of the RT patch, yet they are still four times larger
than the mean delay. Using a bare-minimum operating system providing fully
static resource allocation could improve this situation even more. Similarly,
using polling instead of interrupts may also improve performance and reduce
outliers at the cost of processing power. In order to provide in-time requests
over the domain crossing in accordance with the presented findings, the VP
and the FPGA design can be run at lower frequencies. This does not affect
the performance of the host interface on the FPGA since it operates in its own
clock domain.

Considering the presented delay measurements, the overhead for a synchro-
nization on every cycle can be calculated as follows:

Overhead =
Tcyc,Hyb + Max(Tdel,H2F + Tmsg,H2F,Tdel, F2H + Tmsg,F2H)

Tcyc,Hyb

120

6.4 Multi-Level Hybrid Methodology

This formula consists of the average delay Tdel , the time for transmitting the
full synchronization message Tmsg and the reference execution time for one
cycle in the hybrid prototype Tcyc,Hyb . Tdel and Tmsg depend on the direction
of the transfer, that is either from host to FPGA (H2F) or from FPGA to host
(F2H). Since PCIe works fully duplex, both directions can be transmitted at the
same time. However, as the amount of traffic may differ according to the traffic
pattern, the maximum metric for the data transmissions of both directions is
relevant for the overhead calculations. The values for Tdel can be taken from
Table 6.2 where the mean values for each direction can be seen.

Tmsg is defined as follows:

Tmsg =
message size
bandwidth

It consists of the message size, i.e. the amount of data that needs to be
transferred for synchronizing one cycle, divided by the available bandwidth.
Message size depends on the protocol overhead, as well as the amount of NoC
flits that have to be transmitted. It has an upper bound in the sense that in each
cycle, at most one flit may be transmitted over each NoC link that crosses the
boundary between VP and FPGA. It is thus based on the amount of routers in
the design (in scenario 2), or the active links (in scenario 1).

The reference execution time Tcyc,Hyb is defined as follows:

Tcyc,Hyb = Max(Tcyc,vp,Tcyc, f pga)

It depends on the execution speeds in both domains. Since the slower speedwill
determine the overall performance, the formula chooses the maximum value.
Tcyc, f pga denotes the clock frequency of the design on the FPGA. It refers to
the DUT clock and is independent of the interface clocking. Tcyc,vp depends
on the virtual platform size and the available physical processing resources on
the host machine.

In light of the issues that fully-synchronous operation faces, alternatives are
required that offer better performance while still providing some level of syn-

121

6 Scalable Hardware Design and Verification

chronization and accuracy. This is a difficult task, since there are a number
of sources for delays and indeterminism throughout a multi-level prototype.
It starts on the driver level that can only provide single threaded access to a
hardware resource (i.e. DMA/PCIe). Handling this requires arbitration and
results in sequentialisation even if the VP part is fully parallelized, creating a
potential bottleneck. Next, the DMA unit and PCIe of the host system is also
liable to indeterminism by reordering/grouping requests or due to contention
for resources. Finally, packets arrive sequentially on the FPGA and need to
be unpacked one after another as they come, even though the final injection
into the NoC may happen fully in parallel. These sources of delay and inde-
terminism may not only result in situations where accurate operation is not
possible, but instead also situations where no NoC contention happens at all.
This situation may arise if the delays between subsequent traffic injections is
too large, allowing a packet on the FPGA to be routed all the ways to its des-
tination before another packets is injected. Such behavior is undesired since it
will never trigger corner cases that appear under heavy loads in a NoC.

One alternative approach to cope with this situation is balancing the speeds
of both domains and taking the sources of delays and indeterminism into
account in order to allow similar execution patterns compared to the fully
synchronous mode. This pseudo-synchronous operation does not use any
direct synchronization, avoiding the issues that come from the interface delays
completely. However at the same time it does not provide the same behavior
as a fully cycle-accurate execution and is more intended to give statistically
sound results instead of fully accurate ones.

There are two imbalances that this mode of operation tries to minimize:

• The FPGA running too fast, resulting in situations where a request to-
wards the FPGA is handled before another request takes place, resulting
in loss of resource contention scenarios that might happen in synchro-
nized execution.

• The VP running too fast, resulting in request clogging in the FPGA
which might not have happened in a synchronized execution.

Realization of this mode requires that the hybrid prototype is running at defined
speeds in both domains, for example by scheduling the VP elements so that
they are sequentially executed to match the FPGA clock speed. This can be

122

6.4 Multi-Level Hybrid Methodology

achieved by introducing time slots and synchronization points at the end of
each time slot. If virtual components advance too fast, they are stopped at a
synchronization point and put to sleep. By selecting appropriate time slots, the
accuracy/execution speed trade-off can be adjusted. Another issue that needs
to be addressed is the delay that is introduced by crossing the domains between
FPGA and VP. The shortest possible request that crosses the domain and
triggers a response is the critical part in this regard. Taking the invasive many-
core architecture as an example, the shortest request that crosses boundaries is
a remote read operation. In a full hardware implementation it takes 9 cycles
for input processing in the network interface, 5 cycles for bus and memory
access of a single word, and another 9 cycles for output processing. Providing
an accurate remote read thus requires that within 23 cycles on the FPGA,
the dummy NI can transfer the request to the host and retrieve the data in
time. Considering the delay measurements presented earlier in Table 6.2, one
can calculate the maximum clock frequency on the FPGA so that the hybrid
prototype would behave the same as a full FPGA prototype:

f =
cyclesmax_op

delayFPGA,Host + delaySof tware + delayHost,FPGA

Using the values for the individual mean and max delays from the table, a
frequency of 3.5MHz for the mean case and 0.7MHz for the max delay case
can be determined.

Other common operations in a network are remote writes or DMA transfers
which are essentially clustered write operations. Since these typically do not
require a response to complete, they are unaffected by the interface delays.
Otherwise, similar calculations can be done for any other request-response
operation.

The last mode retains a global synchronization that is valid in any concurrent
task driven Model of Computation (MoC) like Kahn Process Networks (KPN)
[49], synchronous dataflow [73], or the actor model [54]. These models have
in common that communication is only handled via messages and no other
influence on their local data is possible. Execution is based on producing
and consuming of data and a fixed graph that defines the interrelations of the
concurrent parts of an application. While this limits execution patterns, it also
means that for each part of the code it is clearly defined when and on what data
it operates. Without KPN or a similar MoC, an application may operate on

123

6 Scalable Hardware Design and Verification

some data that is remotely changed at any time. This creates many difficulties,
even more so in a hybrid prototype. If execution has already passed the time
when a remote operation would change some data and the update of said data
was delayed due to the utilized prototyping method, old data is used for the
operation, resulting in a divergence of results. Providing accuracy in such cases
can only be handled by a fully synchronous prototype as described earlier.

If program execution and data exchange can be guaranteed to follow the above
mentioned rules for KPN and similar MoC, synchronization can be achieved
as described in the following. The general assumption is that the FPGA part of
the prototype is inherently accurate while the VP part is inherently inaccurate.
In fact, since the VP is inaccurate anyways, it does not need to keep track of
its current time. Instead, the VP side is only required to calculate a delta,
such that it can determine how many clock cycles it takes to produce some
data. This procedure may either be periodic or depend on input data which
triggers the execution. Since the FPGA part is fully accurate it is extended
by a clock counter that signifies the elapsed clock cycles since the last reset.
The bitwidth of the counter can be configured as 32bit or more (such as 64bit),
depending on whether an absolute clock count is required or an overflow is
acceptable. When a packet is injected into the NoC from the VP, it expects a
timestamp which is used to delay a packet if it was processed too fast in the VP
and would thus be injected too early. The packets are buffered in the dummy
NI until the clock counter matches the timestamp of a packet. In case that
the timestamp is already passed when the packet arrives, it can either be sent
directly or an error flag is raised to indicate inaccurate behavior. Concerning
the other direction when data from the NoC is collected by the dummy NI,
the global clock counter is sampled and attached to the PCIe packet towards
the host. When a consuming task is triggered by that packet, the VP starts
processing and takes the timestamp as a baseline, adding its processing time
to this timestamp. When processing in the VP triggers another event (i.e.
message over the NoC), the new timestamp will be added to the data transfer
towards the FPGA. While this mode does come with some limitations as to the
model of computation and requires the FPGA part to be slowed down so that
the VP is always able to run ahead to avoid a situation in which a request is
sent to the FPGA that should have been injected at a global clock cycle earlier
than the current clock cycle, it also provides a fast and accurate execution aside
from the inaccuracies of the virtual platform itself, which are out of scope here.

124

6.4 Multi-Level Hybrid Methodology

6.4.4 Bandwidth Considerations

The final synchronization mode does assume that the bandwidth of the host-
FPGA interface is never a limiting factor. If this can not be guaranteed, higher
delays may occur that are difficult to quantize and locate. In the following,
some bandwidth considerations are discussed.

Bandwidth becomes the limiting factor if the worst-case amount of traffic is
generated (i.e. the maximum possible data) and the implementation cannot
handle it. Consequently, an estimate of the maximum traffic that gets generated
in a platform is required. It can be assumed that worst-case Injection Rate
(IR) is at around 0.5 packets/cycle in every router at the same time. This
assumption is based on the observation that independent of the application,
NoC performance can not handle more than this IR and will start to break
down at higher rates, causing large delays. In reality, the IR depends on the
applications and benchmarks as well as their mapping and scheduling onto
the tiles of a many-core. In case that an overall average IR higher than 0.5 is
observed, it hints towards an unbalanced system that requires optimization so
this value can be seen as a theoretical upper bound. Although an application
might communicate in bursts that inject one packet in every cycle (i.e. the
theoretical physical maximum), it will not happen in all routers at the same
time or if it does, it can be considered a design flawon scheduling or algorithmic
level. Assuming a DUT/NoC clock rate of 50MHz, 32bit NoC link width and
the aforementioned IR of 0.5, the throughput generation at the local port for a
single router is 100MB/s.

In comparison, PCIe provides 8GB/s with 8 lanes in the common 3.0/3.1
standard used in many COTS host-PC and FPGA boards, but can go up to
64GB/s in its latest iterations. This means in theory, that it is possible to create
a hybrid prototype containing 80 tiles and routers (for PCIe 3.0/3.1with 8 lanes)
or 640 tiles and routers (for PCIe 5.0 with 16 lanes) that is still not bandwidth
limited. In reality however, the situation is a bit more complicated since the
theoretical throughput numbers of PCIe can not be achieved on an actual FPGA
board. This is mostly due to protocol overhead that is always present, even
if there is no contention for PCIe resources. The magnitude of this overhead
varies to a large degree, depending on many factors. A white paper by Xilinx
discusses several scenarios and factors that impact PCIe performance [72]. The
paper calculates two realistic throughput scenarios based on write transactions

125

6 Scalable Hardware Design and Verification

128 256 512 1K 2K 4K 8K 16K32K
0

200

400

Bytes/Block

M
iB
/s

10000 cyc/IRQ
1000 cyc/IRQ
100 cyc/IRQ

Figure 6.16: Throughput against block size and IRQ frequency as shown in [MLB20]

over PCIe 3.0 with 8 lanes, resulting in either 1.689GB/s or 1.912 GB/s. A
third scenario is presented that looks at read transactions that only achieves
0.5GB/s due to an assumed delay in a memory controller. However, the hybrid
prototype uses FIFO buffers that do not trigger such a delay. Evaluations on the
hybrid prototyping framework using a VC707 board (which is limited to PCIe
2.0 8x), highlight that there is also a trade-off between latency and throughput
in the shape of IRQ frequency. The results are shown in Fig. 6.16. High
throughput can be achieved if interrupts are sent sparsely, since this allows
filling of transfer buffers without constantly interrupting the operating system.
Conversely, too many interrupts can impact VP performance negatively. The
interrupt frequency should be chosen according to the intended usage pattern
of the hybrid prototype. As such, workloads with many small transfers or
low latency requirements should select a high interrupt frequency, while large
bulk transfers for tasks such as video streaming benefit from a lower interrupt
frequency. The system may even lock up due to interrupt storm. This may
happen if block sizes are too large and interrupts happen too often, since the
system cannot handle such situations anymore. This explains the missing
results for 16K/32K block sizes at 100 cycles per IRQ.

Based on all these sources and observations, realistic PCIe throughput is thus
assumed as at most 8x less than the theoretical throughput. This means that
(depending on PCIe version), up to 64 tiles can be safely handled even in the
worst case. Since an average IR of 0.5 over all nodes at the same time is often
unrealistic, lower injection rates leavemore room for additional routers that can
be fed with data. Furthermore, the initial calculations assumed an FPGA clock

126

6.5 Hybrid Prototype for In-NoC-Circuit Design and Verification

rate of 50MHz. This rate needs to be adjusted according to the synchronization
mechanism presented in 6.4.3, reducing the stress on the PCIe connection even
more and allowing increased number of routers. The amount can be increased
by a factor that is proportional to the factor the clock rate is reduced by (e.g. for
a 1MHz clock there may be 50x more routers). While this results in reduced
performance of the prototyping approach, it is still on a completely different
level than hardware simulation while allowing large architectures that do not
fit onto existing FPGA board solutions.

6.5 Hybrid Prototype for In-NoC-Circuit Design
and Verification

The INC concept was initially prototyped and evaluated in a SystemC environ-
ment which allowed fast development of the functionality on a cycle-accurate
level. However, due to limitations and simplifications in the SystemC design
it is not synthesizeable directly into hardware. Thus, after the results seemed
promising and the desired features were selected based on the SystemC pro-
totype, a HDL implementation was devised. The HDL implementation used
hardware simulation for the early testing and debugging. After stable operation
on small testbenches was achieved, the design was included in a hybrid proto-
type of the InvasIC architecture. First, the hardware resource consumption in
an FPGA design of an extended router are shown. The design was synthesized
with Vivado version 2018.1. In Table 6.3 the first column shows the resource
cost of the basic i-NoC router, consisting of a packet-switched layer and a
circuit-switched layer. The next column shows the extra cost for implementing

Basic Router INC extension Traffic Analysis
LUT 8008 1460 1042
FF 4988 796 237

Table 6.3: LUT and FF resource cost of the basic router and the extensions.

the basic INC functionality. In the final column, the additional cost for the
dynamic traffic analysis is shown. This extra column for the traffic analysis is
included since it is an optional feature and the INC could also be configured

127

6 Scalable Hardware Design and Verification

based on design-time knowledge at compile time or by an operating system
component at runtime. The added resource cost of the INC extension includ-
ing the PS/CS-Interface and the circuit control amount to about 18% LUT and
16% FF of the basic router architecture. The traffic analysis adds another 13%
LUT and 5% FF of the basic router. Since all buffers are implemented in logic
(LUTRAM), there are no extra cost in BRAM. The extra resource cost mostly
comprise of unavoidable extra logic for the additional ports in the crossbar
of both layers and the added buffer at the input port towards the packet layer.
Other elements like the traffic analysis and the logic for keeping track of active
circuits however contain elements that have to scale with larger mesh sizes and
could be further optimized. The critical path is not impacted by the extensions
since the INCs are implemented with an asynchronous data-path and the traffic
analysis and setup mechanism are independent of the other router components.

With the proposed hybrid prototyping it is possible to bring the implementation
onto a single FPGA and use it for verification, bug detection and feature
optimization.

4x4 ext 4x4 5x5 6x6 7x7

0%

25%

50%

75%

100%

LU
Ts
/F
Fs

us
ed

LUTs NoC LUTs Host IF
FFs NoC FFs Host IF

Figure 6.17: The resource consumption of the NoC (the design under test) and the host interface
including the NoC interface.

In the example setup a Xilinx Virtex-7 XC7VX485T evaluation board is con-
nected to a regular Intel PC with 8xPCIe 2.0 as a host system. The resource
overhead that accompanies the hybrid prototyping can be seen in Figure 6.17.
In a 4x4 NoC design 7.7% of the total available LUT and 5.2% of total FF on

128

6.5 Hybrid Prototype for In-NoC-Circuit Design and Verification

the FPGA were used by the host interface, compared to 20.6% of LUT and
4.9% of FF used for the NoC itself. The host interface thus adds an overhead
of 37% LUT to the design under test in a 4x4 meshed NoC. Since the figure
shows that LUT are the limiting factor, the overhead in FF can be ignored. A
comparison with the more complex, multi-layer design of the extended NoC
router (INC extension) in a 4x4 NoC shows that in more complex routers the
overhead is even less significant. When looking at larger NoC sizes, the NoC
IF and the PCIe part scale better than the NoC itself, resulting in an overhead
of 24% in a 7x7 design.

Hybrid prototype SystemC sim HDL sim
179s 1d 2h 10d 8h

Table 6.4: Run time of the blackscholes trace on NoC prototypes from different prototyping do-
mains, each representing a 4x4 NoC.

For determining the prototyping speeds, the runtime of a simple benchmark
application is analyzed on the available implementations: SystemC, HDL sim-
ulator and FPGA. A trace of the network traffic is chosen that was generated
from the blackscholes algorithm, mapped onto several tiles of a 4x4 architec-
ture. A 4x4 architecture is used since the HDL simulator does not scale well
and would take an unreasonable amount of time for a larger mesh. For a fair
comparison the exact same input trace is used in all three variants. However,
by including a suitable VP, the hybrid prototype can also natively execute the
algorithm in contrast to the other methods. The following tools were used:
SystemC version 2.3, ModelSim SE-64 10.0d for the HDL simulation and
Vivado 2017.3 for FPGA synthesis. The results are shown in Table 6.4. The
FPGA was able to execute the whole trace via the communication library and
the PCIe interface in 179 seconds. The SystemC simulator took 93 678 sec-
onds (1day 2hours) based on a cycle accurate model of the invasive NoC that
contains some simplifications and is not synthesizeable. The Modelsim simu-
lation took a total of 927 047 seconds (10days 8hours). The design was based
on the same HDL description that was synthesized onto the FPGA, minus the
PCIe interface and the collector logic but instead with a testbench that reads
the traces of the blackscholes benchmark. The run time difference is enormous
and highlights the benefits of hybrid prototyping, besides the ability to execute
the same code as on a physical platform and themodeling advantages of the VP.

129

6 Scalable Hardware Design and Verification

The gap will widen even more to a point where the pure simulations become
completely unfeasible when the designs grow larger or include processors,
memory, etc. in the HDL and SystemC models.

Prototyping platform Tile count Build duration

Multi FPGA
4 5h51m
16 23h24m

Hybrid
4 20m
16 42m
49 1h19m

Table 6.5: Build duration for a commercial Multi-FPGA platform and the proposed hybrid proto-
type.

Compared to a HDL simulator, the hybrid prototype requires synthesis of the
FPGA part and thus induces some extra time for re-synthesis when design
changes are made. The measured times for a hybrid platform are shown in
Table 6.5. To put these numbers in comparison, the build duration5 required
to re-synthesize an architecture containing the same amount of tiles for a
large multi-FPGA prototyping platform is also shown. As it can be expected,
these numbers are much larger since the multi-FPGA platform hosts a design
containing the full tiles and thus much more logic needs to be synthesized.
Depending on the mapping onto multiple FPGA, the build durations may
be decreased by utilizing more parallelism (i.e. synthesizing all FPGAs in
parallel), if enough computing power is available. However, this will improve
the build duration even in the best case scenario (a perfectly weighted mapping
with no extra overhead) at most by a factor that is equivalent to the amount
of FPGA boards in such a system. Considering this, the hybrid prototype can
be re-synthesized much more quickly and allows higher tile counts even on a
smaller FPGA board (Virtex-7 XC7VX485T for the hybrid prototype versus
the Virtex-7 XC7V2000T of the multi-FPGA platform).

5 Build durations may vary depending on the machine on which it is executed, however for
comparison it is sufficient that the same machine was used for all builds.

130

6.6 Summary

Using the hybrid prototype for developing the NoC extension may also help to
detect bugs and design issues that would go unnoticed without. Any observed
issues can be reproduced in small HDL testbenches after analyzing the behavior
on the FPGA. However, some issues do not show without a hybrid approach
at all. One such case was a wrongly written assert statement, that is ignored
in HDL simulation but causes issues in the FPGA design. Since asserts are
deleted by the tools in synthesis, some critical assignments can be incorrectly
deleted due to a missing semicolon. The synthesis gives a warning about
ignoring the assert but gives no hint that actually a large chunk of code is
deleted. The HDL simulator on the contrary simply evaluates the assert as true
and schedules the assignments correctly.

6.6 Summary

In this chapter, FPGA based hardware prototyping approaches for many-cores
are investigated. Since traditional techniques are not sufficient, a novel multi-
level hybrid methodology is introduced. The novel methodology is specifically
motivated by aNoC extension that enables scalable low latency communication
in many-core architectures spanning large amounts of tiles or nodes. This is
achieved by introducing shortcuts in the network that utilize circuits within the
network which can serve multiple data streams at the same time. The shortcuts
work well in conjunction with coherence messages and remote accesses to
large memories that can easily become a bottleneck. The design, debugging
and verification of this NoC extension was enabled by a hybrid prototyping
approach. This hybrid approach combines an FPGA part that contains a DUT
that is prototyped with full hardware details and a virtual platform that allows
modeling the remaining components of a many-core. This enables prototyping
of a subset of tiles or a largeNoCon the FPGAwhile providing a fully functional
many-core environment. Combining FPGAs and VPs matches well since both
allow high performance and good scalability despite being on different levels of
abstraction in the design process. Going beyond purely functional prototypes,
the challenges of synchronization between the prototyping levels are handled
by appropriate schemes that either operate on a pseudo-synchronous level or
even allow fully synchronized behavior as long as the model of execution
is based on KPN or similar schemes. Bandwidth is determined not to be a
limiting factor since the synchronization mechanisms require slowing down

131

6 Scalable Hardware Design and Verification

the FPGA part before the bandwidth limit is reached in a realistic application
scenario.

132

7 High-level EDA supported Design

In this chapter, a novel approach for increasing the level of automation in
many-core and many-accelerator design is introduced. Design processes typ-
ically follow a top-down approach that is based on an initial functional and
non-functional design specification. From such a specification, a hardware
and software implementation is derived in a codesign fashion. Two advance-
ments for handling the complexity of such design processes are abstraction
and automation. Abstraction is essential for enabling the top-down approach
by introducing intermediate levels of design instead of directly targeting a
hardware and software implementation at their lowest level. Automation on
the other hand tries to skip the lower levels of design in a top-down approach
entirely. Such approaches do not operate on the de-facto standard level for
hardware design (i.e. RTL) but instead rely on latest advances in EDA tools
towards abstract system modeling and descriptions with automated hardware
generation. Consequently, they relate directly to the Electronic System Level
(ESL) and the virtual platforms that were utilized in the previous chapters
for software development and the hybrid prototyping for hardware design and
verification.

At the heart of this chapter is one concept: High-Level Synthesis (HLS) as
introduced in subsection 3.2.4. The major goal of HLS is an increase in design
productivity. This metric can be defined based on the time a design process
takes and the Quality of Result (QoR) of the produced design [96]. Although
HLS is often seen as the next step in system design towards higher levels of
design productivity, it is currently still rather limited in its features and QoR
as supported by a comparative study about commercially available tools [82].

This chapter first presents a design, prototyping and verification methodology
that is based on the techniques and approaches introduced in the previous
chapters. Additionally, it highlights the missing steps for a fully holistic view
on the topics targeted in this work. Specifically, this relates to investigations on
the applicability and potential of HLS in the design and verification process of

133

7 High-level EDA supported Design

heterogeneousmany-cores. As amajor contribution, a framework is introduced
that improves the hardware synthesis process of HLS by generating a SystemC
intermediate representation from OpenCL input. An automated conversion
towards approximate computing extends the presented framework, covering
another important aspect of future heterogeneous architectures. The presented
methodology has been published as part of [MLB20] and the framework was
published in [SXMS+16] and extended in [SXMX+18]1.

7.1 A Virtual Platform Centered Design and
Verification Methodology

As motivated in the analysis, a holistic view on the design, prototyping and
verification of heterogeneous many-core has not yet been formulated. Earlier
in this document, Figure 3.2 highlighted techniques used in typical computer
architecture design processes. It included the specification level and the two
major levels on which prototypes are built for verification, debugging and
evaluation tasks. The two previous chapters introduced novel approaches for
heterogeneousmany-core prototyping on ESL level and on amore accurate RT-
Level via a hybrid prototyping framework. In this chapter, these contributions
are fused into a holistic design, prototyping and verification methodology.
Towards this goal, the original figure is redesigned and extended by a number
of improvements to this design process. Based on this figure, the missing links
that have not been touched in this document yet are highlighted. These will be
discussed in the following sections of this chapter, introducing further novel
contributions to the state of the art.

The envisioned methodology can be seen in Fig. 7.1, spanning three lev-
els of abstraction. In a first step, an initial specification needs to be devised
that describes the functional, algorithmic level as well as non-functional con-
straints. DSE frameworks and partitioning algorithms are used to create an
initial abstract hardware and software architecture. In recent years, specif-
ically multi-objective optimization strategies have proven successful for this
task [94]. Yet other, more specialized approaches such as scenario-based DSE,

1 Extracts from [MLB20], [SXMS+16] and [SXMX+18] which were completely written by the
author of the work in hand are used verbatim in this chapter without further identification

134

7.1 A Virtual Platform Centered Design and Verification Methodology

Early DSE +
Partitioning

HW SW

ISS
Virtual

Component
Environment

Virtual Platform

ESL
R

TLHW Simulation

Sp
ecificatio

n

HW Emulation (FPGA)

C
us

to
m

 d
e

si
gn

s

SystemC
environment

Co-Simulation

IP
 li

br
ar

y

H
LS

HLS

Hybrid

Screen

Camera

Host Resources

OpenCL

Host I/O

Design step SW executionInterfacing

Figure 7.1: VP based design methodology using virtual platforms as central element.

show promising results [117]. HLS frameworks such as LegUP [25] may addi-
tionally help in identifying code that is suitable for creating a custom hardware
accelerator. The proposed VP based design and verification flow defines the
VP as the central element for further developments and optimizations. The VP
is developed based on the hardware specification and serves as development
platform for the software implementation. Additionally, it is used as a reference
that the hardware implementation needs to adhere to. Since most components
such as the GPP models are readily available in frameworks such as OVP, there
is a direct mapping from specification to VP for common components. GPP
extensions or entirely new custom ISA cores may be implemented by writing
the corresponding morpher code that translates the custom instructions into
host code. The architecture is built from IP cores that cover the regular process-
ing elements as well as the interconnect and peripherals. The VP also allows
direct access to host resources, enabling the use of I/O for real world data such
as video or sensor input as presented earlier in section 5.3. Hardware inte-
gration and verification are envisioned as a multi-step approach via the hybrid
prototyping approach as described in the previous chapter. Successively, parts

135

7 High-level EDA supported Design

of the architecture are selected for hardware integration and verification. This
selection is handled manually and may produce different mappings at the same
time for verification of individual parts, depending on the availability of RTL
code. The HW components are prototyped on an FPGA board that is interfaced
with the virtual platform on the host system. This enables a fully functional
system view that provides accuracy and speed of FPGA based prototyping for
the integrated components. The design loop is intended to operate on ES- and
RT-Level, yet flaws and oversights in the initial specification may also be found
and fed back so that future design iterations may converge more quickly. The
hybrid prototyping approach provides a synchronization mechanism that can
be deactivated in favor of faster yet purely functional verification and valida-
tion efforts. As system design progresses, the pseudo-synchronous mode or
even better (if applicable) the delta-based synchronization can be utilized for
performance estimations.

The described methodology builds upon the hybrid prototyping approach and
the extended virtual platforms that were introduced in the previous chapters.
However, the toolflow and design automation have not been discussed yet, even
though these aspects need special attention as they can not be handled by the
current state of the art approaches appropriately. Specifically, the handling of
custom accelerators from specification to VP and the inclusion of a VP in the
High-Level Synthesis process play a vital role for the proposed methodology.
The first aspect is a required step in the proposed methodology that has to be
handled manually as of now. The second aspect relates to the current HLS
tools that do not make use of the VP centered design methodology. In order to
cover both aspects, a design flow based on OpenCL is envisioned that improves
on state-of-the-art HLS flows. A traditional OpenCL design flow operates on
the original OpenCL code, invoking FPGA compilation tools that can only
validate simple testbenches. In the next step, High-Level Synthesis is used for
generating bitstreams that can be evaluated on FPGA boards. This flow leads
to very long design cycles due to long synthesis times and restricted debugging
and evaluation capabilities that FPGAs exhibit. When the synthesized design
on the FPGA does not meet expectations or specified criteria, the original
OpenCL description must be adapted and the design flow starts from the
beginning. In contrast, the design flowwhen using a SystemCVP intermediate
steps is as follows: A designer specifies and develops an initial OpenCL
application or provides an existing legacyOpenCLapplication. The application
code is then fed to the framework which starts by converting the OpenCL

136

7.2 HLS for Heterogeneous Many-cores

description into a virtual platform. Now all evaluations and further steps can
be done on the generated virtual platform without any interaction with the
original OpenCL description. The VP allows investigations on untimed or
timed levels and later refinement of the design onto lower abstraction levels
such as RTL, making use of the hybrid approach.

In the following, the general use of HLS for heterogeneous many-core is
analyzed. Afterwards, a novel framework is introduced to provide the OpenCL
based design flow described before.

7.2 HLS for Heterogeneous Many-cores

Despite the promise of increased productivity, less errors, shorter verification
periods and overall ease in access to hardware design even to non-experts in the
field, High-Level Synthesis also comes with several limitations and caveats.
Even though the first HLS tools have been introduced more than a decade
ago and by today all major EDA companies have included HLS solutions in
their product portfolio, it is still mostly used for generating simple accelerators
while adoption in other fields such as control blocks is nearly non-existent.
There are a number of reasons why this is still the case, most notably the steps
required to come from a functional, sequential description as in ANSI-C, down
to a fully parallel and possibly even pipelined design require major algorithmic
efforts. These efforts increase with complexity and size of the input functional
description, resulting in decreased quality and increased time for compilation
and synthesis. Another major issue comes from the fact, that even a small
design change in the functional description results in a complete re-execution
of all compilation, mapping and synthesis steps. Especially in early stages
where a lot of changes may happen, this severely limits the benefits of HLS
which specifically rely on the fast design cycles this methodology provides.
A possible solution for this issue is incremental compilation and synthesis,
as investigated in some scientific works [71]. Finally, generating intermedi-
ate representations such as HDL code or even low level representations are
typically very difficult to read and understand for a human. If the tools work
perfectly and generate optimal and verified designs this is not an issue, however
if custom optimizations or low level debugging are required, it becomes a real
problem.

137

7 High-level EDA supported Design

Based on these observations, using HLS for the design of a full heterogeneous
many-core architecture is not desirable. However, it may help in the design of
some components of such a system. The regular processing units are typically
better taken as IP-blocks such as the open source LEON3 from Gaisler or the
RISC-V design. The complexity, pipeline intricacies and control flow heavy
aspect of general purpose processors do not fit in with the capabilities of to-
days HLS tools. If IP cores are not sufficient and a custom ISA processor is
desired, special languages and tools such as LISA (Language for Instruction
Set Architectures) exist [136]. Despite struggling with some of the difficulties
mentioned above, accelerators are the main strength and target of HLS. Im-
proving on these difficulties in the context of accelerator design, verification
and integration will be discussed in a later section when an OpenCL framework
is presented that introduces an intermediate step in the HLS process. Aside of
the computational elements, memory and interconnect are the remaining major
components in a heterogeneous many-core. While memory is handled by HLS
tools often implicitly, the interconnect has not been investigated yet. HLS
tools are able to automatically generate an interface to common interconnects
such as AXI, yet it has no support for a network on chip. Still, NoCs exist in
many variations and architectural layouts that could benefit from customized
designs based on traffic patterns or depending on the interfaced components.
Consequently, this topic is of interest in this work and will be analyzed in the
following.

7.2.1 HLS for Networks-on-Chip Design

A network on chip forms the communication backbone of any many-core
architecture. It consists of a number of routers and a network adapter or
network interface that must exist in any tile of the architecture. The routers are
interfaced among each other based on the chosen topology while a network
interface connects a tile with a router. Much of the functionality is placed
in the network interface since it decides the end-to-end protocol and can take
over additional tasks such as DMA transfers or special queuing and triggering
mechanisms. The routers on the other hand are often kept rather simple in
order to save resources and reduce the impact on power. The basic tasks a
router needs to provide include buffering, routing, crossbar interconnect, link
arbitration and flow control as described earlier in section 2.2. There are a

138

7.2 HLS for Heterogeneous Many-cores

large number of additional features, extensions and techniques that improve on
these basic functionalities. There may also be some special architectures that
do not need to fulfill all of the above listed items. However, the list indicates
that a basic router implementation is not control flow heavy and shows some
potential for HLS supported development.

As an individual item, the routing unit is the most promising part of a router
for a HLS based design flow. It is mostly independent of the other parts
of a router, only requiring the packet as input and a port selection as its
resulting output. Potentially there may be additional inputs such as buffer fill
levels and performance counters but these are easy to specify and integrate
even without the help of HLS. Consequently, routing algorithms are a prime
example for an HLS enhanced flow in NoC design or for evaluating novel
features. However, the C developer must make sure that the packet handling
is correctly matching the protocol followed by the network interface which
generates all packets. In a direct comparison, implementing a simple yet
often used Dimension Order Routing2 (DOR) algorithm shows that on C level
especially the testbench generation and functional verification can be handled
much faster. The generated result on RT level is logically the same. However,
the netlist is ordered slightly different. Contrary to the expectation, this seems
to have a minor impact on resource consumption. While a standalone build of
both implementations takes the same amount of resources, the HLS generated
variant takes slightly more when integrated into the full router architecture3.

The remaining elements of a NoC listed earlier do not show much promise for
HLS based design flow individually. This is mostly because they have very
fixed structures with little room for variation aside of few design parameter
which are easily handled by generics without the help of HLS. However, due
to the large degree of parallelism and rather simple control flow in a routers
execution, generating a simple router entirely in HLS is possible. In order to
compare such a HLS based router implementation, the design goal was to reach
functional compatibilitywith the iNoC router thatwaswritten in SystemVerilog
as part of the InvasIC architecture. This allows a direct evaluation of the design

2 Often also called x,y-routing since the algorithm strictly follows first x then y direction towards
its target

3 For this test the existing implementation of the iNoC was taken and the routing algorithm
replaced with the one generated via HLS

139

7 High-level EDA supported Design

efforts required and the challenges/difficulties involved. The implementation
process shows the benefits but even more so the issues and difficulties that exist
for designing a router on a functional level. Firstly, while HLS tools have been
developed over the course of many years, giving them time to mature - they
are still mostly intended for accelerators that implement a simple logic that
is interfaced to and controlled by a well known hardware unit. Typically, the
automatically generated AXI interface can easily be integrated with an existing
processor system. This allows direct control of the accelerator via software.
In contrast, interfacing two HLS generated units as in the case of two routers
is not foreseen. In this case, there is no well defined master but the HLS
generated design must interface with another HLS generated design. Since
HLS takes care of the timings, it is not inherently suited for cycle-dependent
operation with custom interfacing. Consequently, the interface must be either
modeled on a cycle accurate level or it must be able to cope with asynchronous
behavior since the amount of time (or cycles) the other component takes is
not known in advance. This means none of the automated interface generators
of the HLS tools can be used since these can not be controlled manually
by a master component (such as the CPU). If a design without any manual
cycle-level implementations on a purely functional level is desired, this leaves
only manual handshaking protocol implementation as a viable option. Yet
even aside of the challenges on the interface, the logic within a router is not
easily translated into a resource efficient and fast design. Knowledge about
hardware design and architectures is required to steer the tool into the right
direction. This includes topics such as array handling, arbitrary data types
and oversights when hardware is generated that handles unwanted or unneeded
situations. Array handling inVivadoHLSwill infer a BRAM instance that only
allows dual ported access. This means it is not suited for buffering multiple
independent data streams as they occur in a router. Data types will only be
implemented efficiently if they are chosen as arbitrary types with a selected bit-
width. While this generates directly into very efficient hardware, it increases
design complexity as some operations are not possible on such types in C. Yet
even considering such optimizations which reduce the latency and resource
consumption by a factor of 10, the result is still far beyond an optimized RTL
design. The resource consumption is higher by a factor of 2 while the amount
of cycles required are at 10 compared to a 2-5 cycle SystemVerilog i-NoC
router, depending on the active pipeline stages.

140

7.3 OpenCL Based Framework for Many-accelerator Architectures

7.3 OpenCL Based Framework for
Many-accelerator Architectures

The trend towards more and more abstraction and design automation will
continue since complexity is rising ever more. Tools and abstraction allows
designers to cut down development times and reduce verification efforts in a
field where time-to-market is an imperative metric, especially when a design
needs to be ”first time right”. The evolution towards more abstract levels of
system design has been going on for many years. One of the more recent
developments was the introduction of high-level synthesis that starts with a
high-level software language like C as input and generates suitable hardware
designs for either FPGA or ASIC targets. Tools like catapult or VivadoHLS
promise to deliver such functionality, yet many issues and limitations still
remain. One fundamental issue that cannot be easily overcome are the large
synthesis times, especially when targeting large architectures. While this is
fine for a final synthesis run of a verified design, it causes issues for the earlier
steps of product development that rely heavily on prototyping and design space
exploration. Thus, utilizing a purely FPGA based prototyping approach is bad
for design space exploration and parameter optimization. Instead, virtual
prototyping on multiple levels of abstraction can fill the gap between FPGA
based prototyping and early design space exploration.

Previously it was discussed how anOVP based virtual platform can be extended
for use in many-core prototyping and how a hybrid prototype with a VP +
FPGA part is achieved. As a limitation, the hybrid prototype required manual
architecture modeling and implementation on both VP and FPGA side. Now, a
solution will be presented how an architecture can be described and prototyped
based on a single source input. A desirable input would be an abstract language
for functional description of a task. The C-language is a very suitable choice
due to its widespread proliferation and powerful expressions. However, C-
synthesis tools are still rather limited regarding support for the full language
specification. Even more, without expert knowledge it is difficult to use C-
synthesis to its full potential, resulting in bad quality of the generated results.
Language extensions and standardization proves helpful in this situation. One
such example is OpenCL, which targets specifically accelerator rich systems
which are a prime example of systems where HLS can produce good results.

141

7 High-level EDA supported Design

Yet challenges remain and call for novel approaches for design of accelerator
rich and massively parallel heterogeneous computing.

In the following an approach will be described that takes an OpenCL program
as input and automatically generates a virtual platform for design space evalu-
ation before promising designs are finally synthesized for FPGA prototyping.
This work was published in [SXMS+16] and extended in [SXMX+18]. It is
motivated by a gap betweenOpenCL and virtual platforms that currently exists.
Using OpenCL for a hardware design significantly limits the target designs due
to the available tools. As of today, only GPP/GPU and GPP/FPGA (such as
the Xilinx Zynq) targets are supported. However, the language would also be
suitable for exploration of other targets, such as many-cores or pure FPGA. A
further limitation is that FPGA targets require a slow synthesis and place &
route step, which is detrimental to early design space exploration or architec-
tural evaluations that trigger frequent design changes. These deficits can be
overcome by utilizing an intermediate step in the shape of a virtual platform.
Using OpenCL as input step instead of directly working on a virtual platform
ensures compatibility and portability via the existing tools.

Host

Inter-Process Communication

OR

Virtual Platform (SystemC)

Work-Item Wrapper

Control handling

Memory Model

Shared Memory

PC
Execution

(x86)

OpenCL
Host API

Software Simulation (e.g., OVP)

CPU Simulator
(e.g., ARM)

IPC Adapter

OpenCL
Host API

Global Data
& Constants

Local
DataPointers

Scheduler

Interconnection

Arbiter

Time

W
o

rk
G

ro
u

p

Work Item

...Work Item

Work Item

...

W
o

rk
G

ro
u

p

Work Item

...Work Item

Work Item

SystemC
Accelerator

Data I/O RST

ENABLEREADY

CLK

Synchronization
Bus

Addr. Data

Figure 7.2: The OpenCL prototyping framework layout as introduced in [SXMX+18].

In Figure 7.2, the layout of the OpenCL based prototyping framework is shown.
The figure contains all the elements of an OpenCL application and how they
are represented in the framework. The framework consists of two parts: the
host on the left and a virtual platform on the right. The VP is implemented in
SystemC which gives full flexibility of the abstraction levels. Since SystemC

142

7.3 OpenCL Based Framework for Many-accelerator Architectures

is a C extension just the same as OpenCL, conversion schemes can reuse large
parts of the source code.

On the host side, the sequential control logic of an OpenCL application is
executed. The host can be represented by a COTS x86 PC or a software
simulator that provides virtualization. The latter enables the benefits of virtual
platforms as highlighted in earlier chapters while the former provides higher
performance. Consequently in the context of prototyping novel architectures,
the use of a virtual platform based on OVP is promoted in the framework.
In either case, the OpenCL host API is used to access the shared memory
and the kernels via the Inter-Process Communication (IPC). For the software
simulator, a specific adaptermust emulate the physical components that enables
the IPC. The IPC mechanism itself is adapted by the framework to interface
with the SystemC virtual platform instead of a GPU or FPGA. Data exchange
is handled via direct pointers in a shared memory that can be accessed from
host side and from VP side. Furthermore, the control handling is realized by
forwarding the API calls to a work-item wrapper in the VP. This work-item
wrapper is the core element of the framework on the VP side, as it provides a
scheduler, a synchronization unit and interconnect arbitration to the memory
and the IPC. Besides the wrapper, the actual work-items that contain the kernel
code (i.e. the computational part) of the OpenCL application are instantiated
in the virtual platform. These kernels are modeled in SystemC and represent
simple accelerator units the are controlled via enable and ready signals while
operating on a predefined data I/O interface.

Creating a Virtual Platform in SystemC from an input OpenCL application
requires several steps. These steps include a syntax check, the code conversion,
the construction of the Virtual Platform and finally the regular compilation of
the SystemC code. The first and last step use regular available tools for syntax
checking (clang) and compilation (gcc), linking the SystemC library to the
generated VP. The other two steps do require some extra effort. Although
both OpenCL and SystemC are based on ANSI-C, some of the features and
expressions of OpenCL are not supported in SystemC C++. This make a
conversion of such expressions necessary, most notably the following.

• Vector processing: OpenCL uses vector expressions that need to be
converted to a custom vector class in C++

143

7 High-level EDA supported Design

• I/O transactions: In SystemC, access to globals, constants, and lo-
cals must be handled via input/output method calls to memories. Any
OpenCL access through array expressions must be converted.

After the conversion is completed according to the necessary steps above, the
kernel code is placed in a work-item template. These are used to build the
VP by including the wrapper and putting all components together. Special
compilation flags can configure the process and outcome (specifically the
wrapper) further. Finally, the outcome of the previous steps is a SystemC
compliant source code that can be compiled with a regular gcc compiler into
an executable SystemC simulation.

The design flow and the framework described so far are intended to reduce
overall design cycles of the high-level synthesis methodology. Although not
all benefits can be quantized, the time that a full iteration of the design process
takes can be measured accurately. For this purpose, benchmarks from the
Rodinia suite [101] of OpenCL applications is used as input. The OpenCL
code is fed to both, the regular available toolflow from major FPGA vendors
and the SystemC design flow.

Pa
thfi
nd
er

BF
S GE PF NN

Hi
sto
-10
24

Me
rge
So
rt

Bu
cke
tSo
rt

Ba
ck
pro
p

0

20

40

60

80

100

Ti
m
e
in

m
in
ut
es

Simulation (x86) VP creation
Board execution Altera compilation

Figure 7.3: The OpenCL to SystemC conversion framework compared to an Altera OpenCL flow,
as presented in [SXMX+18].

144

7.4 Automated Conversion for Approximate Accelerators

In Figure 7.3 the results are shown. The Altera flow consists of a compilation
step that takes up most of the time. Depending on the input, this step takes
between 44 and 72 minutes. The execution on the evaluation board takes
comparably little time, with a maximum of 13 minutes. The results show, that
there is no direct correlation between compilation time and run time on the
board. In comparison, the conversion flow takes time for creating the VP in
SystemC and executing the generated simulator afterwards on the host PC. The
total time for both steps is around 3 to 4 minutes for most benchmarks, with
only MergeSort peaking to a total of 21 minutes.

7.4 Automated Conversion for Approximate
Accelerators

Computer architectures will become increasingly heterogeneous in order to
provide efficient computations that alleviate the dark silicon phenomenon.
Approximate computing is another approach following the same goal by pro-
viding more efficient computing when some level of errors or inaccuracies are
allowed. Approximate computing can be realized either on the algorithmic,
the physical or the data representation level. In the context of heterogeneous
accelerators, the representation of data in memory or during processing is
a very promising field. The OpenCL framework presented in the previous
section was extended to support this form of heterogeneity by allowing the
selection of different real number representations at design time that trigger
the automated insertion of optimized conversion modules and utilization of
corresponding arithmetic libraries. In the following, the reasoning behind this
feature is motivated, the implementation details are discussed and evaluation
results are shown. This work was published in [SXMX+18]4.

4 Extracts from [SXMX+18], which were completely written by the author of the work in hand,
are used verbatim in this section without further identification

145

7 High-level EDA supported Design

7.4.1 Real Number Representation

An important factor when developing a new computing architecture is its de-
sign size, especially for FPGAs, since resources are often limited and designs
may need to shrink. In addition, using less resources leads to cheaper designs
and can improve metrics such as power and performance. The OpenCL frame-
work presented earlier benefits greatly by providing simple means of changing
different parameters that affect the design size. One such parameter concerns
data accuracy, especially regarding computations that use real numbers. A
regular CPU contains a special Floating-Point Unit (FPU), so algorithms are
free to use floats without much concern. However, a full-fledged FPU con-
sumes a very large amount of resources and thus the designer may need to
think twice about whether floating-point support is really needed for an accel-
erator or a new processing architecture. For this reason, a different concept
may be followed for application specific hardware accelerators. In particular,
one possible solution that was initially promoted by the GPU industry is to
use a half-precision 16-bit floating-point representation, according to the IEEE
754-2008 standard. Compared to 16-bit integers, this representation has the
benefit of a large dynamic range that is used mostly in computer graphics while
using fewer resources than the single-precision float. Another solution is the
use of a fixed-point representation, often seen in DSPs. Fixed-point arithmetic
is typically cheaper to implement, but at the expense of accuracy, since it does
not offer the same dynamic range as floats. The choice between the above
real number representations depends on the required algorithmic accuracy, the
dataset that is processed and the resource utilization constraints. Although
there are general rules of thumb, e.g., a predictable dataset with a small dy-
namic range can benefit from fixed-point without much loss of accuracy, it
is important to accurately examine in early stages whether a design meets
the data accuracy requirements. Also, resource utilization highly depends on
the arithmetic operation: Figure 7.4 depicts a utilization comparison among
float, half-float and fixed-point representations for basic arithmetic operations.
According to this comparison, fixed-point representation allows very efficient
additions/subtractions while exhibiting huge costs for division, as very com-
plex division circuits are required, contrarily to 16-bit or 32-bit floats where
A/B is equivalent to A * 1/B, thus only a multiplier is required as 1/B requires
a simple masking on the exponent. Thus, the simulation-based accuracy val-

146

7.4 Automated Conversion for Approximate Accelerators

Figure 7.4: Resource usage of basic arithmetic operations, when using different real number
representations.

idation and the utilization analysis are very important stages for a framework
that enables early evaluation of different parameters and realization options.

7.4.2 Realization in the Framework

To achieve the most efficient trade-off between resource utilization and data
precision, different floating-point and fixed-point real-number representations
can be utilized. They are applied on 32-bit float variables and input/output of
the original OpenCL source. The selection among representations is done at
compile time and does not require design modifications. To reach a decision
on an efficient representation, they can be iteratively configured with different
representations. This allows the evaluation of accuracy and thus enable the
selection of the most efficient representation. The approach can be combined
with methodologies in literature that explore optimal representations. Such
a work is presented in [78]: The authors present a framework that takes as
input a floating-point expression and searches for a solution that fulfills a set of
numerical precision constraints while minimizing the resource usage. In [33],
the authors focus on fixed-point arithmetic, building abstract representations
of an algorithm and modeling noise propagation and quantization decisions.
Once a representation is selected at compile time, the conversion from/to the
alternative representation is committed at runtime on the VP side: During a

147

7 High-level EDA supported Design

Host

A) Float arithmetic

W
o

rk
 g

ro
u

p C) Half arithmeticB) Fixed arithmetic

M
e

m
o

ry

M
o

d
u

le Fixed2FloatFixed2FloatFixed2FloatFixed2FloatFloat2FixedFloat2FixedFloat2Fixed

Work item Work item Work itemWork item

Memory

M
e

m
o

ry
M

o
d

u
le

MemoryMemory

M
e

m
o

ry
M

o
d

u
le

Memory

Memory Memory

Host

Work item Work item Work itemWork item Work item Work item Work itemWork item Work item Work item Work itemWork item
Float2Half
Half2Float
Float2Half
Half2Float

Float2Half
Half2Float
Float2Half
Half2Float

Float2Half
Half2Float
Float2Half
Half2Float

Float2Half
Half2Float
Float2Half
Half2Float

Work item Work item Work itemWork item
Float2Half
Half2Float

Float2Half
Half2Float

Float2Half
Half2Float

Float2Half
Half2Float

Host

Memory

M
e

m
o

ry
M

o
d

u
le

MemoryMemory

M
e

m
o

ry
M

o
d

u
le

Memory

1 1 1

2
2

3

3

3

1
Design time decision
about representation

1
Design time decision
about representation

2 Compile time insertion
of conversion modules

2 Compile time insertion
of conversion modules

3 Run time access in the
selected representation

3 Run time access in the
selected representation

Figure 7.5: The supported real-number arithmetic including the conversion scheme.

memory fetch, a 32-bit float is converted into the alternative representation,
while during a memory store the variable is converted back to a 32-bit float.
The benefit of this approach is the unified data representation in the memory,
for both the host and the OpenCL kernels, thus the host does not need to know
which representation is utilized by each kernel. Also, this enables the use
of different representations for each kernel. The fixed-point representations
use the ”sc_fixed” data type, which is part of the SystemC library, while the
supported floating-point ones are the native 32-bit and a ”half” 16-bit represen-
tation. For ”half,” the proposed framework utilizes an external library (a.k.a.
hls_half), acquired from Xilinx Vivado HLS, which provides arithmetic and
logical operations among half-floats, as well as complex mathematical func-
tions. Typical HLS tools support the generation of optimized hardware based
on these fixed-point and floating-point libraries. In the following, customized
conversion functions between the 32-bit floating-point type and the target types
(i.e., half-float and fixed-point) are introduced. The custom conversion func-
tions are fully synthesizable by any HLS tool and are optimized in terms of
resource utilization and performance. For hls_half, the custom conversion
functions replace the original conversion methods of the library. Hence, the
runtime conversion infrastructure imposes minimum utilization and perfor-
mance overhead in a typical many-accelerator system. To reduce even more
the utilization overhead, the extra logic for the conversion to/from fixed-point
is not included into the work-items, but instead it is inserted in the memory
controller: In a typical many-accelerator system there are much more work-
items than memory modules, thus the conversion logic will be replicated less
times in the design, while retaining full performance. However, the conver-
sion to/from half-floats is implemented inside the work-items, as hls_half by
default implicitly converts the input and/or output of the arithmetic operations
to/from half-point representation. Nevertheless, it is noticed that the conver-

148

7.4 Automated Conversion for Approximate Accelerators

sion to/from half-float does not occupy a very large amount of resources, thus
the overhead is low. Figure 7.5 depicts how the different representations and
the required conversions are handled in the proposed framework. The color
scheme denotes the representation for data storage and arithmetic operations:
Blue matches to 32-bit float, grey to fixed-point, and orange to 16-bit half.
The figure also highlights the steps for the real number conversion: First, at
design time, a decision is taken about the selected real number representation
for each kernel. This decision is expressed as a set of compilation flags in the
framework, to instantiate at compile time the respective arithmetic operations
and insert the required conversion modules either in the memory modules
(case B) or in the work-items (case C). When the work-items are executed at
runtime, every memory access is converted automatically by the conversion
modules. More in detail, in case of 32-bit float operations (case A), the mem-
ory accesses do not contain any conversion. For fixed-point arithmetic (case
B), during a memory fetch the 32-bit float is first converted to the fixed-point
representation inside the memory module and then is sent to the work-item.
In the same way, during a memory store, the value to be stored is sent to the
memory module, which converts the fixed-point number to a 32-bit float and
writes it to the memory. For half-floats (case C), a memory fetch acquires
a 32-bit float from the memory to the work-item, which afterwards converts
this value to a half-float. In the reverse direction, before a memory store, the
work-item converts the half-float value to a 32-bit float and then sends it to the
memory module. The optimized conversions between full and half-precision
float are based on the formula presented in [135]. The general layout of both
float and half is the same, consisting of a sign bit, the exponent and the man-
tissa. However, the exponent in half-precision float uses less bits (5 bits for
exponent and 10 bits for mantissa) and thus exhibits a different bias (i.e., offset
value to put the exponent into an unsigned range). In particular, the bias is
equal to 127 for 32-bit floats and 15 for half-floats. Thus, the bias of the source
representation is subtracted and the bias of the target one is added. Also,
exponent and mantissa are appropriately masked and shifted to be placed in
their correct position. The fixed-point representation is entirely different from
floating-point and thus requires several transformations. Fixed-point numbers
resemble the integer representation, which also explains why some operations
like additions can be realized with a very efficient implementation. Fixed-point
numbers consist of a fractional and an integer part (i.e., the parts on the right
and the left of the radix point, respectively) and can be configured to use any
combination of sizes regarding both parts. The conversion to fixed-point is

149

7 High-level EDA supported Design

efficiently achieved by eliminating the exponent and shifting the mantissa ac-
cording to (a) the difference in the radix point position between the float (i.e.,
bit 23) and the fixed-point representation, as well as (b) the exponent value. In
addition, extra logic is utilized for the two-complement representation, which
is necessary for mathematical operations.

7.4.3 Evaluation

In this section, the supported real number representations of the OpenCL
framework are evaluated and their impact discussed based on (1) the benefit
of using the optimized conversions between float, half-float and fixed-point
compared to the available state-of-the-art conversion implementations, and (2)
the impact of different real number representations in a selection of benchmarks
that utilize floating-point operations. To analyze the efficiency of the optimized
conversions, each conversion is synthesized as stand-alone function and the
results are compared with the existing conversion mechanisms provided by
the state-of-the-art libraries hls_half of Xilinx and sc_fixed of SystemC. The
synthesis results including the resource usage and the minimum possible clock
periods are shown in Table 7.2. Each comparison is reported for the supported
real-number representations, grouped by the direction of the conversion, i.e.,
conversion to and from 32-bit float on the left and on the right, respectively.
For fixed-point representation, it is noticed that changing the position of the
radix point has no impact on utilization or performance. The results show a
large improvement in required resources and expected timings of the proposed
library in most cases, especially regarding the conversions from float to the
target representation. In particular, the improvements in flip-flops range from
40% up to 100%, while in LUTs, except for some cases with slight overhead,
the maximum gain reaches up to 70%. Also, the timing improvements range
from 0% up to 54%. By analyzing the generated HDL files for both state of the
art and the proposed approach, it is noticed that the conversion mechanisms
of the state-of-the-art libraries utilize multi-functional IP cores with additional
interface and status signals, which do not allow for further optimizations in
timing and resource utilization. Thus, the proposed implementation leads
to less conversion overhead. Moreover, the fixed-point conversion in Xilinx
Vivado HLS instantiates a 64-bit float IP core. On the contrary, the proposed
conversion libraries utilize simple shift and add operations of 32-bit width.

150

7.4 Automated Conversion for Approximate Accelerators

Benchmarks where all kernels use only integer operations
Application Kernel Work-Items Workgroup

Algorithm Domain Namea Invoked Available size Input

Pathfinder Graph/tree traversal 256 64 64 2 × 128 matrix

BFS Graph traversal
Bfs1 1024 128 1

1024-node graph
Bfs2 1024 128 1

Benchmarks where all kernels use floating-point operations
Application Kernel Work-Items Workgroup

Algorithm Domain Namea Invoked Available size Input

K-Means Data Mining 100 100 1 100 elements

Gaussian Linear Fan1 64 32 1
16 × 16 matrix

Elimination Equations Fan2 64 × 64 32 × 1 1

Particle Filter Signal Processing 256 64 1 256 particlesb

Nearest Neighbor Pattern Recognition 42816 64 1 42764 records

Back- Machine Layer-forward 16 × 64 16 16
64-input ANNc

Propagation Learning Adjust-weights 16 × 64 16 16

Hotspot Thermal Simulation 32 × 32 32 × 32 16 × 16 2 × 16 elementsd

Extract

Speckle Reducing
Prepare All All All

Medical image
Anisotropic

Image Reduce kernels kernels kernels
sample

Diffusion (SRAD)e
Processing SRAD1 512 512 256

(20 × 18 pixels)
SRAD2
Compress

Histogram-1024 f g Data management 384 48 48 1000 elements

Benchmarks with kernels using floating-point operations or only integer operations
Application Kernel Float Work-Items Workgroup

Algorithm Domain namea Operations Invoked Available size Input
Stored data Merge-first Yes 3072 32 32

1000
MergeSort f management Merge-pass Yes 3120 26 1

elements
(e.g. Databases) – Merge-pack No 3072 × 1024 32 × 1 32 × 1

Algorithms Bucket-count Yes 32 32 32
BucketSort f from Hybrid-Sort Bucket-prefix No 1024 64 64

application Bucket-sort No 32 32 32

a Necessary only when using more than one kernels.
b In 10-frame 32 × 32 video
c Neural network with 64 inputs, 1 hidden layer with 16 neurons and 1 output
d 16 temperature and 16 power consumption values.
e The kernels of SRAD use mathematical functions which only support 32-bit floats.
f The algorithms are parts of Hybridsort, however they are considered as autonomous benchmarks.
g Histogram-1024 belongs to the second group as it does not have mixed kernels.

Table 7.1: OpenCL benchmarks for the experimentation setup, taken from Rodinia suite.

151

7 High-level EDA supported Design

(a) Gaussian Elimination (b) Particle Filter

(c) Back-Propagation (d) Nearest Neighbor

(e) Kmeans (f) Hotspot (g) Histogram-1024

(h) Merge-Sorta (i) Bucketsortb

a Merge-pack kernel does not include floating-point operations.
b Bucket-prefix and Bucket-sort kernels do not include floating-point operations.

Figure 7.6: Evaluation of the total latency (estimated by HLS) and the resource utilization for
different real number representations. The results are normalized, using as reference
the 32-bit float. Fixed-point representation scenario < i, f > uses i and f bits for
the integer and the fractional part respectively. In this analysis, Pathfinder and BFS
are excluded, as they have only integers, while SRAD is excluded as the utilized
mathematical functions support only 32-bit floats.

152

7.4 Automated Conversion for Approximate Accelerators

Target: float Source: float
FF LUT Clock Period FF LUT Clock Period

Half
hls_half lib 55 9 1.79 ns 92 25 1.89 ns
Optimized 0 31 1.60 ns 0 24 0.84 ns

32-bit fixed sc_fixed 489 439 3.88 ns 1130 756 2.52 ns
Optimized 283 563 2.02 ns 201 223 2.52 ns

16-bit fixed sc_fixed 489 434 3.88 ns 989 643 2.52 ns
Optimized 180 322 2.55 ns 175 190 2.52 ns

Table 7.2: Comparison between the conversions provided by hls_half and SystemC sc_fixed
and the proposed conversion libraries.

In Figure 7.6, the impact of different real number representations on resource
utilization and total latency is explored (as estimated by HLS). This analysis
excludes Pathfinder, BFS and the kernels ”Merge-pack,” ”Bucket-sort,” and
”Bucket-prefix,” as they do not comprise floating-point operations, accord-
ing to Table 7.1. Also, SRAD is excluded, because it utilizes mathematical
functions that support only 32-bit floats. All numbers are normalized and
compared to the baseline 32-bit float. A first observation is that there is a
great variation in resource usage among the benchmarks: In some of them,
fixed-point representation gives a huge improvement in resource usage and
timings while others may even exhibit much worse results. This underlines the
necessity of evaluating multiple real-number representations at design-time,
to explore the optimal realization for each individual use-case, as provided by
the proposed framework. Having a closer look at the benchmarks that have
the worst results when using fixed-point representations (i.e., Fan1 kernel of
Gaussian Elimination and Hotspot), it can be noticed that those results were
due to the division operations of those kernels: As described earlier in this
article, division for fixed-point is very resource-consuming and as such, any
kernel that uses this operation will accrue a large overhead. However, the half-
precision float, as compared to the regular 32-bit one, may induce some timing
overhead: In both representations, the operations are performed in the same
way, simply using fewer bits in case of half, which results in less resource us-
age by a fixed factor. However, due to inefficient implementation of non-basic
operations (e.g., comparisons) provided by the initial version of the employed
hls_half library, conversions may be required from float to half and vice versa,
using the proposed conversion library that induces some timing overhead. In

153

7 High-level EDA supported Design

K- Gauss. Part. Nearest Back- Hot- Hist. Bucket Merge
means Elimin. Filter Neighbor Prop. spot 1024 Sorta Sorta

Half 0.13 1.07 0.59 0.19 0.0 4.51 0.33 0.50 0.001
Fixed<8,8> 0.27 88.68 0.65 69.06 0.0 255.80 9.99 0.53 0.001
Fixed<16,16> 0.22 101.13 0.59 39.77 0.0 0.20 0.11 0.54 0.000
Fixed<24,8> 0.27 99.90 0.65 612.86 0.0 0.20 9.99 0.53 0.001
a Bucket-sort and Merge-sort incorporate mixed kernels with either floating-point or only integers.

However they have been included in this analysis in order to evaluate Hybridsort application.

Table 7.3: Mean absolute error for different alternative representations. Pathfinder and BFS are ex-
cluded, as they have only integers, while SRAD is excluded as the utilized mathematical
functions support only 32-bit floats.

conclusion, the overall gains depend on whether the more efficient operations
can outweigh the additional overhead added by the conversion library. Em-
ploying a more timing-/resource-efficient real-number representation typically
also leads to a loss of accuracy. Table 7.3 shows the mean absolute error of
the evaluated benchmarks in total (i.e., not separately for each kernel) for the
different representations. Each representation is applied for all the kernels of
the benchmark. To calculate the mean absolute error, the absolute output dif-
ference between the alternative representation and the 32-bit float is taken, for
each output sample. Those differences are summed up and an average is taken.
Half-precision offers a much wider dynamic range representing very small
and very large numbers, as compared to fixed-point, which typically leads to
less deviation from the 32-bit float, as mainly seen in Gaussian elimination
and Nearest Neighbor. However, in some benchmarks, which do not require
real-number accuracy, fixed-point can provide better results (e.g., Histogram-
1024), while using different bits for the fractional and integer parts can also
have a significant impact on accuracy.

7.5 Summary

In this chapter, a novel design methodology was discussed that builds on
the virtual platforms and the hybrid prototyping presented in the previous
chapters. To provide a holistic approach, design automation via High-level

154

7.5 Summary

Synthesis was envisioned as essential for said methodology, yet the current
state of the art was deemed lacking. Thus, a framework was presented that
introduces an intermediate step in the design flow for generating hardware
as promoted by Xilinx and Altera/Intel tools. The framework converts the
input OpenCL code into a SystemC representation that is used for all following
design steps. This reduces design cycles since the costly synthesis step is
only executed once at the end of the design flow. It also avoids some of the
issues HLS still has: Any design change in the source code must run through
the whole toolflow, may result in an entirely different design and produce a
computer generated and thusmostly unreadable low level description. All these
issues are alleviated by the intermediate step, benefiting from the flexibility
of SystemC. The framework is further extended by a feature that introduces
approximate computing in an OpenCL design flow. It allows the selection
of a desired representation of real numbers which triggers the insertion of an
optimized conversion library, allowing evaluation of performance, area and
loss of accuracy. The aforementioned issues of HLS also limit their use mostly
to the design of simple accelerators. Still, in this chapter the use for many-core
design was discussed. Specifically in the area of networks on chip, their use
for the design of networks on chip was evaluated.

155

8 Conclusion

The computing world is continually moving forward in search of more perfor-
mance and computational efficiency1. In the past, this was achieved mostly
by technology scaling towards ever smaller feature sizes of semiconductor
structures. However, this development has slowed down significantly in recent
times due to the power wall and will come to a stop almost completely due
to physical and monetary limitations. In order to still generate growth and
performance improvements, two major trends have emerged that are expected
to become even more prevalent in the future. According to these trends, com-
puting architectures will become more and more parallel and heterogeneous in
nature. Consequently, there will be less generic and generalized architectures
but instead, architectural features, compositions and layouts will be designed
and optimized according to the end products requirements and goals. This
increases the design space and overall design complexity significantly, requir-
ing major improvements and progress in the area of design tools, languages,
verification and validation.

The presented work investigates heterogeneous architectures and many-core
computing with a special focus on prototyping approaches for these novel
forms of computing architectures. Heterogeneity raises the complexity of soft-
ware and runtime systems which require prototypes that mirror the interfaces
and behavior while being early available and providing peak execution speeds.
Loss of accuracy or even completely functional verification is acceptable for
such tasks. In hardware design, interfacing and optimization of heteroge-
neous architectures are challenging tasks. Many-cores further increase those
challenges in being defined by their sheer design size and added complexity
due to optimized interconnect networks and memory hierarchies required for
achieving high performing systems.

1 Considered here as performance per watts

157

8 Conclusion

In this context, the presented work investigates novel approaches for both
software and hardware in regards to design and verification. The novel contri-
butions are centered around the concept of Virtual Platforms (VP). VPs offer
a promising solution for early available and fast prototypes and, as described
in this work, can be extended for prototyping heterogeneous many-core archi-
tectures. Most notably, these platforms can incorporate accelerator modeling,
provide access to real world I/O from sensors/actors attached to the host ma-
chine and retain their high speed thanks to parallel process or thread based
execution.

Hardware simulation will still play a role in hardware design and verification
of heterogeneous many-core, yet the design size makes simulation extremely
slow up to a point where it can only be used for simple test cases and small
scale debugging. FPGA emulators are still going strong, yet they also face
the challenge of design sizes that comes alongside of many-core architec-
tures. Some solutions exist, namely multi-FPGA prototyping and FPGA-based
design-virtualization techniques, yet they all exhibit weaknesses and undesired
behavior. This situation is highlighted and emphasized by a core contribution
in this work: a novel networks-on-chip extension that enables scalable low
latency interconnects. This In-NoC-Circuits called extension introduces cir-
cuits that start and end within routers, allowing multiple data streams to share
a circuit over a low latency secondary network. This feature is designed for
interfacing a large number of nodes. Since existing approaches do not suffice,
a novel methodology is introduced that develops the concept of a multi-level
hybrid prototype. In this methodology, a prototype is built of components on
multiple levels of abstraction. As most promising levels, virtual platforms on
a host PC together with FPGA-based designs are introduced and investigated.
The approach enables prototyping of large many-core architecture including
heterogeneous elements such as accelerators at full FPGA speed levels. While
the approach does introduce some levels of inaccuracy, these can be reduced
via synchronization techniques at the cost of performance. Still, it is possi-
ble to achieve prototypes that are orders of magnitude faster than hardware
simulations.

On top of the introduced prototyping techniques and extensions for hardware
and software design and verification, the trend towards more design abstraction
is unopposed and will continue in the future. Consequently, this work provides
a contribution in presenting an enhanced OpenCL toolflow that is improved

158

8 Conclusion

by an automated SystemC virtual platform generation and evaluation frame-
work. It shows the benefits of fast design evaluation and directly interacts with
high-level synthesis, a methodology that is expected to see large growth and
widespread acceptance in the future. In fact, it can be claimed that as HLS is
adopted more and more, the current state-of-the-art RTL design will become
like assembly programming today: still required but done only by a small group
of experts [119]. A further extension of the HLS framework allows evaluation
of approximate accelerators by automatically inserting optimized conversion
modules in the generated hardware design.

All presented novel contributions are part of a holistic design methodology for
heterogeneous many-core. This methodology is centered around the concept
of virtual platforms and makes use of the OpenCL based HLS framework and
the hybrid prototyping approach.

Looking ahead, there is still much room for further improvements in the design
and verification of heterogeneous many-cores. Yet even beyond that, the same
topics covered in this work are also relevant in other computing areas. Most
notably, the trend in recent years towards machine learning and optimized ar-
chitectures in this field, labeled neuromorphic computing, introduces a similar
set of challenges. These focus even more on the memory aspect, yet hard-
ware/software tradeoffs, design size and complexity as well as improvements
in design automation will play a major role in their advance as well.

159

List of Figures

1.1 40 years of processor performance [58] 1
1.2 The design productivity gap. Source: SEMATECH. 4

2.1 Conceptual layout of many-cores. From left to right: (a) homoge-
neous, (b) heterogeneous and (c) tile-based many-core. 10

2.2 Memory access in an architecture with shared memory. 12
2.3 Memory access in an architecture with distributed memory. . . . 12
2.4 The memory map of two processors P1 and P2 in a shared memory

architecture. 13
2.5 Speed versus size tradeoff in memory hierarchies. 15
2.6 A schematic view of the Kalray MPPA3 Coolidge many-core ar-

chitecture [2]. 18
2.7 A schematic view of the FlexTiles many-core architecture [74].

The number of nodes is scalable and thus not representative of an
actual chip implementation. 19

2.8 A typical configuration of the InvasIC many-core architecture [55]. 21
2.9 Layout of a packet-switched router with virtual channels and flow

control based on the i-NoC router [55]. 23
2.10 Generic components of the router- and the NI-protocol. 25
2.11 Packet versus circuit switching in a NoC. 27
2.12 ARM big.LITTLE architecture [1]. 30
2.13 Xilinx Zynq introduces heterogeneity by combining an ARM core

with a reconfigurable fabric (FPGA) [131]. 31
2.14 TheOpenCLexecution andmemorymodel as shown in [SXMX+18]. 34

3.1 Y diagram according to Gajski et al [47]. 39
3.2 Elements and abstraction levels in a state-of-the-art IC design

process. 40

161

List of Figures

3.3 RTL versus TLM interfacing. 44
3.4 Dynamic code morphing in an Instruction Set Simulator (ISS). . 45
3.5 Resource virtualization on FPGA for emulation of a NoC design. 52

5.1 Modeling of the FlexTiles architecture including the AI in a virtual
platform. 75

5.2 Sequence diagram highlighting the execution order of the different
OVP environments. 76

5.3 Encapsulations in an OVP platform. The red circles mark the
borders that must be crossed to access host resources such as
connected I/O devices. 78

5.4 Callback method. 79
5.5 Special semihost function call. 80
5.6 Native mapping. 81
5.7 Thread interleaving and tuning factor. 83

6.1 An example 4x4 architecture with a packet and circuit layer as well
as two INCs that form a direct one-cycle connection between the
entry node and its connected exit node. 93

6.2 The router architecture including the INC extension. Not shown
are the virtual channels and the configuration interface of the
circuit control unit which can be accessed via regular packets
or a separate, lightweight layer. 95

6.3 The sub-regions and the targets benefiting from an INC on the left
and a more scalable implementation on the right. 97

6.4 The process of establishing a circuit in a router. 98
6.5 The ratio of packets in a time interval, that need to target the same

area in order to trigger the generation of a circuit request. 100
6.6 The priority difference necessary for a new circuit request to re-

place an existing connection. 100
6.7 Latency gains of the INC depending on the size of the mesh. . . 103
6.8 Impact of random traffic with varying injection rates on the per-

formance of INCs. 103
6.9 The normalized average delay for coherence messages with the

following setup: 4x4 NoC, clustered coherence region. 104

162

List of Figures

6.10 The normalized average delay for coherence messages with the
following setup: 4x4 NoC, maximum spread coherence region. . 105

6.11 Many-core partitioning onto a multi-FPGA system. 106
6.12 Scenario 1: A subsection of the Manycore is implemented in the

FPGA. 112
6.13 Scenario 2: The NoC is implemented physically, tiles reside in the

virtual platform. 112
6.14 The full hybrid prototyping architecture. 114
6.15 Components of the NoC Interface. 116
6.16 Throughput against block size and IRQ frequency as shown in

[MLB20] . 126
6.17 The resource consumption of the NoC (the design under test) and

the host interface including the NoC interface. 128

7.1 VP based design methodology using virtual platforms as central
element. 135

7.2 The OpenCL prototyping framework layout as introduced in
[SXMX+18]. 142

7.3 The OpenCL to SystemC conversion framework compared to an
Altera OpenCL flow, as presented in [SXMX+18]. 144

7.4 Resource usage of basic arithmetic operations, when using differ-
ent real number representations. 147

7.5 The supported real-number arithmetic including the conversion
scheme. 148

7.6 Evaluation of the total latency (estimated byHLS) and the resource
utilization for different real number representations. The results
are normalized, using as reference the 32-bit float. Fixed-point
representation scenario < i, f > uses i and f bits for the integer
and the fractional part respectively. In this analysis, Pathfinder
and BFS are excluded, as they have only integers, while SRAD
is excluded as the utilized mathematical functions support only
32-bit floats. 152

163

List of Tables

5.1 Execution time measurements comparing various implementation
alternatives in OVP. 77

5.2 Throughput measurements of OVP methods. 83
5.3 Performance measurements of video output. 84

6.1 Resource cost comparison of example components present in a
many-core architecture. 111

6.2 Delay measurements for the domain crossing. 120
6.3 LUT and FF resource cost of the basic router and the extensions. 127
6.4 Run time of the blackscholes trace on NoC prototypes from differ-

ent prototyping domains, each representing a 4x4 NoC. 129
6.5 Build duration for a commercial Multi-FPGA platform and the

proposed hybrid prototype. 130

7.1 OpenCL benchmarks for the experimentation setup, taken from
Rodinia suite. 151

7.2 Comparison between the conversions provided by hls_half and
SystemC sc_fixed and the proposed conversion libraries. . . . 153

7.3 Mean absolute error for different alternative representations. Pathfinder
and BFS are excluded, as they have only integers, while SRAD
is excluded as the utilized mathematical functions support only
32-bit floats. 154

165

Acronyms

AHB Advanced High-Performance Bus

AI Accelerator Interface

API Application Programming Interface

ASIC Application-specific Integrated Circuit

ASIP Application-Specific Instruction-set Processor

AXI Advanced eXtensible Interface Bus

BRAM Block Random Access Memory

COTS Commercial Off-The-Shelf

CPS Cyber-Physical System

CPU Central Processing Unit

CS Circuit Switching

DAC Design Automation Conference

DDR Double Data Rate

DMA Direct Memory Access

DOR Dimension Order Routing

DSE Design Space Exploration

DSM Distributed Shared Memory

DSP Digital Signal Processor

167

Acronyms

DUT Design Under Test

DVI Digital Visual Interface

EDA Electronic Design Automation

eFPGA embedded Field Programmable Gate Array

ESL Electronic System Level

FF FlipFlop

FIFO First In - First Out

flit flow control digit

FPGA Field Programmable Gate Array

FPU Floating-Point Unit

GPP General-Purpose Processor

GPU Graphics Processing Unit

HDL Hardware Description Language

HLS High-Level Synthesis

HPC High-Performance Computing

HSC Hardware Software Codesign

I/O Input/Output

IC Integrated Circuit

IDRS International Roadmap for Devices and Systems

ILA Integrated Logic Analyzer

INC In-NoC-Circuits

168

Acronyms

IoT Internet of Things

IP Intellectual Property

IR Injection Rate

IRTS International Technology Roadmap for Semiconductors

ISA Instruction Set Architecture

ISS Instruction-Set Simulator

ITIV Institut für Technik der Informationsverarbeitung

KIT Karlsruher Institut für Technologie

KPN Kahn Process Networks

LUT Look Up Table

MoC Model of Computation

MPI Message Passing Interface

MPPA Multi-Purpose Processor Architecture

MPSoC Multiprocessor System on a Chip

NA Network Adapter

NI Network Interface

NoC Network on Chip

NUMA Non-Uniform Memory Access

OS Operating System

OVP Open Virtual Platforms

PCI Peripheral Component Interconnect

169

Acronyms

PCIe Peripheral Component Interconnect express

PE Processing Element

PGAS Partitioned Global Address Space

PS Packet Switching

PSE Peripheral Simulation Engine

QEMU Quick Emulator

QoR Quality of Result

QoS Quality of Service

RAM Random Access Memory

RBCC Region-Based Cache Coherence

RISC Reduced Instruction Set Computer

RTL Register-Transfer Level

SCC Single-chip Cloud Computer

SDM Spatial Division Multiplexing

SoA State of the Art

SoC System on Chip

SPARC Scalable Processor Architecture

SRAM Static Random-Access Memory

TCPA Tightly-Coupled Processor Array

TDM Time Division Multiplexing

TLB Translation Lookaside Buffer

TLM Tile Local Memory

170

Acronyms

USB Universal Serial Bus

VC Virtual Channel

VHDL Very High Speed Integrated Circuit Hardware Description Language

VMI Virtual Machine Interface

VP Virtual Platform

171

External Literature

External Literature

[1] ARM big.LITTLE. https://www.arm.com/why-arm/technologies/big-
little,

[2] KALRAY MPPA3 Coolidge. http://www.mpsoc-forum.org/archive/
2017/files/proceedings/Benoit_Dinechin.pdf,

[3] Open Virtual Platforms (OVP). http://www.ovpworld.org/,
[4] proDesign proFPGA. https://www.profpga.com/,

[5] Synopsys Hybrid Prototyping Solution. https://www.synopsys.com/
verification/virtual-prototyping/virtualizer/hybrid-prototyping.html,

[6] Agarwal, Ankur ; Iskander, Cyril ; Shankar, Ravi: Survey of
network on chip (noc) architectures & contributions. In: Journal of
engineering, Computing and Architecture 3 (2009), Nr. 1, S. 21–27

[7] Alonso, M. G. ; Flich, J.: PROSA: Protocol-Driven Network on
Chip Architecture. In: IEEE Transactions on Parallel and Distributed
Systems (2017), S. 1–1. – ISSN 1045–9219

[8] Amdahl, Gene M.: Validity of the single processor approach to achiev-
ing large scale computing capabilities. In: Proceedings of the April
18-20, 1967, spring joint computer conference on - AFIPS '67 (Spring),
ACM Press, 1967

[9] Anderson, D. ; Shanley, T. ; Inc, MindShare: Pentium Processor
System Architecture. Addison-Wesley, 1995 (Mindshare PC System
Architecture). – ISBN 9780201409925

[10] Arato, P. ; Jahasz, S. ; Mann, Z.A. ; Orban, A. ; Papp, D.: Hardware-
software partitioning in embedded system design. In: IEEE Interna-
tional Symposium on Intelligent Signal Processing, 2003, IEEE

[11] Baillie, Clive F.: Comparing shared and distributed memory comput-
ers. In: Parallel Computing 8 (1988), oct, Nr. 1-3, S. 101–110

[12] Bellard, Fabrice: QEMU, a fast and portable dynamic translator. In:
USENIX Annual Technical Conference, FREENIX Track Bd. 41, 2005,
S. 46

[13] Benini, L. ; Micheli, G. D.: Networks on chips: a new SoC paradigm.
In: Computer 35 (2002), Nr. 1, S. 70–78

173

External Literature

[14] Bienia, Christian: Benchmarking Modern Multiprocessors, Princeton
University, Diss., January 2011

[15] Binkert, Nathan ; Sardashti, Somayeh ; Sen, Rathijit ; Sewell, Korey
; Shoaib, Muhammad ; Vaish, Nilay ; Hill, Mark D. ; Wood, David A.
; Beckmann, Bradford ; Black, Gabriel ; Reinhardt, Steven K. ;
Saidi, Ali ; Basu, Arkaprava ; Hestness, Joel ; Hower, Derek R. ;
Krishna, Tushar: The gem5 simulator. In: ACM SIGARCH Computer
Architecture News 39 (2011), aug, Nr. 2, S. 1. – ISSN 0163–5964

[16] Bjerregaard, Tobias: The MANGO clockless network-on-chip: Con-
cepts and implementation. In: IMM, Danmarks Tekniske Universitet
(2005)

[17] Blem, Emily ; Menon, Jaikrishnan ; Vijayaraghavan, Thiruvengadam
; Sankaralingam, Karthikeyan: ISA Wars. In: ACM Transactions on
Computer Systems 33 (2015), mar, Nr. 1, S. 1–34

[18] Borgstrom, Tom ; Haritan, Eshel ; Wilson, Ron ; Abada, David ;
Dauman, Andrew ; Chandra, Ramesh ; Mielo, Olivier ; Cruse, Chuck
; Nohl, Achim: System prototypes: Virtual, Hardware or Hybrid? In:
Proceedings of the 46th Annual Design Automation Conference - DAC
'09, ACM Press, 2009

[19] Borkar, Shekhar: Thousand Core ChipsA Technology Perspective. In:
44th ACM/IEEE Design Automation Conference, IEEE, jun 2007

[20] Burgio, Paolo ; Marongiu, Andrea ; Coussy, Philippe ; Benini,
Luca: A HLS-Based Toolflow to Design Next-Generation Heteroge-
neous Many-Core Platforms with Shared Memory. In: 12th IEEE Inter-
national Conference on Embedded and Ubiquitous Computing, IEEE,
aug 2014

[21] Butko, Anastasiia ; Gamatie, Abdoulaye ; Sassatelli, Gilles ; Torres,
Lionel ; Robert, Michel: Design Exploration for next Generation High-
Performance Manycore On-chip Systems: Application to big.LITTLE
Architectures. In: IEEE Computer Society Annual Symposium on VLSI,
IEEE, jul 2015

[22] Butko, Anastasiia ; Garibotti, Rafael ; Ost, Luciano ; Lapotre,
Vianney ; Gamatie, Abdoulaye ; Sassatelli, Gilles ; Adeniyi-Jones,
Chris: A trace-driven approach for fast and accurate simulation of
manycore architectures. In: The 20th Asia and South Pacific Design
Automation Conference, IEEE, jan 2015

174

External Literature

[23] Butko, Anastasiia ; Garibotti, Rafael ; Ost, Luciano ; Sassatelli,
Gilles: Accuracy evaluation of GEM5 simulator system. In: 7th
InternationalWorkshop onReconfigurable andCommunication-Centric
Systems-on-Chip (ReCoSoC), IEEE, jul 2012

[24] Cai, L. ; Gajski, D.: Transaction level modeling: an overview. In:
First IEEE/ACM/IFIP International Conference on Hardware/ Software
Codesign and Systems Synthesis (IEEE Cat. No.03TH8721), ACM

[25] Canis, Andrew ; Choi, Jongsok ; Fort, Blair ; Lian, Ruolong ; Huang,
Qijing ; Calagar, Nazanin ; Gort, Marcel ; Qin, Jia J. ; Aldham,
Mark ; Czajkowski, Tomasz ; Brown, Stephen ; Anderson, Jason:
From software to accelerators with LegUp high-level synthesis. In:
International Conference on Compilers, Architecture and Synthesis for
Embedded Systems (CASES), IEEE, sep 2013

[26] Carlson, Trevor E. ; Heirman, Wim ; Eeckhout, Lieven: Sniper: Ex-
ploring the level of abstraction for scalable and accurate parallel multi-
core simulation. In: Proceedings of 2011 International Conference for
High Performance Computing, Networking, Storage and Analysis on -
SC '11, ACM Press, 2011

[27] Chaiken, D. ; Fields, C. ; Kurihara, K. ; Agarwal, A.: Directory-
based cache coherence in large-scale multiprocessors. In: Computer 23
(1990), jun, Nr. 6, S. 49–58

[28] Chiou, Derek ; Sunwoo, Dam ; Kim, Joonsoo ; Patil, Nikhil A. ; Rein-
hart, William ; Johnson, Darrel E. ; Keefe, Jebediah ; Angepat, Hari:
FPGA-Accelerated Simulation Technologies (FAST): Fast, Full-System,
Cycle-Accurate Simulators. In: 40th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO 2007), IEEE, 2007

[29] Chopard, B. ; Combes, P. ; Zory, J.: A Conservative Approach to
SystemC Parallelization. In: Computational Science – ICCS 2006.
Springer Berlin Heidelberg, 2006, S. 653–660

[30] Cong, Jason ; Ghodrat, Mohammad A. ; Gill, Michael ; Grigorian,
Beayna ; Huang, Hui ; Reinman, Glenn: Composable Accelerator-rich
Microprocessor Enhanced for Adaptivity and Longevity. In: Proceed-
ings of the 2013 International Symposium on Low Power Electronics
and Design. Piscataway, NJ, USA : IEEE Press, 2013 (ISLPED ’13). –
ISBN 978–1–4799–1235–3, 305–310

175

External Literature

[31] Cong, Jason ; Ghodrat, Mohammad A. ; Gill, Michael ; Grigorian,
Beayna ; Reinman, Glenn: Architecture support for accelerator-rich
CMPs. In: Proceedings of the 49th Annual Design Automation Confer-
ence on - DAC '12, ACM Press, 2012

[32] Cong, Jason ; Liu, Bin ; Neuendorffer, Stephen ; Noguera, Juanjo
; Vissers, Kees ; Zhang, Zhiru: High-Level Synthesis for FPGAs:
From Prototyping to Deployment. In: IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 30 (2011), apr, Nr. 4,
S. 473–491

[33] Deest, Gael ; Yuki, Tomofumi ; Sentieys, Olivier ; Derrien, Steven:
Toward scalable source level accuracy analysis for floating-point to
fixed-point conversion. In: 2014 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), IEEE, nov 2014

[34] Deleganes, D. ; Douglas, J. ; Kommandur, B. ; Patyra, M.: Design-
ing a 3 GHz, 130 nm, Intel Pentium 4 processor. In: 2002 Symposium on
VLSI Circuits. Digest of Technical Papers (Cat. No.02CH37302), IEEE

[35] Delicia, G Shalina P. ; Bruckschloegl, Thomas ; Figuli, Peter ;
Tradowsky, Carsten ; Marchesan, Gabriel ; Almeida, Juergen B.:
Bringing accuracy toOpenVirtual Platforms (OVP): A safari from high-
level tools to low-level microarchitectures. In: International Journal of
Computer Applications 975 (2013), S. 8887

[36] Demetriades, S. ; Cho, S.: Predicting Coherence Communication
by Tracking Synchronization Points at Run Time. In: 2012 45th An-
nual IEEE/ACM International Symposium on Microarchitecture, 2012.
– ISSN 1072–4451, S. 351–362

[37] Dennard, Robert H. ; Gaensslen, Fritz H. ; Rideout, V L. ; Bassous,
Ernest ; LeBlanc, Andre R.: Design of ion-implanted MOSFET’s
with very small physical dimensions. In: IEEE Journal of Solid-State
Circuits 9 (1974), Nr. 5, S. 256–268

[38] Derrien, Steven ; Puaut, Isabelle ; Alefragis, Panayiotis ; Bednara,
Marcus ; Bucher, Harald ; David, Clement ; Debray, Yann ; Du-
rak, Umut ; Fassi, Imen ; Ferdinand, Christian ; Hardy, Damien ;
Kritikakou, Angeliki ; Rauwerda, Gerard ; Reder, Simon ; Sicks,
Martin ; Stripf, Timo ; Sunesen, Kim ; Braak, Timon ter ; Voros,
Nikolaos ; Becker, Jurgen: WCET-aware parallelization of model-
based applications for multi-cores: The ARGO approach. In: Design,

176

External Literature

Automation & Test in Europe Conference & Exhibition (DATE), 2017,
IEEE, mar 2017

[39] Dinechin, Benoit D.: Kalray MPPA®: Massively parallel processor
array: Revisiting DSP acceleration with the Kalray MPPA Manycore
processor. In: 2015 IEEE Hot Chips 27 Symposium (HCS), IEEE, aug
2015

[40] Dorai, Atef ; Sentieys, Olivier ; Dubois, Helene: Evaluation of NoC
on multi-FPGA interconnection using GTX transceiver. In: 2017 24th
IEEE International Conference on Electronics, Circuits and Systems
(ICECS), IEEE, dec 2017

[41] Esmaeilzadeh, Hadi ; Blem, Emily ; Amant, Renee S. ; Sankar-
alingam, Karthikeyan ; Burger, Doug: Dark silicon and the end of
multicore scaling. In: 2011 38th Annual international symposium on
computer architecture (ISCA) IEEE, 2011, S. 365–376

[42] Fang, Jianbin ; Varbanescu, Ana L. ; Sips, Henk: A Comprehensive
Performance Comparison of CUDA and OpenCL. In: 2011 Interna-
tional Conference on Parallel Processing, IEEE, sep 2011

[43] Fatahalian, Kayvon ; Horn, Daniel R. ; Knight, Timothy J. ; Leem,
Larkhoon ; Houston, Mike ; Park, Ji Y. ; Erez, Mattan ; Ren, Man-
man ; Aiken, Alex ; Dally, William J. ; Hanrahan, Pat: Sequoia:
Programming the Memory Hierarchy. In: Proceedings of the 2006
ACM/IEEE Conference on Supercomputing. New York, NY, USA :
ACM, 2006 (SC ’06). – ISBN 0–7695–2700–0

[44] Figuli, Peter ; Hubner, Michael ; Girardey, Romuald ; Bapp, Falco
; Bruckschlogl, Thomas ; Thoma, Florian ; Henkel, Jorg ; Becker,
Jurgen: A heterogeneous SoC architecturewith embedded virtual FPGA
cores and runtime Core Fusion. In: 2011 NASA/ESA Conference on
Adaptive Hardware and Systems (AHS), IEEE, jun 2011

[45] Foster, Harry D.: Why the Design Productivity Gap Never Happened.
In: Proceedings of the International Conference on Computer-Aided
Design. Piscataway, NJ, USA : IEEE Press, 2013 (ICCAD ’13). – ISBN
978–1–4799–1069–4, 581–584

[46] Gajski, Dan ; Austin, Todd ; Svoboda, Steve: What input-language is
the best choice for high level synthesis (HLS)? In: Proceedings of the
47th Design Automation Conference on - DAC '10, ACM Press, 2010

177

External Literature

[47] Gajski, Daniel D. ; Kuhn, Robert H.: New VLSI tools. In: Computer
(1983), Nr. 12, S. 11–14

[48] Gerstlauer, A. ; Haubelt, C. ; Pimentel, A.D. ; Stefanov, T.P. ;
Gajski, D.D. ; Teich, J.: Electronic System-Level Synthesis Method-
ologies. In: IEEETransactions onComputer-AidedDesign of Integrated
Circuits and Systems 28 (2009), oct, Nr. 10, S. 1517–1530

[49] Gilles, KAHN: The semantics of a simple language for parallel pro-
gramming. In: Information processing 74 (1974), S. 471–475

[50] Goossens, Kees ; Bennebroek, Martijn ; Hur, Jae Y. ; Wahlah,
Muhammad A.: Hardwired Networks on Chip in FPGAs to Unify
Functional and Configuration Interconnects. In: Second ACM/IEEE
International Symposium on Networks-on-Chip (nocs 2008), IEEE, apr
2008

[51] Goossens, Kees ; Nejad, Ashkan B. ; Nelson, Andrew ; Sinha,
Shubhendu ; Azevedo, Arnaldo ; Chandrasekar, Karthik ; Gomony,
Manil D. ; Goossens, Sven ; Koedam, Martijn ; Li, Yonghui ; Mir-
zoyan, Davit ; Molnos, Anca: Virtual execution platforms for mixed-
time-criticality systems. In: ACM SIGBED Review 10 (2013), oct, Nr.
3, S. 23–34

[52] Goossens, Sven ; Akesson, Benny ; Koedam, Martijn ; Nejad,
Ashkan B. ; Nelson, Andrew ; Goossens, Kees: The CompSOC
design flow for virtual execution platforms. In: Proceedings of the 10th
FPGAworld Conference on - FPGAworld '13, ACM Press, 2013

[53] Gustafson, John L.: Reevaluating Amdahl’s law. In: Communications
of the ACM 31 (1988), Nr. 5, S. 532–533

[54] Haller, Philipp: On the integration of the actor model in mainstream
technologies. In: Proceedings of the 2nd edition on Programming
systems, languages and applications based on actors, agents, and de-
centralized control abstractions - AGERE! '12, ACM Press, 2012

[55] Heißwolf, Jan: A Scalable and Adaptive Network on Chip for Many-
Core Architectures, Diss., 2014

[56] Henkel, Jorg ; Bauer, Lars ; Hubner, Michael ; Grudnitsky, Artjom:
i-Core: A run-time adaptive processor for embeddedmulti-core systems.
In: Proceedings of the International Conference on Engineering of Re-
configurable Systems and Algorithms (ERSA) The Steering Committee
of The World Congress in Computer Science, 2011, S. 1

178

External Literature

[57] Henkel, Jorg ; Herkersdorf, Andreas ; Bauer, Lars ; Wild, Thomas ;
Hubner,Michael ; Pujari, RaviK. ; Grudnitsky, Artjom ; Heisswolf,
Jan ; Zaib, Aurang ; Vogel, Benjamin ; Lari, Vahid ; Kobbe, Sebastian:
Invasive manycore architectures. In: 17th Asia and South Pacific Design
Automation Conference, IEEE, jan 2012

[58] Hennessy, J.L. ; Patterson, D.A.: Computer Architecture: A Quan-
titative Approach,6th edition. Elsevier Science, 2017 (The Morgan
Kaufmann Series in Computer Architecture and Design). – ISBN
9780128119051

[59] Howard, J ; Dighe, S ; Vangal, S R. ; Ruhl, G ; Borkar, N ; Jain,
S ; Erraguntla, V ; Konow, M ; Riepen, M ; Gries, M ; Droege, G
; Lund-Larsen, T ; Steibl, S ; Borkar, S ; De, V K. ; Wijngaart,
R Van D.: A 48-Core IA-32 Processor in 45 nm CMOS Using On-Die
Message-Passing and DVFS for Performance and Power Scaling. In:
IEEE Journal of Solid-State Circuits 46 (2011), jan, Nr. 1, S. 173–183

[60] International Telecomunication Union: Open Systems In-
terconnection - Basic Reference Model: The basic model.
https://www.itu.int/rec/T-REC-X.200-199407-I/en, 1994

[61] International Roadmap forDevices and Systems 2018Edition, Executive
Summary. https://irds.ieee.org/editions/2018,

[62] Jerger, N. D. E. ; Peh, L. S. ; Lipasti, M. H.: Circuit-Switched Co-
herence. In: Second ACM/IEEE International Symposium on Networks-
on-Chip (nocs 2008), 2008, S. 193–202

[63] Jiang, Nan ; Balfour, James ; Becker, Daniel U. ; Towles, Brian ;
Dally, William J. ; Michelogiannakis, George ; Kim, John: A de-
tailed and flexible cycle-accurate Network-on-Chip simulator. In: 2013
IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), IEEE, apr 2013

[64] Kamali, Hadi M. ; Hessabi, Shahin: AdapNoC: A fast and flexible
FPGA-based NoC simulator. In: 2016 26th International Conference
on Field Programmable Logic and Applications (FPL), IEEE, aug 2016

[65] Kegel, Philipp ; Steuwer, Michel ; Gorlatch, Sergei: dOpenCL:
Towards a Uniform Programming Approach for Distributed Heteroge-
neous Multi-/Many-Core Systems. In: 2012 IEEE 26th International
Parallel and Distributed Processing Symposium Workshops & PhD Fo-
rum, IEEE, may 2012

179

External Literature

[66] Krishna, T. ; Chen, C. H. O. ; Kwon, W. C. ; Peh, L. S.: Break-
ing the on-chip latency barrier using SMART. In: 2013 IEEE 19th
International Symposium on High Performance Computer Architecture
(HPCA), 2013. – ISSN 1530–0897, S. 378–389

[67] Kumar, Amit ; Peh, Li-Shiuan ; Kundu, Partha ; Jha, Niraj K.: Ex-
press Virtual Channels: Towards the Ideal Interconnection Fabric. In:
Proceedings of the 34th Annual International Symposium on Computer
Architecture. New York, NY, USA : ACM, 2007 (ISCA ’07). – ISBN
978–1–59593–706–3, S. 150–161

[68] Kumar, R. ; Tullsen, D.M. ; Jouppi, N.P. ; Ranganathan, P.: Het-
erogeneous chip multiprocessors. In: Computer 38 (2005), nov, Nr. 11,
S. 32–38

[69] Kumar, R. ; Tullsen, D.M. ; Ranganathan, P. ; Jouppi, N.P. ;
Farkas, K.I.: Single-ISA heterogeneous multi-core architectures for
multithreaded workload performance. In: Proceedings. 31st Annual
International Symposium on Computer Architecture, IEEE, 2004

[70] Kwon, Young-Su ; Kyung, Chong-Min: Performance-driven event-
based synchronization formulti-FPGAsimulation acceleratorwith event
time-multiplexing bus. In: IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems 24 (2005), sep, Nr. 9, S. 1444–
1456

[71] Lavagno, Luciano ; Kondratyev, Alex ; Watanabe, Yosinori ; Zhu,
Qiang ; Fujii, Mototsugu ; Tatesawa, Mitsuru ; Nakayama, Noriyasu:
Incremental high-level synthesis. In: 2010 15th Asia and South Pacific
Design Automation Conference (ASP-DAC), IEEE, jan 2010

[72] Lawley, Jason: Understanding Performance of PCI Express Systems.
In: Xilinx. Rev 1 (2014)

[73] Lee, E.A. ; Messerschmitt, D.G.: Synchronous data flow. In: Pro-
ceedings of the IEEE 75 (1987), Nr. 9, S. 1235–1245

[74] Lemonnier, Fabrice ; Millet, Philippe ; Almeida, Gabriel M. ; Hub-
ner, Michael ; Becker, Jurgen ; Pillement, Sebastien ; Sentieys,
Olivier ; Koedam, Martijn ; Sinha, Shubhendu ; Goossens, Kees ;
Piguet, Christian ; Morgan, Marc-Nicolas ; Lemaire, Romain: To-
wards future adaptive multiprocessor systems-on-chip: An innovative
approach for flexible architectures. In: 2012 International Conference
on Embedded Computer Systems (SAMOS), IEEE, jul 2012

180

External Literature

[75] Loh, Gabriel H.: 3D-Stacked Memory Architectures for Multi-core
Processors. In: 2008 International Symposium on Computer Architec-
ture, IEEE, jun 2008

[76] Lotlikar, Swapnil ; Pai, Vinayak ; Gratz, Paul V.: AcENoCs: A
Configurable HW/SW Platform for FPGA Accelerated NoC Emulation.
In: 2011 24th Internatioal Conference on VLSI Design, IEEE, jan 2011

[77] Lyberis, Spyros ; Kalokerinos, George ; Lygerakis, Michalis ; Pa-
paefstathiou, Vassilis ; Tsaliagkos, Dimitris ; Katevenis, Manolis ;
Pnevmatikatos, Dionisios ; Nikolopoulos, Dimitris: Formic: Cost-
efficient and Scalable Prototyping of Manycore Architectures. In: 2012
IEEE 20th International Symposium on Field-Programmable Custom
Computing Machines, IEEE, apr 2012

[78] Mahzoon, Alireza ; Alizadeh, Bijan: OptiFEX: A Framework for
Exploring Area-Efficient Floating Point Expressions on FPGAs With
Optimized Exponent/Mantissa Widths. In: IEEE Transactions on Very
Large Scale Integration (VLSI) Systems 25 (2017), jan, Nr. 1, S. 198–209

[79] Martin, G. ; Smith, G.: High-Level Synthesis: Past, Present, and
Future. In: IEEE Design & Test of Computers 26 (2009), jul, Nr. 4, S.
18–25

[80] Martin, Grant ; Bailey, Brian ; Piziali, Andrew: ESL design and
verification: a prescription for electronic system level methodology.
Elsevier, 2010

[81] McFarland, M.C. ; Parker, A.C. ; Camposano, R.: The high-level
synthesis of digital systems. In: Proceedings of the IEEE 78 (1990),
Nr. 2, S. 301–318

[82] Meeus, Wim ; Beeck, Kristof V. ; Goedemé, Toon ; Meel, Jan ;
Stroobandt, Dirk: An overview of today’s high-level synthesis tools.
In: Design Automation for Embedded Systems 16 (2012), aug, Nr. 3, S.
31–51

[83] Mentor: Catapult High-Level Synthesis. https://www.mentor.com
/hls-lp/catapult-high-level-synthesis/c-systemc-hls,

[84] Milthorpe, Josh ; Ganesh, V. ; Rendell, Alistair P. ; Grove, David:
X10 as a Parallel Language for Scientific Computation: Practice and
Experience. In: 2011 IEEE International Parallel & Distributed Pro-
cessing Symposium, IEEE, may 2011

181

External Literature

[85] Mittal, Sparsh: A Survey Of Techniques for Architecting and Man-
aging Asymmetric Multicore Processors. In: ACM Computing Surveys
48 (2016), 02

[86] Modarressi, M. ; Sarbazi-Azad, H. ; Arjomand, M.: A hybrid
packet-circuit switched on-chip network based on SDM. In: 2009
Design, Automation Test in Europe Conference Exhibition, 2009. –
ISSN 1530–1591, S. 566–569

[87] Moore, Gordon E. u. a.: Cramming more components onto integrated
circuits. 1965

[88] Munshi, Aaftab: The OpenCL specification. In: 2009 IEEE Hot Chips
21 Symposium (HCS), IEEE, aug 2009

[89] Nejad, Ashkan B. ; Molnos, Anca ; Martinez, Matias E. ; Goossens,
Kees: A hardware/software platform for QoS bridging over multi-chip
NoC-based systems. In: Parallel Computing 39 (2013), sep, Nr. 9, S.
424–441

[90] Ni, Yi ; Mong, Wai S. ; Zhu, Jianwen: On virtual prototyping of em-
bedded system-on-chips. In: 2011 9th IEEE International Conference
on ASIC, IEEE, oct 2011

[91] Oliveira, H. F. A. ; Bucher, H. ; Brito, A. V. ; Araújo, J. M. F. R.
; Melcher, E. U. K. ; Duenha, L.: Power-aware design of electronic
system level using interoperation of hybrid and distributed simulations.
In: 2015 28th Symposium on Integrated Circuits and Systems Design
(SBCCI), 2015, S. 1–7

[92] Olofsson, Andreas: Epiphany-V: A 1024 processor 64-bit RISC
System-On-Chip. In: CoRR abs/1610.01832 (2016). http://arxi
v.org/abs/1610.01832

[93] Oussorov, I. ; Raab, W. ; Hachmann, U. ; Kravtsov, A.: Integra-
tion of instruction set simulators into SystemC high level models. In:
Proceedings Euromicro Symposium on Digital System Design. Archi-
tectures, Methods and Tools, IEEE Comput. Soc

[94] Panerati, Jacopo ; Sciuto, Donatella ; Beltrame, Giovanni: Op-
timization Strategies in Design Space Exploration. Version: 2017.
http://dx.doi.org/10.1007/978-94-017-7267-97. In: Hand-
book of Hardware/Software Codesign. Springer Netherlands, 2017. –
DOI 10.1007/978–94–017–7267–97, S. 189–216

182

http://arxiv.org/abs/1610.01832
http://arxiv.org/abs/1610.01832
http://dx.doi.org/10.1007/978-94-017-7267-97

External Literature

[95] Papamichael, Michael K.: Fast scalable FPGA-based Network-on-
Chip simulationmodels. In: Ninth ACM/IEEE International Conference
on Formal Methods and Models for Codesign (MEMPCODE2011),
IEEE, jul 2011

[96] Pelcat, Maxime ; Bourrasset, Cedric ; Maggiani, Luca ; Berry,
Francois: Design productivity of a high level synthesis compiler versus
HDL. In: 2016 International Conference on Embedded Computer
Systems: Architectures, Modeling and Simulation (SAMOS), IEEE, jul
2016

[97] Pham-Quoc, Cuong ; Ashraf, Imran ; Al-Ars, Zaid ; Bertels, Koen:
Heterogeneous Hardware Accelerators with Hybrid Interconnect: An
Automated Design Approach. In: 2015 International Conference on
Advanced Computing and Applications (ACOMP), IEEE, nov 2015

[98] Preskill, John: Quantum Computing in the NISQ era and beyond. In:
Quantum 2 (2018), S. 79

[99] Protic, J. ; Tomasevic, M. ; Milutinovic, V.: Distributed shared
memory: concepts and systems. In: IEEE Parallel & Distributed
Technology: Systems & Applications 4 (1996), Nr. 2, S. 63–71

[100] Real, Maria M. ; Wehner, Philipp ; Rettkowski, Jens ; Migliore,
Vincent ; Lapotre, Vianney ; Gohringer, Diana ; Gogniat, Guy:
MPSoCSim extension: An OVP simulator for the evaluation of cluster-
based multi and many-core architectures. In: 2016 International Con-
ference on Embedded Computer Systems: Architectures, Modeling and
Simulation (SAMOS), IEEE, jul 2016

[101] Rodinia: A Benchmark Suite for Heterogeneous Computing.
http://lava.cs.virginia.edu/Rodinia/, 2016

[102] Rodriguez-Andina, J.J. ; Moure, M.J. ; Valdes, M.D.: Features, De-
sign Tools, and Application Domains of FPGAs. In: IEEE Transactions
on Industrial Electronics 54 (2007), aug, Nr. 4, S. 1810–1823

[103] Rose, Adam ; Swan, Stuart ; Pierce, John ; Fernandez, Jean-Michel
u. a.: Transaction level modeling in SystemC. In: Open SystemC
Initiative 1 (2005), Nr. 1.297

[104] Roth, Christoph ; Almeida, GabrielM. ; Sander, Oliver ; Ost, Luciano
; Hebert, Nicolas ; Sassatelli, Gilles ; Benoit, Pascal ; Torres,

183

External Literature

Lionel ; Becker, Jurgen: Modular Framework for Multi-level Multi-
device MPSoC Simulation. In: 2011 IEEE International Symposium on
Parallel and Distributed Processing Workshops and Phd Forum, IEEE,
may 2011

[105] Saboori, Ehsan ; Abdi, Samar: Hybrid Prototyping of Multicore Em-
bedded Systems. In: Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2013, IEEE Conference Publications, 2013

[106] Schreiner, Soren ; Gorgen, Ralph ; Gruttner, Kim ; Nebel, Wolf-
gang: A quasi-cycle accurate timing model for binary translation based
instruction set simulators. In: 2016 International Conference on Em-
bedded Computer Systems: Architectures, Modeling and Simulation
(SAMOS), IEEE, jul 2016

[107] Shalf, John M. ; Leland, Robert: Computing beyond Moore's Law.
In: Computer 48 (2015), dec, Nr. 12, S. 14–23

[108] Shankar, S. S. ; PinXing, L. ; Herkersdorf, A. ; Wild, T.: BiSME:A
Hardware Coprocessor to Perform Signature Matching at Multi-Gigabit
Rates. In: 2018 IEEE 29th Int. Conf. on Appl.-spec. Syst., Arch. and
Proc. (ASAP), 2018, S. 1–9

[109] Shim, Kyuho ; Kim, Woojoo ; Cho, Kwang-Hyun ; Min, Byeong:
System-level simulation acceleration for architectural performance anal-
ysis using hybrid virtual platform system. In: 2012 International SoC
Design Conference (ISOCC), IEEE, nov 2012

[110] Silva, Joao ; Sklyarov, Valery ; Skliarova, Iouliia: Comparison of
On-chip Communications in Zynq-7000 All Programmable Systems-
on-Chip. In: IEEE Embedded Systems Letters 7 (2015), mar, Nr. 1, S.
31–34

[111] Singh, Aameek ; Korupolu, Madhukar ; Mohapatra, Dushmanta:
Server-storage Virtualization: Integration and Load Balancing in Data
Centers. In: Proceedings of the 2008 ACM/IEEE Conference on Super-
computing. Piscataway, NJ, USA : IEEE Press, 2008 (SC ’08). – ISBN
978–1–4244–2835–9, 53:1–53:12

[112] Snir, Marc ; Gropp, William ; Otto, Steve ; Huss-Lederman, Steven ;
Dongarra, Jack ; Walker, David: MPI–the Complete Reference: The
MPI core. Bd. 1. MIT press, 1998

184

External Literature

[113] Sodani, Avinash ; Gramunt, Roger ; Corbal, Jesus ; Kim, Ho-Seop ;
Vinod, Krishna ; Chinthamani, Sundaram ; Hutsell, Steven ; Agar-
wal, Rajat ; Liu, Yen-Chen: Knights Landing: Second-Generation
Intel Xeon Phi Product. In: IEEE Micro 36 (2016), mar, Nr. 2, S. 34–46

[114] Srinivasan, Jayanth: An overview of static power dissipation. In:
CiteSeer public search engine and digital libraries for scientific and
academic papers in the fields of computer and information science
(2011), S. 1–7

[115] Srinivasan, V. ; Radhakrishnan, S. ; Vemuri, R.: Hardware software
partitioning with integrated hardware design space exploration. In:
Proceedings Design, Automation and Test in Europe, IEEE Comput.
Soc

[116] Srivatsa, A. ; Rheindt, S. ;Wild, T. ; Herkersdorf, A.: Region based
cache coherence for tiled MPSoCs. In: 2017 30th IEEE International
System-on-Chip Conference (SOCC), 2017, S. 286–291

[117] Stralen, Peter van ; Pimentel, Andy: Scenario-based design space
exploration of MPSoCs. In: 2010 IEEE International Conference on
Computer Design, IEEE, oct 2010

[118] Sullivan, Chris ; Wilson, Alex ; Chappell, Stephen: Using C
Based Logic Synthesis to Bridge the Productivity Gap. In: Proceedings
of the 2004 Asia and South Pacific Design Automation Conference.
Piscataway, NJ, USA : IEEE Press, 2004 (ASP-DAC ’04). – ISBN
0–7803–8175–0, 349–354

[119] Takach, Andres: High-Level Synthesis: Status, Trends, and Future
Directions. In: IEEE Design & Test 33 (2016), jun, Nr. 3, S. 116–124

[120] Tang, Qingshan ; Mehrez, Habib ; Tuna, Matthieu: Multi-FPGA pro-
totyping board issue: the FPGA I/O bottleneck. In: 2014 International
Conference on Embedded Computer Systems: Architectures, Modeling,
and Simulation (SAMOS XIV), IEEE, jul 2014

[121] Teich, Jürgen ; Henkel, Jörg ; Herkersdorf, Andreas ; Schmitt-
Landsiedel, Doris ; Schröder-Preikschat, Wolfgang ; Snelting,
Gregor: Invasive computing: An overview. In: Multiprocessor System-
on-Chip. Springer, 2011, S. 241–268

[122] Teich, Jürgen: Hardware/Software Codesign: The Past, the Present,
and Predicting the Future. In: Proceedings of the IEEE 100 (2012),
may, Nr. Special Centennial Issue, S. 1411–1430

185

External Literature

[123] Teimouri, N. ; Modarressi, M. ; Sarbazi-Azad, H.: Power and
Performance Efficient Partial Circuits in Packet-Switched Networks-on-
Chip. In: 2013 21st Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing, 2013. – ISSN 1066–6192,
S. 509–513

[124] Teimouri, Nasibeh ; Modarressi, Mehdi ; Tavakkol, Arash ;
Sarbazi-azad, Hamid: Energy-Optimized On-Chip Networks Using
Reconfigurable Shortcut Paths. In: Architecture of Computing Systems
- ARCS, 2011. – ISBN 978–3–642–19137–4, S. 231–242

[125] Venkatesh, Ganesh ; Sampson, Jack ; Goulding, Nathan ; Garcia,
Saturnino ; Bryksin, Vladyslav ; Lugo-Martinez, Jose ; Swanson,
Steven ; Taylor, Michael B.: Conservation cores. In: ACM SIGPLAN
Notices 45 (2010), mar, Nr. 3, S. 205

[126] Wael, Mattias D. ; Marr, Stefan ; Fraine, Bruno D. ; Cutsem, Tom V.
; Meuter, Wolfgang D.: Partitioned Global Address Space Languages.
In: ACM Computing Surveys 47 (2015), may, Nr. 4, S. 1–27

[127] Wang, D. ; Lo, C. ; Vasiljevic, J. ; Jerger, N. E. ; Steffan, J. G.:
DART: A Programmable Architecture for NoC Simulation on FPGAs.
In: IEEE Transactions on Computers 63 (2014), mar, Nr. 3, S. 664–678

[128] Wehner, Philipp ; Rettkowski, Jens ; Kleinschmidt, Tobias ;
Gohringer, Diana: MPSoCSim: An extended OVP simulator for
modeling and evaluation of Network-on-Chip based heterogeneous MP-
SoCs. In: 2015 International Conference on Embedded Computer
Systems: Architectures, Modeling, and Simulation (SAMOS), IEEE, jul
2015

[129] Woo, Steven C. ; Ohara, Moriyoshi ; Torrie, Evan ; Singh,
Jaswinder P. ; Gupta, Anoop: The SPLASH-2 Programs: Charac-
terization and Methodological Considerations. In: Proceedings of the
22Nd Annual International Symposium on Computer Architecture. New
York, NY, USA : ACM, 1995 (ISCA ’95). – ISBN 0–89791–698–0, S.
24–36

[130] Xilinx: Vivado High-Level Synthesis. https://www.xilinx.com
/products/design-tools/vivado/integration/esl-design.html,

[131] Xilinx: Zynq. https://www.xilinx.com/products/silicon-
devices/soc/zynq-7000,

186

External Literature

[132] Yoo, Sungjoo ; Jerraya, A.A.: Introduction to hardware abstrac-
tion layers for SoC. In: 2003 Design, Automation and Test in Europe
Conference and Exhibition, IEEE Comput. Soc

[133] Zaib, Muhammad A.: Network on Chip Interface for Scalable Dis-
tributed Shared Memory Architectures. München, Technische Univer-
sität München, Dissertation, 2018

[134] Zhu, Jianwen ; Gajski, D.D.: An ultra-fast instruction set simulator.
In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems
10 (2002), jun, Nr. 3, S. 363–373

[135] Zijp, Jeroen. van d.: Fast half float conversions. (2012)

[136] Zivojnovic, Vojin ; Pees, Stefan ; Meyr, Heinrich: LISA-machine
description language and genericmachinemodel for HW/SWco-design.
In: VLSI Signal Processing, IX, IEEE

187

Supervised Student Works

Supervised Student Works

[Bar17] Baranska, Joanna: Cross-Domain Prototyping of NoC-Based
Many-Core Platforms, Karlsruhe Institute of Technology, Institut
für Technik der Informationsverarbeitung (ITIV), Bachelor’s Thesis
ID-2022, January 2017

[Bor15] Borgmeyer, Hendrik: Parallelization of the High-level Simulation
(OVP) of a Multicore Platform, Karlsruhe Institute of Technology,
Institut für Technik der Informationsverarbeitung (ITIV), Bachelor’s
Thesis ID-1957, March 2015

[Gra15] Gramlich, Georg: Intelligent Camera based Driver Assistance
Systems for a Roadtrain Scenario, Karlsruhe Institute of Technology,
Institut für Technik der Informationsverarbeitung (ITIV), Bachelor’s
Thesis ID-2056, September 2015

[Hel16] Held, Felix: Parameterization of the InvasIC Architecture for Pro-
totyping Purposes on a FPGA Evaluation Board, Karlsruhe Insti-
tute of Technology, Institut für Technik der Informationsverarbeitung
(ITIV), Master’s Thesis ID-2117, June 2016

[Kre17] Kreß, Fabian: Dynamic Circuit Switching in the Invasive NoC,
Karlsruhe Institute of Technology, Institut für Technik der Informa-
tionsverarbeitung (ITIV), Bachelor’s Thesis ID-2217, March 2017

[Les14] Lesniak, Fabian: Interaction of an OVP Simulation with Real World
Devices, Karlsruhe Institute of Technology, Institut für Technik der
Informationsverarbeitung (ITIV), Bachelor’s Thesis ID-1909, De-
cember 2014

[Les18] Lesniak, Fabian: Development of an Efficient and Scalable NoC
Prototyping Environment, Karlsruhe Institute of Technology, Institut
für Technik der Informationsverarbeitung (ITIV), Master’s Thesis
ID-2356, May 2018

[Li16] Li, Hui: Connection of an Instruction Set Simulator to the iNoC
Simulation Framework, Karlsruhe Institute of Technology, Institut
für Technik der Informationsverarbeitung (ITIV), Bachelor’s Thesis
ID-2166, October 2016

[Lu17] Lu, Tianyu: Concept, Evaluation and Implementation of a Real-Time
Capable Memory Infrastructure for Many-Core Systems, Karlsruhe

189

Supervised Student Works

Institute of Technology, Institut für Technik der Informationsverar-
beitung (ITIV), Master’s Thesis ID-2263, September 2017

[Ung16] Unger, Kai L.: Implementation and Evaluation of a Circuit Switch-
ing Extension of the Invasive NoC in SystemC, Karlsruhe Institute
of Technology, Institut für Technik der Informationsverarbeitung
(ITIV), Bachelor’s Thesis ID-2142, June 2016

[Xia19] Xiao, Fan: High-Level Synthesis for the Design of Networks-on-chip,
Karlsruhe Institute of Technology, Institut für Technik der Informa-
tionsverarbeitung (ITIV), Bachelor’s Thesis ID-2557, July 2019

190

Own Conference Articles

Own Conference Articles

[AKM+19] Anantharajaiah, N. ; Kempf, F. ; Masing, L. ; Lesniak,
F. M. ; Becker, J.: Dynamic and scalable runtime block-based
multicast routing for networks on chips. In: Proceedings of the
12th International Workshop on Network on Chip Architectures
- NoCArc, ACM Press, 2019

[HFM+16] Heisswolf, J. ; Friederich, S. ; Masing, L. ; Weichslgartner,
A. ; Zaib, M. A. ; Stein, C. ; Duden, M. ; Teich, J. ; Herk-
ersdorf, A. ; Becker, J.: A Novel NoC-Architecture for Fault
Tolerance and Power Saving. In: ARCS 2016; 29th International
Conference on Architecture of Computing Systems, 2016, S. 1–8

[HWZ+15] Heisswolf, Jan ; Weichslgartner, Andreas ; Zaib, Aurang ;
Friederich, Stephanie ; Masing, Leonard ; Stein, Carsten ; Du-
den, Marco ; Klopfer, Roman ; Teich, Jurgen ; Wild, Thomas
; Herkersdorf, Andreas ; Becker, Jurgen: Fault-tolerant com-
munication in invasive networks on chip. In: 2015 NASA/ESA
Conference on Adaptive Hardware and Systems (AHS), IEEE, jun
2015

[JSK+15] Janssen, Benedikt ; Schwiegelshohn, Fynn ; Koedam, Mar-
tijn ; Duhem, Francois ; Masing, Leonard ; Werner, Stephan ;
Huriaux, Christophe ; Courtay, Antoine ; Wheatley, Emilie
; Goossens, Kees ; Lemonnier, Fabrice ; Millet, Philippe ;
Becker, Jurgen ; Sentieys, Olivier ; Hubner, Michael: De-
signing applications for heterogeneous many-core architectures
with the FlexTiles Platform. In: 2015 International Conference
on Embedded Computer Systems: Architectures, Modeling, and
Simulation (SAMOS), IEEE, jul 2015

[KAJB19] Kempf, Fabian ; Anantharajaiah, Nidhi ; Juergen Becker,
Leonard M.: A Network on Chip Adapter for Real-Time and
Safety-Critical Applications. In: System on Chip conference
(SOCC), 2019

[MLB19] Masing, Leonard ; Lesniak, Fabian ; Becker, Jurgen: Hybrid
Prototyping for Manycore Design and Validation. In: Intelli-
gent Information and Database Systems, Springer International
Publishing, 2019, S. 319–333

191

Own Conference Articles

[MSK+18] Masing, Leonard ; Srivatsa, Akshay ; Kress, Fabian ; Anan-
tharajaiah, Nidhi ; Herkersdorf, Andreas ; Becker, Jur-
gen: In-NoC Circuits for Low-Latency Cache Coherence in
Distributed Shared-Memory Architectures. In: 2018 IEEE 12th
International Symposium on Embedded Multicore/Many-core
Systems-on-Chip (MCSoC), IEEE, sep 2018

[MWB15] Masing, Leonard ; Werner, Stephan ; Becker, Jurgen: Vir-
tual prototyping of heterogeneous dynamic platforms using Open
Virtual Platforms. In: 10th IEEE International Symposium on
Industrial Embedded Systems (SIES), IEEE, jun 2015

[PKMW11] Pankratius, Victor ; Knittel, Fabian ; Masing, Leonard ;
Walser, Martin: OpenMPspy: Leveraging Quality Assurance
for Parallel Software. In: Euro-Par 2011 Parallel Processing,
Springer Berlin Heidelberg, 2011, S. 124–135

[RMB+18] Reder, Simon ; Masing, Leonard ; Bucher, Harald ; Braak,
Timon ter ; Stripf, Timo ; Becker, Jurgen: A WCET-aware
parallel programming model for predictability enhanced multi-
core architectures. In: 2018Design, Automation&Test in Europe
Conference & Exhibition (DATE), IEEE, mar 2018

[SXMS+16] Sotiriou-Xanthopoulos, Efstathios ; Masing, Leonard ;
Siozios, Kostas ; Economakos, George ; Soudris, Dimitrios ;
Becker, Jurgen: An OpenCL-based framework for rapid virtual
prototyping of heterogeneous architectures. In: 2016 Interna-
tional Conference on Embedded Computer Systems: Architec-
tures, Modeling and Simulation (SAMOS), IEEE, jul 2016

[WMLB15] Werner, Stephan ; Masing, Leonard ; Lesniak, Fabian ;
Becker, Jurgen: Software-in-the-Loop simulation of embed-
ded control applications based on Virtual Platforms. In: 2015
25th International Conference on Field Programmable Logic and
Applications (FPL), IEEE, sep 2015

192

Own Journal Articles

Own Journal Articles

[MLB20] Masing, L. ; Lesniak, F. ; Becker, J.: A Hybrid Prototyping
Framework in a Virtual Platform Centered Design and Verifica-
tion Flow. In: IEEE Embedded Systems Letters (2020)

[SXMX+18] Sotiriou-Xanthopoulos, Efstathios ; Masing, Leonard ; Xy-
dis, Sotirios ; Siozios, Kostas ; Becker, Jrgen ; Soudris,
Dimitrios: OpenCL-based Virtual Prototyping and Simula-
tion of Many-Accelerator Architectures. In: ACM Transac-
tions on Embedded Computing Systems 17 (2018), sep, Nr. 5,
S. 1–27. http://dx.doi.org/10.1145/3242179. – DOI
10.1145/3242179

193

http://dx.doi.org/10.1145/3242179

	Introduction
	Motivation
	Goals
	Outline

	Fundamentals
	Many-core
	Shared Memory vs Distributed Memory
	Memory Hierarchy
	Existing Many-core Architectures

	Networks on Chip
	Topologies
	Switching Schemes
	Existing Networks on Chip

	Heterogeneous Computing
	Design Languages
	VHDL/Verilog
	SystemC
	OpenCL

	State Of The Art in Computer Architecture Prototyping
	Classifications
	Abstraction Levels
	Prototyping Scopes

	Electronic System Level
	Transaction Level Modeling
	Instruction Set Simulators
	Virtual Platforms
	High-Level Synthesis

	Hardware Simulation
	Co-Simulation

	Hardware Emulation
	FPGA
	FPGA Virtualization

	NoC Prototyping
	Full System Simulators/Emulators
	Hardware/Software Codesign

	Prototyping of Heterogeneous Many-core Architectures
	Requirements
	Programming
	Processing
	Data
	Communication

	Motivating Scenarios
	Dynamic Task Mapping and Runtime System
	Providing a Low-latency on-Chip Interconnect
	High-Level Design Flows for Accelerators and Interconnects

	Analysis and Conceptual Approaches
	Early Prototypes for Software Development
	Hardware Verification and Validation
	Design Automation and Abstraction

	Summary

	Virtual Platforms for Heterogeneous Many-core
	Building a Basic Many-core Prototype in OVP
	Accelerator Modeling in Virtual Platforms
	Real-world I/O for Virtual Platforms
	PSE Callback Method
	VMI Runtime
	Native Mapping
	Synchronization and Overhead Reduction

	OVP Parallelization
	Summary

	Scalable Hardware Design and Verification
	The In-NoC-Circuits
	Extended Router Architecture
	Traffic Monitoring and Analysis
	Circuit Setup
	Routing
	Evaluation
	INC Parameters
	Benchmarks

	Multi-FPGA Prototyping
	FPGA-Host Interface
	Multi-Level Hybrid Methodology
	Interface Stack
	Parallelized Host Execution
	Timing Accuracy and Synchronization Mechanisms
	Bandwidth Considerations

	Hybrid Prototype for In-NoC-Circuit Design and Verification
	Summary

	High-level EDA supported Design
	A Virtual Platform Centered Design and Verification Methodology
	HLS for Heterogeneous Many-cores
	HLS for Networks-on-Chip Design

	OpenCL Based Framework for Many-accelerator Architectures
	Automated Conversion for Approximate Accelerators
	Real Number Representation
	Realization in the Framework
	Evaluation

	Summary

	Conclusion
	Indexes
	List of Figures
	List of Tables

	Acronyms
	External Literature
	Supervised Student Works
	Own Conference Articles
	Own Journal Articles

