EPJ Web of Conferences 245, 07040 (2020) https://doi.org/10.1051/epjconf/202024507040
CHEP 2019

Lightweight dynamic integration of opportunistic
resources

Max Fischer!*, Eileen Kuehn'!, Manuel Giffels', Matthias Jochen Schnepf', Andreas
Petzold', and Andreas Heiss'

'Karlsruhe Institute of Technology, Herrmann-von-Helmholtz-Platz 1, 76344 Eggenstein-
Leopoldshafen, Germany

Abstract. To satisfy future computing demands of the Worldwide LHC Com-
puting Grid (WLCG), opportunistic usage of third-party resources is a promis-
ing approach. While the means to make such resources compatible with WLCG
requirements are largely satisfied by virtual machines and containers technolo-
gies, strategies to acquire and disband many resources from many providers are
still a focus of current research. Existing meta-schedulers that manage resources
in the WLCG are hitting the limits of their design when tasked to manage het-
erogeneous resources from many diverse resource providers.

To provide opportunistic resources to the WLCG as part of a regular WLCG
site, we propose a new meta-scheduling approach suitable for opportunistic,
heterogeneous resource provisioning. Instead of anticipating future resource
requirements, our approach observes resource usage and promotes well-used
resources. Following this approach, we have developed an inherently robust
meta-scheduler, COBalD, for managing diverse, heterogeneous resources given
unpredictable resource requirements. This paper explains the key concepts of
our approach, and discusses the benefits and limitations of our new approach to
dynamic resource provisioning compared to previous approaches.

1 Introduction

Dynamic resource provisioning in the WLCG [1] is commonly based on meta-scheduling
and the pilot model [2]: A meta-scheduler pre-computes the ideal set of resources for a given
set of workflows; so-called pilot jobs acquire and integrate these resources into an overlay
batch system, which then processes the initial workflows. While this approach offers a high
level of control and precision, we have found the strong coupling between components to
inherently limit scalability, flexibility and robustness. These shortcomings are more severe
when workflows and resources are under limited control — such as an intermediary WLCG
site executing externally provided pilot jobs on opportunistic, non-WLCG resources.

To integrate dynamic resources, the GridKa Tier 1 centre has developed a new approach
for dynamic provisioning that is suitable for the WLCG and beyond. By design, our ap-
proach decouples the distinct responsibilities of workflow scheduling, resource provisioning
and meta-scheduling. Instead of seeking an optimal solution for a combined job schedul-
ing and meta-scheduling problem, we divide the task into composable but orthogonal, self-
balancing domains. Not only does this naturally provide scalability, flexibility and robustness,

*e-mail: max.fischer @kit.edu

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 245, 07040 (2020) https://doi.org/10.1051/epjconf/202024507040
CHEP 2019

it also allows us to manage a variety of resources and situations in a uniform way. We have
successfully used our work for provisiong HPC and Cloud resources to the WLCG, as well
as managing abstract resources in the form of multi-core and single-core allocations.

2 Job to Resource to Job Meta-Scheduling: ROCED

Classically, meta-scheduling schemes in the WLCG follow a job to resource to job (JRJ)
approach. Notable examples are pilot submission frameworks of the major LHC VOs [3, 4].
In addition, the cloud meta-scheduler ROCED [5], previously developed at KIT and deployed
for roughly a decade, follows this design.

While details vary, the general design of JRJ meta-schedulers consists of (i) one or sev-
eral shared queues, to which users submit jobs, (ii) the meta-scheduler itself, which com-
putes and acquires appropriate resources given the submitted jobs, and (iii) the job scheduler,
which assigns acquired resources to submitted jobs. Notably, both the meta-scheduler and
job scheduler are tasked with selecting processing resources for submitted jobs.

We have previously used ROCED to opportunistically use HPC and Cloud resources,
with good results when using one resource provider at a time [6]. However, scaling out to use
resources from multiple distinct providers has revealed several fundamental shortcomings,
which roughly fall into two categories:

Resource Acquisition means interfacing with a resource provider to acquire resources
to run jobs. The pilot usage model of acquire-use-release, as well as virtual machine and
container technologies, makes it straightforward to technically support individual resource
providers. However, different providers usually offer different resource types, which are not
directly comparable — for example, some providers do not support multi-core jobs at all. This
makes selecting appropriate resources across multiple providers a hard problem.

Job Scheduling means efficiently assigning as many jobs to as many resources as possible.
Due to late-binding of pilots, the job scheduler performs practically the same task as with
static resources, which we can optimize sufficiently [7]. In contrast, the meta-scheduler must
predict resource usage, since resources are not immediately available. We have found this to
be impossible in proper opportunistic use cases, since job demand can only be predicted on
the scale of minutes [8] whereas resources take hours to days to acquire.

Since the mentioned shortcomings directly follow from the JRJ approach, they also apply
to other meta-schedulers of the same design. Notably, they may prevent not just an optimal
resource selection, but any reliable resource selection. As a result, we consider JRJ meta-
scheduling unsuited to manage multiple heterogeneous providers given non-static workloads
and resources. It is worth stressing that for a sufficiently static, homogeneous use-case JRJ
meta-scheduling provides very good results, though.

3 Feedback Control Loop Meta-Scheduling: COBalD

The goal of our usage of meta-schedulers is not actually accurate job to resource matching,
but merely high utilisation of available resources. Furthermore, the precise features of neither
individual jobs [9] nor individual resources are known ahead of time. This has prompted us
to propose and implement an approach that directly aims at optimising our desired target:
The COBalD — the Opportunistic Balancing Daemon (COBalD) [10] is a Feedback Control
Loop (FCL) meta-scheduler that directly acts on observed resource utilisation.

The core idea of COBalD is to deduce which types of resources are optimal by observing
how existing resources are actually used, avoiding the need to inspect, know or predict job
requirements. This feedback is then used to control resources, namely to add used and remove

EPJ Web of Conferences 245, 07040 (2020) https://doi.org/10.1051/epjconf/202024507040
CHEP 2019

unused resources. Notably, COBalD only monitors, acquires and releases resources; there is
no interaction with queued or running jobs, which are handled only by the job scheduler.

As a result of this, COBalD is agnostic with regard to the type of resources and their
usage; in fact, it also works for setups not based on jobs. This allows to use the same approach
for managing heterogeneous resources, e.g. resources of different CPU count or RAM/CPU
ratio. In addition, we have successfully used COBalD to manage entirely virtual resources,
namely the partition of multi-core slots at GridKa Tier 1 [7]. For our use-case of opportunistic
resource usage in HEP, we provide the COBalD plugin TARDIS [11, 12] to manage virtual
machines, containers, and pilots as part of an overlay batch system.

3.1 The COBalD Pool Model

To enable lightweight and efficient resource control, resources are logically abstracted within
COBalD to a few features.! These features are the allocation (fraction of the resource re-
served for use), the utilisation (fraction of the resource actually used), and the supply (volume
of the resource). While these are abstract concepts, their definition is usually straightforward
for a given resource (see Figure 1). The exact meaning is defined by the resource implemen-
tation.

Resource Resource Resource Figure 1. Compute resources and their
T T T representation by TARDIS: Compute resources
are modelled as set of continuous features, e.g. a
total amount of CPU cores, RAM, scratch space.
Job Job Job Each job (or any other process) blocks a fraction
y of these resources for themselves. Allocation is
RAM RAM RAM derived from the most-used feature, signifying
how much space is available for more jobs.
Utilisation is derived from the least-used
feature, signifying how much space is wasted by
jobs. Thus, allocation and utilisation express
how much and how well resources are used.

Job Job

CPU
CPU
CPU

allocation
allocation
allocation

utilisation utilisation utilisation

Figure 2. Aggregated resources in the COBalD
Pool Model: A Pool represents several resources
3 by their combined allocation, utilisation and
supply. The appearance is yet again that of a

i resource, but intentionally hides sub-resources.
utilisation

allocation

The resource features have been purposely chosen to allow aggregating multiple resources
efficiently into a single Pool. Each Pool is itself represented as a single resource, and multiple
Pools can be recursively aggregated if needed. Aggregation is a cheap transformation using
simple mathematical formulas, for example aggregating the allocation/utilisation and supply
of all constituents as their (weighted) average and sum, respectively (see Figure 2). The pri-
mary advantage of this representation is that individual resources become indistinguishable:
COBAalD itself only needs to adjust the desired, total volume of a single Pool, and plugins are
free to manage and replace individual resources to match this volume.

Controlling the volume of Pools is done via simple rules, adequate for a Feedback Control
Loop. Rules are usually formulated as positive or negative assertions, as thresholds or ratios,
configured for the current use-case. Due to the modular design of COBalD, it is simple to

!Plugins may of course internally use additional features of resources, e.g. the identifier of a pilot job in a batch
system. However, such features are not required or used by other COBalD components.

EPJ Web of Conferences 245, 07040 (2020) https://doi.org/10.1051/epjconf/202024507040
CHEP 2019

implement additional kinds of rules if needed. In our experience, it is sufficient to work with
basic rules such as "reduce supply if utilisation below 80% otherwise increase supply until
10% unallocated" or similar.

3.2 Orthogonality of Job and Meta-Scheduler

The FCL design means that meta-scheduler and job scheduler are not nested, and that the
meta-scheduler does not need to predict any actions of the job scheduler. This allows to oper-
ate and configure the job scheduler independently of the meta-scheduler — the only objective
is good utilisation, as desired in static scenarios as well. Similarly, the meta-scheduler merely
has to observe resources and does not need a model of how the job scheduler operates.

As a result, the FCL design allows to work with arbitrary job schedulers, including those
which are again meta-schedulers — a situation that naturally arises when a WLCG site acquires
opportunistic resources and runs pilot jobs from VOs. The job scheduler may use non-trivial,
stateful scheduling policies, such as preemption, fairshare, or priorities, since the FCL meta-
scheduler observes only their net effect of (not) utilising resources. Notably, this means
COBalD naturally performs only two actions: provide more resources desirable for the job
scheduler, and discard inadequate resources.

Unlike JRJ meta-schedulers, which must be aware of all jobs and all possible resources, an
FCL meta-scheduler must only be aware of the subset of resources which it has acquired. This
means an FCL meta-scheduler can operate even when the job scheduler has additional re-
sources, even those managed by other FCL meta-schedulers: Multiple independent instances
of COBalD can manage resources for the same job scheduler. In this scenario, each instance
manages one type of resource — e.g. multi-core or single-core — at one resource provider —
e.g. HPC or Cloud (see Figure 3). The job scheduler matches whatever resources are cur-
rently needed, and leaves the rest unused. This leads to only suitable resources being used,
as unused resources are removed by their COBalD instance.

Figure 3. Orthogonal setup of COBalD
< coBalD > < CoBalD > < CoBalbD > meta-schedulers and job scheduler at KIT:

Independent COBalD instances are deployed for
Bonn KIT Tier : KIT HPC various resource providers, each managing their
own set of resources. COBalD uses TARDIS to
run drones, the equivalent of pilot jobs, which
integrate into a single overlay batch system. The
overlay job scheduler, a copy of the regular
GridKa Tier 1 scheduler, is the only component
aware of all resources. As the job scheduler
places WLCG pilots on acquired resources, each
COBalD instance observes the usage of its own
resource pools.

KIT Drones § KIT Drones § KIT Drones
KIT Tier 1 Job Scheduler

3.3 Towards Implicit Network Scheduling

Opportunistic resources commonly do not have the network bandwidth as WLCG centres,
which offer dedicated connections in the WLCG. As such, network congestion can be a bot-
tleneck for data processing on opportunistic resources. Since the available network band-
width depends on the destination, may be congested by other connections, and can only be
measured by saturation, it cannot generally be assigned a value for use in scheduling. To the

EPJ Web of Conferences 245, 07040 (2020) https://doi.org/10.1051/epjconf/202024507040
CHEP 2019

best of our knowledge, there are no means to adequately handle network with a JRJ meta-
scheduler.

Instead, we propose to implicitly schedule network bandwidth by its side-effects, namely
observing the efficiency of processes using the network. In specific, low CPU efficiency of
processes is a clear indicator for lack of network throughput (see Figure 4), and directly mea-
surable on all common operating systems. Thus, using the CPU efficiency as the utilisation
of resources automatically causes COBalD to request resources with free network bandwidth
and discard resources without sufficient bandwidth.

User Job Fitness

~

bCoIIcE)r é:%ded Figure 4. Relation between network throughput
yEneser and CPU efficiency: Given jobs of the same

o

@
%5 workflow, too little available network
E throughput reliably coincides with low CPU
EN > efficiency. Notably, there is no general
Es Pl correlation between CPU efficiency and network
£, throughput — other factors may reduce CPU
2 efficiency as well. However, limited network
z1 R reliably creates a limit for the maximum CPU
0 S efficiency possible.
30 40 50 60 70 80 90 100
CPU Efficiency

This technique has so far been deployed for testing when backfilling HPC resources. We
have observed that this successfully provides a safeguard against network congestion when
running data analyses on opportunistic resources. In the future, we want to investigate how
to best combine this approach with measuring utilisation by the best-fit. Ideally, we will be
able to offer a solution to automatically acquire appropriately sized opportunistic resources,
including local features such as CPU, RAM and GPU, as well as shared features such as
network.

4 Conclusions

Even though job to resource to job meta-scheduling performs well for homogeneous re-
sources and jobs, we have not been able to apply it to more complex, dynamic cases. JRJ
meta-schedulers inherently duplicate responsibilities and introduce a high level of coupling
between components. The inherent prediction required by the meta-scheduler has shown
to be unfeasible given imprecise job requirements, e.g. from pilots, and unstable resource
availability, e.g. opportunistic resources.

Instead, we propose a different approach using meta-schedulers based on a Feedback
Control Loop (FCL) design, and have implemented this with COBalD, a lightweight, feed-
back based meta-scheduler. Instead of acting on predicted resource use, COBalD reacts to
observed resource allocation and utilisation. This can be expressed with a generic resource
model, capable of covering many use-cases.

We have already successfully used this simpler approach to modelling and managing
resources in order to face challenges of providing opportunistic resources for HEP. Our
COBalD plugin TARDIS [13] can integrate a variety of resource types into overlay batch
systems. Due to the simple architecture, multiple instances of our meta-scheduler can sup-
ply the same overlay batch system and reliably provide heterogeneous resources. Finally,
our work is the basis for implicitly scheduling network capacities, which may enable data
intensive workflows even on opportunistic resources.

EPJ Web of Conferences 245, 07040 (2020) https://doi.org/10.1051/epjconf/202024507040
CHEP 2019

References

[1] J. Shiers The Worldwide LHC Computing Grid (worldwide LCG)" Computer Physics
Communications 177 219-223 (2007)

[2] M. Turilli, M. Santcroos, S. Jha A Comprehensive Perspective on Pilot-Job Systems ACM
Comput. Surv. 51 43 (2018) https://doi.org/10.1145/3177851

[3] 1. Sfiligoi, et al. The Pilot Way to Grid Resources Using glideinWMS, WRI
World Congress on Computer Science and Information Engineering (2009)
DOI:10.1109/CSIE.2009.950

[4] P. Nilsson, et al. The PanDA System in the ATLAS Experiment, Proceedings of XII Ad-
vanced Computing and Analysis Techniques in Physics Research (2008)

[51 ROCED project, "ROCED" [software],(2018. December 3). Currently used Version at
KIT (Version 1.1.0). Zenodo. DOI:10.5281/zenodo.1888310

[6] C.Heidecker, et al. Dynamic Resource Extension for Data Intensive Computing with Spe-
cialized Software Environments on HPC Systems, Proc. o. t. 5th bwHPC-Sym. Freiburg,
159-161 (2018), DOI:10.15496/publikation-29051

[7] M. Fischer, et al. Adoption of ARC-CE and HTCondor at GridKa Tier 1, EPJ Web of
Conferences 214, 03053 (2019)

[8] E. Kuehn, et al. Predicting resource usage for enhanced job scheduling for opportunistic
resources in HEP, EPJ Web of Conferences CHEP 2019 proceedings (to be published)
[9] E. Kuehn Online analysis of dynamic streaming data, 2018 DOI:10.5445/IR/1000083227

[10] COBalD project, "COBalD" [software], DOI:10.5281/zenodo.1887872

[11] COBalD-TARDIS project, "TARDIS" [software], DOI:10.5281/zenodo.2240605

[12] M. Schnepf, et al. Dynamic Integration and Management of Opportunis-
tic Re- sources for HEP, EPJ] Web of Conferences 214, 08009 (2019),
DOI:10.1051/epjconf/201921408009

[13] M. Giffels, et al. Effective Dynamic Integration and Utilization of Heterogenous Com-
pute Resources, EP] Web of Conferences CHEP 2019 proceedings (to be published)

