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Summary 

In the recent years, biodiversity has been declining at an alarming rate mainly due to human 
activities. Several biodiversity studies have shown that plant diversity plays an important role 
in ecosystem functioning.  

The objectives of my study were (i) to adapt and test two methods to determine the 15N 
concentration in ammonium and to assess the effects of plant species richness (1- 16), functional 
group richness (1-4) and presence/absence of particular functional groups (legumes, grasses, 
tall herbs, small herbs) on nitrogen pool sizes and transformation rates in The Jena Experiment, 
a grassland biodiversity experiment with the help of (ii) a laboratory experiment to parameterize 
the 15N-tracing model Ntrace and (iii) a 15N-tracer experiment in the field. To determine the 
15N concentration in ammonium extracted from soil, I tested two methods: microdiffusion and 
hypobromite-azide. Furthermore, I conducted a 15N-tracer experiment in the laboratory to 
determine the nitrogen exchange between five soil nitrogen pools (labile and recalcitrant 
organic nitrogen, dissolved ammonium and nitrate in soil solution, and  exchangeable 
ammonium) and eight N transformations (gross N mineralization from labile and recalcitrant 
organic nitrogen, ammonium immobilization into labile and recalcitrant organic nitrogen, 
autotrophic nitrification, heterotrophic nitrification, nitrate immobilization, adsorption of 
ammonium) using the Ntrace model. Moreover, a 15N pool-dilution experiment was conducted 
in the field to investigate if and how plant diversity affects the gross rates of N mineralization, 
microbial ammonium consumption and inorganic nitrogen immobilization. 

My results demonstrated that (i) the two methods to measure 15N isotope composition of 
ammonium in soil extracts worked well and showed that the microdiffusion method is best 
suited for high N masses, while the hypobromite-azide method is suitable for low N masses. 
(ii) In the microcosm experiment, gross N mineralization and autotrophic nitrification increased 
significantly in the presence of legumes because legumes have the ability to fix atmospheric 
nitrogen which resulted in higher soil nitrogen concentrations in legume-containing plots. 
Similarly, the presence of grasses significantly increased the soil ammonium pool, N 
mineralization and ammonium immobilization, likely because of enhanced microbial activity 
by providing large amounts of rhizodeposits through their dense root systems. (iii) In the field 
experiment, plant species richness showed an unexpected negative effect on gross nitrogen 
mineralization and microbial ammonium consumption, while the gross inorganic nitrogen 
immobilization did not show any relationship with plant species richness. Structural equation 
modeling showed that increasing plant species richness significantly decreased gross N 
mineralization and microbial ammonium consumption rates via increased root C/N ratios. Root 
C/N ratios increased, because of the replacement of legumes by small herbs with increasing 
species richness. The presence of legumes also increased gross N mineralization, microbial 
ammonium consumption and gross inorganic N immobilization rates because of improved N 
supply by N fixation. In the presence of small herbs, microbial NH4+ consumption and gross 
inorganic N immobilization rates increased which I attributed to their increased 
rhizodeposition, stimulating microbial growth. 

I conclude that plant community composition is a significant control of nitrogen processes 
in soil which influences the nitrogen bioavailability and nitrogen leaking of grassland 
ecosystems into the atmosphere and surface and groundwater. 
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Zusammenfassung  
In den letzten Jahren ist die Biodiversität in besorgniserregendem Maß zurückgegangen, 

hauptsächlich aufgrund menschlicher Aktivität. Mehrere Biodiversitätsstudien haben gezeigt, 
dass Pflanzenvielfalt eine wichtige Rolle für das Funktionieren von Ökosystemen spielt. 

Die Ziele meiner Arbeit waren (i) zwei Methoden zur Analyse des 15N-Gehalts von 
Ammonium anzupassen und zu überprüfen und den Einfluss der Pflanzenartenzahl (1-16), der 
Zahl der funktionellen Gruppen (1-4) und der Präsenz/Absenz einzelner funktioneller Gruppen 
(Leguminosen, Gräser, große Kräuter, kleine Kräuter) auf Stickstoffpools und -
tranformationsraten im Jena-Experiment, einem Grünland-Biodiversitätsexperiment, mithilfe 
(ii) eines Laborexperimentes zur Parametrisierung des 15N Tracingmodells Ntrace und (iii) 
eines Feldexperimentes zu bestimmen. Zur Bestimmung des 15N-Gehaltes in aus dem Boden 
extrahiertem Ammonium prüfte ich zwei Methoden: die Mikrodiffusion und Hypobromit-Azid. 
Außerdem führte ich ein 15N-Tracerexperiment im Labor durch, um den Austausch zwischen 
fünf Stickstoffpools im Boden (labiler und rekalzitranter organischer Stickstoff, gelöstes 
Ammonium und Nitrat in der Bodenlösung und austauschbares Ammonium sowie acht N-
Transformationen (Brutto-N-Mineralisierung aus labilem und rekalzitrantem organischem 
Stickstoff, Ammoniumimmobilisierung in labilen und rekalzitranten organischen Stickstoff, 
autotrophe Nitrifikation, heterotrophe Nitrifikation, Nitratimmobilisierung, Adsorption von 
Ammonium) mithilfe des Modells Ntrace zu bestimmen. Im Feld wurde ein 15N-
Poolverdünnungsexperiment durchgeführt, um zu untersuchen, ob und wie sich die 
Pflanzenvielfalt auf die Bruttoraten der N-Mineralisierung, den mikrobiellen 
Ammoniumverbrauch und die Immobilisierung von anorganischem Stickstoff auswirkt. 

(i) Die zwei Methoden zur Messung des 15N-Gehalts von Ammonium funktionierten gut und 
zeigten, dass die Mikrodiffusion für hohe N-Massen und die Hypobromit-Azid für niedrige N-
Massen am besten geeignet sind. (ii) Das Laborexperiment zeigte, dass Brutto-N-
Mineralisierung- und autotrophe Nitrifikationsraten in Anwesenheit von Leguminosen erhöht 
waren, da Leguminosen atmosphärischen Stickstoff binden können, was zu höheren Stickstoff-
Konzentrationen im Boden unter Leguminosen-haltigen Pflanzenmischungen führte. In 
ähnlicher Weise vergrößerte das Vorhandensein von Gräsern den Ammonium-Pool, und 
erhöhte die N-Mineralisierungs- und Ammoniumimmobilisierungsraten signifikant, was 
wahrscheinlich auf eine gesteigerte mikrobielle Aktivität zurückzuführen ist. Letztere wird 
vermutlich durch große Mengen an organischen Wurzeleinträgen aufgrund der dichten Gras-
Wurzelsysteme stimuliert. (iii) Im Feldexperiment wirkte sich eine zunehmende 
Pflanzenartenzahl unerwartet negativ auf die Brutto-Stickstoffmineralisierung und den 
mikrobiellen Ammoniumverbrauch aus, während die Brutto-Immobilisierung von 
anorganischem Stickstoff keinen Zusammenhang mit der Pflanzenartenzahl aufwies. 
Strukturgleichungs-Modellierung zeigte, dass eine zunehmende Pflanzenartenzahl die Brutto-
N-Mineralisierung und den Verbrauch von mikrobiellem Ammonium über erhöhte Wurzel-
C/N-Verhältnisse signifikant verringerte. Die Wurzel-C/N-Verhältnisse nahmen zu, da mit 
zunehmender Artenzahl Leguminosen durch kleine Kräuter ersetzt wurden. Das Vorhandensein 
von Leguminosen erhöhte auch die Brutto-N-Mineralisierung, den mikrobiellen 
Ammoniumverbrauch und die anorganischen N-Immobilisierungsraten aufgrund der 
verbesserten N-Versorgung durch die Stickstoff-Fixierung. In Gegenwart kleiner Kräuter 
nahmen der mikrobielle NH4+ -Verbrauch und die anorganischen N-Immobilisierung zu, was 
ich auf die Stimulation der Mikroorganismen durch hohe organischen Wurzeleinträge 
zurückführe. 

Meine Ergebnisse zeigen, dass die Zusammensetzung der Pflanzengemeinschaft 
Stickstoffprozesse im Boden beeinflusst, die die Bioverfügbarkeit von Stickstoff und die 
Freisetzung von Stickstoff in die Atmosphäre und in Oberflächen- und Grundwasser steuern.
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1.1 Introduction 

Biodiversity loss has become a global concern. The interest in this issue has grown from 

concerns about the potential ecological consequences of the loss of biodiversity caused by the 

increased impact of anthropogenic activities on natural and managed ecosystems (Loreau 2001, 

Spehn et al. 2002, Weisser et al. 2017). Biodiversity experiments have mainly reported 

increased community biomass productivity with increasing plant diversity (Tilman et al. 2001; 

Spehn et al. 2005; Marquard et al. 2009), because of complementarity effects in species-rich 

mixtures (Hooper and Vitousek 1998; Fargione et al. 2007; Reich et al. 2012). Complementarity 

effects occur when more-diverse communities increase their performance above the expected 

performance of monocultures through acquiring more nutrients, light and space (Hooper and 

Vitousek 1997; Naeem et al. 2002). Complementarity also includes the process of facilitation, 

for example by legumes, which increase the nutrient availability for neighboring plants via 

nitrogen fixation (Fargione et al. 2007).  

Nitrogen (N) is the most important nutrient in regulating primary productivity in many 

ecosystems (Elser et al. 2007; Fay et al. 2015). No other nutrient essential for life takes as many 

chemical forms in soil as N which undergoes complex microbially mediated transformations 

that are related to the quantity and quality of soil organic matter (Wedin and Pastor 1993; Benbi 

and Richter 2002; Booth et al. 2005; Fornara et al. 2011; Lang et al. 2015). The quality and 

quantity of organic matter in grassland soils is influenced by the plant diversity responsible for 

differences in litterfall, root turnover, and root exudates (Allan et al. 2013; Solly et al. 2013). 

Plant litter varies in chemical composition; therefore, changes in plant communities could alter 

the production and types of organic compounds in soil, thereby controlling the composition and 

function of microbial communities (Zak et al. 2003). Moreover, environmental conditions, such 

as soil pH, soil moisture, soil temperature, and soil texture influence gross N transformations 

by changing microbial biomass or activity associated with substrate availability (Booth et al. 

2005). 

The study of N and its transformations has received a great deal of attention because of the 

importance of N in all ecosystems and the marked impact of human activities on the N cycle. 

The N transformation processes that are most important for plants are those associated with the 

mineralization-immobilization turnover of ammonium (NH4+) and nitrate (NO3-), because these 
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 two inorganic N species represent the major forms of bioavailable N taken up by plants 

(Marschner 2012). Gross N mineralization includes the release of organic N as NH4+ which can 

also serve as a substrate for nitrification. Nitrification is another key process in which NO3- is 

produced by the autotrophic conversion of NH4+ to NO3- or the heterotrophic oxidation of 

organic N in soil. Next to plant uptake, nitrification represents the second largest sink of NH4+ 

(Marschner 2012). Nitrogen immobilization is the conversion of mineral N to organic N by 

microorganisms, which compete with plants for organic N. Gross nitrogen mineralization and 

nitrification rates in soil are primarily controlled by the microbial activity, as well as 

environmental factors, such as substrate availability, quality, and quantity, soil moisture and 

temperature (Booth et al. 2005). For grasslands, previous work has suggested that the 

nitrification to microbial immobilization ratio is an important factor controlling NO3- leaching 

(Stockdale et al. 2002). 

Plant available mineral N concentrations (NH4+ and NO3-) in soil depend on the relation 

between mineralization (ammonification and nitrification), uptake by plants and soil organisms, 

N2 fixation, denitrification, volatilization and leaching (Corre et al. 2002, Schimel and Bennett 

2004). Biodiversity experiments revealed that plant diversity influences pool sizes of N in soil. 

It has been reported that NO3- concentrations in soil solution and in KCl extracts decreased with 

increasing plant species richness because of the complementary and more exhaustive resource 

use of different plant species (Hooper and Vitousek 1998; Scherer-Lorenzen et al. 2003; 

Oelmann et al. 2007; Leimer et al. 2014). However, Leimer et al. 2014 found that this negative 

relationship reversed if more than 25% of legume species were included in the mixture. The 

KCl-extractable NO3- concentrations were higher on mixtures with legumes than on mixtures 

without legumes (Oelmann et al. 2007). Presence of legumes increased, and presence of grasses 

decreased NO3- concentrations both in soil KCl-extracts and soil solution (Hooper and Vitousek 

1998; Scherer-Lorenzen 2003; Oelmann 2007; Leimer et al. 2014). Previous studies have 

shown that the NH4+ concentrations in soil solution were frequently not detectable, therefore 

the effects on plant diversity and NH4+ concentrations were not analyzed (Hooper and Vitousek 

1998; Niklaus et al. 2001; Oelmann et al. 2007; Dijkstra et al. 2007). However, the KCl-

extractable NH4+ concentrations were higher in the presence of legumes (Hooper and Vitousek 

1998). Similar to NO3- concentrations, dissolved organic nitrogen (DON) and total dissolved 

nitrogen (TDN) in soil solution showed the same effects of species richness, presence of 

legumes and presence of grasses (Oelmann et al. 2007). 
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Plant diversity also influences several N transformations processes in soil via plant uptake 

of N and modifications of ecosystem properties like the size and composition of the microbial 

community or biomass production (Hooper and Vitousek 1998; Spehn et al. 2005). Despite the 

importance of N cycling, it is still unclear how plant diversity affects the complex N 

transformation rates in soil (Fornara et al. 2011). Most studies on biodiversity-N cycle 

relationship have focused on net N turnover rates (Accoe et al. 2004; Fornara and Tilman 2009; 

Fornara et al. 2011; Rosenkranz et al. 2012; Mueller et al. 2013).  However, net N turnover 

rates do not provide an understanding about the rates of all the individual processes involved in 

N cycling (Hart et al. 1994; Verchot et al. 2002; Cheng et al., 2013). Gross N transformation 

rates associated with individual soil N pools can provide a better elucidation of the mechanisms 

and processes involved in the N cycle (Bedard-Haughn et al. 2006; Cheng et al. 2014; Zhang 

et al. 2016). Previous biodiversity studies in grassland reported that increasing species richness 

increased net N mineralization rates (Rosenkranz et al. 2012; Mueller et al. 2013), as well as 

net nitrification rates (Scherer-Lorenzen et al. 2003; Mueller et al. 2013). There are currently 

only few studies that have evaluated the relationship between biodiversity and gross N 

transformation rates. Zak et al. (2003) and West et al. (2006) reported a positive biodiversity-

gross N mineralization relationship in nutrient-poor, sandy soils from Minnesota, USA in 

laboratory experiments under optimum conditions for microbial activity. To understand the 

consequences of biodiversity loss including possible changes in plant N availability and 

gaseous N leaking to the atmosphere or nitrate leaching to surface and groundwaters, a more 

profound understanding of the biodiversity – N cycle relationship is necessary (Sutton et al. 

2011). 

In addition to plant species richness, certain plant functional groups can also have large 

effects on N cycling in grassland ecosystems (Scherer-Lorenzen et al. 2003; Oelmann et al. 

2007; Dybzinski et al. 2008; Fornara and Tilman 2009; Fornara et al. 2011; Leimer et al. 2015). 

Legumes can fix atmospheric nitrogen by their symbiosis with Rhizobia and convert it to plant-

available inorganic forms. There is abundant evidence that such fixation can facilitate the input 

of substantial amounts of N to soil, which also increases N availability for other species (Mulder 

et al. 2002; Spehn et al. 2002; Spehn et al. 2005). Besides legumes, grasses influenced N pools 

and transformations in soil. Nitrate leaching might decrease in the presence of grasses due to 

their extensive rooting system (Hooper and Vitousek 1998). Oelmann et al. (2007) reported that 

the presence of grasses decreased mineral N pools in soil compared to plant communities 
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without grass species because of their dense and extensive root system. This extensive rooting 

system is efficient in taking up soil N and thus can reduce mineral N pools in soil (Oelmann et 

al. 2007). 

The analysis of the N stable isotope composition of NH4+ and NO3- is increasingly used in 

biogeochemical and ecological studies to better understand processes involved in N cycling 

(Sebilo et al. 2004). In order to measure 15N of NH4+ and NO3-, the NH4+ and NO3- should be 

separated or converted to N species (N2 or N2O) that can be introduced into a mass spectrometer 

(Homes et al. 1998). The most frequently used methods to determine the N isotopic composition 

of NH4+ include the microdiffusion (Brookes et al. 1989; Stark and Hart 1996) and 

hypobromite-azide methods (Zhang et al. 2007). The methods used to analyze 15N of NO3- 

include the microdiffusion (Sørensen and Jensen 1991, Stark and Hart 1996), bacterial 

denitrification (Sigman et al. 2001) and chemical denitrification (McIlvin and Altabet 2005, 

Lachouani et al. 2010). 

Nitrogen-15 pool dilution is an extensively used technique to quantify gross rates of 

mineralization, nitrification, and microbial immobilization. The principle of this technique is 

based on labeling of one pool with 15N and the subsequent monitoring of the dilution of this 

pool (Hart et al. 1994, Booth et al. 2005). However, this technique only allows to quantify gross 

N transformation rates over short period of time (up to 24 h), it is not possible to get reliable 

results over longer time periods or to estimate other important mechanisms. To overcome this 

obstacle, a numerical data analysis based on a 15N tracing model (Ntrace) was used to quantify 

gross N transformation rates in a laboratory incubation experiment. The advantage of using the 

Ntrace model is that it quantifies several simultaneously occurring gross N transformation rates 

(Müller et al. 2007). 

The overall objective of my study was to elucidate the biodiversity – N cycle relationship by 

considering as many pools and gross and net N turnover rates as possible to go beyond the 

existing knowledge restricted to a few selected pools and processes. To reach this objective, I 

used 15N tracer experiments, which also required to adapt and improve existing measurement 

methods of 15N concentrations in NH4+. In detail, I followed three objectives: 

1) To adapt and test two methods of analyzing 15N isotopic composition of NH4+ in soil 

extracts (Chapter 2) 
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2) To apply the Ntrace model, a complex N turnover model considering five soil N 

pools and eight N transformation processes, to data obtained from laboratory 

incubation experiment in microcosms without plants and to evaluate the legacy 

effects of plant community composition (species richness, functional group richness, 

presence/absence of four functional groups - legumes, grasses, tall herbs, and small 

herbs) on the N pools sizes and gross N transformation rates in grassland soils 

(Chapter 3) 

3) To investigate in a 15N pool-dilution experiment in the field if plant species richness, 

functional group richness and presence/absence of individual functional groups 

affect the rates of gross N mineralization, microbial NH4+ consumption and gross N 

immobilization and to determine the underlying controls responsible for the potential 

relationships (Chapter 4) 

1.2 Materials and methods 

1.2.1 Study site 
A long-term grassland diversity experiment “the Jena Experiment” (www.the-jena-

experiment.de) was established in 2002 (Roscher et al. 2004; Weisser et al. 2017). The 

experimental site is located on the floodplain of the river Saale in Jena, Germany (50°55' N, 

11°35' E; 130 m above sea level). The site had been used as arable land for at least 40 years 

before the establishment of the Jena Experiment. Mean annual air temperature is 9.9°C, and 

mean annual precipitation amounts to 610 mm (1980-2010, Hoffmann et al. 2014). The soil at 

the site is classified as Eutric Fluvisol developed from 2-m thick loamy fluvial sediments (IUSS 

Working Group WRB, 2014). The soil texture ranges from sandy loam close to the river to silty 

loam with increasing distance from the river. The experimental site is mown twice and weeded 

three times a year to maintain the designed diversity levels. The biomass is removed after 

mowing/weeding. A major aim of its establishment is to explore the effect of biodiversity on 

nutrient cycling and trophic interactions. 

A detailed description of the experimental design is provided in Roscher et al. (2004). The 

main experiment consists of 82 plots (20 m × 20 m) in four blocks with different levels of plant 

species richness (1, 2, 4, 8, 16, and 60) and 1-4 functional groups (grasses, legumes, small herbs,  
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 and tall herbs). The mixtures were randomly drawn from a pool of 60 species representing 

typical Central European mesophilic grasslands. Each level of species richness was replicated 

on 16 plots except for the 16 and 60 species richness levels, which were only replicated on 14 

and 4 plots, respectively. For the microcosm experiment (Chapter 3), I included one block 

(Block 2) with 19 plots. The field experiment (Chapter 4) was conducted on 78 plots of all 

four blocks. The 60-species mixtures were excluded in my study, because of their low number 

of replicates. 

 

Fig. 1.1: Aerial view of the Jena Experiment (Photo courtesy: Alexandra Weigelt) 

1.2.2 Testing of two methods for 15N-NH4+ analysis 

I tested and adapted two methods (i) microdiffusion and (ii) hypobromite-azide to measure 
15N of NH4+ in KCl extracts and soil solutions. The microdiffusion method is based on releasing 

NH4+ from soil extracts in the form of ammonia (NH3) by increasing the pH to > 9.5 with 

magnesium oxide (MgO). The released NH3 is then collected on acidified filter discs enclosed 

in a polytetrafluroethylene (PTFE) envelope, where it is again protonated to NH4+ (Stark and 

Hart 1996). The hypobromite-azide method is based on conversion of NH4+ to N2O. First, NH4+ 

is oxidized to nitrite (NO2-) using BrO-. Using a sodium azide buffer solution, NO2- is then 

converted to N2O under acidic conditions (Zhang et al. 2007). 
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1.2.3 15N tracing experiment in microcosms in the laboratory 

Soil samples were collected from Block 2 of the experimental site in October 2014. 

Approximately 400 g of field-fresh soil was sampled from each plot by combining 15 soil cores 

(Ø=1 cm, depth=15 cm). The soil samples were sieved (< 2 mm) in field-fresh state, and from 

each soil sample three replicates of 100 g of soil were produced. Soil sample replicates were 

amended with 15N NH4+, NO3- or both (98 at%). After the 15N-label addition, samples were 

mixed thoroughly to ensure a homogeneous 15N distribution and were placed in incubation 

vessels with ceramic filter (pore diameter of 0.4 μm). Fig. 1.2 A shows the incubation vessels 

where I put soil samples and inserted glass wool above and below the soil samples to prevent 

dispersion during rinsing. Inside the grey box shown in Fig. 1.2 A, 200 ml measuring 

jars/containers can be seen (Fig. 1.2 B) where the soil solution is collected through the ceramic 

filter after applying a vacuum. The vacuum is applied through the small valve that is visible on 

the right side of the Fig. 1.2 A and on the downward side of the Fig. 1.2 B. Fig. 1.2 C is the 

schematic representation of incubation vessels shown in Fig. 1.2 A, B. Finally, all the 

incubation vessels containing the soil samples were sealed with rubber stoppers and incubated 

for 16 days at a constant temperature of 20 ± 1 °C (Fig. 1.2). The soil samples were aerated by 

removing the rubber stoppers for one hour each day to maintain aerobic conditions inside the 

incubation vessels. Soil samples were extracted by percolation with 100 mL of a N-free nutrient 

solution (4 mM CaCl2, 2 mM KH2PO4, 1 mM MgCl2, 1 mM K2SO4, 1 mM MgSO4, 25 µM 

H3BO3, 2 µM MnSO4, 2 µM ZnSO4, 0.5 µM CuSO4 and 0.5 µM Na2MoO4; Nadelhoffer 1990) 

12 hours and 2, 4, 9 and 16 days after the 15N application. The nutrient concentrations were 

adjusted to optimize conditions for soil microorganisms (Nadelhoffer 1990). Percolation 

leaching was facilitated by applying a vacuum of 20 kPa for half an hour. To reduce the 

analytical load, samples of Days 4 and 9 were combined to yield a single composite sample 

(Chapter 3). 

Concentrations of NH4-N and NO3-N in the extracts were measured with a continuous flow 

analyzer (SAN++, Skalar, Breda, The Netherlands). The 15N isotopic compositions of NO3- 

were determined by using the bacterial denitrification method, in which Pseudomonas 

aureofaciens is used to convert NO3- to N2O, followed by isotopic analysis (Sigman et al. 2001,
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 McIlvin and Casciotti 2011). The isotope ratios of the N2O gas were analyzed with a Gas-

Bench II pre-concentration unit interfaced with Delta V Plus isotope ratio mass spectrometer 

(Thermo Fischer Scientific, Bremen, Germany). The N isotope ratios in NH4+ were determined 

using the hypobromite-azide method, in which NH4+ is first converted to NO2-, and further to 

N2O by reduction with azide (Zhang et al. 2007). The N2O is then purified and analyzed as 

described above for NO3--derived N2O (Chapter 3). 

 

Fig. 1.2: Pictures (A, B) and schematic diagram (C) showing the incubation set-up used in the 
laboratory incubation experiment.  

1.2.4 Isotope pool-dilution experiment in the field 

The isotope pool-dilution method (Davidson et al. 1991) was conducted in the field to 

determine gross N mineralization, microbial NH4+ consumption and gross inorganic N 

immobilization rates in soil. The soil NH4+ pool was labeled with 15N-NH4Cl at 98 at% excess. 

 

 Filter 0.45µm 

    Soil leachate 

Soil Sample 

    Nutrient solution 

Glass wool 

    Glass wool  

C A 

B 
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The 15N enrichment of the NH4+ pool is diluted and decreased because the unlabeled N from 

the organic pool gets mineralized to NH4+ by microorganisms.  

The field incubation experiment was carried out in April 2011 in all four blocks of the study 

site. Two pairs of stainless steel cores (Ø = 56 mm, h = 41 mm, V = 100 cm3) were taken from 

the first 5 cm of the soil of each plot (one pair for each time step, t1 and t2), closed at the bottom 

side with a polyethylene lid to prevent leaching losses and immediately reburied. A disturbed 

soil sample was taken to determine the natural 15N abundance and mineral N concentrations on 

each plot before the soil samples were enriched with 15N. The soil samples in the cores were 

labeled with a NH4Cl solution (5 mg L-1 N, 98 at% 15N) using a high-precision, digital dispenser 

(Brand, Wertheim, Germany) coupled to a side-port needle, which injected the solution 

horizontally to ensure a homogeneous distribution of the 5-mL label within the cores. For every 

core, the injections were uniformly distributed at five points, each point receiving 1 mL of the 

tracer solution. In total, 25 µg N (98 at% 15N) were added to each core. 

One pair of the soil cores was removed from the soil after 15 minutes (t1) to account for N 

fixation by illites and calculate the 15N tracer recoveries. Then, the soil samples were shaken 

with 1 M KCl solution for one hour to extract NH4+ and NO3-. The same procedure was followed 

for the remaining soil cores that were collected after 24 hours (t2). The extracts were 

immediately frozen at –20 °C and transported in frozen state to the laboratory for further 

chemical analyses. 

The concentrations of NH4-N and NO3-N in the soil extracts were measured by high-

resolution colorimetric detection using a continuous flow analyzer (CFA Autoanalyzer 3 HR, 

Seal Analytical GmbH, Norderstedt, Germany). I used the microdiffusion method (Stark and 

Hart 1996) to determine the 15N/14N isotope ratios of NH4+ in the soil extracts. In the 

microdiffusion method, NH4+ is volatilized as NH3 by increasing the pH to > 9.5 with MgO. 

The released NH3 was then collected on an acidified (2.5 M NaHSO4) filter disk enclosed in a 

polytetrafluoroethylene (PTFE) envelope, where it reacted back to NH4+. The N isotope ratios 

were determined with an Elemental Analyzer (EA 1110, Carlo Erba Instruments, Milan, Italy) 

coupled to an isotope-ratio mass spectrometer (MAT Delta Plus, Thermo Finnigan, Bremen, 

Germany) at the Stable Isotope Center, University of Göttingen (Chapter 4).  
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1.2.5 Soil and plant community properties 

For the interpretation of my results in Chapters 3 and 4, I included data of soil and plant 

variables from other groups working in The Jena Experiment, the same site as this study. 

For the analysis of aboveground biomass, plants were clipped at 3 cm above ground level 

within the harvesting area of two replicate 20 cm × 50 cm subplots per plot. Plant material was 

sorted into sown species, weeds, and dead aboveground biomass. Biomass of each sown species 

was determined after drying at 70°C for at least 48 h (Weigelt et al. 2010). For shoot C/N ratio 

analysis, all the plant material from one plot was pooled together to obtain a representative 

value for the plant community of the respective plot. A small subsample of this material was 

milled to fine powder using a ball mill (MM 400, Retsch GmbH, Haan, Germany) and up to 5 

mg from each plot was used for C and N analysis (Flash EA 112, Thermo Fisher, Milan, Italy). 

Community roots were collected per plot for the root C/N ratio analysis. Two cuboid soil 

cores from 20 cm × 10 cm to 40 cm × 15 cm with a depth of 20 cm were excavated and washed. 

To reduce disturbance to the experimental plots, the sampling sizes of the soil cores were varied 

to collect enough root material. Sampling depth was 20 cm throughout and covered the main 

rooting horizon where on average 90% of community standing root biomass in the Jena 

Experiment plots can be found. Roots were collected, cleaned, and sorted to fine (< 2 mm) and 

coarse roots after washing. Fine roots were oven-dried at 65°C and ground with a ball mill (MM 

400, Retsch GmbH, Germany) and analyzed for total C and N concentrations using an elemental 

analyzer (Flash 2000, ThermoFisher Scientific Inc, Waltham, MA, USA).  

To determine the concentrations of organic C and total N in soil, five soil samples per plot 

(0-5 cm) were taken. All replicates were combined and homogenized. Soil samples were dried 

at 40 °C and sieved (< 2 mm). The dried samples were ground using a ball mill. An aliquot of 

these samples was analyzed for total C and N concentrations by an elemental analyzer (vario 

Max CN, Elementar Analysensysteme GmbH, Langenselbold, Germany). Inorganic C 

concentrations were determined by elemental analysis after burning the organic carbon at 450 

°C in a muffle furnace. Organic C concentrations were calculated by subtracting inorganic C 

concentrations from total C concentrations. The same is true for calculating organic N 

concentrations. 
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For the measurement of soil microbial biomass and basal respiration, soil samples were taken 

with a steel corer (5 cores per plot, depth 5 cm, diameter 5 cm) and sieved. Microbial biomass 

C and microbial respiration was measured using an O2 micro-compensation apparatus (Scheu 

1992). O2 consumption of soil microorganisms in 5 g of fresh soil was measured at 22°C over 

a period of 24 h. Basal respiration [µl O2 g-1 dry soil h-1] was calculated as the mean of the O2 

consumption rates determined between 14 to 24 hours after the start of the measurements. 

Substrate-induced respiration was calculated from the respiratory response to D-glucose for 10 

h at 22°C (Anderson and Domsch 1978). Glucose was added according to preliminary studies 

to saturate the catabolic enzymes of microorganisms (4 mg g-1 dry weight solved in 400 µL 

deionized water). The mean of the lowest three readings of O2-consumption values within the 

first 10 h was taken as maximum initial respiratory response (MIRR; [µL O2 g-1 dry soil h-1]) 

and microbial biomass (µg C g-1 dry soil) was calculated as 38 × MIRR (maximum initial 

respiratory response) (Eisenhauer et al. 2010). 

The microbial C/N ratio of 38 plots (Blocks 1 and 2 only) was determined from the data of 

microbial biomass C and N, which was measured using chloroform fumigation extraction. Two 

samples of 7 g soil were taken from each plot, one was fumigated with chloroform vapor for 24 

h and the other was not fumigated. Both, the fumigated and non-fumigated samples were 

extracted with 40 mL 0.5 M K2SO4 by shaking for 30 minutes. Total C and N concentrations in 

the extracts were analyzed by dry combustion in a DIMA-TOC 100 Analyzer (Dimatec, Essen, 

Germany). Microbial biomass C was calculated as (total C in fumigated soil – total C in non-

fumigated soil)/0.45 (Wu et al. 1990). Likewise, microbial biomass N was calculated as (total 

N in fumigated soil – total N in non-fumigated soil)/0.54 (Brookes and Landman 1985). 

1.2.6 Quantification of gross N transformation rates 

The rates of eight gross N transformations were determined by integrating the experimental 

data i.e. pool sizes and 15N enrichment in various N pools with time in the Ntrace model (Müller 

et al. 2007). The measured NH4+ and NO3- concentrations and 15N enrichment values were 

supplied to the model and gross N transformation rates were calculated using zero-order or first-

order kinetics. The best fit between modeled and observed data was determined based on 

Akaike Information Criterion (AIC) by stepwise modification of the parameters included in the 

optimization routine and their respective kinetic settings (Table 3.1). Based on the kinetic 

settings and the final parameters, gross N transformation rates were calculated by integrating 
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the rates over the 16-day period divided by the total time. The Ntrace model was programmed 

in the software MatLab 7.9 (The MathWorks Inc., Natick, MA, U.S.A.) and the 15N tracing 

model that was separately set up in Simulink 7.4 (The MathWorks Inc.) (Chapter 3).  

To evaluate the field experiment, I used analytical equations to calculate the rates of gross 

N mineralization, microbial NH4+ consumption, gross inorganic N immobilization, net N 

mineralization and its components net ammonification and net nitrification using Eqs. 1 to 6, 

respectively. Eqs. 1-4 and 6 are from Hart et al. (1994) and Eq. 5 is from Rosenkranz et al. 

(2012) (Chapter 4). 

! = ["#!		#]$%%["#!		#]$&
& 	 ∗ 	

'()*'()$%	'()$&
+

'()	([+,!
		#]$%

[+,!		#]$&
)
								    Eq. 1  

% = ! −	 ["#!
		#]$&%["#!		#]$%

& 			     Eq. 2 

 ' = ! − (!		       Eq. 3 

(! = ["#!		#/	"0.		/	]$&%["#!		#/	"0.		/]$%
&     Eq. 4 

() = ["#!#]$&%["#!#	]$%
&       Eq. 5 

(( = ["0.	/]$&%["0.	/]$%
& 			      Eq. 6 

where  m = gross N mineralization rate [μg N (g dry soil)-1 day-1] 

  c = microbial NH4+ consumption rate [μg N (g dry soil)-1 day-1] 

 i = gross inorganic N immobilization rate [μg N (g dry soil)-1 day-1] 

 nm = net N mineralization rate [μg N (g dry soil)-1 day-1] 

 na = net ammonification rate ([μg N (g dry soil)-1 day-1] 

 nn = net nitrification [μg N (g dry soil)-1 day-1] 

 [NH4+]t1 = KCl-extractable NH4+ concentration at t1 [μg N (g dry soil)-1] 

  [NH4+]t2 = KCl-extractable NH4+ concentration at t2 [μg N (g dry soil)-1] 

  APEt1 = at% 15N excess of the NH4+ pool at t1 
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 APEt2 = at% 15N excess of the NH4+ pool at t2 

  t = time difference between t1 and t2 [day] 

1.2.7 Statistical analysis 

To test for the effect of response variables with time (day), repeated measures and sequential 

ANOVA (type I sum of squares) were performed with plant species richness, functional group 

richness, and presence/absence of each functional group as between-subject factors and time 

(day) as the within-subject factor (Chapter 3). A hierarchical ANOVA (type I sum of squares) 

was used to test for the effects of plant species richness and functional group composition on 

studied gross and net transformation rates (Chapter 3 and 4).  

Lilliefors normality test and histograms were used to check for the normal distribution of 

residuals. The residuals vs. fitted and Q-Q plots were also used to check the assumption of 

homoscedasticity and normality of the residuals (Chapter 3 and 4). NH4+ and NO3- pools were 

log-transformed; MNlab and ONH4 were square root-transformed; and INH4-Nlab was log-

transformed to improve normal distribution of the residuals (Chapter 3). Gross N 

mineralization and microbial NH4+ consumption rates were square root-transformed; and net 

nitrification rates were box-cox power transformed (l = 1.1) after removing the outliers to 

approximate normal distribution. For net N mineralization and net nitrification data, extreme 

outliers were removed if they deviated by more than two standard deviations from the mean (6 

outliers removed from each net rates). The ANOVA was performed with block, plant species 

richness and presence/absence of each functional group as explanatory variables to analyze the 

effect of plant species richness and presence/absence of each functional group on mineral N 

pools and gross N transformations. The functional groups were fitted in the following order: 

legumes, grasses, tall herbs, and small herbs (Chapter 3 and 4). The lab incubation experiment 

was carried out only in Block 2, therefore the block effect was removed from the ANOVA 

(Chapter 3). A separate model was set up to test the effect of functional group richness on N 

pools and gross N transformation rates. The interactions between plant species richness and 

presence/absence of functional groups were not significant and therefore were not included in 

the final models. Correlations between the selected variables were analyzed using Pearson’s 

correlations test. All the statistical analyses were conducted in R studio (R Studio, Version 

1.1.456, R Studio Inc., Boston, MA USA) with the free statistical software R 3.5.1 (R Core 
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Team 2016). The ANOVAs were performed with the function aov() and Pearson’s correlation 

with the function cor.test() (Chapter 3 and 4). 
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To explain the species richness and functional groups effects that were detected in the 

ANOVAs, I first ran Pearson correlations between all potential explaining variables and the 

three considered gross N turnover rates - gross N mineralization, microbial NH4+ consumption 

and gross inorganic N immobilization and then applied Structural Equation Modeling (SEM). 

According to the ANOVAs, plant species richness, legumes and small herbs were included as 

the exogenous variables in the SEM. Since gross inorganic N immobilization was not 

significantly related with species or functional group richness, gross N mineralization and 

microbial NH4+ consumption rates were only considered in the SEM. The result of SEM did 

not show an adequate model fit (Fig. S4.1, Table S4.2) even after including all the potential 

variables (total organic carbon, aboveground and belowground community biomass, soil 

moisture, root C/N, microbial biomass. Therefore, the potentially mediating variables in the 

SEM were chosen on the basis of literature knowledge and the results of Pearson’s correlations 

(Table S4.1). I included root C/N ratio and microbial biomass C as potential mediators of the 

effect of plant species richness and functional groups (legumes, small herbs) on gross N 

mineralization and microbial NH4+ consumption rates. Furthermore, I included a path between 

gross N mineralization and microbial NH4+ consumption rates to determine if microbial NH4+ 

processing depends on the amount of NH4+ produced. Based on the p values, the non-significant 

paths in the SEMs were removed from the final model. I used the χ2 test (> 0.05), P value (> 

0.05), goodness of fit index (GFI > 0.9), comparative fit index (CFI > 0.9) and normed fit index 

(NFI > 0.9) to evaluate the model fit (Tables S2-S4). SEM was conducted using the R package 

“lavaan” (Rosseel 2012) (Chapter 4). 

1.3 Results and discussion 

1.3.1 Testing two methods to determine the nitrogen isotopic composition of ammonium 

in soil extracts (Chapter 2) 

I successfully established two different chemical methods, namely the microdiffusion and 

hypobromite-azide methods to determine the 15N-enriched N-isotopic composition of NH4+ in 

soil extracts. The microdiffusion method involves the release of NH4+ from solution as 

ammonia (NH3) under alkaline conditions produced by using magnesium oxide. The NH3 is 

trapped into an acidified filter disc as NH4+ and then 15N isotopic composition of NH4+ was 

analyzed in an Elemental Analyzer-Isotope Ratio Mass Spectrometer This method is the most 
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commonly used one. However, it requires a large sample volume (50 mL) and comparatively 

high amount of dissolved NH4+ (~20 µg N). The recovery for this method was 98.3% (n = 8, 

SD = ±2.6%). In the hypobromite-azide method, NH4+ is first oxidized to NO2- by hypobromite 

and then to N2O using a sodium azide and acetic acid buffer solution. The produced gaseous 

N2O is then analyzed for its N isotopic composition with a Gas Bench-Isotope Ratio Mass 

Spectrometer. The recovery was 99.6% (n = 8, SD = ±2.8%). The latter method is ideal for for 

the samples with low NH4+ content (~0.2 µg N) and sample volume (5 mL). It requires less 

time for preparation than the microdiffusion method. 

1.3.2 The biodiversity-N cycle relationship: A 15N tracer experiment with soil from plant 

mixtures of varying diversity to model N pool sizes and transformation rates (Chapter 3) 

To evaluate the effects of plant diversity on five N pools and eight N transformation rates, I 

conducted a 15N tracing experiment in laboratory microcosms with field-fresh soil samples from 

a grassland biodiversity experiment. The increase in the pool sizes of the initial labile and 

recalcitrant organic matter with increasing species richness can be attributed to the positive 

effect of increasing species richness on organic matter and total N accumulation at the study 

site as a consequence of the positive species richness-biomass production relationship. In the 

presence of legumes, gross N mineralization and autotrophic nitrification increased 

significantly because of higher soil N concentrations in legume-containing plots and high 

microbial activity. Similarly, the presence of grasses significantly increased the soil NH4+ pool, 

gross N mineralization, and NH4+ immobilization, likely because of enhanced microbial 

biomass and activity by providing large amounts of rhizodeposits through their dense root 

systems. The increased microbial activity accelerated the decomposition of soil organic matter, 

which is also reflected by the positive effect of grasses on gross N mineralization rates. 

Furthermore, this study revealed that heterotrophic nitrification of organic N is an important 

process of NO3- production in the studied grassland soils, because heterotrophic nitrification 

rates were similar to the rates of autotrophic nitrification and also because heterotrophic 

nitrification is the other direct way of producing mineral N from organic N. In our experiment, 

previously reported plant species richness effects on the N cycle, observed in a larger-scale field 

experiment within the Jena Experiment, were not seen. However, specific plant functional 

groups had a significant positive impact on the N cycling in the incubated soils. 
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1.3.3 Plant diversity influenced gross nitrogen mineralization, microbial ammonium 

consumption and gross inorganic N immobilization in a grassland experiment (Chapter 

4) 

I investigated whether and how plant diversity affects gross N mineralization, microbial 

ammonium (NH4+) consumption and gross inorganic N immobilization in grasslands via 

isotopic pool dilution. The gross N mineralization and microbial NH4+ consumption rates 

decreased with increasing species richness, while the gross inorganic N immobilization rate 

was not related with species richness. Structural equation modeling (SEM) showed that 

increasing plant species richness significantly decreased gross N mineralization and microbial 

NH4+ consumption rates via increased root C/N ratios. Root C/N ratios increased, because of 

the replacement of legumes (low C/N ratios) by small herbs (high C/N ratios) and because of 

increasing competition for light which resulted in a higher shoot height associated with lower 

C/N ratios of the above than belowground biomass, because of an increased N-use efficiency. 

However, in the SEM remained an unexplained direct negative path from species richness to 

two of the three studied gross N turnover rates. Therefore, there must be additional, still 

unidentified processes behind the species richness effect potentially including changed 

microbial community composition. The presence of legumes increased gross N mineralization, 

microbial NH4+ consumption, and gross inorganic N immobilization rates likely because of 

improved N supply by N fixation. The positive effect of small herbs on microbial NH4+ 

consumption and gross inorganic N immobilization could be attributed to their increased 

rhizodeposition, stimulating microbial growth. 

1.3.4 Do laboratory and field experiments reveal the same relationships between 

biodiversity and components of the N cycle? 

I determined gross N transformation rates in a laboratory incubation experiment using the 

N-cycle model Ntrace (Müller et al. 2007) (Chapter 3) and in a field incubation experiment 

using the analytical equations (Hart et al. 1994; Rosenkranz et al. 2012) (Chapter 4). Although 

the focus of my study was on the gross N turnover rates, I additionally calculated the rates of 

net N mineralization and its components net ammonification and net nitrification and analyzed 

their relationships with plant diversity in the field experiment. Furthermore, I determined the 

effects of plant diversity on KCl-extractable mineral N (NH4+ and NO3-) concentrations 

measured shortly before the 15N pool dilution experiment in the field.   
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Tables 1.1 and 1.2 show an overview of the mineral N pools and all measured N 

transformation rates in the laboratory incubation and field incubation experiments, respectively. 

The range of total N mineralization rates (MNlab + MNrec) determined in the laboratory 

experiment (0.40 - 4.07 µg N g-1 d-1) was comparable to the gross N mineralization rates 

calculated in the field experiment (0.04 - 6.20 µg N g soil-1 d-1). Similarly, the total inorganic 

N immobilization rates (INH4-Nlab + INH4-Nrec + INO3) calculated in the laboratory experiment (1.07 

- 7.30 µg N g-1 d-1) were in a comparable range to the rates of gross inorganic N immobilization 

calculated in the field experiment (-3.27 - 8.51 µg N g-1 d-1). 

 

Table 1.1: Overview of the effects plant species richness (SR), functional group richness (FGR), 
presence (+)/absence (-) of legumes (Leg), grasses (Gr), tall herbs (Th) and small herbs (Sh) on mineral 
N pools gross N transformation rates in a laboratory incubation experiment. Arrows indicate positive 
(↑) or negative (↓) effects. Significance codes: **p<0.01, *p<0.05, •p<0.1 

N pools and transformation rates SR FGR Leg Gr Th Sh 

Dissolved NH4+ pool NS NS NS ** ↑ NS NS 

Dissolved NO3- pool NS NS NS NS NS NS 

Labile organic N pool (Nlab) ** ↑ NS NS NS NS NS 

Recalcitrant organic N pool (Nrec) ** ↑ Ns NS NS NS NS 

Adsorption of NH4+ to cation 

exchangers 

NS NS NS NS NS NS 

Mineralization of Nlab to NH4+ NS • ↑ * ↑ * ↑ • ↓ NS 

Mineralization of Nrec to NH4+ NS NS NS NS NS NS 

Immobilization of NH4+ to Nlab NS NS NS ** ↑ NS NS 

Immobilization of NH4+ to Nrec NS NS NS NS NS NS 

Oxidation of Nrec to NO3- NS NS NS NS NS NS 

Immobilization of NO3- NS NS NS NS NS NS 

Oxidation of NH4+ to NO3- NS NS * ↑ NS NS NS 

NS: not significant 

In the laboratory experiment, the pool sizes of dissolved mineral N remained nearly constant 

(Fig. 3.2), which showed that the net N transformation rates were similar for all plots. In the 

field experiment, plant species richness was not related to net N mineralization, net 

ammonification and net nitrification (Table 1.2). Functional group richness did not have any 

significant effects on net N mineralization and net nitrification but had a marginally significant 
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negative relationship with net ammonification (Table 1.2, Fig. 1.5a). Previous studies have 

mainly reported positive effects of plant species richness and the presence of legumes on net 

turnover rates (Rosenkranz et al. 2012; Mueller et al. 2013). A study conducted by Rosenkranz 

et al. (2012) in the year 2006 at the same experimental site as my study stated that the positive 

relationship between plant species richness and net ammonification rates was related to topsoil 

water content. However, in 2011 Fischer et al. (2018) found reduced water contents with 

increased plant species richness which was attributed to the positive effects of soil aggregation 

that increased soil infiltration rates. Therefore, I assumed that the decreasing soil water contents 

in higher species-mixture might help in explaining the negative effects on net ammonification 

rates found in my study. Furthermore, an unexpected significant negative effect of the presence 

of legumes was found on net ammonification rates (Table 1.2, Fig. 1.5b). This may be 

attributable to the positive effect of legumes on microbial NH4+ consumption (Table 4.2) and 

gross inorganic N immobilization (Table 4.3), which resulted in a smaller leftover of NH4+ in 

mixtures with legumes than without legumes. As expected, net nitrification correlated 

significantly positively with soil KCl-extractable NO3- concentrations (r = 0.37, p = 0.014). 

 

Table 1.2: Overview of the effects of plant species richness (SR), functional group richness (FGR), 
presence (+)/absence (-) of legumes (Leg), grasses (Gr), tall herbs (Th) and small herbs (Sh) on KCl-
extractable mineral N pools before the start of the experiment, gross and net N transformation rates 
on in a field incubation experiment. Arrows indicate positive (↑) or negative (↓) effects. Significance 
codes: ***p<0.001, **p<0.01, *p<0.05, •p<0.1 
N pools and transformation rates SR FGR Leg Gr Th Sh 

KCl-extractable NH4+ * ↑ ** ↑ • ↓ ** ↑ NS NS 

KCl-extractable NO3- ** ↓ * ↓ * ↑ NS • ↓ • ↓ 

Gross N mineralization * ↓ NS * ↑ NS NS NS 

Microbial NH4+ consumption * ↓ NS *** ↑ NS NS * ↑ 

Gross inorganic N immobilization NS NS ** ↑ NS NS • ↑ 

Net N mineralization NS NS NS NS NS NS 

Net ammonification NS • ↓ * ↓ NS NS NS 

Net nitrification NS NS NS NS NS NS 

NS: not significant 
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Fig. 1.5: Effects of functional group richness (a) and presence (+)/absence (-) of legumes (b) on net 
ammonification rates. The dotted line indicates marginal significance at p<0.1. The whiskers in 1.5b 
represents standard errors. Note the difference in y-axis scaling. Significance codes:  *p<0.05 and 
•p<0.1 

In contrast to the laboratory experiment (Table 1.1), in which I did not observe an 

relationship between plant species richness and gross N mineralization, there was a significant 

negative plant species richness effect on gross N mineralization rates in the field experiment 

(Table 1.2) The discrepancy between the laboratory and field experiments might be attributable 

to the fact that the laboratory experiment was conducted without plants. Moreover, the 

laboratory experiment was conducted with only one out of four blocks, whereas field 

experiment was done in all four blocks of the study site, and thus had a lower statistical power. 

A further difference between the laboratory and field experiments was the fact that the soil 

samples for laboratory incubations were cold stored until the start of the experiment which is 

often done. However, cold storage can result in differences in N transformation rates from field 

conditions (Arnold et al. 2008). In addition, my laboratory incubation was conducted under 

controlled temperature and/or humidity and optimum nutrient supply (except N) providing 

optimal growth conditions for microorganisms. 
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Fig. 1.3: Relationship between KCl-extractable NH4
+ concentrations and plant species richness (a), 

functional group richness (b), and presence (+)/absence (-) of grasses (c). The whiskers on 1.3c 
represents standard errors. The regression lines on 1.3a and b are shown for illustration purpose only. 
Significance codes: **p<0.01 and *p<0.5  

The presence of legumes was found to influence most of the N transformation rates, which 

I attribute to their ability to fix atmospheric N2 and increase the N availability of the whole 

ecosystem. The presence of grasses enhanced NH4+ pools in both the laboratory as well as field 

experiments. This is in line with the earlier findings of Hooper and Vitousek (1998) that nutrient 

cycling might be more dependent on certain functional groups rather than on species richness. 

However, later studies have shown that plant species richness significantly influences the N 

cycle irrespective of the functional group composition of the community (Weisser et al. 2017). 

Plant species richness and functional group richness had a significant positive relationship 

with the KCl-extractable NH4+ pool (Table 1.2 and Fig. 1.3a, b) which is in line with the 

findings from Oelmann et al. (2011) in the Jena Experiment. Presence of grasses increased the 

NH4+ pool in soil KCl-extracts (Table 1.2 and Fig. 1.3c), probably because of their dense rooting 

system which provides large amount of root exudates thereby increasing the microbial activity 

(Eisenhauer et al. 2010). Furthermore, I found significant negative effects of plant species 

richness and functional group richness on KCl-extractable NO3- (Table 1.2 and Fig. 1.4a, b) 

because of more efficient resource use by different communities resulting in the depletion of 

nutrient concentrations in soil (Hooper and Vitousek 1998; Scherer-Lorenzen et al. 2003; 

Oelmann et al. 2007; Leimer et al. 2014). 
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Fig. 1.4: Relationship between KCl-extractable NO3
- concentrations and plant species richness (a), 

functional group richness (b) and presence (+)/absence (-) of legumes (c). The whiskers on 1.4c 
represents standard errors. The regression lines on Fig. 1.4a and b are shown for illustration purpose 
only. Significance codes: **p<0.01 and *p<0.5  

Besides joint positive effects of grasses on dissolved or KCl-extractable NH4+ pools and 

positive effects of legumes on gross N mineralization rates, my laboratory and field experiments 

revealed some contrasting results for the relationships between plant community composition 

and components of the N cycle. There can be many reasons for the discrepancies including the 

lack of living plants, the unrealistic optimum growth conditions for microorganisms, and the 

low statistical power of the laboratory incubation experiment or the different times of the soil 

sampling after establishment of the grassland on a former arable land. The field experiment was 

conducted in 2011 and the laboratory experiment in 2014. My results demonstrate that the 

findings from laboratory experiments cannot be easily transferred to field conditions and also 

indicate that the time of the experiment might matter. Future laboratory studies should therefore 

aim to be as close to the field conditions as possible, i.e. be conducted with plants in growth 

chambers under temperature and nutrient supply conditions which are similar to the field 

conditions. Future field studies should be repeated several times after the establishment of the 

grassland in different seasons and at different times after establishment. 

1.4 Error discussion 
The laboratory incubation experiment was conducted in the dark and at a constant 

temperature in a climate chamber for 16 days. I maintained the water content of the incubated 
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samples by always extracting approximately the same volume as that of the added nutrient 

solution (100 mL) with the help of a vacuum. Since the incubation vessels were mostly closed
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 and were opened only for an hour each day to ensure aerobic conditions, the water loss was 

assumed to be negligible. In this experiment, I included nine blanks to check for any 

contamination either from the reagents used in nutrient solutions or from the ceramic filters 

attached to the incubation vessels and found that the inorganic N contents were small (0.02 ± 

0.01 µg N). The nutrient solution used for soil percolation was prepared fresh on each day of 

soil extraction and did not include reagents with any N content. In the field experiment which 

lasted for a day, the soil extraction was carried out with 1 M KCl solution. Therefore, 1 M KCl 

blanks were also included and the samples were blank corrected, because there was some N 

contamination detected in 1 M KCl solution. In the field incubation experiment, two replicates 

were taken for each time steps (t1, t2) and averaged for better representation of each plot. To 

avoid chemical or biological changes, the soil extracts from both of the experiments were 

immediately frozen at -20°C. 

Table 1.3: Recoveries of microdiffusion and hypobromite-azide methods to analyze 15N of ammonium 
in soil extracts 

No. Recovery (%) [Microdiffusion] Recovery (%) [Hypobromite-azide] 

1 95.35 101.51 

2 98.47 95.37 

3 99.69 97.38 

4 101.17 100.44 

5 101.47 101.12 

6 98.38 102.28 

7 97.12 102.61 

8 94.34 96.62 

Mean 98.25 99.66 

SD 2.6 2.79 

 

The detection limit of NH4-N and NO3-N measurements with the CFA was 0.02 µg L-1. To 

reduce the isotopic measurement load for 15N isotopic analysis, I combined the samples from 

days 4 and 9 to one composite sample. All the vials used for the analysis of mineral N 

concentrations and 15N measurements were washed in an acid bath (10% HCl) overnight and 

rinsed afterwards with deionized water. In the microdiffusion method, filter discs were rinsed 

with deionized water for multiple times and dried in an oven to avoid any contamination.  
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Table 1.4: Measured versus true values of 15N analysis of in-house ammonium standard [(NH4)2SO4] 
at different 15N enrichments 

No. Measured 
values 
(at%) 

True 
values 
(at%) 

Measured 
values 
(at%) 

True 
values 
(at%) 

Measured 
values 
(at%) 

True 
values 
(at%) 

1 1.464 1.489 3.765 3.736 5.938 5.983 

2 1.462 1.489 3.767 3.736 5.967 5.983 

3 1.462 1.489 3.758 3.736 5.947 5.983 

4 1.466 1.489 3.797 3.736 5.947 5.983 

5 1.467 1.489 3.771 3.736 5.970 5.983 

6 1.466 1.489 3.756 3.736 5.962 5.983 

7 1.461 1.489 3.768 3.736 5.966 5.983 

8 1.465 1.489 3.755 3.736 5.970 5.983 

9 1.464 1.489 3.761 3.736 5.957 5.983 

10 1.467 1.489 3.769 3.736 5.958 5.983 

Mean 1.464  3.767  5.958  

SD 0.002  0.012  0.012  

Accuracy (%) 98.4  100.8  99.59  

 

It is important to have a complete recovery of N present in the samples for 15N isotopic 

analysis. Incomplete recovery might result in misleading analytical values. Therefore, I was 

aware that until maximum recovery (>95%) was achieved, the methods adapted for analyzing 
15N from NH4+ were not applied to the samples from the laboratory incubation and field 

experiments. Recoveries were >96% for both methods to analyze 15N from NH4+ in soil extracts 

(Table 1.3). Therefore, possible errors due to incomplete recovery were small. The samples 

were enriched with 15N-NH4 and 15N-NO3 at 98 at% excess, so that the isotope fractionation 

was negligible. Furthermore, I prepared procedural blanks for each batch of 15N measurements 

both from NH4+ and NO3- in soil extracts. The procedural blanks prepared in 1 M KCl resulted 

in average ± standard deviation of 1.6 ± 0.05 µg N (n = 3) and blanks prepared in nutrient 

solution were (0.012 ± 0.003 µg N, n = 3) µg N. The target N masses in samples were always 

ten times larger than the N contamination found in the blanks so the blank interference in the 
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sample analysis were small or negligible. Helium blanks and standard materials were included 

after every 10 sample measurements in a batch to avoid 15N carry-over or memory effects.  

Table 1.5: Measured ∂15N values of in-house 15N ammonium standard analyzed in two different batches 

No. ∂15N-(NH4)2SO4 

1 -1.55 

2 -1.47 

3 -1.49 

4 -1.51 

5 -1.78 

6 -1.56 

7 -1.53 

8 -1.54 

9 -1.55 

10 -1.59 

Mean -1.56 

SD 0.09 

 

The accurate measurement of stable isotope ratios requires the determination of the accuracy 

and precision of the used methods. Therefore, I conducted a number of analyses to optimize the 

method with respect to its performance and determined the accuracy and precision of my 

measurements (Table 1.4). Reproducibility of the 15N analysis from NO3- was monitored by 

using certified reference materials (IAEA N3, USGS32), and from NH4+ by using in-house 

standards [15N-(NH4)2SO4: 0.366 at% (natural abundance), 1.49 at%, 3.74 at%, 5.98 at%] and 

by repeating some selected sample measurements which resulted in the deviation of <0.015 at% 

(n=3). Ten replicates of each standards with different 15N enrichments were analyzed for 15N 

isotope values to calculate the accuracy and precision of the sample analysis (Table 1.4). 

Replicates of each standards were comparable among different batches, indicating that the 

sample preparation procedures were stable (Table 1.5). The accuracy of the analysis was 

evaluated by the isotopic difference between measured 15N values and true (assigned) 15N 

values of different standard materials used during the measurements. The measured 15N isotopic 

values were comparable to that of the true values of the standards, suggesting a good accuracy 
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of the measurements (Table 1.4). Precision was evaluated by the repeated measurements of 

replicates. 

Although gross rates of microbial NH4+ consumption can be calculated from 15N isotopic 

dilution data, these rates may be overestimated because it is necessary to add NH4+ to the 

substrate pool in order to estimate their rates. The 15N amendments to the soil NH4+ pool was 

less than 2% of the NH4-N concentration in soil at the experimental period. The addition of 

NH4+ to the inorganic N pool could artificially stimulate NH4+ consumptive process like uptake, 

nitrification and other gaseous loss (West et al. 2006).  

1.5 General conclusions 

The results of my research allow to draw the following conclusions: 

1)  The two methods to measure the 15N isotopic composition of NH4+ in soil extracts was 

successfully tested and applied to the samples from the laboratory and field incubation 

experiment. I found that the microdiffusion method is best suited for comparatively high N 

masses (~20 µg), while hypobromite-azide method is more sensitive and best suited for low N 

masses (~0.2 µg). The mean recoveries ± standard deviations of the microdiffusion and 

hypobromite-azide methods were 98.3±2.6% and 99.6±2.8%, respectively (Chapter 2). 

2)  In the absence of plant uptake, almost all the produced NH4+ was nitrified to NO3-. The 

initial labile and recalcitrant organic N pools increased with increasing species richness which 

can be attributed to the positive effect of species richness on organic matter and total N 

accumulation. The presence of legumes significantly increased gross N mineralization and 

autotrophic nitrification because legumes generally increase soil N concentrations via 

atmospheric N2-fixation. Similarly, the presence of grasses significantly increased the soil NH4+ 

pool, gross N mineralization, and NH4+ immobilization, likely because of enhanced microbial 

biomass and activity by providing large amounts of root exudates through their dense rooting 

systems (Chapter 3). 

3) Gross N mineralization and microbial NH4+ consumption rates unexpectedly decreased 

with increasing species richness, which was mainly driven by the positive relationship between 

root C/N ratios and species richness. Higher species richness increased root C/N ratios because 

of the replacement of N-rich legumes by small herbs and also because of the dilution of plant
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nutrient concentrations by taller growth in response to light competition. Again unexpectedly, 

functional group richness had negative effects on net ammonification likely due to the reduced 

soil moisture in topsoil at higher diversity. In the presence of legumes, gross N mineralization, 

microbial NH4+ consumption and gross inorganic N immobilization rates increased significantly 

because of higher soil N concentrations in legume-containing plots. The possible explanation 

for the negative effects of legumes on net ammonification could be the positive effects of 

legumes on microbial NH4+ consumption and gross inorganic N immobilization rates, which 

resulted in a small leftover of NH4+ in mixtures with legumes (Chapter 4). 

1.6 Authors contributions 

I tested and applied the two methods to measure the 15N concentrations of NH4+ in soil 

extracts (Chapter 2) with two different soil extract matrices i.e. nutrient solution and KCl 

(Chapter 3 and 4). I conducted the 15N tracing microcosm experiment in the laboratory. I 

prepared all the samples and standards for 15N isotopic analysis from NH4+ and NO3- (Chapter 

3 and 4). Thomas Kuhn and I determined the stable N isotope ratios of NH4+ and NO3-. I 

calculated gross and net rates of N transformations using analytical equations (Chapter 4) 

while N pool sizes and gross N rates of the laboratory microcosms were determined by 

Christoph Müller with the Ntrace model (Chapter 3). I performed all the statistical analysis 

with support of Sophia Leimer. Andre Velescu conducted the 15N pool dilution field experiment 

and supplied the soil extracts for isotopic analysis and concentration data of inorganic N 

(Chapter 4). Alexandra Weigelt and Hongmei Chen contributed the plant biomass and root 

C/N data (Chapter 3). Microbial data was contributed by Nico Eisenhauer, Odette Gonzalez 

and Stephan Scheu (Chapter 3 and 4).  
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2.1 Abstract 

Here, I describe the adaptation of the microdiffusion and hypobromite-azide methods to 

measure enriched 15N isotope composition of ammonium in soil extracts. The microdiffusion 

method involves the release of ammonium (NH4+) from solution as gaseous ammonia (NH3) 

under alkaline conditions produced by using magnesium oxide. The NH3 is trapped into an 

acidified filter disc as NH4+ and then combusted to N2 to determine its N isotope ratio using an 

Elemental Analyzer-Isotope Ratio Mass Spectrometer. This method is the most commonly used 

one. However, it requires a large sample volume (50 mL) and comparatively high amount of 

dissolved NH4+ (~20 µg N). The mean recovery ± standard deviation for this method was 98.3 

± 2.6%. In the hypobromite-azide method, NH4+ is first oxidized to nitrite by hypobromite and 

then to nitrous oxide using a sodium azide and acetic acid buffer solution. The produced gaseous 

nitrous oxide (N2O) is then analyzed for its N isotopic composition with a Gas Bench-Isotope 

Ratio Mass Spectrometer. The recovery was 99.6 ± 2.8% SD. The latter method is ideal for 

samples with low NH4+ concentration (~ 0.2 µg N) and small sample volume (5 mL). It requires 

less time for preparation than the microdiffusion method. The accuracy of microdiffusion and 

hypobromite-azide methods were 98.4 ± 1.6% and 99.2 ± 0.8% of true values, respectively (n 

= 10 for each method). The errors of ±1.6% and ±0.8% in average is the deviation from the true 

values. Ten replicate measurements each for both the methods showed the precision of 0.002 

at%. 

2.2 Introduction 

Ammonium (NH4+) is one of the bioavailable chemical nitrogen (N) species for plant and 

microorganisms. The use of 15N-labeled NH4+ can help improving the knowledge of the soil N 

cycle by allowing for the calculation of gross N transformations (Booth et al. 2005). The 

analysis of the N stable isotope composition of NH4+ is increasingly used in biogeochemical 

and ecological studies to better understand processes involved in N cycling (Sebilo et al. 2004). 

To determine gross rates of N transformation, 15N pool dilution assays have been developed 

(Davidson et al. 1991). In pool dilution assays, a specific N pool is labeled using 15N as a tracer 

and the dilution of the label is followed over time. In order to measure 15N-NH4+, the NH4+ 

should be separated or converted to N species (N2 or N2O) that can be introduced into a mass 
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spectrometer (Homes et al. 1998). The most frequently used methods to determine the N 

isotopic composition of NH4+ include the microdiffusion (Brookes et al. 1989; Stark and Hart 

1996) and hypobromite-azide methods (Zhang et al. 2007). 

In the microdiffusion method, NH4+ is diffused into acidified filter discs under alkaline 

conditions (Brookes et al. 1989; Stark and Hart 1996). This technique is widely used because 

it does not require particularly skilled operators or specialized equipment. The main limitation 

of this method is the lengthy diffusion time and the limitation of the sample volume in the 

sample bottles (Chen and Dittert 2008). In addition to that, it is time-consuming and not reliable 

at low concentrations (Liu et al. 2014). This method produces N2 gas as an end product analyte 

for Elemental Analyzer Isotope Ratio Mass Spectrometry (EA-IRMS). Therefore, the 

microdiffusion method requires a high amount of N (>1 µmol N) due to an unavoidable 

background signal caused by the incidental atmospheric N2 contamination (Zhang et al. 2007). 

The hypobromite-azide method is a technique in which NH4+ is first oxidized to NO2- by 

hypobromite (BrO-) and further reduced to nitrous oxide (N2O) using sodium azide (NaN3) and 

acetic acid buffer solution (Zhang et al. 2007). This method does not require separation of NH4+ 

from sample solutions, thereby simplifying the preparation time. The N2O is the end product of 

this method, which is considered as a better analyte than N2 for stable isotope analysis because 

it only occurs in traces in the atmosphere. When using N2O, the N requirement for sample 

analysis is reduced to 10 nmol (Zhang et al. 2015). Therefore, it is possible to analyze samples 

with low NH4+ concentration and small sample volume.  

I conducted 15N labeling experiments in the laboratory (Chapter 3) and in the field (Chapter 

4) to quantify gross N transformations in grassland soil. The NH4+ concentrations in soil 

extracts from the laboratory incubation experiment were comparatively lower than those from 

the field incubation experiment. Therefore, I focused on optimizing methods compatible to 

measure NH4+ samples from both experiments. The main aim of this study was to establish the: 

(i) microdiffusion method as described by Stark and Hart 1996 and (ii) hypobromite-azide 

method as described by Zhang et al. (2007) to determine the stable N isotopic composition of 

NH4+ in soil extracts from 15N-labeling experiments. I used the microdiffusion method to the 

soil extracts of the field experiment and the hypobromite-azide method to the soil solutions of 

the laboratory experiment to analyze 15N of NH4+. 
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2.3 Materials and methods 

2.3.1 Microdiffusion method 

In the microdiffusion method, NH4+ is released from soil extracts in the form of ammonia 

(NH3) by increasing the pH to > 9.5 with magnesium oxide (MgO). The released NH3 is then 

collected on acidified filter discs enclosed in a polytetrafluroethylene (PTFE) envelope, where 

it is again protonated to NH4+ (Stark and Hart 1996). 

2.3.1.1 Preparation of acid traps 

Glass fiber filter papers were cut in round shape with the help of a paper puncher and rinsed 

multiple times with 1 M potassium chloride (KCl) and then with deionized water. Washed filter 

discs were dried in an oven at 50°C. These filter discs were stored in a desiccator with silica 

gel as desiccant.  

 

Fig. 2.1: Schematic representation of various steps involved in the preparation of acid traps 

A strip of PTFE tape of about 10-15 cm length was cut and the cleaned filter discs were 

placed on the PTFE tape at ~1 cm distance using tweezers (Fig. 2.1). I added 5 µL of 2.5 M 

sodium hydrogen sulfate (NaHSO4) on each filter disc and covered it with another strip of PTFE 

tape on top, and then gently smoothed out with a clean brush to remove wrinkles. The acidified
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 filter discs were sealed by pressing with an open end of a small tube or pipette tip making a 

concentric circle around the filter discs (Fig. 2.1). Acidified filter discs were sealed between 

two strips of PTFE tape because PTFE protects the acid traps from neutralization and is 

permeable for gases but not liquids. Each acidified filter disc was separated by cutting the PTFE 

encased acid traps with a clean scissor or a sharp blade. I then placed the prepared acid traps 

between two petri dishes. 

 

Fig. 2.2: Various steps of sample preparation procedure using the microdiffusion method 

2.3.1.2 Ammonium diffusion 

Diffusion glass bottles were filled with 50 mL of samples or standards or blanks in which 

the 15NH4+ concentration was to be measured. The volume of sample solution contained at least 

20 µg of NH4-N because this was the optimal mass of N for EA-IRMS. I added about 100 mg 

of MgO to the solution and quickly one acid trap per sample bottle. Then, the bottle was closed 

immediately. The increased pH to > 9.5 reached by the addition of MgO causes the conversion 

NH4+ to NH3, which is trapped in the acidified filter discs. The prepared sample bottles were 
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placed in a horizontal shaker at room temperature for the next 2-6 days to trap NH4+ into the 

filter discs. The time to trap NH4+ into the acid traps was varied to determine the optimal 

diffusion time. 

2.3.1.3 Drying of acid traps 

Sample bottles were opened after the assigned trap time was over and acid traps were 

removed by using clean tweezers. Each acid trap was rinsed with deionized water to wash out 

any MgO sticking on the outside of PTFE tape, and then put in 1.5 mL snap cap reaction tube 

for drying. I placed the tubes in a desiccator for drying which contained a beaker with 

concentrated sulfuric acid (H2SO4) as desiccant. Drying of acid traps was done at least for 24 

hours. H2SO4 is used for drying acid traps instead of silica gel because it absorbs any 

atmospheric NH4+. 

2.3.1.4 15N isotope analysis 

Dried acid traps were opened, and the filter disks were packed into the tin capsules (5x8 

mm). The tin capsules were folded and put into micro-titer plates for the isotope analysis. The 

N isotope ratios were determined with an Elemental Analyzer (EA 1110, Carlo Erba 

Instruments, Milan, Italy) coupled to an isotope-ratio mass spectrometer (MAT Delta Plus, 

Thermo Finnigan, Bremen, Germany) at the Stable Isotope Center, University of Göttingen. 

IAEA N1, IAEA N2, USGS 25 and in-house standard reference material [15N-(NH4)2SO4] was 

used to check the accuracy of the measurements. 

2.3.2 Hypobromite-azide method 

This method is based on conversion of NH4+ to N2O. First, ammonium is oxidized to nitrite 

(NO2-) using BrO-. With the help of a sodium azide buffer solution, NO2- is then converted to 

N2O under acidic conditions (Zhang et al. 2007). 

2.3.2.1 Oxidation of NH4+ to NO2- 

The first step involves conversion of NH4+ to NO2- by using hypobromite oxidation (Eq. 2.1): 

(2.1) 3BrO- + NH3 + OH- à NO2- + 2H2O + 3Br- 

This reaction occurs under strongly alkaline conditions. First, I prepared bromate/bromide 

stock solution by mixing 0.6 g of sodium bromate and 5 g of sodium bromide in 250 mL of 

deionized water. BrO- working solution was prepared in two steps. Firstly, by adding 1 mL of 

stock solution to 50 mL of deionized water and then, by adding 3 mL of 6 M hydrochloric acid 



2. Testing two methods to determine 15N of ammonium 

 42 

(HCl) to produce Br2. The working solution was left to react in the dark for five minutes. 

Secondly, 50 mL of 10 M sodium hydroxide (NaOH) was added quickly to produce BrO- 

following Eqs. 2.2 and 2.3. 

(2.2) BrO3 + 5Br- + 6H+ à 3Br2 + 3H2O 

(2.3) Br2 + 4OH- à 2BrO- + 2H2O 

 According to Zhang et al. (2007), the optimal reaction time of the oxidation was 30 minutes 

considering the amount of BrO- and NH4+ concentration. Sodium arsenite (NaAsO2) was used 

to remove excess BrO- after oxidation. This solution is prepared by mixing 5 g of NaAsO2 in 

100 mL of deionized water.  

In the study of Zhang et al. (2007), 20 mL of samples or standards were placed in 60-mL 

vials. However, in our study, we used 20 mL headspace crimp top glass vials that were 

previously acid rinsed and oven dried. I poured 5 or 10 mL of standards in each 20 mL vial with 

an NH4+ concentration of 0.15 and 0.3 µg vice versa. Standards were prepared with the same 

sample matrix, i.e. N-free nutrient solution (4 mM CaCl2, 2 mM KH2PO4, 1 mM MgCl2, 1 mM 

K2SO4, 1 mM MgSO4, 25 µM H3BO3, 2 µM MnSO4, 2 µM ZnSO4, 0.5 µM CuSO4 and 0.5 µM 

Na2MoO4). 300 µL of BrO- working solution was added to each vial and shaken vigorously. 

After 30 minutes of reaction time, 60 µL of NaAsO2 solution was added to remove excess BrO-

. 250 µL of 6 M HCl was added to make the pH of the samples or standards acidic (pH 4-5) and 

then, the vials were crimp sealed. The concentration of NO2- produced after NH4+ oxidation 

was analyzed colorimetrically. 

2.3.2.2 Conversion of NO2- to N2O 

After NH4+ oxidation to NO2-, NO2- was converted to N2O by using sodium azide buffer 

solution (Eq. 2.4). The buffer solution was prepared by mixing 2 M sodium azide (NaN3) 

solution with 20% acetic acid (CH3COOH) in a ratio of 1:1. Then, it was purged with helium 

(He) for two hours to remove any N2O produced from the reagents. 270 µL of the NaN3 buffer 

solution was added to each sample or standard that was previously converted to NO2- by using 

a 1-mL syringe. NaN3 buffer solution was daily prepared fresh. NaN3 is highly toxic, so it was 

always handled under a fume hood. After injecting the buffer solution, vials were shaken and 

incubated at 30°C for an hour. 170 µL of 10 M sodium hydroxide (NaOH) was added to alkalize 

the solution and stop the reaction. 
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(2.4) HNO2- + HN3- à N2O + H2O + N2 

The isotope ratios of the N2O gas from the headspace of the crimp top vials were analyzed 

with a Gas-Bench II pre-concentration unit interfaced with Delta V Plus isotope ratio mass 

spectrometer (Thermo Fischer Scientific, Bremen, Germany) at the Basel Stable Isotope and 

Biogeochemistry Laboratory, University of Basel. The isotopic ratio of N2O was normalized to 

N2O reference gas to eliminate instrumental drift. In-house standard reference material [15N-

(NH4)2SO4] was used to check the accuracy of our measurements. To calibrate the 15N enriched 

isotopic values, I prepared in-house 15NH4+ standards at different enrichments: 1.49 at%, 3.74 

at% and 5.98 at% by diluting (15NH4)2SO4 having a known value of 11.6 at%. 

2.4 Results and discussion 

2.4.1 Microdiffusion method 

Different diffusion times were applied for trapping NH4+ to determine the duration of the 

NH4+ diffusion time for maximum recovery. Standard solutions prepared in deionized water 

were kept to diffuse NH4+ for 2-6 days. I found that the diffusion times of two (Fig 2.3a) and 

three days (Fig. 2.3b) did not show good results (R2 = 0.91). However, the standards trapped 

for four (Fig. 2.3c) and six days (Fig. 2.3d) gave better results, showing similar rates of recovery 

of more than 96%. I found that there were no differences between the two latter trapping times 

(R2 = 0.99). 

First, I applied the microdiffusion method in standards prepared with deionized water and 

then, I prepared standards with 1 M KCl because our soil samples from the field experiment 

were extracted with 1 M KCl. I diffused the standard solution prepared in 1 M KCl only for 

four (Fig. 2.4a) and six days (Fig. 2.4b). Again, I found that there were no differences when 

standards were diffused for four or six days. I therefore chose four days as an optimal diffusion 

time for further analysis of NH4+ in KCl extracts. I compared the difference between diffused 

and non-diffused standards to calculate recoveries. The diffusion time of four days showed 

recoveries of 98.3% (n = 8, SD ± 2.6%). I compared the contamination of NH4-N in blanks 
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prepared in two different matrices (1 M KCl and deionized water) through the 15N signal 

intensity measured as peak area by EA-IRMS and found that the standards prepared in 1 M KCl 

showed higher NH4-N contamination than those prepared in deionized water. To avoid N 

contamination in filter paper, I washed them multiple times with deionized water and then oven-

dried them prior to making the filter discs. However, washing and drying of filter discs did not 

help to get rid of blanks. Conway (1957) argued that the KCl reagent might contain small 

amount of N contamination, which probably produced higher blank areas. The rate of diffusion 

should be checked whenever the sample matrix is changed because the matrix can have a large 

effect on diffusion rates (Conway 1957). However, the blank effect for the isotopic analysis 

was small due to the fact that all the samples were 15N-labeled. 

 

Fig. 2.3: Relationships between standards prepared at different NH4-N concentrations and signal 
intensity (N2 peak area, nA) using microdiffusion method with two days (a), three days (b), four days 
(c) and six days (d) of diffusion time 
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Acid traps containing NaHSO4 are more effective than H2SO4 in absorbing NH3. H2SO4 

contains more moisture and there is a risk of acid dropping into the sample (Brookes et al. 

1989), which affects the diffusion process. In addition, H2SO4 corrodes tin capsules in which 

samples are packed for 15N analysis (Brookes et al. 1989).  

 

 
Fig. 2.4: Relationships between standards prepared at different NH4-N concentrations and signal 
intensity (N2 peak area, Vs) using microdiffusion method with four days trapping time in deionized 
water (a) and 1 M KCl (b) 

  

Fig. 2.5: Relationships between true 15N values versus measured 15N values for three certified standards 
(True values ± standard deviation: USGS 25 = -30.4 ± 0.4, IAEA N1 = 0.4 ± 0.2, IAEA N2 = 20.3 ± 0.2) 
at 15N natural abundance (a) and for three in-house standards with different 15N enrichment (True 
values: (15NH4)2SO4 = 0.366 at%, 1.49 at%, 11.6 at%)  
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We analyzed international reference materials (USGS 25, IAEA N1, IAEA N2) to check if 

the method serves for isotopic values as well (Fig. 2.5a). I measured USGS 25, IAEA N1 and 

IAEA at -30.17 ± 0.24‰, 0.4 ± 0.07‰ and 20.27 ± 0.16‰, respectively (n=6 for each certified 

reference materials) which compares well with the certified values of -30.4 ± 0.4‰, 0.4 ± 0.2‰ 

and 20.3 ± 0.2‰. As the aim of the method adaptation was to measure enriched 15N-NH4+ in 

soil extracts, I tested the method also in in-house NH4+ standards with known 15N enrichment 

of 0.366 at%, 1.49 at% and 11.6 at% (Fig. 2.5b). I plotted measured 15N isotopic values (mean 

± standard deviation: 0.367 ± 0.0004 at%, 1.46 ± 0.002 at% and 11.32 ± 0.054 at%) against the 

true (known) values of standards, which showed R2=0.99. Ten replicate measurements of in-

house standard reference material [15N-(NH4)2SO4] resulted, on average, in 98.4±1.6% of the 

true value, indicating a high accuracy of the measurements. The error of ±1.6% is the average 

deviation from the true value. Precision of the 15N measurements was ±0.002 at% (n=10). This 

depicts that the method is fully optimized and ready to be applied further to the soil samples. 

2.4.2 Hypobromite-azide method 

The hypobromite-azide method was used to determine the isotopic composition of NH4+ and 

NO3- in solutions collected from the laboratory incubation experiment in which soil samples 

were extracted with N-free nutrient solution. Therefore, the standards were prepared in the same 

N-free nutrient solution as was used for the incubation experiment. The hypobromite oxidation 

is an important step because it determines the performance of the method. Therefore, the 

oxidation yield of NH4+ to NO2- was checked with a photometer. To check the efficiency of the 

method, I prepared standards with sample volumes of 5 mL (Fig. 2.5a) and 10 mL (Fig. 2 5b).  

The result demonstrated that the sample volume of 10 mL produced an approximately twice 

as high peak area of N2O than the sample volume of 5 mL (Table 2.1), which means that the 

method is working properly. Based on these results, I used a sample volume of 5 mL for my 

analyses. I set all samples to a NH4+-N mass of 0.2 µg by dilution if necessary. Furthermore, I 

checked the recovery of NH4+ by comparing the peak size of samples to that of known 

concentration of standards and observed a mean recovery of 99.6% (n = 8, SD = ±2.8%). 
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Table 2.1: Blanks and standards prepared at different NH4
+ masses (0.1 and 0.2 µg N) at 5 mL and 10 

ml sample volume versus respective signal intensity (peak area, Vs) 

Samples NH4+  

(µg N) 

Sample 

volume (mL) 

  Signal intensity  

(N2O peak area, Vs) 

 Mean signal intensity 

(N2O peak area, Vs) 

Blank-5-1 0.0 5 1.84 1.83 

Blank-5-2 0.0 5 1.81  

Blank-5-3 0.0 5 1.83  

0.1 N-5-1 0.1 5 13.79 14.67 

0.1 N-5-2 0.1 5 13.86  

0.1 N-5-3 0.1 5 16.36  

0.2 N-5-1 0.2 5 28.48 28.03 

0.2 N-5-2 0.2 5 28.26  

0.2 N-5-3 0.2 5 27.34  

Blank-10-1 0.0 10 3.59 3.60 

Blank-10-2 0.0 10 3.49  

Blank-10-3 0.0 10 3.71  

0.1 N-10-1 0.1 10 31.36 31.19 

0.1 N-10-2 0.1 10 31.27  

0.1 N-10-3 0.1 10 30.95  

0.2 N-10-1 0.2 10 61.05 60.30 

0.2 N-10-2 0.2 10 60.01  

0.2 N-10-3 0.2 10 59.86  

 

Blank sizes for this method were small (~ 0.012 µg N) and the contribution of those blanks 

was probably from the reagents or N2O inside the glass vials. I purged a few blank samples with 

He to remove any N2O inside the vial, but this did not reduce blank size. The peak areas of He-

purged standards (1.35 ± 0.15 Vs) were not very different from the ones which were not purged 

with He (1.74 ± 0.11 Vs).  So, I assumed that the blank source might be from the reagents used 

in the preparation. 
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Fig. 2.6: Relationships between different NH4-N masses and signal intensity (N2O peak area, Vs) for 
standards prepared with 5 mL (a) and 10 mL (b) of sample volume. Note the difference in y-axis scaling 

As my samples were enrichned with 15N, I used in-house standards with a known 15N 

enrichment of (15NH4)2SO4 for the calibration of isotopic values. The 15N enrichment used were: 

natural abundance (0.366 at%), 1.49 at%, 3.74 at% and 5.98 at%. Reproducibility of the 15N 

at% among replicate measurements was excellent with a maximum standard deviation of 0.01 

at% (n = 6, for each 15N enrichment). The correlation between the true and measured 15N values 

showed R2=0.99, suggesting that the measurements had a very good accuracy. Ten replicate 

measurements of in-house standard reference material [15N-(NH4)2SO4] resulted, on average, 

in 100.4 ± 0.4% of the true value, indicating a high accuracy of the measurements. The error of 

±0.4% is the average deviation from the true value. Precision of the 15N measurements was 

±0.002 at% (n=10). As reported by McIlvin and Altabet (2005), the theoretical value of the 

slope is 0.5 because of 1:1 contribution of N atoms from NH4+ and NaN3 in the produced N2O. 

The slope of the linear regression of true 15N values on measured 15N values was 0.49 (Fig. 2 

6a) which is close to the expected value of 0.5. The excellent relationship of the true and 

measured 15N demonstrated that the method was fully established and ready for the further 

application to the soil extracts. 
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Fig. 2.7: Relationship between the true and measured 15N concentrations of in-house lab standards 
[True values: (15NH4)2SO4 = 0.366 at%, 1.49 at%, 3.74 at%, 5.98 at%].  

2.5 Conclusions 

I successfully established two different chemical methods to determine enriched 15N 

concentrations of NH4+ in soil extracts. I demonstrated that the microdiffusion method works 

well when the diffusion time is four days. However, this method is not reliable in case of 

samples with low N masses and low volumes of sample solutions. Therefore, the hypobromite-

azide method was additionally established which is more suitable for samples with low N 

masses. It is applicable for samples with NH4+ content as low as 0.1 µg N and sample volumes 

of 5 mL. I observed accurate measurements with both the methods, showing on average 98.4 ± 

1.6% and 99.2 ± 0.8% of the target values for the microdiffusion and hypobromite-azide 

methods, respectively; and precise measurements with standard deviation of 0.002 at%. 

Overall, I conclude that both of the methods have been established and are ready to be used for 
15N isotopic analysis in KCl extracts and soil solutions in our lab. I used the microdiffusion 

method to analyze the KCl extracts of the field experiment and the hypobromite-azide method 

to analyze soil solutions of the laboratory experiment. 
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3.1 Abstract 

We conducted a 15N tracing experiment in laboratory microcosms with field-fresh soil 

samples from a biodiversity experiment to evaluate the relationship between grassland 

biodiversity and N cycling. To embrace the complexity of the N cycle, we determined N 

exchange between five soil N pools (labile and recalcitrant organic N, dissolved NH4+ and NO3- 

in soil solution, and  exchangeable NH4+) and eight N transformations (gross N mineralization 

from labile and recalcitrant organic N, NH4+ immobilization into labile and recalcitrant organic 

N, autotrophic nitrification, heterotrophic nitrification, NO3- immobilization, adsorption of 

NH4+) expected in aerobic soils with the help of the N-cycle model Ntrace. We used grassland 

soil of the Jena Experiment, which includes plant mixtures with 1 to 60 species and 1 to 4 

functional groups (legumes, grasses, tall herbs, small herbs). The 19 soil samples of one block 

of the Jena Experiment were labeled with either 15NH4+ or 15NO3+, or both. In the presence of 

legumes, gross N mineralization and autotrophic nitrification increased significantly because 

of higher soil N concentrations in legume-containing plots and high microbial activity. 

Similarly, the presence of grasses significantly increased the soil NH4+ pool, N mineralization, 

and NH4+ immobilization, likely because of enhanced microbial biomass and activity by 

providing large amounts of rhizodeposits through their dense root systems. In our experiment, 

previously reported plant species richness effects on the N cycle, observed in a larger-scale field 

experiment within the Jena Experiment, were not seen. However, specific plant functional 

groups had a significant positive impact on the N cycling in the incubated soil samples.  

3.2 Introduction 

Anthropogenic activities have resulted in the loss of biodiversity, which can alter ecosystem 

functions including biomass productivity, organic matter decomposition rates, and nutrient 

cycling (Loreau et al. 2001; Hooper et al. 2005; Weisser et al. 2017). Nitrogen (N) is the most 

important nutrient limiting primary productivity in many ecosystems (Elser et al. 2007; Fay et 

al. 2015). Therefore, knowledge of biodiversity-N cycle relationships is necessary to 

understand the consequences of biodiversity loss for the N supply of plants and N leaking into 

the atmosphere and surface and groundwaters. Nitrogen undergoes complex microbially 

mediated transformations in soil that are related to the quantity and quality of soil organic matter 
(Wedin and Pastor 1993; Benbi and Richter 2002; Booth et al. 2005; Fornara et al. 2011; Lang 
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et al. 2015). The quality and quantity of organic matter in grassland soils largely depends on 

the plant species and functional group richness responsible for differences in litterfall, root 

turnover, and root exudates (Allan et al. 2013; Solly et al. 2013). 

The N transformation processes that are most important for plants and microorganisms are 

those associated with the depolymerization of organic N into amino acids and mineralization-

immobilization turnover of ammonium (NH4+) and nitrate (NO3-), because these N species 

represent the major forms of bioavailable N taken up by plants and microorganisms (Davidson 

et al. 1990; Corre et al. 2002; Schimel and Bennett 2004; Zhang et al. 2016). Depolymerization 

of organic matter is the process by which proteins in organic matter are broken down into 

smaller, N-containing fragments, the amino acids which thereby become accessible for plants 

and microorganisms (Schimel and Bennett 2004; Wild et al. 2015). Gross N mineralization 

includes the release of amino groups as NH4+ which can also serve as a substrate for 

nitrification. By the mechanism of N immobilization, the mineral N is assimilated by 

microorganisms, which compete with plants for fixed N. Nitrogen mineralization and 

nitrification rates are primarily controlled by soil microbial activity, as well as environmental 

factors, such as the availability, quality and quantity of the microbial C source and mineral 

nutrients, soil moisture, and temperature (Booth et al. 2005). For grasslands, previous work has 

suggested that the nitrification to microbial immobilization ratio is an important factor 

controlling NO3- leaching (Stockdale et al. 2002). With regard to controls of the availability of 

NH4+ and subsequent nitrification in an ecosystem, immobilization of NH4+, and fixation and 

release of NH4+ by specific clay minerals (illites and interlayer minerals containing illite layers) 

may also play an important role (Brady and Weil 2002). 

Most studies on the biodiversity-mineralization relationship have focused on net N 

mineralization and/or nitrification rates (Accoe et al. 2004; Fornara and Tilman 2009; Fornara 

et al. 2011; Rosenkranz et al. 2012; Mueller et al. 2013). However, net rates alone do not 

provide a process-based understanding of the N cycle (Hart et al. 1994; Verchot et al. 2002; 

Cheng et al. 2013), which requires the assessment of simultaneously occurring gross N 

transformations (Hatch et al. 2000, Paterson 2003, Bedard-Haughn et al. 2006, Müller et al. 

2007, Cheng et al. 2014). Previous studies reported that increasing species richness increased 

net N mineralization rates (Rosenkranz et al. 2012; Mueller et al. 2013), as well as net 

nitrification rates (Scherer-Lorenzen et al. 2003; Mueller et al. 2013). However, there are 

currently only few studies that have evaluated the relationship between biodiversity and gross 
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N transformation rates, with contrasting results. Zak et al. (2003) and West et al. (2006) reported 

for nutrient-poor, sandy soils from Minnesota, U.S.A. a positive biodiversity-gross N 

mineralization relationship in laboratory incubations, whereas Lama et al. (2020) found the 

opposite relationship in the Jena Experiment based on a 24 h-15N pool dilution approach where 

the 0-5 cm surface soil layer was labeled with 15NH4Cl in the field to determine the rates of 

gross N mineralization, microbial assimilation of NH4+, and gross inorganic N immobilization 

at 76 plots with varying plant mixtures. Lama et al. (2020) attributed their finding to the 

mechanisms that increase the N-use efficiencies of plants with increasing plant species richness, 

which slowed down the N cycle, mainly because of increased C/N ratios of the roots.  

One possible approach to simultaneously assess co-occurring transformation rates in soil 

involves the use of 15N-labeled substrates. Müller et al. (2007) developed a 15N tracing model 

(Ntrace) to quantify gross N transformations in soils. The model integrates pathways of N 

mineralization and immobilization of NH4+ and NO3- into labile and recalcitrant organic pools, 

nitrification of NH4+ to NO3- and from organic N to NO3-, dissimilatory nitrate reduction to 

ammonium (DNRA) (under anaerobic conditions), cation exchange (i.e. ad- and desorption) of 

NH4+ from clay minerals (Müller et al. 2007). Moreover, the model simulates the pool sizes of 

labile and recalcitrant organic N, NH4+, NO3-, and adsorbed NH4+ (Müller et al. 2007). The 

objectives of this study were to apply the Ntrace model to data obtained from laboratory 

incubations of field-fresh soil from the Jena Experiment without plants to evaluate the legacy 

effects of plant community composition (species richness, functional group richness, presence 

and absence of four functional groups - legumes, grasses, tall herbs, and small herbs) on the N 

pool size and gross N transformation rates in grassland soils. In line with previous applications 

of Ntrace, we incubated soil without plants so that the plant diversity effect originates from the 

previous plant effects on the microbial community. In the Jena Experiment, it has been shown 

that the different mixtures of root deposits into the soil released by the differently diverse plant 

communities communities and the effects of the plant community composition on abiotic 

conditions including soil moisture and nutrient availability shape the microbial community 

composition (Lange et al. 2014; Dassen et al. 2017; Weisser et al. 2017) A better understanding 

of the relationship between biodiversity and the complex N cycle will improve our prediction 

of possible biogeochemical consequences arising from the expected loss of biodiversity and 

changing plant community composition including possible changes in the N availability for 
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plant growth and increasing N leaking in gaseous form to the atmosphere or as nitrate to surface 

and groundwaters with their known detrimental effects on climate and water quality (Sutton et 

al. 2011). 

3.3 Materials and methods 

3.3.1 Study site 

Our study contributed to the Jena Experiment (www.the-jena-experiment.de), a long-term 

grassland biodiversity experiment established in 2002 (Roscher et al. 2004; Weisser et al. 2017). 

The site had been used as arable land for at least 40 years before the initiation of the Jena 

Experiment. The experimental site is located on the floodplain of the river Saale in Jena, 

Germany (50°55' N, 11°35' E; 130 m above sea level). The mean annual air temperature at the 

site is 9.9°C, and mean annual precipitation amounts to 610 mm (Hoffmann et al. 2014). The 

soil at the site is classified as Eutric Fluvisol developed from 2 m thick loamy fluvial sediments 

(IUSS Working Group WRB 2014). The soil texture ranges from sandy loam close to the river 

to silty loam with increasing distance from the river. The experimental site is mown twice 

mimicking the locally common land use as a low-intensity hay meadow and weeded three times 

per year to maintain the designed diversity levels. The major aim of its establishment was to 

explore the effect of biodiversity on nutrient cycling and trophic interactions (Roscher et al. 

2004).  

The detailed description of the experimental design can be found in Roscher et al. (2004), 

and major results are reviewed in Weisser et al. (2017). The main field experiment consists of 

82 plots in four blocks to account for the systematic change in soil texture perpendicular to the 

river, with a factorial design of different levels of plant species richness (SR: 1, 2, 4, 8, 16, and 

60) and 1 to 4 functional groups (grasses, legumes, small herbs, and tall herbs). The mixtures 

were randomly drawn from a pool of 60 species representing a typical Central European 

mesophilic grassland. Each level of species richness was replicated on 16 plots, except for the 

16 and 60 species richness levels, which are replicated only in 14 and 4 plots, respectively. Only 

Block 2 (n = 19 plots) was considered for this study, which included all the levels of plant 

species richness from 1-16 species in fourfold replication, except for the 16-species mixture, 

for which only three replicates existed.  
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Because the characterization of the soil microbial community composition might help in the 

interpretation of our results but was beyond the scope of our study, we refer to two studies from 

the same soils of the Jena Experiment (Lange et al. 2014; Dassen et al. 2017). Lange et al. 

(2014) reported for the year 2007 based on phospholipid fatty acid patterns that the fungal-to-

bacterial biomass ratio was positively affected by plant functional group richness and 

negatively by the presence of legumes. Bacteria were more closely related to abiotic differences 

caused by plant diversity such as soil moisture, while fungi were more affected by plant-derived 

organic matter inputs defined by the composition of functional groups. Dassen et al. (2017) 

determined the composition of the fungi, bacteria, archaea, and protists community in the year 

2010 based on 454-pyrosequencing. They found 4,025 bacterial, 23 archaeal, and 826 

unclassified OTUs based on the amplification 16S rRNA gene fragments and 431 fungal, 174 

protist, 9 plant, and 374 unclassified OTUs based on the amplification of eukaryotic 18S rRNA 

fragments. The most dominant taxonomic group of bacteria was the Chloroflexi. The most 

diverse bacterial groups were Proteobacteria and Planctomycetes. A total of 19 putative 

rhizobial OTUs were recovered across the experimental fields. The most dominant taxonomic 

group of eukaryotes was Ascomycota, which was also the most diverse fungal group. In total, 

19 arbuscular mycorrhiza fungi (AMF) OTUs (phylum Glomeromycota) were recovered across 

all plant communities. Of the main protist supergroups, Rhizaria were well represented. 

Although protists represent a relatively small proportion (< 2%) of the total eukaryotic 

community, their diversity was considerable, with 174 detected OTUs. The main findings with 

respect to the relationship between plant community composition and soil organisms were that 

plant and functional group richness had little influence on the soil microbial community 

composition, which was more driven by the presence of legumes and by the small-scale abiotic 

variation at the field site (Dassen et al. 2017). 

3.3.2 15N tracing experiment and sample analysis 

To assess the importance of NH4+ fixation by clay minerals such as illites in the study soils, 

we conducted a sorption experiment in the context of our field 15N tracer experiment reported 

Lama et al. (2020). We added 25 µg N (98 at% 15N) as NH4Cl to a 100 cm³ stainless steel core 

inserted in the 0-5 cm soil layer and determined the recovery of the applied NH4+ by extraction 

with 1 M KCl 15 min after the application. Our mean recovery (± standard deviation) was 

98±1.4%, from which we infer that NH4+ fixation is negligible in our study soils. 
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Soil samples were collected from Block 2 of the experimental site in October 2014, i.e. 12 

years after the establishment of the vegetation mixtures. Approximately 400 g of field-fresh soil 

was sampled from each plot by combining 15 soil cores (Ø=1 cm, depth=15 cm). The soil 

samples were sieved (< 2 mm) in field-fresh state, and from each soil sample three replicates 

of 100 g of soil were produced. These field-fresh soil sample replicates were amended with 
15N-NH4+, 15N-NO3- or both (98 at%), applied as 0.5 µg 15NH4Cl-N g-1 and 0.25 µg K15NO3-N 

g-1 dry soil. After the 15N-label addition, samples were mixed thoroughly to ensure a 

homogeneous 15N distribution and placed in incubation vessels with a ceramic filter (pore 

diameter of 0.4 μm). Above and below the soil samples, glass wool was inserted to prevent 

dispersion during rinsing. Finally, all the incubation vessels containing the soil samples were 

sealed with rubber stoppers and incubated for 16 days in the dark at a constant temperature of 

20 ± 1 °C. To maintain aerobic conditions inside the incubation vessels, the soil samples were 

aerated by removing the rubber stoppers for one hour each day. Soil samples were extracted by 

percolation with 100 mL of a N-free nutrient solution (4 mM CaCl2, 2 mM KH2PO4, 1 mM 

MgCl2, 1 mM K2SO4, 1 mM MgSO4, 25 µM H3BO3, 2 µM MnSO4, 2 µM ZnSO4, 0.5 µM 

CuSO4 and 0.5 µM Na2MoO4; Nadelhoffer 1990) before 15N labeling and at 12 hours and 2, 4, 

9 and 16 days after the 15N application. The nutrient concentrations were adjusted to optimize 

conditions for soil microorganisms (Nadelhoffer 1990). Percolation leaching was facilitated by 

applying a 200 kPa vacuum for half an hour. We conducted the experiment with field-fresh 

soils and determined the initial water content, which ranged from 26.7 to 31.4 vol%, by drying 

subsamples at 105°C. We maintained the initial water content by always carefully extracting 

the full volume of the added nutrient solution with the help of a vacuum. Because the 

microcosms were closed except during the short openings for aeration, we assumed that the 

evaporation loss was negligible. Consequently, the water content should have remained stable. 

To reduce the analytical load, samples of days 4 and 9 were combined to yield a single 

composite sample. 

The pH of the soil solutions was measured with a glass electrode (Orion U402-S7, Thermo 

Fisher Scientific, Waltham, MA, USA). Concentrations of NH4-N and NO3-N in the extracts 

were measured colorimetrically with a continuous flow analyzer (SAN++, Skalar, Breda, The 

Netherlands). The 15N isotopic composition of NO3- were determined by using the bacterial 

denitrification method, in which Pseudomonas aureofaciens is used to convert NO3- to N2O, 

followed by isotopic analysis (Sigman et al. 2001; McIlvin and Casciotti et al. 2011). The 
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isotope ratios of the N2O gas were analyzed with a Gas-Bench II pre-concentration unit 

interfaced with Delta V Plus isotope ratio mass spectrometer (Thermo Fisher Scientific, 

Bremen, Germany) at the Basel Stable Isotope and Biogeochemistry Laboratory, University of 

Basel. The N isotope ratios in NH4+ were determined using the hypobromite-azide method, in 

which NH4+ is first converted to NO2-, and further to N2O by reduction with azide (Zhang et al. 

2007). The N2O is then purified and analyzed as described above for NO3--derived N2O. 

To determine the concentrations of total N (TN), aliquots of the soil samples were dried and 

sieved (2 mm mesh), and the dried samples were then ground using a ball mill. TN 

concentrations were determined with an elemental analyzer (Elementaranalysator vario Max 

CN, Elementar Analysensysteme GmbH, Hanau, Germany).  

Microbial respiration was measured using an electrolytic O2 micro-compensation apparatus 

(Scheu 1992). O2 consumption of soil microorganisms in 5 g of fresh soil was measured at 22°C 

over a period of 24 h. Basal respiration [µl O2 g-1 dry soil h-1] was calculated as the mean of the 

O2 consumption rates determined between 14 to 24 hours after the start of the measurements. 

The measurement only started after 14 h, because initially, the O2 consumption showed strong 

variations which are caused by the soil disturbance and only after 14 h, the respiration rates 

stabilized. 

The microbial C/N ratio from a comparable sampling in 2008 was determined from the data 

of microbial biomass C and N, which was measured using chloroform fumigation extraction 

(Brookes and Landman 1985). Two samples of 7 g soil were taken from each plot, one was 

fumigated with chloroform vapor for 24 h, and the other was not fumigated. Both, the fumigated 

and non-fumigated samples were extracted with 40 mL 0.5 M K2SO4 by shaking for 30 minutes. 

Total C and N concentrations in the extracts were analyzed by dry combustion in a DIMA-TOC 

100 Analyzer (Dimatec, Essen, Germany). Microbial biomass C was calculated as (total C in 

fumigated soil – total C in non-fumigated soil)/0.45 (Wu et al. 1990). Likewise, microbial 

biomass N was calculated as (total N in fumigated soil – total N in non-fumigated soil)/0.54 

(Brookes and Landman 1985). The microbial C/N data were only available for the year 2008. 

However, Strecker et al. (2016) showed that both, the basal respiration and the microbial 

biomass C had similar sizes and similar significant relationships with plant species richness in 

2008 and 2014. Thus, the size and activity of the microbial community were similar in 2008 

and 2014, from which we inferred that it is likely that this is also true for the microbial C/N.  
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3.3.3 Quantification of N pools and gross transformation rates 

The initial pool size of the exchangeable (= adsorbed) NH4+ pool, which represents the NH4+ 

retention by the soil shortly after addition of the 15NH4+, was calculated as the difference 

between applied NH4+ and initial dissolved NH4+ (on day 0). Because the first measurement of 

dissolved NH4+ only occurred after 12 h, we inferred the initial dissolved NH4+ concentration 

by back-extrapolation of those measured on days 1 and 2 (Müller et al. 2004). The start values 

of the exchangeable (= adsorbed) NH4+ pool ranged 0.174-0.180 µg N (g soil)-1 (mean: 0.177 

± standard error 0.0002 µg N (g soil)-1). The initial pool size of soil organic N was calculated 

from the difference between total soil N and the sum of 1 M KCl-extractable N (NH4+-N and 

NO3-N, see Oelmann et al. 2011 for a detailed description of the 1 M KCl extract). Soil organic 

N was divided into two pools, labile organic N (Nlab) and recalcitrant organic N (Nrec). In the 

absence of measured start values of labile and recalcitrant organic N concentrations, we used 

the model default values of 1% labile and 99% recalcitrant N as start values in line with previous 

studies in which the same model (Ntrace) was applied (Müller et al. 2004; 2007; Huygens et al. 

2007). The estimate of 1% labile organic N is based on a study of Causarano et al. (2008). The 

start values of Nlab ranged 21.0-31.0 µg N (g soil)-1 (26.4 ± 0.71 µg N (g soil)-1) and of Nrec 

2080-3065 µg N (g soil)-1 (2610 ± 70.7 µg N (g soil)-1). The changes of the pool sizes of 

exchangeable (= adsorbed) NH4+ and the two organic N pools during our 16-day incubation 

experiment were minor and therefore we only evaluated the influence of plant community 

composition on the start values of these pools. 

We determined the rates of eight gross N transformation pathways by integrating the 

experimental data (i.e. pool sizes and 15N enrichment in various N pools with time) in the Ntrace 

model (Müller et al. 2007; Fig. 3. 1). The measured NH4+ and NO3- concentrations and 15N 

enrichment values were supplied to the model and gross N transformation rates were calculated 

using zero-order or first-order kinetics. The best fit between modeled and observed data was 

determined based on Akaike Information Criterion (AIC) by stepwise modification of the 

parameters included in the optimization routine and their respective kinetic settings (Table 1). 

Based on the kinetic settings and the final parameters, gross N transformation rates were 

calculated by integrating the rates over the 16-day period divided by the total time. The Ntrace 

model was programmed in the software MatLab 7.9 (The MathWorks Inc., Natick, MA, U.S.A.) 

and the 15N tracing model that was separately set up in Simulink 7.4 (The MathWorks Inc.).  
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Fig. 3.1: Schematic representation of the 15N tracing model (Müller et al. 2007). It includes five N pools: 
dissolved ammonium (NH4

+), dissolved nitrate (NO3
-), labile soil organic N (Nlab), recalcitrant organic 

N (Nrec), and exchangeable (termed “adsorbed” in previous work; Müller et al. 2004; 2007; Huygens 
et al. 2007) NH4

+ (NH4
+

ads) and ten gross N transformation rates: mineralization of recalcitrant organic 
N (MNrec), mineralization of labile organic N (MNlab), immobilization of NH4

+ to recalcitrant organic N 
(INH4-Nrec), immobilization of NH4

+ to labile organic N (INH4-Nlab), oxidation of recalcitrant organic N to 
NO3

- (ONrec), oxidation of NH4
+ to NO3

- (ONH4), immobilization of NO3
- to recalcitrant organic N (INO3), 

dissimilatory NO3
- reduced to NH4

+ (DNO3), adsorption of NH4
+ into the exchangeable NH4

+ pool (ANH4), 
release of exchangeable (adsorbed) NH4

+ to NH4
+ (RNH4a). 

Total mineralization rates were calculated by summing up mineralization rates from both, 

the labile and recalcitrant organic N pools (MNlab + MNrec). Total NH4+ immobilization rates 

were calculated by summing up NH4+ immobilization rates from both NH4+ immobilization 

rates of labile and recalcitrant organic N pools (INH4-Nlab + INH4-Nrec). Total nitrification rates 

were calculated by summing up the rate of NH4+ oxidation and organic N oxidation (ONH4 + 

ONrec). Since the dissimilatory nitrate reduction to ammonium (DNRA, DNO3) and the 

desorption of NH4+ (RNH4a) were negligible in our experiment at the given conditions, we 

excluded these two transformation rates from further data analysis. All N transformation rates 

and N pools were normalized to the TN concentration of the soil solid phase. 

3.3.4 Statistical analyses 

We used repeated measures and sequential ANOVA (type I sum of squares) to inspect effects 

of plant species richness, functional group richness, and presence/absence of each functional 

group on the two dissolved mineral N pools of different days, the initial exchangeable (= 

adsorbed) NH4+ and the total organic N pools and for the eight different gross N 

transformations. Lilliefors normality test and histograms were used to check for the normal 
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distribution of residuals. The residuals vs. fitted and Q-Q plots were also used to check the 

assumption of homoscedasticity and normality of the residuals. NH4+ and NO3- pools were log-

transformed; MNlab and ONH4 were square root-transformed; and INH4-Nlab was log-transformed 

to improve normal distribution of the residuals. The ANOVA was performed with plant species 

richness and presence/absence of each functional group as explanatory variables to analyze the 

effect of plant species richness and presence/absence of each functional group on mineral N 

pools and gross N transformations. The functional groups were fitted in the following order: 

legumes, grasses, tall herbs, and small herbs. Because we assumed that legumes have the 

strongest effect on the N cycle as a consequence of their N2 fixing ability, we fitted legumes 

before other functional groups. Grasses also significantly impacted N transformations, while 

small herbs were shown to have the least or no effect (Oelmann et al. 2007; Eisenhauer et al. 

2010). The interactions between plant species richness and presence/absence of functional 

groups were not significant and therefore were not considered in the final models. To avoid the 

collinearity between functional group richness and each functional group, a separate model was 

set up to test the effect of functional group richness on N pools and gross N transformation 

rates. All the statistical analyses were conducted in R studio (R Studio, Version 1.1.456, R 

Studio Inc., Boston, MA USA) with the free statistical software R 3.5.1 (R Core Team 2016). 

The type I error rate for all statistical analyses was p < 0.05. 

3.4 Results 

3.4.1 Pool size changes of dissolved mineral N during the incubation 

The N amendments, which contributed less than 6 per cent of the existing mineral N pool at 

the time of the experiment, did not markedly affect the total amount of mineral N in the soil 

samples (as extracted with 1 M KCl). About 97-99 per cent of the added 15N enrichments were 

recovered until the end of the experiment (day 16) in the solutions indicating that there were no 

or negligible gaseous losses by denitrification and/or ammonia volatilization. The pH of the soil 

solutions ranged 7.6 to 8.2. 

Both, the dissolved NH4+-N and NO3--N concentrations showed parallel temporal courses 

irrespective of the kind of labeling and the species richness (Fig. 3.2). Across 15N treatments 

and plots, the average concentrations of NH4+ declined from 0.30 ± 0.03 µg N(g soil)-1 measured 

on the first day of incubation to 0.07 ± 0.01 µg N (g soil)-1 on Day 16. In contrast, NO3- 

concentrations changed only from 1.28 ± 0.14 µg N (g soil)-1 to 1.18 ± 0.11 µg N (g soil)-1 
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analyzed on Day 1 and Day 16 of the incubation experiment, respectively. Differences in the 

pool sizes of both dissolved NH4-N and NO3-N at least between some incubation days were 

significant as reflected by the significant effect of time (day) on these pools (Table 3.2). 

 

Fig. 3.2: Relationship between plant species richness and inorganic N pools (NH4
+, NO3

-) differentiated 
according to the labeling of 15N-NH4Cl (a, b), 15N-KNO3 (c, d) and combination of 15N-NH4Cl + 15N-
KNO3 (e, f). Data are presented as mean ± standard error (SE). Note the differences in y-axis scaling 

	

	

	
	
	
	
	
	
	
	
	

0.0

0.2

0.4

0.6

0.8

1.0

1.2

SR1 SR2 SR4 SR8 SR16

N
H
4+

[µ
g 

N
 g
-1

] 

Day 1 Day 2 Day 4+9 Day 16

a

0.0

1.0

2.0

3.0

4.0

5.0

SR1 SR2 SR4 SR8 SR16

N
O
3-

[µ
g 

N
 g
-1

] 

b

0.0

0.2

0.4

0.6

0.8

1.0

1.2

SR1 SR2 SR4 SR8 SR16

N
H
4+

[µ
g 

N
 g
-1

] 

c

0.0

1.0

2.0

3.0

4.0

5.0

SR1 SR2 SR4 SR8 SR16

N
O
3-

[µ
g 

N
 g
-1

] 

d

0.0

0.2

0.4

0.6

0.8

1.0

1.2

SR1 SR2 SR4 SR8 SR16

N
H
4+

[µ
g 

N
 g
-1

] 

Plant species richness

e

0.0

1.0

2.0

3.0

4.0

5.0

SR1 SR2 SR4 SR8 SR16

N
O
3-

[µ
g 

N
 g
-1

] 

Plant species richness

f



3.4 Results 

 63 

The interaction between day and species richness had a marginally significant influence on 

the dissolved NO3- pool (Table 3.2). Functional group richness did not show significant effects 

on the dissolved NH4+ and NO3- pool sizes (Table 3.2). The relationship between the presence 

of grasses and the dissolved NH4+ pool size was significantly positive (Table 3.2, Fig. 3.3). The 

effect of legumes on the dissolved NH4+ pool changed over time as reflected by the significant 

interaction between day and presence of legumes (Table 3.2). The concentration of 15N in 

dissolved NH4+ and NO3- remained constant (Fig. 4a) or decreased during the incubation (Fig. 

4b-f). Interestingly, 15N was detected in NH4+, when only 15N-NO3- was applied (Fig. 4c). 

The presence of grasses had a marginally significant negative effect on the initial 

exchangeable (= adsorbed) NH4+ pool (Table S3.1). Plant species richness increased both, the 

initial labile and recalcitrant organic N pools (Table S3.2, Fig. S3.1). 

 

Fig. 3.3: Effect of grasses on the NH4
+ pool over different days of incubation. Data are presented as 

mean ± standard error (SE). Grey and white bars represent presence (+) and absence (-) of grasses 
respectively. Significance code: **p<0.01 

3.4.2 Gross NH4+ production  

Gross N mineralization from labile organic N ranged between 0.01 and 1.94 µg N (g soil) -1 

d-1 and from recalcitrant organic N between 0.006 and 1.35 µg N (g soil)-1 d-1 (means and 

standard deviations [SD] are shown in Table 3.1). We did not find any significant relationship 

between plant diversity and N mineralization from recalcitrant organic N. The positive effect 

of functional group richness on N mineralization from the labile organic N pool was only 
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marginally significant (Table 3.3, Fig. 3.5a). The presence of legumes or grasses had a 

significant positive effect on the N mineralization rate from labile organic N (Table 3.3, Fig. 

3.5b, c). 

 

Fig. 3.4: Relationship between plant species richness and 15N enrichment (15NH4
+, 15NO3

-) 
differentiated according to the labeling of 15N-NH4Cl (a, b), 15N-KNO3 (c, d) and combination of 15N-
NH4Cl + 15N-KNO3 (e, f). Data are presented as mean ± standard error (SE). Note the differences in y-
axis scaling 
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3.4.3 Gross NO3- production  

Gross heterotrophic and autotrophic nitrification rates ranged from 0.05 to 3.66 µg N (g soil) 

-1 d-1 and from 0.20 to 3.62 µg N (g soil) -1 d-1, respectively (means and SD in Table 3.1). Neither 

plant species richness nor functional group richness (Table 3.4) significantly affected 

autotrophic nitrification. The presence of legumes significantly increased autotrophic 

nitrification rates (Table 3.4, Fig. 3.6a). We did not detect any significant effects of plant 

community composition on heterotrophic nitrification from the recalcitrant organic N pool. 

 

 

Fig. 3.5: Relationship between functional group richness and the gross N mineralization from the labile 
organic N pool (MNlab) (a) and effects of presence (+)/ absence (-) of legumes (b), and presence/absence 
of grasses (c) on the gross N mineralization from the labile organic N pool (MNlab). The whiskers on 
Fig. 3.5b, c represent standard errors. Significance codes: *p<0.05 and •p<0.1 

 



3.4 Results 

 66 

Table 3.1: Description of model parameters and average gross N transformation rates (mean and standard deviation) estimated with the Ntrace model reported 
for each plant species richness (SR) level: 1, 2, 4, 8 and 16 (SR1, SR2, SR4, SR8 and SR16) in a grassland soil.  

Parameters Description Kinetics * 
N transformation rates (µg N (g soil)-1 d-1) 

SR1 SR2 SR4 SR8 SR16 
Mean SD Mean SD Mean SD Mean SD Mean SD 

MNlab Mineralization of Nlab to NH4+ 1 0.76 0.68 1.08 0.69 0.58 0.40 1.10 0.74 1.19 0.66 

MNrec Mineralization of Nrec to NH4+ 0 0.65 0.43 0.67 0.55 0.36 0.32 0.69 0.28 0.45 0.42 

INH4-Nlab Immobilization of NH4+ to Nlab  1 0.22 0.14 0.28 0.18 0.24 0.22 0.18 0.09 0.31 0.22 

INH4-Nrec Immobilization of NH4+ to Nrec 1 0.03 0.004 0.03 0.01 0.02 0.01 0.02 0.01 0.03 0.003 

ONrec Oxidation of Nrec to NO3- 0 1.58 1.37 1.59 0.90 2.57 0.98 1.24 0.95 1.51 1.90 

INO3 Immobilization of NO3-  1 2.96 1.97 3.89 2.12 4.09 1.54 3.47 1.31 3.72 2.87 

ONH4 Oxidation of NH4+ to NO3- 1 1.38 0.49 1.82 1.37 0.99 0.37 1.83 1.00 1.45 1.10 

ANH4 Adsorption of NH4+ 1 0.03 0.01 0.03 0.01 0.02 0.01 0.02 0.01 0.03 0.01 

*Kinetics: 0 = zero-order, 1 = first-order 

 

 

 

 



3.4 Results 

 67 

Table 3.2: Results of repeated measure ANOVA showing the effects of plant species richness, functional group richness and presence (+)/absence (-) of each 
functional group on ammonium (NH4

+) and nitrate (NO3
-) pools measured on different days of incubation. Bold letters show significance at p < 0.05 and italics 

letters show marginal significance at p < 0.1. Non-significant within subject effects are excluded from the table. Arrows indicate positive (↑) effect. 

   Dissolved NH4+ pool        Dissolved NO3- pool 

 

Source    Df SS  F  P  Df  SS  F P 

Between subject effects 

Plant species richness  1 0.01  0.02  0.885  1  0.18  0.08 0.778 

Functional group richness 1 0.00  0.00  0.991  1  0.08  0.04 0.845 

Presence of legumes  1 0.28  0.93  0.354  1  0.65  0.29 0.598 

Presence of grasses  1 2.78  9.25  0.009 ↑  1  1.99  0.89 0.362 
Presence of tall herbs  1 0.16  0.52  0.484  1  0.12  0.05 0.823 

Presence of small herbs 1 0.43  1.44  0.252  1  0.69  0.31 0.586 

Within subject effects 

Day    3 29.14  28.81  <0.001  3  2.38  7.09 <0.001 
Day * Presence of legumes 3 2.93  2.90  0.047  -  -  - - 

Day * species richness - -  -  -  3  0.88  2.62 0.065 
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Table 3.3: Sequential ANOVA results showing the effects of plant species richness, functional group richness and presence (+) /absence (-) of each functional 
group on gross N mineralization from the labile organic N pool (MNlab) and on immobilization of NH4

+ into the labile organic N pool (INH4-Nlab). Bold letters 
show significance at p < 0.05 and italics letters show significant at p < 0.1. Arrows indicate positive (↑) and negative (↓) effects. 

   MNlab       INH4-Nlab 

 

Source    Df SS  F  P  Df  SS  F  P 

Species richness   1  0.13   1.41   0.256  1    0.06     0.15   0.707    

Functional group richness 1 0.52  4.06  0.060 ↑  1  0.54  1.07  0.315 

Presence of legumes        1  0.43   4.85  0.046 ↑  1    0.13     0.35   0.566    
Presence of grasses        1  0.68   7.70   0.016 ↑  1    3.58  9.65   0.008 ↑ 
Presence of tall herbs     1  0.29   3.24   0.095 ↓  1    0.03     0.07   0.792     

Presence of small herbs    1  0.00   0.01   0.907  1  0.56   1.51  0.241 
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Fig. 3.6: Effects of the presence (+)/absence (-) of legumes on autotrophic nitrification (ONH4) (a) and 
presence (+)/absence (-) of grasses on the immobilization of NH4

+ in the labile organic N pool (INH4-Nlab) 
(b). Whiskers represent standard errors. Significance code: *p<0.05 

3.4.4 Gross NH4+ and NO3- immobilization  

The NH4+ immobilization rates into the labile and recalcitrant organic N pools ranged from 

0.05 to 0.55 and from 0.003 to 0.04 µg N (g soil)-1 d-1, respectively and the NO3- immobilization 

rates ranged from 0.94 to 6.97 µg N (g soil)-1 d-1 (means and SD in Table 3.1). Neither plant 

species richness nor functional group richness significantly affected the NH4+ immobilization 

into the labile (Table 3.3) and the recalcitrant organic N pools. Grasses significantly increased 

the immobilization of NH4+ into the labile organic N pool (Table 3.3, Fig. 3.6b). There were no 

significant effects of plant community composition on the immobilization of NO3- into the 

organic N pool.  

3.4.5 Microbial properties versus gross N transformation rates 
Given their known role as drivers of N transformations (Fornara et al. 2011), microbial 

activity likely is a principal factor that needs to be considered when trying to explain the 

observed differences in gross N transformation rates (Booth et al. 2005). Microbial C/N ratios 

showed a marginally significant negative correlation with N mineralization from labile organic 

N, and a significant negative correlation with autotrophic nitrification (Fig. 3.7a, b). 

Furthermore, we found a marginally significant positive relationship between basal respiration 

and immobilization of NH4+ into the labile organic N (Fig. 3.7c). 
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Fig. 3. 7: Relationships between microbial C/N ratio and N mineralization into labile organic N (MNlab) 
(a), microbial C/N ratio and autotrophic nitrification (ONH4) (b) and basal respiration and ammonium 
immobilization from labile organic N (INH4-Nlab) (c). P and r-values refer to the results from Pearson’s 
correlation tests. Solid line shows significance at p<0.05 and dotted lines show significance at p<0.1. 
Note the difference in y-axis scaling 

 

Table 3.4: Sequential ANOVA results showing the effects of plant species richness, functional group 
richness and presence (+) /absence (-) of each functional group on autotrophic nitrification (ONH4). 
Bold letters show significance at p < 0.05. Arrows indicate positive (↑) effects.  

Source     Df   SS   F  P  

Species richness   1   0.00   0.02   0.906   

Functional group richness  1  0.29  2.20  0.157 

Presence of legumes     1   0.61   5.12   0.041 ↑ 
Presence of grasses         1   0.32   2.74   0.122   

Presence of tall herbs      1   0.04  0.37   0.554   

Presence of small herbs     1   0.01  0.07   0.790   
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3.5 Discussion 

3.5.1 Pool sizes and gross N transformation rates  
The drastic dilution of applied 15N-NH4+ in the soil extracts during the incubation (Fig. 3.2a, 

4a) indicated that there was a rapid release of unlabeled NH4+ from the organic matter into the 
15N labeled NH4+ pool. Huygens et al. (2007) suggested that the rapid disappearance of labeled 

NH4+ might be attributable to the exchange of the labeled NH4+ by adsorbed NH4+ on clay 

minerals or other cation-exchanger sites. The increase in the 15N enrichment of the NH4+ pool 

in the 15NO3- labeled treatments (Fig. 3.4c) can be attributed to the re-mineralization of recently 

immobilized 15NO3-. The gradual decline of 15NO3- concentrations in the soil extracts during 

the incubation (Fig. 3.4d) demonstrated that NO3- at natural abundance entered into the 15N-

labeled NO3- pool via autotrophic or heterotrophic nitrification. Throughout the incubation, the 

pool sizes of dissolved mineral N (i.e. the sum of the NH4-N and NO3-N concentrations) 

remained nearly constant (Fig. 3.2), which showed that the net N transformation rates were 

similar for all plots. The study conducted by Huygens et al. (2007) in unpolluted South Chilean 

forests also found almost constant pool sizes at low net mineralization and nitrification rates. 

The rate of gross N mineralization (MNrec + MNlab) in our experiment fell within the range of 

0.40 – 4.07 µg N (g soil)-1 d-1 reported in the literature for grasslands (Jamieson et al. 1999; 

Accoe et al. 2004; Müller et al. 2004; McKinley et al. 2008; Müller et al. 2014). The measured 

total NH4+ immobilization rates (INH4-Nrec + INH4-Nlab) were also in the range of 0.10 – 0.88 µg N 

(g soil)-1 d-1 reported by other grassland studies (Hungate et al. 1997; Verchot et al. 2002; Müller 

et al. 2011). The measured rates of heterotrophic nitrification in this study were similar to or 

higher than the range of 0.07 – 1.41 µg N (g soil)-1 d-1 reported in other studies in grassland 

soils (Müller et al. 2004; 2009; Laughlin et al. 2009). The autotrophic nitrification rates 

determined in this study are in the range of 0.10 – 2.88 µg N (g soil)-1 d-1 reported for other 

grassland studies (Zaman et al. 1999; Accoe et al. 2004; Müller et al. 2009; Demey et al. 2014).  

The NO3- immobilization rates were similar to or higher than the range of 0.81 – 3.84 µg N 

(g soil)-1 d-1 reported in the literature for grasslands (Davidson et al. 1990; Watson et al. 2000; 

Corre et al. 2002). The NO3- immobilization rates in our study were comparable to the total 

nitrification rates, which showed that the NO3- produced via nitrification was completely 

assimilated by microorganisms, leaving little space for NO3- leaching or denitrification. Aber 

et al. (1989) and Huygens et al. (2007) suggested that N losses via leaching or denitrification 



3.5 Discussion 

 72 

may not occur if N inputs do not exceed plant or microbial N demand. The occurrence of high 

NO3- immobilization is also attributable to the insufficient availability of NH4+ in soil (Fig. 3.2) 

to meet the microbial demand for N (Rice and Tiedje 1989; Corre et al. 2002). However, both 

nitrification and NO3- immobilization rates were higher than under field conditions, because 

our microcosm experiment did not include plants and thus excluded plant uptake of NH4+. This 

is in line with the suggestion of Kammann et al. (1998) that the increased NO3- concentrations 

observed in laboratory experiments are not likely to occur in the field, because plant uptake and 

leaching would decrease the NO3- concentration in soil.  

3.5.2 Plant diversity effects on N pool sizes 

The presence of grasses significantly increased the dissolved NH4+ pool, probably because 

of their dense rooting system (Oelmann et al. 2007; Bessler et al. 2009; Ravenek et al. 2014). 

The dead roots along with their exudates, which remained in our sample, likely increased 

microbial activity (Van der Krift et al. 2001; Lange et al. 2015; Eisenhauer et al. 2017). The 

increased microbial activity accelerated the decomposition of soil organic matter, which is also 

reflected by the positive effect of grasses on the gross mineralization rate (Table 3.3; Fig. 3.5c). 

At the same time the initial exchangeable (= adsorbed) NH4+ pool was marginally significantly 

lower in the presence of grasses, possibly because of the exhaustive N exploitation of the dense 

grass roots prior to our experiment without plants (Table S3.1). This exhaustive N exploitation 

is also supported by the fact that the presence of grasses reduced NO3--N and total dissolved N 

leaching in the Jena Experiment (Leimer et al. 2016). The increase in the pool sizes of the initial 

labile and recalcitrant organic matter with increasing species richness (Table S3.2, Fig. S3.1) 

can be attributed to the positive effect of increasing species richness on organic matter and total 

N accumulation at the study sites of the Jena Experiment as a consequence of the positive 

species richness-biomass production relationship (Weisser et al. 2017). 

3.5.3 Plant diversity effects on NH4+ production and immobilization processes 
We observed that functional group richness had a marginally significant positive effect on 

gross N mineralization from the labile organic N pool (Table 3.3, Fig. 3.5a). A similar positive 

effect of plant species richness on gross N mineralization was reported by Zak et al. (2003) and 

West et al. (2006) in laboratory incubation experiments with soils of the Cedar Creek 

biodiversity experiments in Minnesota, U.S.A., where sandy, nutrient-poor soils prevail. In both 

studies the range of species richness was the same as in our study (i.e., 1 to 16 species, but the 
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plant community composition was different). However, both studies did not distinguish 

between mineralization from the labile and recalcitrant organic N pools. Wedin and Pastor 

(1993) have previously reported that labile organic N is important for the N supply of plants in 

grassland, while the recalcitrant organic N is responsible for longer-term N storage. Zak et al. 

(2003) and West et al. (2006) attributed the significant positive relationship between plant 

species richness and gross N mineralization to the high plant productivity resulting in high 

organic inputs to soil, which would have remained in the incubated samples of our experiment. 

Furthermore, we found a marginally significant positive effect of the microbial C/N ratio on 

gross N mineralization rates (Fig. 3.7a). The microbial C/N ratio is also considered one of the 

potential variables influencing the rate of N mineralization, because inorganic N production 

increases when microbial activity increases (Booth et al. 2005).  

Most of the studies on the biodiversity-N cycle relationship reported a positive effect of 

legumes on N pools and transformations. To test if the functional group richness on gross N 

mineralization was mostly driven by legumes, we ran a separate ANOVA by fitting “presence 

of legumes” before “functional group richness”. We found that functional group richness 

explained 19.3% of the total variance, of which 19.2% was explained by the presence of 

legumes alone. This suggests that the presence of legumes indeed explained the functional 

group richness effect. This is in line with earlier findings of Hooper and Vitousek (1998) that 

nutrient cycling is more dependent on certain functional groups rather than on species richness. 

However, later studies have shown that plant species richness significantly influences the N 

cycle irrespective of the functional group composition of the community (Weisser et al., 2017). 

We cannot rule out that the failure to see a species richness effect in our experiment is 

attributable to the comparatively low statistical power of our experiment, which only included 

the soil samples from one out of four blocks of the Jena Experiment, and also to the fact that 

the incubation experiment did not include living plants.  

In a field experiment at the same study site, Lama et al. (2020) observed a significant 

negative relationship between species richness and gross N mineralization, which was mainly 

driven by the increasing root C/N ratios with increasing species richness. Higher species 

richness increased root C/N ratios via the dilution of plant nutrient concentrations, because of 

the greater height of plants in species-rich mixtures as a consequence of the competition for 

light. We can only speculate that under the optimum decomposition conditions of our 
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incubation experiment, and in the absence of active plants, the negative effect of the 

increasingly smaller C/N ratios in roots with increasing species richness was overprinted.  

The positive influence of legumes on gross N mineralization rates from the labile organic N 

pool (Table 3.3, Fig. 3.5b) is likely related to the of the fact that legumes generally increase N 

concentrations in soils (Oelmann et al. 2007; Fornara and Tilman 2008). This results from 

atmospheric N2-fixation (Ledgard 2001; Spehn et al. 2002) or the generally higher N 

concentrations in legumes (Marschner 2012) which will also result in the return of more N to 

the soil. The legume-derived more readily degradable organic matter is introduced into the soil 

via rhizodeposition and aboveground litterfall (Read 1996). The N accumulation in soil in the 

presence of legumes resulted in a higher aboveground biomass in the legume-containing plots 

of the Jena Experiment compared to the legume-free plots (Marquard et al. 2009) further 

increasing the available C pool in soil. Moreover, soil microbial biomass C increases in the 

presence of legumes (Eisenhauer et al. 2010; but see Strecker et al. 2016 for changing legume 

effects over time), and this might have further enhanced gross N mineralization.  

The positive relationship between NH4+ immobilized from labile organic N and the presence 

of grasses (Fig. 3.6b) might be attributable to an enhanced microbial activity (Fig. 3.7c; 

Eisenhauer et al. 2010). Grasses are characterized by dense fibrous roots with a high length 

(Weigelt et al. 2008). Therefore, grasses likely enhanced microbial biomass and activity by 

providing large amounts of root exudates (Van der Krift et al. 2001; Eisenhauer et al. 2010), 

and this grass effect might have persisted in our experiment without plants. 

3.5.4 Plant diversity effects on NO3- production and immobilization processes 
Our study indicates that heterotrophic nitrification of organic N is an important process of 

NO3- production in the studied grassland soils, because heterotrophic nitrification rates were 

similar to the rates of autotrophic nitrification and also because heterotrophic nitrification is the 

other direct way of producing mineral N from organic N. The study by Müller et al. (2004) 

regarded heterotrophic nitrification as the predominant pathway for NO3- production in soils at 

high recalcitrant organic C in a grassland ecosystem. The NH4+ produced by mineralization, 

which is not taken up by plants or immobilized by microbes, is oxidized by nitrifiers and results 

in elevated soil NO3- concentrations. This assumption is corroborated by the positive correlation 

between mineralization and nitrification rates reported in the review of Booth et al. (2005). Our 
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incubation experiment did not include plants and therefore, the produced NH4+ was not taken 

up by plants offering more substrate for the nitrification to NO3- than under field conditions 

with plants. Furthermore, we observed an increasing rate of autotrophic nitrification in the 

presence of legumes (Table 3.4, Fig. 3.6a), because of the higher N concentrations in the 

legume-containing plots of the Jena Experiment (Oelmann et al. 2007). In addition, autotrophic 

nitrification exhibited a significant negative relationship with the microbial C/N ratio (Fig. 

3.7b). Lower microbial C/N ratios which are associated with substrate of high quality (Hart et 

al. 1994) increase microbial activity, thereby enhancing autotrophic nitrification (Booth et al. 

2005; Inselsbacher et al. 2013). Previous studies in the Jena Experiment have shown elevated 

net nitrification (Scherer-Lorenzen et al. 2003) and increased KCl-extractable soil NO3- 

concentrations (Oelmann et al. 2011; Leimer et al. 2014) in the presence of legumes. However, 

Hooper and Vitousek (1997) and Niklaus et al. (2006) found no effects of plant diversity on 

nitrification. 

3.6 Conclusions 

Our study demonstrated that in the absence of plant uptake, almost all the produced NH4+ 

was converted into NO3-. We observed a strong legacy effect of legumes for gross N 

transformations. Legumes particularly had a positive effect on gross N mineralization and 

autotrophic nitrification. Grasses also increased the dissolved NH4+ pool, gross N 

mineralization, and NH4+ immobilization. Heterotrophic nitrification was found to play a vital 

role in soil N cycling. Consequently, future studies should focus on identifying the controlling 

factors of heterotrophic nitrification in grassland soils. 

The fact that we conducted our experiment without plants as is commonly done to collect 

the data needed by the used N cycling model Ntrace limited the transferability of the results to 

the field. Therefore, future studies should include plants and be conducted in growth chambers 

or Ecotrons. Given the partly small effect sizes of plant community composition on several 

elements of the N cycle, it would also be desirable to increase the statistical power of such 

experiments by including more replicates of the various species mixtures than we were able to 

include. 
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Our results indicate that changing contributions of legumes and grasses in response to 

environmental and land-use change will markedly influence the N availability for the plant 

community and possibly also the N leaking into atmosphere and water. However, we could not 

confirm that species or functional group richness tighten the N cycle and deplete mineral N 

concentrations in soil, possibly because of a limited statistical power of our experiment. 
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3.9 Supplementary materials 

Table S3.1: Sequential ANOVA results showing the effects of plant species richness, functional group 
richness and presence (+) /absence (-) of each functional group on the initial exchangeable (=adsorbed) 
ammonium pool (NH4

+
ads). Italics show significance at p < 0.1. The arrow (↓) indicates a negative effect  

Source    Df   SS   F   P  

Species richness  1   5.640e-07   0.39   0.543   

Functional group richness 1  1.810e-07  0.12  0.733 

Presence of legumes  1   2.000e-09   0.00   0.968  

Presence of grasses        1   6.016e-06   4.16   0.062 ↓ 

Presence of tall herbs     1   1.180e-07  0.08   0.780   

Presence of small herbs    1   1.400e-07  0.09   0.761   
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Table S3.2: Sequential ANOVA results showing the effects of plant species richness, functional group richness and presence (+) /absence (-) of each functional 
group on the initial labile organic N pool (Nlab) and on the initial recalcitrant organic N pool (Nrec). Bold letters show significance at p < 0.01. Arrows (↑) 
indicate positive effects 

   Nlab       Nrec 

 
Source    Df  SS  F  P  Df  SS  F  P 

Species richness   1   60.22   10.04   0.007 ↑  1    590869    10.05   0.007 ↑    

Functional group richness 1  18.44  2.01  0.175   1  180791 2.01  0.175 

Presence of legumes        1   10.15   1.69  0.216  1    99369    1.69   0.216   

Presence of grasses        1   11.82   1.97  0.184   1    115724 1.97   0.184  

Presence of tall herbs     1   14.18   2.37   0.148    1   139064    2.36   0.148     

Presence of small herbs    1   0.17   0.03  0.867   1    1704    0.03   0.867   
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Fig. S3.1: Effect of plant species richness on the labile organic N pool (Nlab) (a), and the recalcitrant 
organic N pool (Nrec) (b). Significance codes: **p<0.01. Note the difference in y-axis scaling 
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4.1 Abstract  

Gross rates of nitrogen (N) turnover inform about the total N release and consumption. We 

investigated how plant diversity affects gross N mineralization, microbial ammonium (NH4+) 

consumption and gross inorganic N immobilization in grasslands via isotopic pool dilution. The 

field experiment included 74 plots with 1-16 plant species and 1-4 plant functional groups 

(legumes, grasses, tall herbs, small herbs). We determined soil pH, shoot height, root, shoot and 

microbial biomass, and C and N concentrations in soil, microbial biomass, roots and shoots. 

Structural equation modeling (SEM) showed that increasing plant species richness significantly 

decreased gross N mineralization and microbial NH4+ consumption rates via increased root C/N 

ratios. Root C/N ratios increased, because of the replacement of legumes (low C/N ratios) by 

small herbs (high C/N ratios) and an increasing shoot height, which was positively related with 

root C/N ratios, with increasing species richness. However, in our SEM remained an 

unexplained direct negative path from species richness to both N turnover rates. The presence 

of legumes increased gross N mineralization, microbial NH4+ consumption and gross inorganic 

N immobilization rates likely because of improved N supply by N fixation. The positive effect 

of small herbs on microbial NH4+ consumption and gross inorganic N immobilization could be 

attributed to their increased rhizodeposition, stimulating microbial growth. Our results 

demonstrate that increasing root C/N ratios with increasing species richness slow down the N 

cycle but also that there must be additional, still unidentified processes behind the species 

richness effect potentially including changed microbial community composition. 

4.2 Introduction 

Biodiversity loss has raised concern over the consequences for ecosystem functioning (Isbell 

et al. 2011, Cardinale et al. 2012, Meyer et al. 2016; Weisser et al. 2017). Plant diversity is 

essential for maintaining a variety of ecosystem functions (Hector et al. 1999; Loreau et al. 

2001; Tilman et al. 2001; Roscher et al. 2005; Cardinale et al. 2012), including nitrogen (N) 

cycling (Spehn et al. 2005; Fornara and Tilman 2009; Oelmann et al. 2011; Reich et al. 2012; 

Rosenkranz et al. 2012). Biodiversity experiments have mainly reported increased community 

productivity with increasing plant diversity (Tilman et al. 2001; Spehn et al. 2005; Marquard et 

al. 2009). A potential reason for the positive species richness-biomass production relationship 

might be complementarity effects in species-rich mixtures (Hooper and Vitousek 1998; 
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Fargione et al. 2007; Reich et al. 2012). Complementarity effects occur when more-diverse 

communities increase their performance above the expected performance of monocultures 

through acquiring more nutrients and using available light and space more exhaustively 

(Hooper and Vitousek 1997; Naeem et al. 2002). Complementarity also includes the process of 

facilitation, for example by legumes, which increase the nutrient availability for neighboring 

plants via N fixation (Fargione et al. 2007). However, in about 1/3 of the reported experiments, 

complementarity effects did not increase productivity likely because of the selection for more 

competitive but less productive species at higher diversity (Cardinale et al. 2011). Furthermore, 

sampling effects can arise in biodiversity experiments, if the probability of sampling dominant 

species increases in high diversity levels (Huston 1997; Loreau et al. 2001). To prevent such 

sampling effects and to be able to detect other mechanisms behind biodiversity-ecosystem 

functioning relationships, biodiversity experiments need to be carefully designed (Loreau et al. 

2001; Roscher et al. 2004). Increasing plant diversity modifies resource availability for soil 

microbial communities (Zak et al. 2003), which mineralize organic matter and enhance nutrient 

release by litter decomposition. Plant species differ in their biochemical composition providing 

an incentive for microbes to derive different resources from different litter types (Gartner and 

Cardon 2004). This might result in altering overall decomposition rates of mixtures relative to 

the cumulative composition of individual litter species (Gessner et al. 2010). Jewel et al. (2015) 

reported a faster decomposition rate of monospecific litter in its environment of origin but not 

of mixed litter. Although it has been reported that complementarity can result in high plant 

productivity and N uptake, it is uncertain if the changes in plant diversity affect microbial N 

dynamics. 

Plants play a vital role in ecosystem N cycling because plants assimilate this essential 

nutrient to produce biomass, which is returned as aboveground and belowground litter to soil 

where it is decomposed, thereby releasing the N back into the soil solution (Knops et al. 2002; 

Vitousek et al. 2002). Individual plant species can positively affect the N cycle in soil by the 

activity of plant roots (e.g., fine root turnover, root exudation; Clarholm 1985; Cadisch and 

Giller 1997) and by regulating the quality of plant litter (measured as C/N ratios, Aerts et al. 

1992; Van Vuuren et al. 1993; Abbas et al. 2013; Guiz et al. 2015). Plant species that host N2-

fixing bacteria can change N cycling by improving the N availability to other co-occurring 

species (Mulder et al. 2002; Spehn et al. 2005). Another way in which plant species may affect 
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rates of N cycling is through their association with mycorrhizal fungi, which enhance the ability 

of plants to acquire nutrients (Hobbie 1992). 

Because of the importance of N in all ecosystems and the marked impact of human activities 

on the N cycle, N and its transformations have received a great deal of attention. The supply 

rate of N to the plant and microbe community depends largely on gross N mineralization, which 

is described as the total N transformed from organic N to mineral N forms (NH4+, NO3-) by 

microorganisms in soil over a period of time that can be readily taken up by plants and microbes. 

Microbial ammonium consumption refers to the microbial assimilation of NH4+ plus the gross 

nitrification. Gross inorganic N immobilization is the process of converting inorganic forms of 

N by microbes and other soil heterotrophs to organic N forms. Net N mineralization refers to 

the gross mineralized N minus the quickly microbially consumed N. Net ammonification is the 

difference between gross N mineralization and microbial NH4+ consumption, and net 

nitrification is that between gross nitrification and nitrate immobilization. 

Hobbie (1992) reported that the strong relationship between litter quality and gross N 

mineralization rates might indicate that gross N mineralization rates are determined by the 

quality of litter input. This was corroborated by the results of Van der Krift et al. (2001) who 

reported that the quantity and quality of plant litter determine N release in soil. Because the 

quantity and quality of soil organic matter results from decomposition of aboveground and 

belowground biomass and rhizodeposition, there is also a link between soil organic matter 

quantity and quality and N supply via net N mineralization (Benbi and Richter 2002; Hobbie 

2015). Soil microbes mineralize organic matter and release nutrients by litter decomposition. 

Resource availability for soil microorganisms or microbial uptake is also regulated by litter 

decomposition (Smith and Paul 1990). Plant litter varies in chemical composition; therefore, 

changes in plant communities could alter the production and types of organic compounds in 

soil, thereby controlling the composition and function of microbial communities (Zak et al. 

2003). Moreover, environmental conditions, such as soil pH, soil moisture, soil temperature, 

and soil texture influence gross N mineralization by changing microbial biomass or activity 

associated with substrate availability (Booth et al. 2005; Wang et al. 2016; Zhang et al. 2016). 

In particular, root C/N ratios explained high amounts of variance in gross N mineralization 

rates in soil (Fornara et al. 2011). Litter with high C/N ratios is considered as low quality, 

whereas litter with low C/N ratios is considered as high quality. Previous studies showed that 

high root C/N ratios have a strong negative effect on gross N mineralization (Silver and Miya 
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2001; Fornara et al. 2011). There is increasing evidence that root decomposition may be more 

important than aboveground plant biomass decomposition for organic matter formation and the 

associated N stocks in soil (Rasse et al. 2005; Kramer et al. 2010). The work of Ruppenthal et 

al. (2015) has even suggested that root litter is the dominant source of soil organic matter. 

Fornara et al. (2011) reported that gross N mineralization rates are mainly driven by changes in 

C and N concentrations of soil organic matter. Consequently, root decomposition could be the 

major source of N released by mineralization in soil. This is further supported by Abbadie et al. 

(1992), who found indirect evidence that the most assimilated N originated from root decay in 

African grasslands. 

Plant diversity influences several N-transformation processes in soil via plant uptake of N 

and modifications of ecosystem properties like microbial community or biomass production 

(Hooper & Vitousek 1998; Spehn et al. 2005; Weisser et al. 2017). Previous biodiversity studies 

in grasslands have mainly reported positive relationships between plant species richness and 

both gross and net N mineralization rates (e.g. West et al. 2006; Rosenkranz et al. 2012; Mueller 

et al. 2013) and net nitrification rates in the presence of legumes (Scherer-Lorenzen et al. 2003). 

Rosenkranz et al. (2012) found that the increasing topsoil water content with increasing plant 

species richness was the main factor underlying positive effects of plant species richness on net 

N mineralization rates in the Jena Experiment, the same experimental site as in this study. 

Another plant diversity experiment showed that positive effects of plant diversity on net N 

mineralization rates were driven by increased N concentrations in roots (Mueller et al. 2013). 

In an isotope dilution experiment in the laboratory using soil samples from the BioCON 

experiment in the North American prairie, gross N mineralization rates increased with 

increasing plant species richness because of greater microbial activity (West et al. 2006). In 

addition, net N mineralization rates decreased, and N immobilization rates increased at higher 

species diversity (West et al. 2006). However, the incubation experiment was conducted inside 

a laboratory, which could not necessarily be directly comparable to field conditions (e.g., 

because of cold storage of the samples before lab incubation, controlled incubation temperature, 

and optimum nutrient supply; Arnold et al. 2008). To our knowledge, no study has been 

reported that investigated plant diversity effects on microbial NH4+ consumption and on gross 

inorganic N immobilization rates in situ. 

Besides plant species richness, the presence or absence of specific plant functional groups 

can affect N cycling in grassland ecosystems (Scherer-Lorenzen et al. 2003; Oelmann et al. 



4.2 Introduction 

 92 

2007; Dybzinski et al. 2008; Fornara and Tilman 2009; Fornara et al. 2011; Leimer et al. 2015). 

Legumes constitute a distinct functional group in grasslands because of their ability to fix 

atmospheric N via symbiotic root microorganisms (Spehn et al. 2002; Marquard et al. 2009). 

Mulder et al. (2002) reported that non-leguminous plants depend on N2 fixed by legumes to 

counter-balance the declining soil N availability in unfertilized (near-) natural ecosystems. 

Therefore, many studies concluded that with an increased legume biomass, there is a larger 

plant-available N pool in the soil (Spehn et al. 2002; Booth et al. 2005; Scherer-Lorenzen 2008). 

This larger plant-available N pool can originate from increased gross N mineralization of N-

rich legume litter. Besides legumes, grasses were also found to influence gross N 

mineralization. Oelmann et al. (2007) reported that the presence of grasses decreased mineral 

N pools in soil compared to plant communities without grass species because of their dense and 

extensive rooting system. This extensive rooting system is efficient in taking up soil N and thus 

can reduce mineral N pools in soil (Oelmann et al. 2007). 

The objectives of our study were (i) to investigate if plant species richness, functional group 

richness or the presence/absence of individual functional groups (together termed plant 

diversity) affect gross N mineralization, microbial NH4+ consumption and gross inorganic N 

immobilization rates and (ii) to determine the underlying controls responsible for the potential 

relationships. We hypothesized that there was a positive effect of plant species richness on gross 

N mineralization rates because of the known positive relationship between plant species 

richness and microbial activity in the Jena Experiment (Strecker et al. 2016). Secondly, we 

expected an increasing microbial NH4+ consumption and gross inorganic N immobilization with 

increasing plant species richness because of the higher N demand and the tighter N cycling in 

species-rich than in species-poor plant mixtures. Thirdly, we hypothesized that the presence of 

legumes increased gross N mineralization, microbial NH4+ consumption and gross inorganic N 

immobilization because of the smaller C/N ratio of litter in plant mixtures containing legumes 

compared to plant mixtures without legumes (Chen et al. 2017). Although our focus was on 

gross N turnover rates, we additionally calculated the rates of net mineralization and its 

components net ammonification and net nitrification and analyzed their relationship with plant 

diversity.
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4.3 Materials and methods 

4.3.1 Study site 

Our study was part of the Jena Experiment (www.the-jena-experiment.de), a long-term 

grassland diversity experiment established in 2002 (Roscher et al. 2004; Weisser et al. 2017). 

The site had been used as arable land for at least 40 years before the establishment of the Jena 

Experiment. The experimental site is located on the floodplain of the river Saale in Jena, 

Germany (50°55' N, 11°35' E; 130 m above sea level). Mean annual air temperature is 9.9°C, 

and mean annual precipitation amounts to 610 mm (1980-2010, Hoffmann et al. 2014). The soil 

at the site is classified as Eutric Fluvisol developed from 2-m thick loamy fluvial sediments 

(IUSS Working Group WRB 2014). The soil texture ranges from sandy loam close to the river 

to silty loam with increasing distance from the river. The mean bulk density of the topsoil (0-5 

cm) of the experimental plots is 1.18 ± 0.1 g cm-3; varying little from 1.21 ± 0.1 g cm-3 in Block 

I with the lowest clay content to 1.17 ± 0.1 g cm-3 in Block IV with the highest clay content. 

The experimental site is mown twice and weeded three times a year to maintain the designed 

diversity levels. The biomass was removed after mowing/weeding. This management mimics a 

typical use of semi-natural species-rich mesophilic grassland as hay meadow (Roscher et al. 

2004). A major aim of the Jena Experiment is to explore the effect of biodiversity on nutrient 

cycling and trophic interactions.  

A detailed description of the experimental design is provided in Roscher et al. (2004). The 

main experiment consists of 82 plots (20 m × 20 m) in four blocks to account for the systematic 

change in soil texture perpendicular to the river with a factorial design (as far as possible) of 

different levels of plant species richness (1, 2, 4, 8, 16, and 60) and 1-4 functional groups 

(grasses, legumes, small herbs, and tall herbs). The mixtures were randomly drawn from a pool 

of 60 species representing typical Central European mesophilic grasslands. All the 16 species 

of grasses are perennial except Bromus hordeaceus L. Each level of species richness was 

replicated on 16 plots except for the 16 and 60 species richness levels, which were only 

replicated on 14 and 4 plots, respectively. Since there were only four replicates of the 60-plant 

species mixture, we excluded them from our data analyses (which reduced the number of 

considered plots to 78). Of these 78 plots, we lost two because of errors during the laboratory 

analyses. Those two plots (B2A08 and B4A02) were sown with a species richness level of 2 

and 16 and functional group richness of 2 and 3, respectively. Another two plots (B1A09 and 
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B4A03), both monocultures, were abandoned due to their poor performance (i.e., extremely 

low target species cover). Therefore, our final analyses were based on 74 plots. 

4.3.2. Isotope pool-dilution experiment 

We used the isotope pool-dilution method in a field incubation experiment to determine the 

rates of gross N mineralization in soil (Davidson et al. 1991). We labeled the soil NH4+ pool 

with 98 at% 15N as NH4Cl. While unlabeled N from the organic pool is mineralized to NH4+ by 

microorganisms, the 15N enrichment of the NH4+ pool is diluted. The method of Davidson et al. 

(1991) is based on several assumptions which are valid for short incubation periods of up to 24 

hours. According to these assumptions, (1) there is no or only negligible isotope discrimination 

by microorganisms during the incubation period, so that the consumption of NH4+ alters the 

pool size, but not the isotope ratio of the pool; (2) the turnover rates are constant; and (3) no N 

re-mineralization occurs, so that the assimilated 15N is not returned to the labeled pool. 

A disturbed soil sample was taken to determine the natural 15N abundance and 1 M KCl-

extractable mineral N (NH4+-N and NO3- -N) concentrations on each plot before starting the 

experiment. We performed the field experiment and collected soil samples in April 2011. Two 

pairs of stainless steel cores (Ø = 56 mm, h = 41 mm, V = 100 cm3) were taken from within the 

0-5 cm layer of the soil of each plot (one pair for each time step, t1 and t2), closed at the bottom 

side with a polyethylene lid to prevent leaching losses and immediately reinserted. We averaged 

the two cores for each time step for 15N isotopic analysis to improve plot representativity. The 

soil samples in the cores were labeled with a NH4Cl solution (5 mg L-1 N, 98 at% 15N) using a 

high-precision, digital dispenser (Brand, Wertheim, Germany) coupled to a side-port needle, 

which injected the solution horizontally to ensure a homogeneous distribution of the 5-mL label 

within the cores. For every core, the injections were uniformly distributed at five points, each 

point receiving 1 mL of the tracer solution. In total, 25 µg N (98 at% 15N) were added as label 

to each core, which corresponds to less than 2 percent of the NH4-N concentration in the soil at 

the time of the experiment. 

To account for abiotic N fixation, ensure the 15N enrichment and calculate tracer recoveries, 

one pair of the soil cores was removed from the soil after 15 minutes (t1) and the remaining soil 

cores after 24 hours (t2) to calculate the 15N pool dilution after the field incubation. Soil samples 

from shortly before the pool dilution experiment and from t1 and t2 of the experiment were 

shaken with 1 M KCl solution for one hour shortly (<2 h) after sampling next to the field site 
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to extract NH4+ and NO3- and then filtered through ash-free paper filters (no. 595, Schleicher & 

Schuell, Dassel, Germany, pore size 4–7 μm). The extracts were immediately frozen at –20 °C 

and transported in frozen state to the laboratory for further chemical analyses. 

The concentrations of NH4-N and NO3-N in the 1 M KCl extracts were measured by high-

resolution colorimetric detection using a continuous flow analyzer (CFA Autoanalyzer 3 HR, 

Seal Analytical GmbH, Norderstedt, Germany). We used the microdiffusion method (Stark and 

Hart 1996) to determine the 15N/14N isotope ratios of NH4+ in the soil extracts. In the 

microdiffusion method, NH4+ is volatilized as NH3 by increasing the pH to > 9.5 with MgO. 

The released NH3 was then collected on an acidified (2.5 M NaHSO4) filter disk enclosed in a 

polytetrafluoroethylene (PTFE) envelope, where it reacted back to NH4+. The N isotope ratios 

were determined with an Elemental Analyzer (EA 1110, Carlo Erba Instruments, Milan, Italy) 

coupled to an isotope-ratio mass spectrometer (MAT Delta Plus, Thermo Finnigan, Bremen, 

Germany) at the Stable Isotope Center, University of Göttingen. Ten replicate measurements 

of in-house standard reference material [15N-(NH4)2SO4] resulted, on average, in 98.4±1.6% of 

the true value, indicating a high accuracy of our measurements. The error of ±1.6% is the 

average deviation from the true value. Precision of the 15N measurements was ±0.002 at% (n = 

10). 

4.3.3 Plant community and soil properties 

Aboveground (shoot) biomass was harvested in May 2011 prior to mowing. Plants were 

clipped at 3 cm above ground level within the harvesting area of two replicate 20 cm × 50 cm 

subplots per plot. Plant material was sorted into sown species, weeds, and dead aboveground 

biomass. Biomass of each sown species was determined after drying at 70°C for at least 48 h 

(Weigelt et al. 2010). For shoot C/N ratio analysis, all the plant material from one plot was 

pooled together to obtain a representative value for the plant community of the respective plot. 

A small subsample of this material was milled to fine powder using a ball mill (MM 400, Retsch 

GmbH, Haan, Germany) and up to 5 mg from each plot was used for C and N analysis (Flash 

EA 112, Thermo Fisher, Milan, Italy). Shoot height (regenerative shoot height, i.e. soil surface 

to highest flower) was measured on five individual plants (without stretching the plants) every 

meter along a 5-m transect in the central area of the plots (61 m²) by using a ruler. 

For the analysis of the root C/N ratio, community roots were collected in September 2013 

per plot. The root C/N data were not available for 2011, so we used the data of the nearest 
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possible date. Root biomass was sampled originally for a root decomposition experiment where 

the C/N ratio was used as explanatory variable for litter quality (Chen et al. 2017). To minimize 

disturbance of the experimental plots, we limited larger soil cores (40x15x20 cm) to plots with 

low standing root biomass and took smaller soil cores (20x10x20 cm) where standing root 

biomass was sufficiently high to provide enough fine root material. Sampling depth was always 

20 cm covering the main rooting horizon where on average 90% of community standing root 

biomass in the Jena Experiment plots can be found (Chen et al. 2017). Roots were collected, 

cleaned and sorted to fine (< 2 mm) and coarse roots after washing. Fine roots were oven-dried 

at 65°C and ground with a ball mill (MM 400, Retsch GmbH, Germany) and analyzed for total 

C and N concentrations using an elemental analyzer (Flash 2000, ThermoFisher Scientific Inc, 

Waltham, MA, USA). Studies have found that fine roots are more active and decompose faster 

than coarse roots in forest ecosystems (Brunner and Godbold 2007, Lukac 2012, Zhang and 

Wang 2015). Therefore, we expected similar differences between fine and coarse roots in 

grasslands. Additionally, although variable among communities, root biomass data at the Jena 

Experiment showed that fine roots made up on average 84% of the total standing root biomass 

(0-30 cm).  

To determine the concentrations of organic C and total N in soil, five soil samples per plot 

(0-5 cm) were taken in 2011. All replicates were combined and homogenized. Soil samples 

were dried at 40 °C and sieved (< 2 mm). The dried samples were ground using a ball mill. An 

aliquot of these samples was analyzed for total C and N concentrations by an elemental analyzer 

(vario Max CN, Elementar Analysensysteme GmbH, Langenselbold, Germany). Inorganic C 

concentrations were determined by elemental analysis after burning the organic carbon at 450 

°C in a muffle furnace. Organic C concentrations were calculated by subtracting inorganic C 

concentrations from total C concentrations.  

We used mean microbial biomass C data from the four years prior to our experiment (2007-

2010, i.e. Phase 2 in Strecker et al. 2016). Microbial biomass C showed a strong temporal 

variation in the Jena Experiment depending on the microclimatic conditions, which resulted 

from weather conditions and related plant growth and thus was aggregated to different phases 

by Strecker et al. (2016). We used Phase 2 data because we expected it to best represent the 

microbial biomass conditions that prevailed during our in-situ experiment. For the measurement 

of soil microbial biomass, soil samples were taken with a steel corer (5 cores per plot, depth 5 

cm, diameter 5 cm) and sieved. Microbial biomass C of approximately 5 g soil (fresh weight) 
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was measured using an O2-microcompensation apparatus (Scheu 1992). Substrate-induced 

respiration was calculated from the respiratory response to D-glucose for 10 h at 22°C 

(Anderson and Domsch 1978). Glucose was added according to preliminary studies to saturate 

the catabolic enzymes of microorganisms (4 mg g-1 dry weight solved in 400 µL deionized 

water). The mean of the lowest three readings of O2-consumption values within the first 10 h 

was taken as maximum initial respiratory response (MIRR; [µL O2 g-1 dry soil h-1]) and 

microbial biomass (µg C g-1 dry soil) was calculated as 38 × MIRR (maximum initial respiratory 

response, Eisenhauer et al. 2010). 

The microbial C/N ratio of 38 plots (Blocks 1 and 2 only) was determined from the data of 

microbial biomass C and N, which was measured using chloroform fumigation extraction. Two 

samples of 7 g soil were taken from each plot, one was fumigated with chloroform vapor for 24 

h and the other was not fumigated. Both, the fumigated and non-fumigated samples were 

extracted with 40 mL 0.5 M K2SO4 by shaking for 30 minutes. Total C and N concentrations in 

the extracts were analyzed by dry combustion in a DIMA-TOC 100 Analyzer (Dimatec, Essen, 

Germany). Microbial biomass C was calculated as (total C in fumigated soil – total C in non-

fumigated soil)/0.45 (Wu et al. 1990). Likewise, microbial biomass N was calculated as (total 

N in fumigated soil – total N in non-fumigated soil)/0.54 (Brookes and Landman 1985). 

4.3.4 Calculations and statistical analyses 

Rates of gross N mineralization, microbial NH4+ consumption, gross inorganic N 

immobilization, net N mineralization and its components net ammonification and net 

nitrification were calculated using Eqs. 1 to 6, respectively. Eqs. 1-4 and 6 are from Hart et al. 

(1994) and Eq. 5 is from Rosenkranz et al. 2012. 

! = ["#!		#]$%%["#!		#]$&
& 	 ∗ 	

'()*'()$%	'()$&
+

'()	([+,!
		#]$%

[+,!		#]$&
)
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& 			     Eq. 2 

 ' = ! − (!		       Eq. 3 
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(( = ["0.	/]$&%["0.	/]$%
& 			      Eq. 6 

where  m = gross N mineralization rate [μg N (g dry soil)-1 day-1] 

  c = microbial NH4+ consumption rate [μg N (g dry soil)-1 day-1] 

 i = gross inorganic N immobilization rate [μg N (g dry soil)-1 day-1] 

 nm = net N mineralization rate [μg N (g dry soil)-1 day-1] 

 na = net ammonification rate ([μg N (g dry soil)-1 day-1] 

 nn = net nitrification [μg N (g dry soil)-1 day-1] 

 [NH4+]t1 = NH4+ concentration at t1 [μg N (g dry soil)-1] 

  [NH4+]t2 = NH4+ concentration at t2 [μg N (g dry soil)-1] 

  APEt1 = at% 15N excess of NH4+ pool at t1 

 APEt2 = at% 15N excess of NH4+ pool at t2 

  t = time difference between t1 and t2 [day] 

Microbial NH4+ consumption includes microbial NH4+ immobilization and gross 

nitrification. Since gross nitrification was not determined in our study, which would have 

required labeling with 15NO3-, we could not calculate microbial NH4+ immobilization. Instead, 

we calculated gross inorganic N immobilization rates by using Eq. 3. In our calculations of 

gross inorganic N immobilization, net mineralization and net nitrification rates we neglected 

possible denitrification. Moreover, we assumed that our addition of 15NH4+ did not change the 

size of the NH4+ and NO3- pools in soil substantially. 

We used a hierarchical ANOVA (type I sum of squares) to test for effects of plant species 

richness and functional group composition on gross N mineralization rates, microbial NH4+ 

consumption, gross inorganic N immobilization, net N mineralization and net nitrification rates. 

Gross N mineralization and microbial NH4+ consumption rates were square root-transformed; 

and net nitrification rates were box-cox power transformed (l = 1.1) after removing the outliers 

to approximate normal distribution (checked with Lilliefors normality test and histograms). The 

residuals vs. fitted and Q-Q plots were used to check the assumption of homoscedasticity and 

normality of the residuals. For net N mineralization and net nitrification data, extreme outliers 

were removed if they deviated by more than two standard deviations from the mean (6 outliers 
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removed from each net rates). The ANOVA was performed with block, plant species richness, 

and the presence/absence of each functional group as explanatory variables. All the interactions 

between plant species richness and presence/absence of functional groups were non-significant 

and thus, are not displayed in the results. The functional groups were fitted in the following 

sequence: legumes, grasses, tall herbs, and small herbs. The reason for fitting legumes first 

among the functional groups is because legumes frequently have shown the strongest effect on 

the N cycle. Grasses have also often shown an effect on N transformations. To avoid the 

collinearity between functional group richness and each functional group, a separate model was 

set up for functional group richness, fitted after block to test the effect of functional group 

richness on gross N mineralization, microbial NH4+ consumption, gross inorganic N 

immobilization, net N mineralization and net nitrification rates. Correlations between the 

selected variables were analyzed using Pearson’s correlations test. All the statistical analyses 

were carried out in R Studio (R Studio, Version 1.1.456, R Studio Inc., Boston, MA USA) with 

the free statistical software R 3.5.1 (R Core Team 2018). 

To explain the species richness and functional groups effects that were detected in the 

ANOVAs, we first ran Pearson correlations between all potential explaining variables and the 

three considered gross N turnover rates gross N mineralization, microbial NH4+ consumption 

and gross inorganic N immobilization (Table S4.1) and then applied Structural Equation 

Modeling (SEM). As the goal of the SEM approach was to identify the potential mechanisms 

behind the significant species richness and functional group effects on gross N turnover rates 

according to the ANOVAs, plant species richness, legumes and small herbs were included as 

the exogenous variables in the SEM and the SEM was focused on gross N mineralization and 

microbial NH4+ consumption, because gross inorganic N immobilization was not significantly 

related with species or functional group richness. Including all the potential variables (total 

organic carbon, aboveground and belowground community biomass, soil moisture, root C/N, 

microbial biomass) into one SEM did not result in adequate model fit (Fig. S4.1, Table S4.2). 

This was even true after removing the non-significant pathways (Fig. S4.2, Table S4.3). 

Therefore, according to the literature knowledge and the results of Pearson’s correlations (Table 

S4.1), the potentially mediating variables in the SEMs were chosen. We included root C/N ratio 

and microbial biomass C as potential mediators of the effect of plant species richness and 

functional groups (legumes, small herbs) on gross N mineralization and microbial NH4+ 

consumption rates. Root litter quality is also considered an important source for organic matter 
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input after root turnover. We did not include microbial C/N ratio data, because microbial C/N 

ratio data were only available for two blocks. According to McCune and Grace (2002), the 

sample size for SEMs should be at least 50. Therefore, the sample size of microbial C/N data 

is too small for the application of SEM. Furthermore, we included a path between gross N 

mineralization and microbial NH4+ consumption rates to determine if microbial NH4+ 

processing depends on the amount of NH4+ produced. Based on the p values, the non-significant 

paths in the SEMs were removed from the final model. We used the χ2 test (> 0.05), P value (> 

0.05), goodness of fit index (GFI > 0.9), comparative fit index (CFI > 0.9) and normed fit index 

(NFI > 0.9) to evaluate the model fit (Tables S4.2-S4.4). SEM was conducted using the R 

package “lavaan” (Rosseel 2012). 

4.4 Results 

4.4.1 Effects of plant diversity on gross and net N mineralization, net ammonification and 

net nitrification  

Table 4.1: Maximum, minimum and mean values of gross and net nitrogen transformation rates 

 N transformation rates [µg N (g dry soil)-1 day-1] 

 Minimum Maximum Mean 

Gross N mineralization 0.04 6.20 2.12 

Microbial ammonium consumption -1.81 7.24 2.43 

Gross inorganic N immobilization -3.27 8.51 2.28 

Net N mineralization -4.33 5.72 -0.12 

Net ammonification -2.57 2.13 -0.42 

Net nitrification -2.04 4.97 0.31 
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Table 1 summarizes the means and ranges of all determined N turnover rates. Block had a 

significant effect on gross N mineralization (Table 4.2), net N mineralization (Table S4.5) and 

a marginally significant effect on net ammonification (Table S4.6). Plant species richness 

showed a significant negative effect on gross N mineralization rates (Table 4.2, Fig. 4.1). The 

mean gross N mineralization rate in the monocultures was 2.25 μg N (g dry soil) -1 day-1 and in 

the sixteen plant species mixtures 1.63 μg N (g dry soil)-1 day-1, showing a decrease by 28%, 

which translates to a slope of a regression line of gross N mineralization rates on species number 

of -0.05 μg N (g dry soil)-1 day-1 per additional species. Functional group richness had no 

significant effect on gross N mineralization rates (F = 0.13, p = 0.719). The presence of legumes 

increased gross N mineralization rates significantly (Table 4.2). Plant species richness was 

unrelated with net N mineralization, net ammonification and net nitrification (Tables S4.5-

S4.7). Functional group richness was unrelated with net N mineralization (F = 2.64, p = 0.109) 

and net nitrification (F = 2.29, p = 0.135), but was marginally negatively related with net 

ammonification (F = 3.32, p = 0.073). The presence of legumes decreased net ammonification 

significantly (Table S4.6). Expectedly, net nitrification correlated significantly positively with 

soil 1 M KCl-extractable NO3- concentrations from shortly before the experiment (r = 0.37, p 

= 0.014, NO3- data log-transformed and 6 outliers removed). 

Table 4.2: Hierarchical ANOVA results showing the effects of plant species richness (SR) and presence 
(+) /absence (-) of each functional group on gross nitrogen mineralization rates. Bold letters show 
significance at p < 0.05. Arrows indicate positive (↑) or negative (↓) effects 

Source   Df  SS  SS (%)        F  P 

Block   3  1.45  10.89  3.15  0.031 

SR   1  0.62  4.66  4.05  0.048 ↓ 

Legumes  1  0.71  5.33  4.65  0.035 ↑ 

Grasses  1  0.00  0.00  0.04  0.845 

Tall herbs  1  0.26  1.95  1.68  0.199  

Small herbs  1  0.31  2.33  2.05  0.157 

Residuals      65   9.96            
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Fig. 4.1: Relationship between plant species richness with/without legumes and gross nitrogen (N) 
mineralization. Open circles represent plots without legumes and closed circles represent plots with 
legumes. The regression lines are shown for illustration purpose only  

4.4.2 Effects of plant diversity on microbial NH4+ consumption and gross inorganic N 

immobilization 

Increasing plant species richness decreased the microbial NH4+ consumption rates 

significantly (Table 4.3, Fig. 4.2). The microbial NH4+ consumption rates were on average 2.41 

and 1.87 μg N (g dry soil)-1 day-1 in the plots with one and sixteen plant species, respectively, 

showing a decrease by 22% that translates into a slope of a regression line of microbial NH4+ 

consumption rates on species number of -0.06 µg N (g dry soil)-1 day-1 per additional species. 

Plant species richness was unrelated with gross inorganic N immobilization (Table 4). We did 

not find a significant effect of functional group richness on microbial NH4+ consumption rates 

(F = 1.84, p = 0.179) and gross inorganic N immobilization (F = 2.02, p = 0.160). The presence 

of legumes and small herbs increased microbial NH4+ consumption and gross inorganic N 

immobilization compared to their absence, although small herbs only had a marginally 

significant effect on gross inorganic N immobilization (Tables 4.3 and 4.4).  
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Table 4.3: Hierarchical ANOVA results showing the effects of plant species richness (SR) and presence 
(+) /absence (-) of each functional group on microbial ammonium consumption rates. Bold letters show 
significance at p < 0.05. Arrows indicate positive (↑) or negative (↓) effects 

Source   Df   SS   SS (%)  F     P 

Block           3    0.14    4.52  1.41   0.249    

SR    1   0.15   4.84  4.81  0.032  ↓ 

Legumes  1  0.50  16.13  15.64  <0.001 ↑ 

Grasses  1  0.00  0.00  0.002  0.963  

Tall herbs  1  0.04  1.29  1.17  0.283  

Small herbs  1  0.19  6.13  6.02  0.017 ↑ 

Residuals      65    2.08      

 

 

Fig. 4.2: Relationship between plant species richness with/without legumes (a) and plant species 
richness with/without small herbs (b) and microbial ammonium (NH4

+) consumption rates. Open 
circles represent plots without legumes/small herbs and closed circles represent plots with 
legumes/small herbs. The regression lines are shown for illustration purpose only 
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Table 4.4: Hierarchical ANOVA results showing the effects of plant species richness (SR) and presence 
(+) /absence (-) of each functional group on gross inorganic N immobilization rates. Bold letters show 
significance at p < 0.05 and italics show significance at p < 0.1. Arrows indicate positive (↑) effects 

Source   Df   SS  SS (%)  F     P   

Block           3   14.59    5.08  1.40   0.250    

SR     1     1.64     0.56  0.47   0.494    

Legumes         1    26.71    9.30  7.71   0.007 ↑ 

Grasses         1     0.13     0.05  0.04   0.845    

Tall herbs      1     5.62     1.96  1.62   0.207    

Small herbs     1    13.35    4.65  3.86   0.054 ↑ 

Residuals      65   225.07          

 

 

Fig. 4.3: Effects of presence/absence of legumes (a) and small herbs (b) on gross inorganic N 
immobilization rates. P value is given according to the ANOVA results 
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4.4.3 Effects of soil and plant community properties on gross N mineralization, microbial 

NH4+ consumption and gross inorganic N immobilization rates 

We tested several variables to assess the likelihood that they contributed to mechanisms by 

which species richness and functional group composition may have influenced gross N 

mineralization and microbial NH4+ consumption rates and to explore which soil and plant 

community properties drove gross inorganic N immobilization rates (Table S4.1). Soil pH 

showed a negative correlation with gross N mineralization rates (Fig. 4.4a), reflecting its 

influence on microbial activity. As expected, microbial biomass C had a positive relationship 

with microbial NH4+ consumption (Fig. 4.5a) and gross inorganic N immobilization rates (Fig. 

4.6a). The microbial C/N ratios were negatively correlated with gross N mineralization rates 

(Fig. 4.4b), gross inorganic N immobilization (Fig. 4.6b) and microbial NH4+ consumption 

rates, although in the latter case only marginally significantly (Fig. 4.5b). We expected that 

lower litter quality (higher plant and soil C/N ratios) would decrease gross N mineralization 

and microbial NH4+ consumption rates. Supporting this hypothesis, shoot C/N (Fig. 4.4c) and 

fine root C/N ratios (Fig. 4.4d) had negative relationships with gross N mineralization rates and 

shoot C/N (Fig. 4.5c) and soil C/N ratios (Fig. 4.5d) had negative relationships with microbial 

NH4+ consumption rates. Furthermore, the total soil N concentrations (Fig. 4.6c) had significant 

positive and soil organic C concentrations (Fig. 4.6d) had marginally positive relationships with 

gross inorganic N immobilization rates. 

In the SEM set up to find possible explanations of the plant species richness and functional 

group effects on gross N mineralization and microbial NH4+ consumption rates (Fig. 4.7), the 

effect of plant species richness was mediated by the root C/N ratio. The root C/N ratio was the 

only variable out of the wealth of available data from the Jena Experiment that contributed 

significantly to the negative relationship of plant species richness with gross N mineralization 

and microbial NH4+ consumption rates. This negative effect was composed of a significantly 

positive effect of plant species richness on the root C/N ratio and a further significantly negative 

effect of the root C/N ratio on gross N mineralization and microbial NH4+ consumption rates 

(Fig. 4.7). The gross N mineralization rates had a significantly positive influence on microbial 

NH4+ consumption rates. The positive effect of the legumes on gross N mineralization and 

microbial NH4+ consumption rates was significantly related with the root C/N ratio and 

microbial biomass C (Fig. 4.7). 
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Fig. 4.4: pH (a), microbial carbon to nitrogen (C/N) ratio (b), shoot C/N ratio (c), and fine root C/N 
ratio (d) versus gross nitrogen mineralization rates. P and r values refer to results from the Pearson’s 
correlation test. The regression lines are shown for illustration purpose only 

The presence of small herbs had a positive influence on microbial NH4+ consumption rates, 

which was driven by increased microbial biomass C and increased root C/N ratios. There was 

also a direct pathway, which described a positive link between plant species richness and gross 

N mineralization and microbial NH4+ consumption rates via microbial biomass C. The direct 

path relating plant species richness with gross N mineralization and microbial NH4+ 

consumption rates remained significant besides the indirect effects. 
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Fig. 4.5: Microbial biomass C (a), microbial carbon to nitrogen (C/N) ratio (b), shoot C/N ratio (c), and 
soil C/N ratio (d) versus microbial ammonium (NH4

+) consumption rates. P and r values refer to results 
from the Pearson’s correlation test. The regression lines are shown for illustration purpose only. Solid 
lines indicate significance at p < 0.05 and a dotted line indicates significance at p < 0.1 



4.4 Results 

 108 

 

Fig. 4.6: Microbial biomass C (a), microbial carbon to nitrogen (C/N) ratio (b), total soil nitrogen 
concentrations (c), and soil organic carbon concentrations (d) versus gross inorganic N immobilization 
rates. P and r values refer to results from the Pearson’s correlation test. The regression lines are shown 
for illustration purpose only. Solid lines indicate significance at p < 0.05 and a dotted line indicates 
significance at p < 0.1 
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Fig. 4.7: Structural equation model (SEM) to illustrate the underlying paths via which plant species 
richness and functional groups influenced gross N mineralization and microbial ammonium (NH4

+) 
consumption rates. Blue and red arrows represent positive and negative significant relationships, 
respectively. The grey arrow shows a non-significant pathway. Dotted arrows indicate non-significant 
pathways that were excluded from the final model. Numbers on the arrows give standardized path 
coefficients with their significance indicated as ***p < 0.001, **p < 0.01, *p < 0.05, •p < 0.01. Numbers 
below the variables show the percentage variation explained by corresponding variables (R2). Fit 
indices of the model are shown in Table S4.4 
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Fig. 4.8:Relationship between mean regenerative shoot height (i.e. soil surface to highest flower) of the 
vegetation (of the year 2011) and mean fine root C/N ratios (of the year 2013) 

4.5 Discussion 

4.5.1 Plant species richness negatively affected gross N mineralization rates 

The gross N mineralization rates observed in our study fall into the range of 0.32 to 7.09 μg 

N g-1 day-1 reported in the literature for comparable grasslands, i.e. natural/semi-natural 

grasslands with a low use intensity (Table 4.1, Davidson et al. 1991; Jamieson et al. 1999; Hatch 

et al. 2000; Wang et al. 2016). In their extensive review, Booth et al. (2005) compiled gross N 

mineralization rates of grasslands showing a wider range from ~1 to ~70 μg N g-1 day-1 

(estimated from a figure) because their data set comprised a wider spectrum of grassland use.  

We showed that increasing plant species richness reduced gross N mineralization rates 

(Table 4.2, Fig. 4.1), which is in contrast to our first hypothesis and the findings of West et al. 

(2006). Although we detected a significant negative effect of plant species richness on gross N 

mineralization rates, the effect was small, only explaining 5% of its variance (Table 4.2). 

Possible reasons for the contrasting results could include differences in soil type or soil pH in 

the study of West et al. (2006) compared to our study or to the nature of the experiment. The 
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results of West et al. (2006) originate from a laboratory experiment, while our results were 

obtained from an in-situ field experiment. Cold storage of the samples before lab incubation, 

controlled temperature, changed nutrient supply and lack of active plant roots in lab 

experiments can lead to modifications of N cycling rates relative to field experiments (Arnold 

et al. 2008). Previous studies from the Jena Experiment have shown a significant positive effect 

of plant species richness on microbial activity calculated from substrate-induced respiration 

determined in the laboratory (Strecker et al. 2016), which also led to the expectation of 

enhanced gross N mineralization in species-rich plant mixtures. Our finding of a negative 

relationship between plant species richness and gross N mineralization is in line with the fact 

that plant species richness negatively affected the root decomposition in the Jena Experiment 

(Chen et al. 2017) and thus likely the N release rate from root turnover. 

According to the SEM, the unexpected negative relationship of species richness with gross 

N mineralization was related with increasing root C/N ratios with higher species richness (Fig. 

4.7). Several reasons might explain the increasing root C/N ratios with increasing plant species 

richness. Guiz et al. (2015) found that N-rich legumes were increasingly replaced by small 

herbs that have higher root C/N ratios than legumes with increasing species richness. This is in 

line with reports that legumes contributed increasingly less to total biomass with increasing 

plant species richness (Gubsch et al. 2011; Roscher et al. 2011). Guiz et al. (2015) further 

speculated that increasing shoot C/N ratios with increasing plant species richness might be 

attributable to the dilution of plant nutrient concentrations, because of the higher biomass 

production in species-rich mixtures, which has frequently been reported for biodiversity 

experiments including the Jena Experiment (Marquard et al. 2009; Fornara and Tilman 2009; 

Mueller et al. 2013; Ravenek et al. 2014). In the Jena Experiment, the mean plant height of a 

plot increased with increasing species richness (Schmidtke et al. 2010), because plants in more 

species-rich communities have to invest more in shoot structure in response to competition for 

light resulting in higher C and lower N concentrations because of the higher C/N ratios of stems 

than of leaves (Abbas et al. 2013; Guiz et al. 2015). Figure 4.8 illustrates that increasing mean 

shoot height translated into increasing fine root C/N ratios in the Jena Experiment.  The negative 

impact of increasing root C/N ratios on gross N mineralization indicated by the SEM (Fig. 4.7) 

agrees well with the frequently reported finding that there is a negative relationship between 

the litter C/N ratio and N mineralization rates (Silver and Miya 2001; Van der Krift et al. 2001; 

Chen et al. 2017), because a high C/N ratio of plant tissue reflects a low litter quality (Abera et 
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al. 2014; Zhu et al. 2014). The fact that roots and root exudates play a vital role in regulating N 

mineralization (Oelmann et al. 2011) through their influence on microbial biomass and activity 

(Bais et al. 2006; Wang et al. 2018) further supports the important role of root properties in 

explaining the plant species richness effect on gross N mineralization rates. The SEM also 

showed another significant pathway which illustrated a positive relationship between plant 

species richness and gross N mineralization rates via microbial biomass C. Higher plant 

diversity increased microbial biomass C (Strecker et al. 2016), which further increased gross N 

mineralization rates (Booth et al. 2005). However, this path is marginally significant and 

obviously was overwhelmed by the path via the root C/N ratios. 

In the Jena Experiment, the C/N ratios of aboveground biomass increased with time between 

2003 and 2011. This trend was increasingly pronounced with increasing species richness (Guiz 

et al. 2015). Because our root C/N ratios originated from a sampling campaign two years after 

our 15N tracer experiment, the C/N ratios of the roots at the time of our experiment might have 

been lower and less differentiated between the low and the high species-richness levels. While 

we cannot control for this effect lacking root data from the time of our experiment, we assume 

that it was small. The molar C/N ratio of aboveground biomass changed from 24 to 35 (i.e. the 

mass-related ratio used here from 29 to 41) in eight years, translating into a change rate of 1.45 

units yr-1. Provided that the root C/N ratios change in the same way as those of the aboveground 

biomass, a small change of 2.9 units (< 10% of the aboveground C/N ratio in 2011) could be 

expected in the two years lag time between our experiment and the measurement time of the 

root C/N ratios. A change of the root C/N ratios by 2.9 units would translate into a change of 

0.09 μg N (g dry soil)-1 day-1 of the gross N mineralization rate (and of 0.1 μg N (g dry soil)-1 

day-1 of the microbial NH4+ consumption rates). 

We also considered the possibility that the increasing litter input with increasing species 

richness, which we infer from the positive plant species richness-biomass relationship, (over-) 

compensated the decreasing litter quality with increasing species richness. Root biomass as 

proxy of belowground litter input indeed showed a significant positive correlation with species 

richness (p < 0.001, r = 0.465) and microbial biomass (p = 0.002, r = 0.34). However, neither 

aboveground nor belowground biomass correlated with gross N mineralization (Table S4.1), 

suggesting that a higher N flux with increasing litter input did not overrule the effect of the 

decreasing C/N ratio of both aboveground and belowground biomass. Finally, the significant 

negative direct path relating species richness with gross N mineralization rates suggests, that 
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there are unknown drivers underlying this species richness effect, which we were unable to 

identify in spite of the wealth of available soil and plant properties. 

4.5.2 Plant species richness negatively affected microbial NH4+ consumption rates and had 

no effect on gross inorganic N immobilization rates 

Microbial NH4+ consumption rates in our study fall in the range of 0.8 to 7.2 μg N (g dry 

soil)-1 day-1, earlier reported by various authors in the literature for comparable grasslands 

(Davidson et al. 1990; Hungate et al. 1997; Hatch et al. 2000). Again, Booth et al. (2005) 

reported a wider range from ~0.5 to ~80 μg N (g dry soil)-1 day-1 (estimated from a figure). We 

observed a negative relationship between plant species richness and microbial NH4+ 

consumption rates (Table 4.3), which is contrary to our second hypothesis. Accordingly, the 

expected higher N demand and tighter N cycling in species-rich than in species-poor plant 

mixtures did not lead to increased microbial NH4+ consumption with increasing species 

richness.  

According to the SEM, the detected negative effect of species richness on microbial NH4+ 

consumption rates is partially mediated by the root C/N ratio and microbial biomass C (Fig. 

4.7). The SEM showed that microbial NH4+ consumption rates were also affected by gross N 

mineralization rates. When less NH4+ was released, less NH4+ was available for microbial 

uptake. We assumed that the microbial C/N ratio might also play a role in mediating the effect 

of plant species richness on microbial NH4+ consumption, because of its significant correlation 

with microbial NH4+ consumption (Fig. 4.5b). However, the microbial C/N ratio was only 

available for a subset of the study plots, which did not allow for including this potential 

mediator into the SEM. The direct path from species richness to microbial NH4+ consumption 

rates and the indirect one via root C/N ratios showed negative relationships. On the contrary, 

the indirect path between species richness and microbial NH4+ consumption rates via microbial 

biomass, which increased with species richness mainly because of increasing soil moisture 

(Lange et al. 2014) showed a positive relationship (Fig. 4.7). An explanation of the different 

signs of the three detected paths might be a positive correlation between plant species richness 

and microbial C/N ratio, which in turn would show a negative correlation with the microbial 

NH4+ consumption rates. However, we did not find any effect of plant species richness on the 

microbial C/N ratio in our restricted data set of two blocks (r = -0.083, p = 0.619). Instead, we 

found a marginally significant negative relationship between the microbial C/N ratios and the 

microbial NH4+ consumption rates (Fig. 4.5b). Thus, we cannot support the assumption that the 
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microbes were increasingly better supplied with N with increasing species richness and 

therefore reduced their NH4+ uptake. 

Obviously, the direct and indirect (via root C/N ratios) negative effects of plant species 

richness on microbial NH4+ consumption again overruled its positive indirect effect (via 

microbial biomass). We can only speculate that the unexpected negative relationship between 

microbial C/N ratios and microbial NH4+ consumption rates in the Jena Experiment is 

attributable to the changing soil microbial community composition. In the Jena Experiment, the 

fungi:bacteria ratio increased with increasing species richness (Lange et al. 2014, Eisenhauer 

et al. 2017). The reduced microbial NH4+ consumption rates in spite of the higher microbial 

C/N ratios could then be attributed to the lower N demand of the fungi relative to the bacteria 

(Zechmeister-Boltenstern et al. 2015). This assumption is corroborated by findings that plant 

communities with high litter C/N ratios favor decomposition by fungi, whereas plant 

communities with low litter C/N ratios favor decomposition by bacteria (Wardle et al. 2004). 

We tested the well-known controls of microbial NH4+ consumption rates to explain the 

observed negative effect of plant species richness. However, the species richness effect on 

microbial NH4+ consumption rates could only to a small degree be explained by our SEM (Fig. 

4.7). We therefore conclude, that there must again be additional variables responsible for this 

negative relationship, which have not yet been studied in the Jena Experiment. 

Gross inorganic N immobilization rates in our study fall in the range of 0.4 to 10.3 μg N (g 

dry soil)-1 day-1, earlier reported by various authors in the literature for comparable grasslands 

(Watson et al. 2000; Stockdale et al. 2000; Verchot et al. 2002; Mueller et al. 2004). The 

comprehensive review of Booth et al. (2005) reported a wider range from ~ 0.1 to ~ 90 μg N g-

1 day-1 (estimated from a figure by combining NH4+ and NO3- immobilization rates). Plant 

species richness correlated significantly positively with the 1 M KCl-extractable soil NH4+ 

concentrations from shortly before our pool dilution experiment (r = 0.30, p = 0.008) and 

significantly negatively with the 1 M KCl-extractable soil NO3- concentrations from shortly 

before our pool dilution experiment (r = -0.36, p = 0.002, NO3- data log-transformed and 6 

outliers removed). The different signs of the latter two correlations might explain that there was 

no relationship between plant species richness and gross inorganic N immobilization. The 

opposite relationships might have neutralized each other.  
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4.5.3 Plant functional group effects on gross N mineralization, NH4+ consumption and 

gross inorganic N immobilization rates 

The presence of legumes had a positive effect on gross N mineralization, microbial NH4+ 

consumption and gross inorganic N immobilization rates supporting our third hypothesis 

(Tables 4.2-4.4). N2 fixation by legumes may increase soil N availability for other species via 

the mineralization of N-rich legume litter (Peoples and Craswell 1992; Spehn et al. 2002), and 

also via rhizodeposition and mycorrhiza (Read 1996). The presence of legumes therefore 

increased gross N mineralization, microbial NH4+ consumption and gross inorganic N 

immobilization rates because legumes provide high quality litter with a low C/N ratio favoring 

fast decomposition rates (Abera et al. 2014). Total aboveground biomass usually increases in 

the presence of legumes (Tilman et al. 2001; Marquard et al. 2009), which is associated with 

an increased aboveground N storage in the presence of legumes (Spehn et al. 2005; Oelmann 

et al. 2011). Eisenhauer et al. (2010) also found increased microbial biomass C in the presence 

of legumes, which likely contributed to increased microbial NH4+ consumption and gross 

inorganic N immobilization rates. Furthermore, our result revealed a positive effect of small 

herbs on microbial NH4+ consumption (Table 4.3) and gross inorganic N immobilization rates 

(Table 4.4). Strecker et al. (2015) reported increased basal respiration and microbial biomass C 

in the presence of small herbs (compared to mixtures without small herbs) which increased 

rhizodeposition, thereby possibly leading to higher microbial NH4+ consumption or inorganic 

N immobilization by microorganisms. 

Using plant diversity variables, we were only able to explain 10% of the variance in gross N 

mineralization, 27% in microbial NH4+ consumption and 14% in gross inorganic N 

immobilization rates (Tables 4.2-4.4). Moreover, the well-known controls of gross N 

mineralization and NH4+ consumption rates (microbial C/N ratio, root C/N ratio, soil C/N ratio, 

shoot C/N ratio, microbial biomass C, Booth et al. 2005) individually only explained a 

maximum of 13% of the variance of gross N mineralization, microbial NH4+ consumption, and 

gross inorganic N immobilization rates (Table S4.1). Consequently, there must be additional 

unidentified controlling factors for the unexpected negative effects of plant species richness on 

gross N mineralization, microbial NH4+ consumption, and gross inorganic N immobilization 

rates. We speculate that not only the chemical quality of the roots, but also that of rhizodeposits 

could influence gross N mineralization, microbial NH4+ consumption and gross inorganic N 
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immobilization. In addition to that, the influence of particular species/groups of 

microorganisms on the N cycle might be more than mass-proportional. 

4.5.4 Plant diversity effects on net N mineralization and its components net 

ammonification and net nitrification 

Our finding of negative effects of functional group richness and presence of legumes on net 

ammonification (Table S4.6) contrasts the literature, which has up to now mainly reported 

positive plant diversity effects on net turnover rates (Rosenkranz et al. 2012; Mueller et al. 

2013). The literature also suggested that the presence of legumes increased the net N release 

(Scherer-Lorenzen et al. 2003). Rosenkranz et al. (2012) stated that in the year 2006 on the 

same sites as in our study (The Jena Experiment) the increasing net ammonification rates with 

increasing species richness were related with increasing topsoil water contents. However, 

Fischer et al. (2018) showed that in the later course of The Jena Experiment beginning in the 

year 2010 and particularly 2011, the year of our experiment, the water contents decreased with 

increasing species richness, which they attributed to the positive effect of species richness on 

soil aggregation and the subsequently increased water infiltration rates. Thus, the decreasing 

soil water contents with increasing species richness in the year 2011 might explain the negative 

effect of functional group richness on net ammonification. Our finding that the presence of 

legumes decreased net ammonification after the effects of block and species richness had been 

considered is unexpected (Table S4.6). We attribute this to the positive effect of legumes on 

microbial NH4+ consumption (Table 4.2) and gross inorganic N immobilization (Table 4.3), 

which resulted in a smaller leftover of NH4+ in mixtures with than without legumes. 

4.6 Conclusions 

Our results demonstrate that both, gross mineralization and microbial NH4+ consumption 

rates determined in the field unexpectedly decreased with increasing species richness, while 

gross inorganic N immobilization was unrelated with species richness so that we had to reject 

our first two hypotheses. Again unexpectedly, functional group richness had negative effects 

on net ammonification rates, which we attribute to the decreasing soil moisture in topsoil with 

increasing plant diversity in the year of our study (2011). The third hypothesis that the presence 

of legumes influenced gross mineralization, microbial NH4+ consumption and gross inorganic  
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N immobilization rates positively was, however, supported by our data. This positive effect 

likely explained the negative effect of the presence of legumes on net ammonification. 

Among the wealth of data from the Jena Experiment, only the root C/N ratio was identified 

to significantly reduce two of the three studied gross N turnover rates but explained a small 

portion of the total variance in our structural equation model. The root C/N ratio likely increased 

with increasing species richness because of a species replacement effect from legumes to forbs 

and because of increasing competition for light which resulted in a higher mean shoot height 

associated with a lower C/N ratio of the above- and belowground biomass. The negative root 

C/N ratio effect overwhelmed a positive effect of microbial biomass on gross N mineralization 

and microbial N consumption. Our results illustrate that the nutrient composition of biomass 

mediates N turnover processes in the studied grassland ecosystem suggesting that connecting 

ecological stoichiometry with nutrient fluxes could be a promising avenue to better 

understanding the biodiversity-nutrient cycling relationship. 

The significant direct effect of species richness on gross N mineralization and microbial 

NH4+ consumption rates, which remained in our structural equation model could not be 

explained based on the available data. We hypothesize that the latter is related with a changing 

microbial composition with increasing species richness, for which we lack data. Therefore, 

future experiments should be designed to elucidate the relationships between species richness, 

microbial community composition and N turnover rates. Generally, relating soil nutrient fluxes 

with microbial community composition could additionally improve our understanding of the 

controls of nutrient turnover in soil. 
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4.9 Supplementary materials 

Table S4.1: Pearson correlation coefficients for the relationships of the potential variables with gross 
N mineralization, microbial NH4

+ consumption and gross inorganic N immobilization. Significant 
correlations (p<0.05) are marked in bold and marginal significant correlations (p<0.1) are marked in 
italics. 

Variables Gross N 

mineralization 

Microbial NH4+ 

consumption 

Gross inorganic N 

immobilization 

r p r p r p 

Microbial biomass C 0.094 0.434 0.238 0.044 0.238 0.044 

Microbial C/N ratio -0.326 0.047 -0.281 0.097 -0.360 0.031 

Soil C/N ratio -0.091 0.447 -0.262 0.026 -0.019 0.877 

Shoot C/N ratio -0.243 0.037 -0.267 0.022 -0.164 0.162 

Fine root C/N ratio -0.230 0.049 -0.210 0.072 -0.036 0.758 

Root biomass -0.113 0.336 -0.031 0.796 0.051 0.665 

Shoot biomass -0.137 0.245 -0.078 0.510 -0.094 0.427 

Total N concentration 

in soil 

0.066 0.582 0.126 0.290 0.256 0.030 

Total organic C 

concentration in soil 

0.014 0.907 0.002 0.985 0.206 0.083 

Soil moisture -0.073 0.542 0.008 0.947 -0.010 0.930 

Soil pH -0.264 0.023 -0.059 0.616 -0.098 0.407 

 

 

Table. S4.2: Fit indices for the structural equation model in Fig. S4.1. P = p value, χ2 = chi squared, 
GFI = goodness of fit index, CFI = comparative fit index, NFI = normed fit index. 

Fit index Value 

P 0.00 

χ2 73.94 

GFI 0.85 

CFI 0.79 

NFI 0.75 
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Table. S4.3: Fit indices for the structural equation model in Fig. S4.2. P = p value, χ2 = chi squared, 
GFI = goodness of fit index, CFI = comparative fit index, NFI = normed fit index. 

Fit index Value 

P 0.00 

χ2 47.39 

GFI 0.88 

CFI 0.86 

NFI 0.81 

 

 

Table. S4.4: Fit indices for the structural equation model in Fig. 4.7. P = p value, χ2 = chi squared, GFI 
= goodness of fit index, CFI = comparative fit index, NFI = normed fit index. 

Fit index Value 

P 0.07 

χ2 10.2 

GFI 0.96 

CFI 0.96 

NFI 0.04 

 

 

Table. S4.5: Hierarchical ANOVA results showing the effects of plant species richness (SR) and 
presence (+) /absence (-) of each functional group on net nitrogen mineralization rates. Bold letters 
show significance at p < 0.05.  

Source   Df   SS  SS (%)  F    P   

Block           3    10.00    11.50  2.83   0.046   

SR     1     0.05     0.06  0.05   0.833   

Legumes         1     3.26     3.75  2.77   0.101   

Grasses         1     0.61     0.70  0.51   0.476   

Tall herbs      1     0.50     0.57  0.42   0.518   

Small herbs     1     0.73     0.84  0.62   0.433   

Residuals      61    71.84     
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Table. S4.6: Hierarchical ANOVA results showing the effects of plant species richness (SR) and 
presence (+) /absence (-) of each functional group on net ammonification rates. Bold letters show 
significance at p < 0.05 and italics show significance at p < 0.1. Arrows indicate negative (↓) effects 

   Df   SS   SS (%)  F    P  

Block           3     5.51     8.98  2.441   0.072  

SR    1     0.08     0.13  0.112   0.739   

Legumes         1     3.65     5.95  4.852   0.031↓ 

Grasses         1     0.15     0.24  0.204   0.653   

Tall herbs      1     0.17     0.28  0.222   0.639   

Small herbs     1     1.36     2.22  1.802   0.184   

Residuals      67    50.45     

 

Table. S4.7: Hierarchical ANOVA results showing the effects of plant species richness (SR) and 
presence (+) /absence (-) of each functional group on net nitrification rates.  

   Df   SS  SS (%)  F    P 

Block           3    1.49    5.16  1.20    0.319 

SR     1    0.37    1.28  0.89    0.350 

Legumes         1    0.17    0.59  0.40    0.529 

Grasses         1    0.61    2.11  1.48    0.229 

Tall herbs      1    0.10    0.35  0.24    0.624 

Small herbs     1    0.85    2.94  2.06    0.157 

Residuals      61   25.29      
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Fig. S4.1: A-priori structural equation model showing the potential causal effects of plant diversity (plant species richness and presence/absence of individual 
functional groups) on gross N mineralization and microbial NH4+ consumption rates. Blue and red arrows represent positive and negative significant relationships, 
respectively. Grey arrows show non-significant pathways. Numbers on the arrows give unstandardized path coefficients with their significance indicated as ***p < 
0.001, **p < 0.01, *p < 0.05, •p < 0.01. 
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Fig. S4.2: A-priori structural equation model showing the potential causal effects of plant diversity (plant species richness and presence/absence of individual 
functional groups) on gross N mineralization and microbial NH4+ consumption rates. Blue and red arrows represent positive and negative significant relationships, 
respectively. Grey arrows show non-significant pathway. Dotted arrows indicate non-significant pathways that were sequentially excluded from the final model based 
on the p values. Numbers on the arrows give standardized path coefficients with their significance indicated as ***p < 0.001, **p < 0.01, *p < 0.05, •p < 0.01
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Appendix 

The appendix is attached as a CD containing the following files: 

- Contents (Contents.pdf)  

- Dissolved NH4+ and NO3- pools measured on different incubation days (Day 1, 2, 4+9, 

16)   from the 15N tracing experiment conducted in the laboratory in Block 2 

(01_Npools1_Lab.xlsx) 

- Labile organic N (Nlab), recalcitrant organic N (Nrec) and exchangeable (=adsorbed) 

NH4+ (NH4+ ads) pools measured from the 15N tracing experiment conducted in the 

laboratory in Block 2 (02_Npools2_Lab.xlsx) 

- Gross N mineralization rates from the labile organic N (MNlab) and recalcitrant organic 

N (MNrec) calculated from the 15N tracing experiment conducted in the laboratory in 

Block 2 (03_GrossNmineralization_Lab.xlsx) 

- Rates of NH4+ immobilization rates into the labile organic N (INH4-Nlab) and recalcitrant 

organic N (INH4-Nrec) calculated from the 15N tracing experiment conducted in the 

laboratory in Block 2 (04_NH4Immobilization_Lab.xlsx) 

- Rates of autotrophic nitrification (ONH4) and heterotrophic nitrification (ONrec) 

calculated from the 15N tracing experiment conducted in the laboratory in Block 2 

(05_Nitrification_Lab.xlsx) 

- Rates of NO3- immobilization (INO3) calculated from the 15N tracing experiment 

conducted in the laboratory in Block 2 (06_NO3Immobilization_Lab.xlsx) 

- Rates of NH4+ adsorption into the exchangeable NH4+ pool (ANH4) calculated from the 
15N tracing experiment conducted in the laboratory in Block 2 

(07_NH4Adsorption_Lab.xlsx) 

- Concentrations of KCl-extractable NH4+ and NO3- measured before the start of the 15N 

pool dilution experiment in the field Blocks 1 to 4 (08_Npools_Field.xlsx) 
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- Gross N mineralization rates calculated from the 15N pool dilution experiment 

conducted in the field in Blocks 1 to 4 (09_GrossNmineralization_Field.xlsx) 

- Microbial NH4+ consumption rates calculated from the 15N pool dilution experiment 

conducted in the field in Blocks 1 to 4 (10_NH4Consumption_Field.xlsx) 

- Gross inorganic N immobilization rates calculated from the 15N pool dilution 

experiment conducted in the field Blocks 1 to 4 (11_NImmobilization_Field.xlsx) 

- Net N mineralization and its components net ammonification and net nitrification rates 

calculated from KCl-extractable mineral N concentrations measured before the start of 

the field experiment in Blocks 1 to 4 (12_NetNRates_Field.xlsx) 


