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Abstract: Full space clustering methods suffer the curse of dimensionality, for example points tend to become equidistant
from one another as the dimensionality increases. Subspace clustering and correlation clustering algorithms
overcome these issues, but still face challenges when data points have complex relations or clusters overlap. In
these cases, clustering with constraints can improve the clustering results, by including a priori knowledge into
the clustering process. This article proposes a new clustering algorithm CoExDBSCAN, density-based clus-
tering with constrained expansion, which combines traditional, density-based clustering with techniques from
subspace, correlation and constrained clustering. The proposed algorithm uses DBSCAN to find density-
connected clusters in a defined subspace of features and restricts the expansion of clusters to a priori con-
straints. We provide verification and runtime analysis of the algorithm on a synthetic dataset and experimental
evaluation on a climatology dataset of satellite observations. The experimental dataset demonstrates, that
our algorithm is especially suited for spatio-temporal data, where one subspace of features defines the spatial
extent of the data and another correlations between features.

1 INTRODUCTION

Mining datasets has become more challenging with
the increasing amount of high dimensional data that
is available today through new technologies, higher
processing power, bigger storage capacities and data-
driven research. Finding clusters in such datasets
can reveal interesting patterns and dependencies of-
ten caused by complex correlations. However, tradi-
tional full space clustering algorithms suffer the curse
of dimensionality, for example points tend to become
equidistant from one another as the dimensionality
increases (Friedman, 1994). For this purpose, dif-
ferent subspace and correlation clustering algorithms
have been proposed, which extend traditional clus-
tering algorithms to detect correlations in subsets of
features (Agrawal et al., 1998) (Aggarwal and Yu,
2000). While some correlation algorithms are able to
find arbitrarily oriented subspace clusters, for exam-
ple CASH (Achtert et al., 2008), or can identify local
subgroups of data objects sharing a uniform but ar-
bitrarily complex correlation, for example 4C (Böhm
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et al., 2004a), these algorithms still face challenges
for instance with overlapping clusters or uncorrelated
complex relations between features. For this reason,
there has been a growing interest in semi-supervised
clustering methods, in particular constrained cluster-
ing, where additional information or domain knowl-
edge is included into the clustering process (Pourra-
jabi et al., 2014) (Basu et al., 2008) (Dinler and Tural,
2016). Incorporating a priori knowledge into the clus-
tering process can improve the clustering results, lead
to better performance and align the outcome of the
cluster analysis with knowledge of domain experts.
In this paper, we propose a new density-based clus-
tering algorithm with constrained cluster expansion,
CoExDBSCAN, that combines different techniques
from subspace, correlation and constrained cluster-
ing. The proposed algorithm uses DBSCAN (Ester
et al., 1996) to find density-connected clusters in a de-
fined subspace of features and restricts the expansion
of clusters to a priori constraints. The validation of
the algorithm on an experimental, real-world dataset
demonstrates, that our algorithm is especially suited
for spatio-temporal data, where one subspace of fea-
tures defines the spatial extent of the data and another
correlations between features.



Specifically, our contributions with this work can
be summarized as follows:

• We introduce two user-defined parameters to the
original DBSCAN algorithm. One to define the
dimensions of the subspace to be used to discover
density-based clusters, and one to define the di-
mensions of the subspace to be used to apply con-
straints to the cluster expansion of DBSCAN.

• We modify the cluster expansion step in the orig-
inal DBSCAN algorithm to be restricted to user-
defined constraints.

• We propose a generic constraint to discover cor-
related structures in large datasets.

• Finally, we provide results of thorough ex-
perimental studies on synthetic and real-world
datasets and demonstrate, that our algorithm is
especially suited for spatio-temporal data, where
one subspace of features defines the spatial extent
of the data and another correlations between fea-
tures.

The reminder of the paper is organized as follows:
Section 2 compares our proposed algorithm to related
work while Section 3 presents the proposed algorithm
in detail. The evaluation is provided in Section 4 with
verification and runtime analysis of the algorithm on a
synthetic dataset and experimental evaluation on a cli-
matology dataset of satellite observations. In Section
5 we give a discussion on the results while Section 6
provides the conclusions and outlooks.

All datasets together with the code for this paper
is publicly available1.

2 RELATED WORK

Numerous clustering algorithms have been developed
and studied over time. A well received survey is pro-
vided by Anil K. Jain in his article ”Data Clustering:
50 Years Beyond K-Means” (Jain, 2010). In this pa-
per we focus on most related and relevant work in the
areas of density-based clustering, correlation cluster-
ing and constrained clustering.

Martin Ester et al. presented the DBSCAN algo-
rithm in 1996 as a density-based clustering algorithm
for discovering clusters in large spatial databases with
noise (Ester et al., 1996). The authors introduced a
until then new notion of clusters, based on the den-
sity of point neighbourhoods. The algorithm con-
siders data point by data point. If the distance from
an initial point to at least a minPts defined number
of other points is smaller than a defined distance ε,

1https://github.com/bertl4398/kdir2020

these points form a cluster. The initial point is con-
sidered a core point and the remaining points the
ε-neighbourhood of that point. If a cluster can be
formed, this cluster is expanded by applying the initial
step to all points in the ε-neighbourhood. If the initial
point is not a core point, the point is considered to be a
noise point and the algorithm moves to the next point
in the dataset. Noise points can become border points
and therefore be associated to a different cluster later
on, if they are density-reachable from some other data
point. The two parameters minPts and ε determine
the outcome of the DBSCAN algorithm. While the
purpose of minPts is to smooth the density estimate
and is recommended to be chosen according to the di-
mensionality of the dataset, the radius parameter ε de-
pends on the distance function, and should ideally be
based on domain knowledge (Schubert et al., 2017).
Schubert et al. discuss further the advantages and
disadvantages of DBSCAN. Most notably, Schubert
(Schubert et al., 2017) states, that DBSCAN contin-
ues to be relevant even for high-dimensional data, but
becomes difficult to use:

”Independent of the algorithm, the parame-
ter ε of DBSCAN becomes hard to choose in
high- dimensional data due to the loss of con-
trast in distances (Beyer et al., 1999; Houle
et al., 2010; Zimek et al., 2012). Irrespec-
tive of the index, it therefore becomes diffi-
cult to use DBSCAN in high-dimensional data
because of parameterization; other algorithms
such as OPTICS and HDBSCAN*, that do not
require the ε parameter are easier to use, but
still suffer from high dimensionality.”

The OPTICS (Ankerst et al., 1999) and HDBSCAN*
(Campello et al., 2013) algorithm mentioned by Schu-
bert are examples of DBSCAN variants that focus on
finding hierarchical clustering results (Schubert et al.,
2017). Although our work is based on the origi-
nal DBSCAN algorithm, it is not restricted to it and
can be used in combination with any variant where
the cluster expansion step can be restricted to user-
defined constraints.

To overcome the issues of conventional, full space
clustering methods in high-dimensional data, algo-
rithms in the area of subspace clustering and corre-
lation clustering have attracted more and more at-
tention recently (Achtert et al., 2008). For example
CLIQUE (Agrawal et al., 1998) for axis-parallel sub-
spaces or ORCLUS (Aggarwal and Yu, 2000) and
CASH (Achtert et al., 2008) for arbitrarily oriented
subspaces. Elke Achtert et al. introduced the CASH
algorithm as an efficient and effective method to find
arbitrarily oriented subspace clusters. The main idea
of the algorithm is to transform every data point from



data space to parameter space, the space of all possi-
ble subspaces, by using the ideas of the Hough trans-
formation (Hough, 1962; Duda and Hart, 1972). Ev-
ery data point in data space is mapped onto the cor-
responding sinusoidal curve in parameter space. Hy-
percuboids in parameter space with many intersecting
sinusoidal curves indicate points in data space that
are located on, or near, a common hyperplane, and
therefore are considered to form a subspace cluster
(Achtert et al., 2008). According to Achtert et al.

”[CASH is able to] find subspace clusters
of different dimensionality even if they are
sparse or are intersected by other clusters
within a noisy environment.”

Since our research interest and real-world data be-
longs manly into this categorization of data, we
choose to compare our clustering results to this algo-
rithm as well. Moreover, an open source implementa-
tion within the ELKI (Schubert and Zimek, 2019) data
mining software is available and has been used in our
experiments. CASH is also outperforming other cor-
relation clustering algorithms such as ORCLUS or 4C
(Böhm et al., 2004b) on datasets with highly overlap-
ping clusters (Achtert et al., 2008), which is the case
for our synthetic and real-world datasets.

Incorporating additional information or domain
knowledge about the underlying cluster structure of
the data is known as constrained clustering and has
been the subject of extensive research recently (Din-
ler and Tural, 2016). Wagstaff and Cardie (Wagstaff
and Cardie, 2000) introduced the notion of using con-
straints that express information about the underlying
class structure in the clustering process by consider-
ing two general types of constraints, called instance
level constraints; (1) must-link constraints that spec-
ify that two instances have to be in the same cluster
and (2) cannot-link constraints that specify, that two
instances cannot be in the same cluster. The most rel-
evant related work to our paper in this area is the C-
DBSCAN algorithm by Ruiz et al. (Ruiz et al., 2007),
a density-based clustering algorithm with constraints.
C-DBSCAN extends DBSCAN in three steps:
1. Partitioning the data space into dense partitions by

applying a k-d tree (Bentley, 1975)

2. Creating local clusters under cannot-link con-
straints

3. Merging local clusters under must-link and
cannot-link constraints

Ruiz et al. chose a random percentage of points un-
der the must-link constraint and derived the cannot-
link constraint interdependently. The authors could
demonstrate, that even those randomly chosen con-
straints improve the clustering quality substantially,

notably on datasets where the original DBSCAN
performs poorly (Ruiz et al., 2007). Compared to
our approach, we do not follow the method of in-
stance level constraints expressed as must-link and
cannot-link constraints. Our modification to DB-
SCAN restricts the cluster expansion to user-defined
constraints, which has been proven to be very flexible
and is explained in detail in the next section.

3 ALGORITHM

First, we are going to recap the main definitions of
the original DBSCAN algorithm by Ester et al. be-
fore giving a detailed description of our proposed ex-
tensions.

3.1 DBSCAN Recap

In the original paper from Martin Ester et al. pre-
sented at the International Conference on Knowledge
Discovery and Data Mining (KDD) in 1996, Ester
gives six main definitions essential for the DBSCAN
algorithm (Ester et al., 1996), recapitulated in the fol-
lowing.

Definition 1. ε-neighbourhood of a point
Let DB be a database of points. The ε-neighbourhood
of a point p, denoted by Nε(p), is defined by

Nε(p) = {q ∈ DB|dist(p,q)≤ ε}
Definition 2. Directly density-reachable
A point p is directly density-reachable from a point

q wrt. ε and minPts if

1. p ∈ Nε(q) and
2. |Nε(q)≥ minPts| (core point condition).

Definition 3. Density-reachable
A point p is density-reachable from a point q wrt. ε

and minPts if there is a chain of points p1, ..., pn, p1 =
q, pn = p such that pi+1 is directly density-reachable
from pi.

Definition 4. Density-connected
A point p is density-connected to a point q wrt. ε and
minPts if there is a point o such that both, p and q are
density-reachable from o wrt. ε and minPts.

Definition 5. Cluster
A cluster C wrt. ε and minPts is a non-empty subset

of DB satisfying the following conditions:

1. ∀p,q: if p ∈C and q is density-reachable from p
wrt. ε and minPts, then q ∈C. (Maximality)

2. ∀p,q ∈C: p is density-connected to q wrt. ε and
minPts. (Connectivity)



Definition 6. Noise
Let C1, ...,Ck be the clusters of the database DB wrt.

parameters εi and minPtsi, i= 1, ...,k. Then we define
the noise as the set of points in the database DB not
belonging to any cluster Ci, i.e. noise = {p ∈ DB|∀i :
p /∈Ci}

In a nutshell, clusters extracted by the DBSCAN
algorithm comprise points that have at least a specific
number of other points (minPts) within a specific dis-
tance (ε) or otherwise are considered to be noise.

While DBSCAN is able to find clusters of arbi-
trary shape, one problem with the global density pa-
rameter ε is, that DBSCAN can not identify clus-
ters with different densities. Although metrics exist
to determine good, global ε and minPts parameters,
for example analysing the k-distance graph as pro-
posed in the original paper (Ester et al., 1996), find-
ing good, global parameters becomes even more chal-
lenging for high-dimensional data. An intuitively ac-
cessible example, specifically why the Euclidean dis-
tance does not work well in high-dimensional data, is
given by Ertöz et al.(Ertöz et al., 2003), who intro-
duced a new notion of similarity and density for their
shared nearest neighbour clustering algorithm (SNN).
Another problem with DBSCAN arises with datasets
that contain overlapping clusters. As long as points
are density-connected, these points will end up in the
same cluster, with the rare exception of a point be-
ing a border point in two clusters. For overlapping
clusters, this means, that DBSCAN will merge them
or will consider the lesser dense true cluster points as
noise.

Our solution addresses these problems by modi-
fying the original DBSCAN algorithm as described
in the following section.

3.2 CoExDBSCAN

Our density-based clustering algorithm with
constrained expansion (CoExDBSCAN) modi-
fies the original DBSCAN clustering algorithm
in two ways. First, we introduce a user-defined
parameter to define the dimensions of the (sub)space
to be used to discover density-based clusters. Second,
we restrict the cluster expansion step in the DBSCAN
algorithm to user-defined constraints, applied to a
user-defined (sub)space of the dataset.

According to these extensions, we can redefine
the ε-neighbourhood definition from the original DB-
SCAN algorithm introduced in the previous section,
Definition 1.

Definition 7. CoExDBSCAN ε-neighbourhood of a
point
Let DB be a database of points. The ε-neighbourhood

of a point p, denoted by Nε(p), is defined by

Nε(p) = {q ∈ DB|dist(pS,qS)≤ ε

∧ constraints(pR,qR)}
where pS,qS are the subspace representations of point
p and q of the user-defined spatial subspace S, pR,qR
are the subspace representations of point p and q
of the user-defined constraint subspace R and the
constraints function evaluates true for each con-
straint Ti in a user-defined set of constraints T =
{T1,T2, ...,Tm}.

The pseudo code representation is given in Algo-
rithm 1 and has been adopted from the pseudo code
representation by Schubert et al. (Schubert et al.,
2017) of the original, sequential DBSCAN algorithm.
Modifications to the algorithm are coloured red and
marked by star (*). Each object in the database that
has not been processed already is labeled as noise,
if the core point condition is violated, see Defini-
tion 2, i.e. there are not at least minPts objects in
the ε-neighbourhood of the object under considera-
tion. Otherwise, the object is a core point and forms
a new cluster, while iteratively expanding and adding
the core point neighbours to the cluster.

Our first modification is in the RangeQuery func-
tion in line 3 and line 13 of Algorithm 1 that accepts
a user-defined parameter sDim, allowing to define the
dimensions of the space for the range query. In the
original DBSCAN algorithm, the range query is al-
ways executed on the full space of the dataset, unless
the algorithm operates on a precomputed distance ma-
trix that takes these restrictions into account. How-
ever, the parametrization of the spatial dimensions
makes this restriction more explicit and easier acces-
sible to the user. Especially for data with explicit spa-
tial dimensions, excluding certain dimensions or all
non-spatial dimensions from the range query can im-
prove the quality of the clustering, as we will demon-
strate in the experimental evaluation of the algorithm.

Our second modification is in the expansion step.
While the original DBSCAN algorithm expands a
cluster by starting at one core point and adding all
of its neighbours to a set of seeds that are iteratively
expand on if they satisfy the core point condition it-
self, we allow for additional user-defined constraints
to be considered before adding these points as seeds.
Therefore, even if the neighbour points satisfy the
core point condition as expressed in line 15 of the
algorithm, if the PointConstraint function can not
be satisfied in line 17, they will not be added to the
set of seeds, i.e. the algorithm will not expand on
their respective neighbours. The user can define one
or multiple constraints (cFunc) and the dimensions
(cDim) that the constraints should be applied to. This



approach can significantly improve the quality of the
clustering and allows to incorporate a priori knowl-
edge into the clustering process expressed in the form
of sub- or full-space constraints.

Algorithm 1: Pseudo Code of CoExDB-
SCAN Algorithm

input : database DB
input : radius ε

input : density threshold minPts
input : distance function dist
input : spatial dimensions sDim *
input : user-defined constraints cFunc *
input : constraint dimensions cDim *
output: point labels label initially unde f ined

1 foreach point p in database DB do
2 if label(p) 6= unde f ined then continue;
3 Neighbours N←

RangeQuery(DB,dist,sdim, p,ε) *;
4 if |N|< minPts then
5 label(p)← Noise;
6 continue;

7 c← next cluster label;
8 label(p)← c;
9 Seed set S← N \{p};

10 foreach q in S do
11 if label(q) = Noise then

label(q)← c;
12 if label(q) 6= unde f ined then

continue;
13 Neighbours N←

RangeQuery(DB,dist,sdim,q,ε) *;
14 label(q)← c;
15 if |N|< minPts then continue;
16 foreach s in N do
17 if PointConstraint

(cFunc,cDim,s) is false then
continue *;

18 S← S∪ s;

The PointConstraint function in line 17 of the
pseudo code takes a set of user-defined constraints in
the form of functions and returns true if all of the
constraints can be satisfied or false otherwise. This
behaviour can be relaxed, for example by applying a
threshold of number of constraints that needs to be
satisfied instead of the all-true behaviour. Also find-
ing good constraints is a challenging task, depend-
ing on the data to analyse, the analysis to be con-
ducted and the expected outcome. Moreover, it is up
to the user to define non-mutually exclusive and sensi-
ble constraints. However, constraining the DBSCAN

cluster expansion introduces a variety of interesting
studies that can provide valuable insights into differ-
ent datasets, as we will demonstrate in the next sec-
tion.

4 EVALUATION

In this section, we provide the runtime analysis of
our proposed algorithm first and verify the improved
quality of the clustering results in the subsequent sec-
tions. For the runtime analysis, we consider the av-
erage complexity of the original DBSCAN algorithm
with the additional complexity of user-defined con-
straints.

We compared the results of our algorithm with
the results from DBSCAN and CASH for different
existing popular reference datasets, for example the
Iris flower dataset (Fisher, 1936) and the artificial
datasets used for the verification of the CURE algo-
rithm (Guha et al., 2001), but chose to base the pre-
sented verification in this paper on our own gener-
ated synthetic dataset. All results, including the re-
sults for existing popular reference datasets, can be
found in the GitHub repository2. Generating our own
synthetic dataset allows us to fully control the prop-
erties of the clusters, so that we can create a dataset
that is especially challenging for density-based clus-
tering methods, and proofs to be very challenging for
subspace and correlation clustering methods as well.
In addition, we provide verification of the algorithm
on a real-world dataset within the domain of spatio-
temporal data and climate research.

Since the true labels are known for the synthetic
dataset, we use the Rand index adjusted for chance
(Rand, 1971; Hubert and Arabie, 1985) to evaluate
our clustering results. The Rand index is a measure
of similarity between two data clusterings and can be
computed as following (Rand, 1971):

Definition 8. Rand index
Given a set of n elements S = {o1, ...,on}, a partition
X = {X1, ...,Xr} of S into r subsets and a partition Y =
{Y1, ...,Ys} of S into s subsets, the Rand index is:

R =
a+b

n(n−1)/2
(1)

with a, the number of pairs of elements in S that are
in the same subset in X and Y , with b, the number of
pairs of elements in S that are in the same subset in X
and in different subsets in Y , and the total number of
pairs

(n
2

)
in the denominator.

2https://github.com/bertl4398/kdir2020



The adjusted Rand index, which is bounded above
by 1 and takes on the value of 0 when the index equals
its expected value E(R), can be expressed in general
form of an index corrected for chance the following
(Hubert and Arabie, 1985):

Definition 9. Adjusted Rand index

ARI =
R−E(R)

max(R)−E(R)
(2)

Moreover, we use the clustering accuracy (ACC)
to evaluate our clustering results, which finds the best
match between the true labels and the cluster labels.
The greater the clustering accuracy, the better the
clustering performance (Role et al., 2019).

Definition 10. Clustering accuracy (ACC)

ACC(y, ŷ) = max
perm∈P

1
n

n−1

∑
i=0

1(perm(ŷi) = yi) (3)

where P is the set of all permutations in [1;K] where
K is the number of clusters. The set of all permuta-
tions can be efficiently computed using the Hungarian
algorithm (Papadimitriou and Steiglitz, 1998).

However, our experiments have shown, that
”good” clusterings, in terms of number of clusters and
correct labels, often have a lower adjusted Rand index
than ”bad” clusterings. Therefore, in addition to the
adjusted Rand index and clustering accuracy, we eval-
uate our cluster results based on the total number of
clusters assigned, the minimum and maximum clus-
tered data points and to some extend the standard de-
viation of number of points per cluster, as well as with
the aid of visual analysis. For our real-world dataset,
we assess the quality of the clustering primarily ac-
cording to expert opinion.

4.1 Runtime Analysis

The average runtime complexity of the original DB-
SCAN algorithm is O(n logn) (Ester et al., 1996). The
authors argue, that distance queries can be supported
efficiently by spatial access methods such as R*-trees,
that have the height of O(logn), and because for each
of n points only one query has to be executed, the av-
erage run time complexity is consequently O(n logn).
Schubert et al. (Schubert et al., 2017) state, that the
DBSCAN runtime complexity can be Θ(n2 ·D), with
cost D of computing the distance of two points, if im-
plementing the range query with a linear scan. In gen-
eral however:

”[. . .] DBSCAN remains a method of choice
even for large n because many alternatives are
in Θ(n2) or Θ(n3). [. . .] In the general case

of arbitrary non-metric distance measures, the
worst case remains O(n2 ·D) [. . .]”

Introducing a set of constraints T = {T1,T2, ...,Tm} to
the expansion step of the DBSCAN algorithm adds
the complexity of O(n ·max(T )) to check the set of
constraints for each point. The complexity of con-
straints can vary greatly, for example from hash ta-
ble searches with average time complexity O(1) (Cor-
men et al., 2009) to linear regression complexity
O(w2n + w3) for n number of observations and w
number of weights (Mohri et al., 2012), as in our
demonstrated examples in the following sections. In
total, the runtime complexity of CoExDBSCAN, de-
pending on the user-defined constraints, is therefore
on average the runtime complexity of DBSCAN plus
the maximum complexity of the user-defined con-
straints, O(n ·max(T )+n · logn).

4.2 Verification

Our synthetic dataset contains 3,000 points with three
dimensions and three classes, 1,000 points per class.
Table 1 lists the generation method and interval range
as well as the linear dependencies of the variables.
Figure 1a) illustrates the overlapping nature and linear
dependencies of the three classes.

Table 1: Value range and dependencies for the synthetic
dataset.

Points x y z

1,000 evenly [0,1] −0.5x+0.2+ξ −0.5x+0.2+ξ

1,000 uniform [0,1) uniform [0,1) 0.1x+0.1y
1,000 uniform [0,1) uniform [0,1) 0.4x+0.2y

The values for the x and y variables of cluster 0,
blue color in Figure 1a), are generated by sampling
the random uniform distribution in the half-open in-
terval [0,1); the values for the z variable are com-
puted using the linear equation 0.1x+0.1y. For clus-
ter 1, orange color in the figure, the values for the
x and y variables are generated also by sampling the
random uniform distribution in the half-open interval
[0,1); the values for the z variable are computed using
the linear equation 0.4x+ 0.2y. The green coloured
cluster 2 in the figure is generated by evenly spaced
x values in the closed interval [0,1] and the values
for the y and z variables following the linear equa-
tion −0.5x+ 0.2+ ξ, where ξ is some random varia-
tion with ξ ∼ N (0,0.01). This dataset poses a chal-
lenge to all clustering algorithms that we evaluated
for this study. First, the clusters have different den-
sities, with a very dense, line shaped cluster and two
looser, plane shaped clusters. Second, all clusters are
overlapping with some proportions. The plane shaped
clusters have an overlapping edge, which is crossed



by parts of the line shaped cluster.
We implemented the CoExDBSCAN algorithm

in Python and conducted our experiments with the
scikit-learn (Pedregosa et al., 2011) machine learning
package implemented in Python and the ELKI (Schu-
bert and Zimek, 2019) data mining software written in
Java. Our first objective was to find the best DBSCAN
clustering according to the adjusted Rand index and
the most accurate clustering, i.e. three clusters with
the same amount of data points each and the fewest
noise. In order to find suitable clusterings, we con-
ducted a grid search for DBSCAN with ε in the range
of [0.01,0.2] with a step size of 0.01 and minPts in
the range of [3,100] with a step size of 1.

The DBSCAN clustering result with the highest
adjusted Rand index for the parameters ε = 0.03 and
minPts = 39 in three-dimensional space has only one
single cluster, not depicted here. The line shaped,
dense cluster has been identified almost perfectly
with 1,018 data points in the cluster. However, with
the specified ε radius and number of minimum ε-
neighbourhood points, the algorithm was not able to
expand into the plane shaped point structures. Al-
though the adjusted Rand index (ARI = 0.562) is the
highest in the explored parameter space, according to
the accuracy and qualitative assessment, the cluster-
ing result is worse than the qualitative best cluster-
ing result. Figure 1b) shows the qualitative best DB-
SCAN clustering result, with three clusters, fewest
noise points and the maximum amount of points in
each cluster. It becomes apparent, that with a higher
radius ε, the DBSCAN algorithm is now able to ex-
pand into the whole dataset, while the number of ε-
neighbourhood points determines the amount of noise
and closeness of the clusters. A lower number of
minPts relaxes the condition on the cluster expansion
up to a point, where all data can be clustered into one
single cluster. Whereas a higher number of minPts
restricts the cluster expansion more, resulting in clus-
ters that are further apart but also increases the num-
ber of noise points. With our proposed modification
in the expansion step of the DBSCAN algorithm, we
can keep the ε parameter at a value that allows to ex-
pand into the whole dataset and lower the number of
minPts at the same time, while avoiding the degener-
ated case of one single cluster.

One advantage of our proposed algorithm is the
flexibility of how users can provide constraints to the
clustering process. In our verification experiments,
we tested several constraints that include the a priori
knowledge of correlated structures in the dataset. Ex-
periments have shown, that a suitable constraint that
expresses this information in a generic way is to put
a threshold on the change of the mean squared error

regression loss by including the next core point into
the current set of cluster points. This constraint al-
lows the algorithm to expand clusters on arbitrarily
correlated structures and changing correlation up to a
certain degree.

Another advantage over the original DBSCAN al-
gorithm is the user-defined selection of the spatial di-
mensions and the constraint dimensions. We refer to
those features of the dataset as spatial dimensions that
are used to calculate the RangeQuery, i.e. the pair-
wise distance between data points. Likewise, we re-
fer to the features of the dataset that are used in the
PointConstraint function as constraint dimensions,
see Algorithm 1. In our verification experiments, we
chose to include all features as spatial dimensions and
only the x and z features as correlation dimensions.
The threshold for the change of the mean squared er-
ror regression loss has been set to 9 ·10−6, according
to empirical tests. The ε and minPts parameters have
been determined by a grid search on the parameter
space for ε in the interval [0.01,0.2] with a step size
of 0.01 and minPts in the range of [3,100] with a step
size of 1.

Figure 1c) shows the best qualitative result, with
three clusters, fewest noise points and the maximum
amount of points in each cluster. By comparing the
CoExDBSCAN results visually to the original DB-
SCAN results, it is apparent, that the CoExDBSCAN
clustering result better captures the inherent struc-
ture of the dataset. Apart from the overlapping area,
the correlated data points in each of the three gener-
ated point samples have been assigned to three dis-
tinct clusters. It should be noted, that we are using
a generic constraint here that includes only the infor-
mation of some arbitrary correlated structures in the
dataset and that even permits gradually changes to
the linear regression of the cluster points. Still, the
clustering of CoExDBSCAN compared to DBSCAN
shows an improvement in our qualitative measures,
although the algorithm was not able to separate the
data points in the overlapping area. As we will dis-
cuss in Section 5, constraints more specific to the data
could further improve the result, but may lead to over-
fitting the algorithm to this one particular dataset.

In addition, we compared our algorithm to the
CASH algorithm (Böhm et al., 2004b). According
to Achtert et al., CASH is significantly outperform-
ing other correlation clustering algorithms, such as
ORCLUS or 4C, on datasets with highly overlap-
ping clusters in terms of robustness and effectiveness.
CASH requires the user to specify three parameter.
(1) The minimum number of sinusoidal curves that
need to intersect a hypercuboid in parameter space to
be considered a dense area, i.e. the minimum number
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b) DBSCAN, epsilon=0.17, minPts=98, ARI=0.104
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c) CoExDBSCAN, epsilon=0.1, minPts=20, ARI=0.232
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d) CASH, maxLevel=1, minPts=70, jitter=0.001, ARI=0.231
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Figure 1: Clustering results for the synthetic data: a) original data in three dimensional space; best qualitative clustering
results: b) DBSCAN, c) CoExDBSCAN, d) CASH

of points in a cluster (minPts); (2) the maximal num-
ber of splits along a search path (maxLevel), i.e the
maximal deviation from the hyperplane of the cluster
in terms of orientation and jitter; and (3) the amount
of jitter. We performed again a grid search on the
parameter space for minPts in the interval of [3,100]
with a step size of 1, for maxLevel in the range of
[1,10] with a step size of 1 and jitter in the inter-
val of [0.001,0.005] with a step size of 0.001. Figure
1d) illustrates the qualitative best clustering result for
CASH on our synthetic dataset with the parameters
minPts = 70, maxLevel = 1 and jitter = 0.001, with
five clusters and the maximum amount of points in
each cluster. The lowest number of clusters in the pa-
rameter space is five, and while the best qualitative re-
sults captures proportions of the correlated structures
well, it performs poorer than CoExDBSCAN in terms
of our evaluation metrics, which are summarized in
Table 2. Table 2 lists the respective algorithm with
the number of clusters identified, the minimum num-
ber of points in any cluster, the maximum number of
points in any cluster and the number of noise points,

Table 2: Summary of Best Qualitative Clustering Results
for the Synthetic Dataset

Algorithm Clusters ARI ACC Min Max Noise

CoExDBSCAN 3 0.232 0.669 468 1,947 17
DBSCAN 3 0.104 0.555 155 2,132 421
CASH 5 0.231 0.543 51 1,157 NA

i.e. points that were not assigned to any cluster. Co-
ExDBSCAN outperforms the original DBSCAN al-
gorithm and CASH in terms of the correct number of
clusters identified, the cluster accuracy, and therefore
closest similarity to the true labels of the data. The
adjusted Rand index provides an indifferent result in
this comparison.

4.3 Real World Example

To demonstrate the significance of our algorithm for
real-world data and provide additional verification,
we applied DBSCAN and CoExDBSCAN to a dataset
within the domain of spatio-temporal data and climate
research. We chose data from this particular domain,
since the development of the algorithm is part of an



interdisciplinary research project between computer
scientists and climate researchers, with the aim to de-
velop methods and algorithms for data-driven climate
data analysis. Our real-world dataset consists of spec-
tral data gathered from Metop-A and Metop-B satel-
lites that have been processed for the water vapour
H2O mixing ratio and water isotopologue δD deple-
tion for air masses at 5km height with most sensi-
tivity. The water isotopologue in question is HDO,
which differs only in the isotopic composition com-
pared to H2O. Isotopologues of atmospheric wa-
ter vapour can make a significant contribution for a
better understanding of atmospheric water transport,
because different water transport pathways leave a
distinctive isotopologue fingerprint (Schneider et al.,
2017). The paired analysis of water vapour H2O mix-
ing ratio and water isotopologue δD depletion allows
to identify different processes in the atmosphere, for
example air mass mixing, precipitation and conden-
sation (Noone, 2012). Our goal is to develop data-
driven methods to identify and analyse such processes
for a better understanding of atmospheric water trans-
port and to evaluate the moisture pathways as simu-
lated by different state-of-the-art atmospheric models.
These methods and algorithms have to scale and cope
with the amount of data that is continuously produced
by the remote sensing instruments onboard the satel-
lites, where global measurements of our data for one
year aggregate to 20 Terabyte.

Our dataset in this example comprises 38,734
satellite observations with the geographical coordi-
nates longitude (lon) and latitude (lat) and the spec-
tral data processed for the water vapour H2O mix-
ing ratio and water isotopologue δD depletion. This
dataset corresponds to measurements for one global
morning overpass of both satellites in a region of in-
terest over the Atlantic and West Africa. The mea-
surements have been filtered for cloud free conditions
and highest sensitivity; their summary statistics are
listed in Table 3. We applied different transformations
to align the value range of each variable according to
domain experts, given in Table 4. After scaling the
data we executed multiple runs with DBSCAN and
CoExDBSCAN and compared the clustering results.

Figure 2 illustrates a qualitative good example us-
ing DBSCAN, with parameters ε = 10 and minPts =
200. DBSCAN has identified three clusters that are
dense in the full space of the scaled variables lat,
lon, H2O and δD. Moreover, two of the identified
clusters (green and orange color in the figure) in-
dicate some correlation in the {log(H2O),δD} and
{H2O,H2O ·δD} value space, while at the same time
are located geographically close. Using the same pa-
rameters ε = 10 and minPts = 200 with CoExDB-

Table 3: Summary statistics for the real-world dataset.

lon lat H2O δD

count 38,734 38,734 38,734 38,734
mean 11.40 15.92 3749.84 -231.17
std 32.08 21.66 2057.17 66.15
min -44.99 -25.00 526.53 -475.08
25% -18.95 -3.01 2217.36 -279.89
50% 16.86 17.36 3301.84 -230.05
75% 38.80 35.65 4723.93 -179.05
max 59.99 50.00 14376.72 -70.47

Table 4: Transformation of Features

variable transformed variable
lon lontrans f ormed = lon · cos(lat π

180 )/0.5
lat lattrans f ormed = lat/0.5
H2O H2Otrans f ormed = log(H2O)/0.2
δD δDtrans f ormed = δD/20

SCAN, we can additionally expresses a priori knowl-
edge of correlated structures in the dataset by provid-
ing user-defined constraints to the expansion of clus-
ters, as well as define the spatial and constraint di-
mensions. In the same way as in the verification tests
with the synthetic dataset, we used again a threshold
for the change of the mean squared error regression
loss as constraint, which has been set to 1 · 10−5 in
this example and has been empirically determined.
As spatial dimensions we chose the geographical co-
ordinate variables longitude (lon) and latitude (lat),
and as constraint dimensions we chose the remain-
ing two variables H2O and δD. Figure 3 shows the
results using the CoExDBSCAN algorithm. Com-
pared to DBSCAN we have identified a significant
higher number of clusters, while keeping the same ε

radius and minPts neighbourhood points. All clus-
ters are geographically close and correlated in either
the {log(H2O),δD} or {H2O,H2O ·δD} value space.
By incorporating a threshold for the change of the
mean squared error regression loss as constraint in the
cluster expansion step and explicitly defining spatial
and constraint dimension, we can keep the DBSCAN
parameters that allow to explore the full dataset, but
still be able to explore more fine-grained structures,
even with highly overlapping data points. This level
of granularity is very important to distinguish and
to identify the different processes in the atmosphere,
which emphasizes the value of the algorithm for data
analysis in this particular domain.
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Figure 2: {H2O,δD} cluster analysis with DBSCAN, ε = 10,minPts = 200. Only 1,000 randomly sampled points are shown
for better visibility.

−40 −20 0 20 40 60

lon [°]

−30

−20

−10

0

10

20

30

40

50

la
t

[°]

Geographic space {lon, lat}

7.0 7.5 8.0 8.5 9.0 9.5

log(H20) [ppm]

−450

−400

−350

−300

−250

−200

−150

−100

δD

Value space {log(H2O), δD}

2000 4000 6000 8000 10000 12000

H2O [ppm]

−2.25

−2.00

−1.75

−1.50

−1.25

−1.00

−0.75

−0.50

−0.25

H
2
O
·δ

×106 Value space {H2O,H2O · δD}

Figure 3: {H2O,δD} cluster analysis with CoExDBSCAN, ε = 10,minPts = 200,δ = 1e−5. The geographic space (longitude
and latitude) has been used as spatial dimensions and the {log(H2O),δD} has been used as constraint dimensions. Only 1,000
randomly sampled points are shown for better visibility.

5 DISCUSSION

The main concept of our presented CoExDBSCAN
algorithm, to allow users to constrain the expansion of
clusters in specific subspaces of the data, can signifi-
cantly improve the clustering results, as demonstrated
in sections 4.2 and 4.3 for synthetic and real-world
data. However, finding and expressing suitable con-
straints is a challenging task. In our presented verifi-
cation and throughout multiple experimental runs, we
applied mainly generic constraints that allow the algo-
rithm to expand clusters for arbitrarily correlated data
points. With generic constraints we can avoid overfit-
ting the cluster algorithm, i.e. avoid to constrain the
cluster expansion to the generating process. Whereas
with specially tailored constraints, for example if we
express the information about the functions that gen-
erate the dependent y and z variables in our synthetic
data example as constraints, we can achieve a perfect
match to the true label of the dataset, but would loose
the generality of the algorithm. To simplify the pro-
cess of defining constraints, methods from the field of
active learning could be included into the data analy-
sis workflow (Zhu, 2005; Settles, 2009) that provide
appropriate constraints to the CoExDBSCAN algo-
rithm. Furthermore, a machine learning based selec-
tion of suitable constraints could additionally aid the
user in applying the algorithm to new datasets, which

is part of our ongoing research.
Beyond the presented low-dimensional verifica-

tion and evaluation datasets, our algorithm remains
relevant even for high-dimensional data. This derives
from the fact that Schubert’s evaluation of the DB-
SCAN algorithm for high-dimensional data (Schubert
et al., 2017) shows that that DBSCAN continues to
be relevant even for high-dimensional data, although
the parameter ε of DBSCAN becomes hard to choose
in high-dimensional data due to the loss of contrast in
distances. CoExDBSCAN is based on DBSCAN and,
moreover, overcomes the issue of loss of contrast in
distances by utilizing a user-defined subspace for the
distance measure.

However, besides the challenge of finding and ex-
pressing suitable constraints, finding the right param-
eters for the algorithm still remains another challenge,
especially for high-dimensional data. In addition to
the parameters of the DBSCAN algorithm, the dimen-
sions for the spatial- and constraint-subspace have to
be determined by the user. For the parameters of
the DBSCAN algorithm we usually rely on hyper-
parameter optimization techniques, for example grid
search, while varying the selected dimensions based
on domain knowledge and the expected outcome of
the analysis. We expect to provide a more general
guidance on the selection of parameters with future
cluster analysis findings based on CoExDBSCAN.



6 CONCLUSION

In this article we propose a new density-based clus-
tering algorithm with constrained cluster expansion,
CoExDBSCAN. The proposed algorithm uses DB-
SCAN to find density-connected clusters in a defined
subspace of features and restricts the expansion of
clusters to a priori constraints. Incorporating a pri-
ori knowledge into the clustering process can signif-
icantly improve the clustering results and can align
the outcome of the clustering process with the ob-
jective of the data analysis, as demonstrated in Sec-
tion 4. Our approach combines different techniques
form subspace, correlation and constrained cluster-
ing. Specifically, we introduce two user-defined pa-
rameters to the original DBSCAN algorithm, one to
define the dimensions of the subspace to be used to
discover density-based clusters, and one to define the
dimensions of the subspace to be used to apply con-
straints to the cluster expansion. Further, we modify
the cluster expansion step in the original DBSCAN
algorithm to be restricted to these user-defined con-
straints. Our validation of the algorithm on an ex-
perimental and real-world dataset demonstrates, that
our algorithm is especially suited for spatio-temporal
data, where one subspace of features defines the spa-
tial extent of the data and another correlations be-
tween features.

In the future, we plan to evaluate different con-
straints in terms of their feasibility and added over-
head compared to the improvement of the clustering
results, as well as propose a machine learning based
selection of suitable constraints, according to the in-
herent structure of the data. In addition, we plan
to work on an optimized implementation of the al-
gorithm that allows us to provide additional runtime
measurements and detailed comparison studies with
other algorithms in the field of subspace, correlation
and constrained clustering.
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