

Validation calculations for Serpent full-core pin-bypin burnup in Light Water Reactors

Manuel García (KIT/INR)

INSTITUTE for NEUTRON PHYSICS and REACTOR TECHNOLOGY (INR)

Introduction

- Burnup analysis for Light Water Reactors (McSAFE project):
 - Multiphysics:
 - Monte Carlo neutron transport (criticality, power, burnup).
 - Subchannel thermalhydraulics (cooling conditions, safety parameters).
 - Fuel-performance analysis (thermomechanics, burnup, safety parameters).
 - High-fidelity methods:
 - Less approximations compared to industry standards.
 - Higher resolution (geometry, neutron direction and energy).
 - High Performance Computing (HPC).
- Proposed methodology:
 - Serpent-SCF-TU full-core pin-by-pin depletion.
 - Objectives:
 - Burnup calculation with fuel-performance analysis for realistic core states.
 - Potential improvement of the calculation of local safety parameters.
 - Proof of concept for industry-like (?) applications.
 - Validation for PWR and VVER reactors using experimental data.

Monte Carlo neutron transport (Serpent 2)

- Neutron transport calculation:
 - Stochastic (not deterministic) method.
 - No inherent approximations:
 - Continuous-energy nuclear data.
 - Arbitrary level of geometrical detail.
 - Explicit angular treatment.
 - Large calculation times.
- Depletion calculation:
 - Direct calculation.
 - ~1700 nuclides.
 - Huge memory demand.
- Modelling approach:
 - Full-core pin-by-pin geometry.
 - Pin-level thermalhydraulic feedback.
 - Pin-by-pin burnup.

Neutron energy

Subchannel thermalhydraulics (SUBCHANFLOW)

- Coolant flow calculation:
 - Subchannel approach.
 - Turbulent mixing.
 - Empirical correlations.
- Fuel rod calculation:
 - Radial scheme.
 - Simple fuel-clad gap model.
 - Simple thermomechanics.
- Safety parameters:
 - DNBR.
 - Fuel temperature.
 - Clad temperature.
- Modelling approach:
 - Full-core pin-by-pin geometry.
 - Subchannel-level model.

Fuel-performance analysis (TRANSURANUS)

- Main thermomechanical phenomena:
 - Fuel-cladding gap conductance and width.
 - Fission gas release, filling gap pressure.
 - Pellet-cladding mechanical interaction.
 - Thermal and irradiation-induced densification.
 - Swelling, creep, plasticity, cracking, relocation.

Modelling approach:

Gap

Crack

Pellet gap

(a) 10-minute irradiation

(b) 24-hour irradiation

Grain boundary

Cladding

Grain

Coupled calculation scheme for depletion

Collision-based Domain Decomposition

- Full-core pin-by-pin burnup:
 - Hugh runtimes (~10⁹ neutron histories per transport calculation).
 - Massive memory demand (~TB, larger than the in-node memory in HPC).
- Collision-based Domain Decomposition (CDD):
 - Memory scalability in burnup calculations:
 - Burnup materials decomposed in domains (MPI tasks).
 - All other data replicated across domains.
 - Tracking scheme:
 - Particle transfers across domains.
 - Asynchronous MPI communications.
 - Optimized tracking termination control.
 - No physical or numerical approximations.

CDD performance in a PWR-like system

- Memory scalability:
 - Tests done in the ForHLR II cluster (KIT/SCC) up to 5,120 cores.
 - Much better scalability for opti mode 4 (left) than for mode 2 (right).

CDD performance in a PWR-like system

- Speedup (~10⁶ particles per cycle):
 - Tests done in the ForHLR II cluster (KIT/SCC) up to 5,120 cores.
 - Acceptable speedup, some penalty from CDD.

Validation for a Pre-Konvoi PWR reactor

Burnup history:

- Nominal power (3765MW).
- Measured point:
 - 64.9 effective power days.
 - Full power.
 - Equilibrium xenon.
 - Experimental data:
 - Critical boron concentration.
 - Neutron flux (aeroballs).
- Critical boron iteration.
- Control rod movements:
 - Constant for each burnup step.
 - Power-weighted averaged.

HPC resources (ForHLR II):

- 64 nodes, 20 CPU/node.
- 7 day runtime limit.

Material decomposition for CDD

- Material decomposition:
 - **728,768** burnable materials, 64 nodes, 68GB per node, opti mode 1.
 - Graph-based method using Metis (not available in the official release).

Validation results

- Good agreement between results and experimental measurements.
 - Differences in critical boron concentration within a few ppm.
 - Aeroball neutron flux profiles within the statistical range of the results.

Validation results

Some more aeroball results (28 in total):

Fuel-performance capabilities

Fuel-cladding gap conductivity and Xe release at 2.35 MWd/kg:

Validation for a VVER-1000 reactor

36 39

43

Burnup history:

- Nominal power (3000MW).
- Measured points:
 - Full power.
 - Equilibrium xenon.
 - Experimental data:
 - Critical boron concentration.
 - Power (CMS).
 - Neutron flux (SPNDs).
- Critical boron iteration.
- Control rod movements:
 - Constant for each burnup step.
 - Power-weighted averaged.
- HPC resources (ForHLR II):
 - 64 nodes, 20 CPU/node.
 - 7 day runtime limit.

13 16

3000 2500

2000 M 1500

1000

20

24 27

31

Material decomposition for CDD

- Material decomposition:
 - 813,696 burnable materials, 64 nodes, 68GB per node, opti mode 1.
 - Graph-based method using Metis (not available in the official release).

Validation results

- Good agreement between results and experimental measurements.
 - Differences in critical boron concentration within a few ppm.
 - Some good SPD results, some bad (some SPDs are up to 70% burnt).

Validation results

Power and coolant temperature (EOC)

Serpent-SCF-TU solution:

Conclusions

- Developed calculation system:
 - Coupled neutronic-thermalhydraulic-thermomechanic depletion scheme.
 - CDD method for memory scalability.
 - Full-core pin-by-pin burnup capabilities.
- Validation:
 - Pre-Konvoi PWR up to 65 EFPD (done).
 - VVER-1000 up to 280 EFPD (more challenging due to calculation time).
 - Runtime up to 7 days in 64 computing nodes (1,280 cores).
- Fully coupled burnup calculations:
 - Improvement in the modelling of the fuel during irradiation.
 - Minor impact on the neutronic solution.
 - Large impact on fuel parameters such as gap behavior and fuel temperature.

Questions?

