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Abstract

We prove that the sign of the Euler characteristic of arithmetic groups with the congruence subgroup property is

determined by the profinite completion. In contrast, we construct examples showing that this is not true for the

Euler characteristic itself and that the sign of the Euler characteristic is not profinite among general residually finite

groups of type F. Our methods imply similar results for ℓ2-torsion as well as a strong profiniteness statement for

Novikov–Shubin invariants.
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1. Introduction

A finitely generated, residually finite group Γ is called profinitely rigid if any other such group Λ with

the same set of finite quotients as Γ is isomorphic to Γ; this can be expressed in terms of profinite

completions: if Λ̂ � Γ̂, then Λ � Γ (see [19]). While all finitely generated abelian groups have this

property, there are already virtually cyclic groups that are not profinitely rigid [5]. In general, profinite

rigidity is extremely difficult to characterize. Recent work of Bridson, McReynolds, Reid, and Spitler

[12] shows that profinite rigidity holds for certain Kleinian groups, including the Weeks manifold group.

On the other hand, we note that profinite rigidity of free groups, surface groups, or SL= (Z) is still open.
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1.1. Main results

Two related questions seem more accessible: (i) to establish profinite rigidity among a certain class of

groups and (ii) to find profinite invariants. A group invariant is profinite if it takes the same value on

finitely generated, residually finite groups whose profinite completions are isomorphic. In this paper,

we study a combination of both: we establish profinite invariance of the sign of the Euler characteristic

within a most relevant subclass of finitely generated, residually finite groups: arithmetic groups with
the congruence subgroup property. In particular, this (conjecturally) includes all irreducible lattices in

higher-rank semisimple Lie groups.

Theorem 1.1. Let �
1

and �
2

be linear algebraic groups defined over number fields :1 and :2, and
let Γ1 ≤ �

1
(:1) and Γ2 ≤ �

2
(:2) be arithmetic subgroups. Suppose that �

1
and �2 have a finite

congruence kernel and that Γ1 is profinitely commensurable with Γ2. Then sign j(Γ1) = sign j(Γ2).

Let us explain the meaning of the terms in this statement. Two groups Γ1 and Γ2 are called profinitely
commensurable if the profinite completions Γ̂1 and Γ̂2 have isomorphic open subgroups. Equivalently,

Γ1 and Γ2 have finite index subgroups with isomorphic profinite completions. The function sign(G)

takes the values −1, 0, 1 if G < 0, G = 0, G > 0. A subgroup of� (:) is arithmetic if it is commensurable

to � (O: ) := � (:) ∩ GL= (O: ) for some :-rational embedding � → GL=, where O: is the ring of

algebraic integers in : . Any nonzero ideal a ⊂ O: defines a finite index normal subgroup of � (O: )

as the kernel of the homomorphism � (O: ) → � (O:/a) defined by reduction of coefficients. These

are called principal congruence subgroups. They define a unit neighborhood base in � (:) for the so-

called congruence topology. The arithmetic topology of � (:), defined by declaring all finite index

subgroups of � (O: ) as a unit neighborhood base, is thus a priori finer than the congruence topology.

It is straightforward to see that neither topology depends on the chosen embedding � → GL=. Hence

we obtain a canonical continuous homomorphism �� (:) → � (:) from the arithmetic completion to

the congruence completion, where each completion is formed with respect to the canonical uniform

structure of topological groups. The kernel is called the congruence kernel of �. Serre conjectured

that for simple groups �, the congruence kernel is finite (‘� has the congruence subgroup property’)

whenever the real Lie group � (: ⊗Q R) has real rank at least 2; we refer to [50] for a survey on the

status of this conjecture. A purely group theoretic characterization of the congruence subgroup property

can be given in terms of subgroup growth, and it is also closely related to the notion of bounded
generation [41].

We note that it is known that profinite rigidity does not hold for all higher-rank arithmetic lattices,

even among themselves (as follows from [2]). However, the profinite isomorphism class of arithmetic

groups for which the congruence subgroup property holds is easier to understand than that of general

lattices; for example, M. Aka proves in [2] that it is always finite within the class of arithmetic groups.

To prove the theorem above, we push Aka’s arguments further.

It is possible to calculate the Euler characteristic of arithmetic groups using Harder’s Gauß-Bonnet

theorem [25]. We apply this method to obtain the following example, which shows that Theorem 1.1

does not extend to the Euler characteristic itself.

Theorem 1.2. For positive integers < and =, let Γ<,= be the level-four principal congruence subgroup
of Spin(<, =) (Z). Then Γ̂8,2 � Γ̂4,6, but

j(Γ8,2) = 289 · 52 · 17 whereas j(Γ4,6) = 290 · 52 · 17.

The spinor groups Spin(<, =) (Z) arise from the (< + =)-ary integral diagonal quadratic form with

< coefficients ‘+1’ and = coefficients ‘−1’. Precise definitions are given in Section 4. The existence of

the above examples implies that one cannot broaden the conclusion of Theorem 1.1 from arithmetic to

residually finite groups that admit a finite classifying space. The latter is referred to as being of type (�).
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Corollary 1.3. There are three residually finite groups Γ1, Γ2, and Γ3 of type (F) that have isomorphic
profinite completions such that

j(Γ1) < 0, j(Γ2) = 0, j(Γ3) > 0.

Setting 2 = 289 · 52 · 17, the above groups can simply be taken as

Γ1 = (Γ8,2 × Γ8,2) ∗ �222 ,

Γ2 = (Γ8,2 × Γ4,6) ∗ �222 ,

Γ3 = (Γ4,6 × Γ4,6) ∗ �222 ,

where �222 is the free group on 222 letters. Since the profinite completion functor preserves products and

coproducts, the three groups are profinitely isomorphic. They are still residually finite and of type (�).

Additivity and multiplicativity of the Euler characteristic gives

j(Γ1) = 2
2 + (1 − 222) − 1 = −22 < 0,

j(Γ2) = 222 + (1 − 222) − 1 = 0,

j(Γ3) = 422 + (1 − 222) − 1 = 222 > 0.

The Euler characteristic equals the alternating sum of the ℓ2-Betti numbers [42, 31]. For arithmetic

groups, ℓ2-Betti numbers are known to be nonzero in at most one degree. Such a nonzero ℓ2-Betti

number occurs if and only if the group is semisimple and the fundamental rank is zero. In that case, the

degree with nonvanishing ℓ2-Betti number is given by half the dimension of the associated symmetric

space - so that we have sign j(Γ) = (−1)dim-/2. This dimension, however, can change when passing

to a profinitely commensurable arithmetic group. So ℓ2-Betti numbers themselves are not profinite.

Among (-arithmetic groups, no higher ℓ2-Betti number is profinite [32], in contrast to the first ℓ2-Betti

number that is profinite among all finitely presented residually finite groups [11, Corollary 3.3]. Thus,

in the semisimple case, the proof of Theorem 1.1 splits into two parts: showing that the fundamental

rank is profinite, so that the vanishing Euler characteristic is profinite, and showing that the profinite

completion determines the dimension of the symmetric space mod 4.

1.2. Extension to other invariants

Whenever an arithmetic group Γ has vanishing Euler characteristic, a secondary invariant called ℓ2-
torsion and denoted by d (2) (Γ) is defined; see [42, Chapter 3] and [31, Chapter 5] for an introduction.

In many ways, d (2) (Γ) behaves like an ‘odd-dimensional cousin’ of j(Γ). Also, the profinite behavior

of d (2) (Γ) is parallel to j(Γ).

Theorem 1.4. In addition to the assumptions in Theorem 1.1, suppose that j(Γ8) = 0 for either (then
both) 8 = 1, 2 and rk:8 �8 = 0 for both 8 = 1, 2. Then sign d (2) (Γ1) = sign d (2) (Γ2).

We conjecture that the assumption on rk:8 �8 is not needed. It would not be needed if [43, Conjecture

1.2] was true, and it is not needed if the fundamental rank of �
8

defined in Section 2 is even [29,

Theorem 1.2]. But in our proof, we are using the equality of analytic and cellular ℓ2-torsion that is, at

present, only known if Γ8 is a cocompact lattice in the Lie group
∏
E �8 (:8 E ) where E runs through the

infinite places of :8 . This cocompactness condition is equivalent to rk:8 �8 = 0. Interesting examples to

which the theorem applies can be found among cocompact lattices in Spin(?, @) and Spin(? − 4, @ + 4)

for odd integers ?, @ ≥ 7: Combining methods of Aka [3] with Kneser’s solution of the congruence

subgroup problem for anisotropic spinor groups [37], one can find an arithmetic Q-anisotropic lattice in

each group such that the two lattices are profinitely isomorphic. According to Olbrich [48], these have

nonzero ℓ2-torsion. By our theorem, the values have the same sign.
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If Γ and Λ are of type (�) and Λ is residually finite and ℓ2-acyclic, then we have the product formula

d (2) (Γ×Λ) = j(Γ)d (2) (Λ) as proven in [42, Theorem 3.93 (4)]. Hence if " is some closed hyperbolic

3-manifold, then

2 d (2) (Γ8,2 × c1") = d (2) (Γ4,6 × c1") < 0.

The groups Λ8 = c1" × Γ4−8 , where Γ4−8 was introduced below Corollary 1.3, are residually finite and

of type (�), and

d (2) (Λ1) < 0, d (2) (Λ2) = 0, d (2) (Λ3) > 0.

This shows that, as before, Theorem 1.4 has no immediate extension in one way or another.

Since an arithmetic group Γ has at most one nonzero ℓ2-Betti number, the Euler characteristic j(Γ)

encodes the entire reduced ℓ2-cohomology. The lesser-known Novikov–Shubin invariants U? (Γ) capture

whether Γ additionally possesses unreduced ℓ2-cohomology. The reader can find an overview in [42,

Chapter 2]. In the semisimple and :-anisotropic case, our methods imply an even stronger statement

on these subtle invariants. To state it, let us introduce the relabeling U±@ (Γ) = U:±@ (Γ), where the

symmetric space on which Γ acts is either 2:- or (2: + 1)-dimensional.

Theorem 1.5. For 8 = 1, 2, let :8 be number fields, let�
8
be semisimple linear algebraic :8-groups with

rk:8 �8 = 0, and let Γ8 ≤ �
8

be arithmetic. Suppose that �
1

and �
2

have a finite congruence kernel
and that Γ1 is profinitely commensurable with Γ2. Then U±@ (Γ1) = U±@ (Γ2) for all @.

This time, the assumption that rk:8 �8 = 0 is likely to be essential because only in the cocompact

case do analytic and cellular Novikov–Shubin invariants agree [21], and only the analytic Novikov-

Shubin invariants are entirely governed by the fundamental rank. Compare [28, Theorem 1.4]. Given a

semisimple Lie group � with symmetric space - = �/ , let us set = = dim - , and let < = X(�) be

the fundamental rank. For a torsion-free cocompact lattice Γ ≤ �, Olbrich [48, Theorem 1.1.(b)] has

shown in the analytic approach that U? (Γ) ≠ ∞+ if and only if ? ∈ [ =−<
2
, =+<

2
− 1]. Moreover, in this

range, we have U? (Γ) = <. The arithmetic groups Γ8 are finitely generated linear in characteristic zero

and hence have torsion-free subgroups of finite index by Selberg’s lemma. Novikov–Shubin invariants

are unchanged when passing to commensurable groups [42, Theorem 2.55 (6)]. Since we show in

Theorem 2.1 that < = X(�) is a profinite invariant for arithmetic subgroups of semisimple groups,

Theorem 1.5 follows.

1.3. Toward S-arithmetic groups and weakening CSP

In general, we do not know whether our results generalize from arithmetic to (-arithmetic groups.

However, we can extend our results in special cases. For example, for groups

Γ8 = Spin(@8) (Z[(
−1
8 ])

where (8 are finite sets of rational primes and @8 are integral quadratic forms such that Spin(@8) has

a finite (8-congruence kernel, we checked that still sign j(Γ1) = sign j(Γ2) whenever Γ1 and Γ2 are

profinitely commensurable. The proof is a case-by-case study invoking the classification of anisotropic

quadratic forms over Q? . Interestingly, and as opposed to the arithmetic case, for these (-arithmetic

groups, it is no longer true that the dimension of the symmetric space is a profinite invariant mod 4.

However, if Γ1 and Γ2 are profinitely commensurable and dim -1 . dim -2 mod 4, then there always

exists a finite prime ? ∈ (1∩(2 such that rkQ?
�

1
. rkQ?

�
2

mod 2 so that still sign j(Γ1) = sign j(Γ2).

An example of this behavior is presented in Example 4.9.

Another family of (-arithmetic groups for which we can establish profiniteness of the sign of the

Euler characteristic is the following: fixing a (higher-rank simple) Q-group �, non-commensurable but

profinitely commensurable (-arithmetic groups occur when� is considered over varying number fields.

Methods due to Aka [2] are used in [30] to show that these groups must be defined over arithmetically
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equivalent number fields : and ;. This implies profiniteness of sign j(Γ) if ( contains no places over

ramified primes or if � splits over : and ;.

It is unclear if these observations can be extended to general algebraic groups with CSP. Notwith-

standing, we can strengthen Theorems 1.1 and 1.4 formally by only requiring that one of the two groups

be arithmetic and have CSP.

Theorem 1.6. Let�
1

and�
2

be linear algebraic groups defined over number fields :1 and :2. Suppose
�

1
has finite congruence kernel and that either�

2
is reductive and each :2-simple factor of the universal

covering of its derived subgroup satisfies the Platonov–Margulis conjecture, or �
2

is not reductive. Let
Γ1 ≤ �

1
be arithmetic, and let Γ2 ≤ �

2
be (-arithmetic for a finite set of places ( of :2 containing all

the infinite ones.

1. If Γ1 and Γ2 are profinitely commensurable, then

sign j(Γ1) = sign j(Γ2).

2. If, in addition, rk:1
�

1
= rk:2

�
2
= 0 and j(Γ1) = j(Γ2) = 0, then

sign d (2) (Γ1) = sign d (2) (Γ2).

See [49] for an introduction to the Platonov–Margulis conjecture and [52, Appendix A] for a shorter

and more up-to-date survey. We note that while this conjecture is still open in some cases, its status is

still better than that of the congruence subgroup property; in particular, it is known to hold for inner

forms of type �=. Unlike Theorem 1.1, the above result can be applied when the R-points of the Weil

restriction of �
2

are of real rank one; Theorem 1.1 is not applicable since real and complex hyperbolic

lattices often do not have CSP (and are conjectured to never have it).

1.4. Comments on rank-one groups

Finally, the question occurs whether the assumption of CSP in Theorem 1.1 can be removed, which by

Serre’s conjecture should boil down to understanding the case of rank-one simple Lie groups. Taking

the classification of rank-one simple real Lie groups into account, the profiniteness of the sign of Euler

characteristic or ℓ2-torsion reduces to the question of profiniteness of the dimension of the symmetric

space modulo 4.

However, the techniques used to prove such a statement would by necessity be very different from

the rigidity results used in higher rank, except possibly for lattices in the quaternionic hyperbolic spaces

and the octonionic hyperbolic plane. There has already been much work on this topic or related topics;

some topological profinite invariants for 3–manifold groups are given in [7]. Let us also mention the

following results of interest:

1. Recent work of Bridson, McReynolds, Reid, and Spitler [12] shows that profinite rigidity holds for

certain Kleinian groups, including the Weeks manifold group. Note that profinite rigidity is generally

hard to establish. It is, for example, open whether free groups or, more generally, Fuchsian groups,

Kleinian groups, SL(=,Z), or mapping class groups of closed surfaces are profinitely rigid.

2. The question becomes more accessible if one only asks for profinite rigidity among a certain class

of groups. In this vein, Bridson and Reid [13] had previously shown that the figure-eight knot group

is a Kleinian group that is profinitely rigid among 3-manifold groups. In general, it is not even

known whether Kleinian groups are profinitely rigid among themselves. In fact, it is open whether

the volume of hyperbolic 3-manifolds is profinite in the sense that it agrees for two such manifolds

whose fundamental groups have isomorphic profinite completions.

3. Fuchsian groups are profinitely rigid among lattices in Lie groups and S-arithmetic groups; this

follows from profiniteness invariance of the first !2-Betti number, which distinguishes them from

lattices in other Lie groups, and the work of Bridson, Conder, and Reid [11] that distinguishes them

between themselves.
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4. It follows from the work of Bergeron, Haglund, and Wise [6] and Minasyan and Zalesskii [46] that

arithmetic lattices of simple type in SO(=, 1) (for any =) are cohomologically good; in particular,

their profinite completion knows their virtual cohomological dimension, which equals = for a uniform

lattice and =−1 for a non-uniform one. It is well-known that Fuchsian groups are good. It also follows

from the work of Agol [1] together with that of Minasyan and Zalesskii that lattices in SO(3, 1) are

cohomologically good.

5. Recently, M. Stover [58] gave examples, for any = ≥ 2, of a pair of lattices in PU(=, 1) that are

profinitely isomorphic but not commensurable to each other.

1.5. Outline

In Section 2, we establish profinite invariance of the fundamental rank of the associated Lie groups as

well as profinite invariance of the dimension of the associated symmetric space mod 4 in the semisimple

case. Section 3 then derives the main results as straightforward conclusions from the previous section.

In Section 4, we explicitly compute the Euler characteristic of the arithmetic spin groups Γ<,=.

2. Profinite invariance of fundamental rank and dimension mod 4

For better reference, we have chosen to formulate our results in the introduction in terms of number

fields. But, as is well known, given a number field : and a linear algebraic :-group �, the restriction

of scalars functor Res:
Q

as, for instance, introduced in [49, Section 2.1.2] comes with a natural isomor-

phism Res:
Q
� (Q) � � (:) that preserves the notion of an arithmetic subgroup and satisfies, moreover,

� (Res:
Q
�, Q) � � (�, :) for the congruence kernels. Thus every arithmetic subgroup of a :-group

is isomorphic to an arithmetic subgroup of a Q-group, and the former has finite congruence kernel if

and only if the latter does. These remarks justify that henceforth we will work over : = Q only. As an

outcome of the introduction, we see that the following theorem is the main technical result we need to

attack.

Theorem 2.1. Let Γ1 ≤ �
1

and Γ2 ≤ �
2

be arithmetic subgroups of semisimple linear algebraic Q-
groups with finite congruence kernel. If Γ1 is profinitely commensurable with Γ2, then

1. dim -1 ≡ dim -2 mod 4 and
2. X(�1) = X(�2).

Here, -8 = �8/ 8 is the symmetric space associated with �
8
. It is defined by choosing a maximal

compact subgroup  8 ⊆ �8 of the Lie group �8 = �8 (R). The number

X(�8) = rkC(L(�8) ⊗R C) − rkC(L( 8) ⊗R C)

is called the fundamental rank of -8 , sometimes also known as the deficiency of�8 . The notation L(�8)

and L( 8) denotes the Lie algebras of the Lie groups �8 and  8 .

The rough outline of the proof of Theorem 2.1 is as follows. We first show that under the assumption

of CSP and strong approximation, the profinite commensurability of Γ1 and Γ2 implies that the Lie

algebras of the ?-adic analytic groups �
1
(Q?) and �

2
(Q?) are isomorphic for all finite primes ?

(Proposition 2.4). Weil’s product formula expresses the signature of a rational quadratic form mod 8

in terms of Gaussian sums associated with the F?-reductions of the form. Applying this formula to

the Killing forms of the Lie algebras of �
1

and �
2
, we can conclude that dim -1 ≡ dim -2 mod 4

(Proposition 2.5). To show that X(�1) = X(�2), we first explain that if �
1
(Q?) � �2

(Q?) for all ?,

then of necessity �
1
×Q R and �

2
×Q R are inner forms of one another (Proposition 2.7). Therefore, if

we fix an isomorphism i : �
1
×Q C→ �

2
×Q C, and if g8 denotes the complex conjugation satisfying

�
8
(C)g8 = �

8
(R), then g1 and i−1g2i are conjugate by an inner automorphism. In that case, the

maximal compact subgroups of �
8
(R) have the the same rank as we verify in Proposition 2.9 so that

equality of fundamental ranks follows.
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To begin with, we verify that in a typical situation, isomorphisms of products of ?-adic Lie groups

must be factor-wise. The notation ‘≤>’ and ‘≤2’ indicates open and closed subgroups, respectively.

Lemma 2.2. Let � be a profinite group with open subgroups �, � ≤> �. Suppose that

� =
∏

?

� ? and � =
∏

?

�?

for certain ?-adic analytic groups � ? , �? ≤2 �, where the product runs over all prime numbers. Then
�? and� ? are virtually isomorphic for all primes ?. In particular, the Lie algebras L(�?) and L(� ?)

are Q?-isomorphic.

Proof. Let ? be a prime. We may assume that dim(� ?) ≥ dim(�?). After possibly shrinking �, we may

assume � ⊆ � = �. Let c : � → � ? denote the projection homomorphism. For every prime ℓ ≠ ?, the

image c(�ℓ) is ?-adic and ℓ-adic analytic and hence a finite group. Moreover, let*? E> � ? be an open

normal uniform pro-? subgroup (the existence follows from [18, Corollary 8.34]). Recall that such a

group is torsion-free (see [18, Theorem 4.5]). Thus c(�ℓ) ∩*? = {1} since it is finite and torsion-free.

Now we consider the homomorphism c : � → � ?/*? composed from c and the canonical factor

map � ? → � ?/*? . Since c is continuous, its kernel is open, and there is a finite set of primes ( (with

? ∈ () such that

c(
∏

ℓ∉(

�ℓ) = {1}.

It follows that c(
∏
ℓ≠? �ℓ) is finite. However, the homomorphism c is surjective, and we deduce that

c(�?) is an open subgroup of � ? .

Choose an open normal uniform pro-? subgroup +? E> �? such that c(+?) ⊆ *? . Since +? is

finitely generated powerful (see [18, Definition 2.1]) and *? is torsion-free, we deduce that c(+?) is

a finitely generated, powerful, torsion-free pro-? group. By [18, Theorem 4.5] we get that c(+?) is a

uniform subgroup in*? , and as it is also open, we have dim c(+?) = dim*? , so dim+? ≥ dim*? . By

assumption, dim(+?) ≤ dim(*?), and we conclude that the dimensions are equal and that c |+?
is an

isomorphism onto its image. �

Remark 2.3. For an affine group scheme � over a commutative ring ', the Lie algebra (functor) will be

denoted by Lie(�). For a Lie group* over a complete valued field : , such as R, C orQ? , the associated

:-Lie algebra will be denoted by L(*). Recall that, if � is a linear algebraic group over : , then � (:)

is a :-analytic Lie group, and

Lie(�) (:) � L(� (:)).

A little more generally than necessary, we will now see that assuming CSP and strong approximation,

profinitely commensurable (-arithmetic subgroups lie in algebraic groups whose Lie algebras become

isomorphic when completing the field outside (.

Proposition 2.4. Let (1 and (2 be finite sets of places of Q containing the infinite one, and let �
1

and
�2 be algebraic Q-groups. Assume �

8
has finite (8-congruence kernel and strong approximation with

regard to (8 . Suppose �
1

and �
2

have profinitely commensurable (1- and (2-arithmetic subgroups.
Then (1 = (2 and Lie(�

1
) (Q?) � Lie(�

2
) (Q?) for ? ∉ (1.

Proof. Choose (8-arithmetic subgroups Γ8 ⊆ �
8
(Q) such that Γ̂1 � Γ̂2. Since the congruence kernels

are finite, we can pass to finite index subgroups if need be, to assume that Γ̂8 is (isomorphic to) the

closure of Γ8 in �
8
(A(8 ). Here, (A(8 ) denotes the ring of ((8)-adeles, that is, the restricted product

(
∏′
?∉(8
Q?) consisting of all elements in the product with all but finitely many coordinates in (Z?).

Strong approximation implies that (Γ̂8) is an open subgroup of (�
8
(A(8 )). In particular, it has an open
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8 Holger Kammeyer et al.

subgroup that is isomorphic to a product
∏
?∉(8

*
(8)
? for certain open compact subgroups *

(8)
? ≤>

�
8
(Q?). So clearly, (1 = (2 and Lemma 2.2 and Remark 2.3 complete the proof. �

The following is a variation of an observation of Rohlfs and Speh [54, Lemma 2.5]; see also [35,

Lemma 4].

Proposition 2.5. Let�
1

and�
2

be semisimple linear algebraic groups overQwith associated symmetric
spaces -1 = �1/ 1 and -2 = �2/ 2. If Lie(�) (Q?) � Lie(�) (Q?) for all ?, then

dim -1 ≡ dim -2 mod 4.

Proof. We note that Lie(�
8
) (:) = : ⊗Q Lie(�

8
) (Q) for every extension field : of Q. The Killing

forms V8 on Lie(�
8
) (Q) are non-degenerate symmetric bilinear forms defined over Q. The Cartan

decomposition implies that V8 has signature (dim(-8), dim( 8)) as a form on Lie(�
8
) (R).

The Killing form is completely determined by the Lie algebra structure; hence the quadratic spaces

(Lie(�
1
) (Q?), V1) and (Lie(�

2
) (Q?), V2) are isometric for every prime number ?. Weil’s product

formula implies that dim(-1) − dim( 1) ≡ dim(-2) − dim( 2) mod 8; see [55, Corollary 8.2]. Let

3 = dim(�1) = dim(�2); then 3 = dim(-1) + dim( 1) = dim(-2) + dim( 2), and we deduce that

2 dim(-1) ≡ dim(-1) − dim( 1) + 3 ≡ 2 dim(-2) mod 8. �

Definition 2.6. Let �
1
, �

2
be linear algebraic groups over a field : of characteristic 0. We say that �

2

is an inner form of �
1

if there is an isomorphism i : �
1
×: : → �

2
×: : (where : is the algebraic

closure of :) such that i−1fif−1 is an inner automorphism of �
1
×: : for all f ∈ Gal(:/:).

Proposition 2.7. Let ( be a finite set of places of Q containing the Archimedean place. Let �
1

and �
2

be simply connected semisimple algebraic groups over Q such that Lie(�
1
) (Q?) � Lie(�

2
) (Q?) for

all ? ∉ (. Then �
2
×Q R is an inner form of �

1
×Q R.

Proof. Our goal is to reach a contradiction between �
8
×Q R being outer forms of each other and the

hypothesis that �
8
×Q Q? is locally isomorphic for almost all ?. The latter implies, in particular, that

Lie(�
1
) (!) � Lie(�

2
) (!) for some finite Galois extension !/Q. Since simply connected semisimple

groups are determined up to isomorphism by their Lie algebras, we deduce

�
1
×Q ! � �2

×Q !.

Without loss of generality, we may assume, after possibly passing to a larger field !, that �
1
×Q ! is

split. Note that for any extension field ! ′ of !, the group �
1
×Q !

′ is split and simply connected, and

there is an exact sequence

1 −→ Ad(�
1
×Q !

′) −→ Aut(�
1
×Q !

′)
c!′
−→ Aut(Dyn(Φ)) −→ 1 (2.1)

where Dyn(Φ) denotes the Dynkin diagram of the root system Φ of�
1
×Q ! and Aut(Dyn(Φ)); see [39,

(25.16)]. In addition, for every Galois extension !1/!2, where !1 contains !, the short exact sequence

is Galois equivariant, where the action of the Galois group Gal(!1/!2) on Aut(Dyn(Φ)) is the one

induced from the action of Gal(!/Q).

We choose an isomorphism i : �
1
×Q! → �

2
×Q! and consider the corresponding 1-cocycle defined

by 0f = i−1fif−1 ∈ Aut(�
1
×Q !) for all f ∈ Gal(!/Q). The associated non-abelian cohomology

class in �1 (Gal(!/Q),Aut(�
1
×Q !)) will be denoted by [0] and is independent of the choice of i.

Pick an embedding ] : ! → C. We note that ] induces a homomorphism ]∗ : Gal(C/R) → Gal(!/Q) of

groups.

From now on, we suppose that �
2
×Q R is not an inner form of �

1
×Q R. In this case, the image ](!)

is not contained in R, since otherwise �
1
×Q R and �

2
×Q R are isomorphic. The long exact sequence
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associated with (2.1) contains the following segment:

�1
(
Gal(C/R),Ad(�

1
×Q C)

)
−→ �1

(
Gal(C/R),Aut(�

1
×Q C)

)

cC
−→ �1

(
Gal(C/R),Aut(Dyn(Φ))

)
,

which shows that the class cC (]
∗∗ [0]) ∈ �1(Gal(C/R),Aut(Dyn(Φ))) is non-trivial.1 Let g ∈

Gal(C/R) denote complex conjugation. By Chebotarev’s density theorem (see [47, Theorem 13.4]),

there are a prime number ? ∉ ( and a prime ideal p ⊆ O! lying over ? such that !p/Q?
is an unramified quadratic extension and the image of Gal(!p/Q?) → Gal(!/Q) is 〈]∗g〉. Let

9 : ! → !p denote the inclusion map. Naturality of the above long exact sequence shows that

the cohomology class c!p ( 9
∗∗([0])) ∈ �1(Gal(!p/Q?),Aut(Dyn(Φ))), and hence also 9∗∗([0]) ∈

�1 (Gal(!p/Q?),Aut(�
1
×Q !p)) is non-trivial. By [24, XXIV 7.3.1 (iii)], the natural map

3 : Aut!p (�1
×Q !p) → Aut!p- Lie(Lie(�

1
) (!p))

is an isomorphism. It follows that the Q?-Lie algebras Lie(�
1
) (Q?) and Lie(�

2
(Q?)) are outer forms

of each other; in particular, they are not isomorphic, which yields a contradiction since we assumed that

? ∉ (. �

The next proposition will show that inner forms of real Lie groups have maximal compact subgroups

of the same rank. We will use in this context that inner forms can be realized as the fixed-point sets of

conjugate involutions on the complexification (viewed as real Lie group). In the course of the proof, we

will need the following lemma, which should be standard but for which we could not find a reference.

Lemma 2.8. Let  be a compact Lie group, and let g ∈ Aut( ) be an automorphism of order two.
There is a maximal torus ) ⊆  that is g-stable: that is, g()) = ) .

Proof. Since g( 0) =  0 and all tori are contained in the connected component  0, we may assume that

 is connected. Let k denote the Lie algebra of  . The correspondence between maximal tori of  and

maximal abelian subalgebras of k (see also [36, 4.30]) shows that it suffices to prove the corresponding

result for Lie algebras.

We decompose k as

k = kg ⊕ k−,

where kg is the subalgebra of g-invariant elements and k− is the (−1)-eigenspace of g. Let a ⊆ kg be a

maximal abelian subalgebra of kg . Let c(a) = {- ∈ k | [-,. ] = 0 for all . ∈ a } be the centralizer of a.

Choose a subspace b ⊂ k− ∩ c(a) that is maximal abelian: that is, it is maximal with the property

[b, b] = 0. We define t = a + b, and we will show that t is a maximal abelian subalgebra of k. Clearly,

[t, t] = [a, a] + [a, b] + [b, b] = 0 shows that t is abelian. Now suppose that h ⊇ a is a larger abelian

subalgebra. Since a ⊆ h, the algebra h lies in c(a). In particular, h ∩ kg = a since a is maximal abelian

in kg . Similarly, h∩ k− = b since b was maximal abelian in c(a) ∩ k−. Let - ∈ h, and write - = -+ + -−
with -+ ∈ kg and -− ∈ k−. For all / ∈ a, one has

0 = [-, /] = [-+, /] + [-−, /] ∈ kg ⊕ k−,

and therefore -+ ∈ c(a) ∩ kg = a ⊆ h, so -− ∈ k− ∩ h = b. It follows that h = a + b = t. Finally, we note

that t is g-stable since a and b are contained in eigenspaces of g. We conclude by taking ) = exp(t). �

Proposition 2.9. Let � be a connected real Lie group with finite center, and let f, g be two automor-
phisms of order two. Suppose that f = int(6) ◦ g for some 6 ∈ �. If the fixed-point groups �g and �f

are connected, then their maximal compact subgroups have the same complex rank.

1We use a double star ]∗∗ to denote the pull-back by the homomorphism ]∗ : Gal(C/R) → Gal(!/Q) induced from the field
embedding ].
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10 Holger Kammeyer et al.

Proof. We first want to reduce to the case where 6 ∈  for some maximal compact subgroup  in�. Let

/ ⊆ � be the center; we need to find a : ∈  such that :g(:) ∈ / (so int(:) ◦ g has order 2) and there

exists ℎ ∈ � such that ℎ:g(ℎ)−1 ∈ 6/ (so �f′
is conjugated by ℎ to �f , where f′ = int(:) ◦ g). Let

�̃ = � ⋊g Z/2.

Let  ̃ be a maximal compact subgroup of �̃ containing (1, g). We have that  :=  ̃ ∩ � is a maximal

compact subgroup of �, as follows, for example, from [26, Theorem 14.1.3]. In addition, we note that

 is g-stable, which we will use later in the proof. We now define the group

�̂ = (�//) ⋊g Z/2.

As 6g(6) = 1, the element (6/, g) ∈ �̂ has order 2. It is contained in a maximal subgroup of �̂;

hence (since any compact subgroup of �̂ is contained in a conjugate of  // ⋊ Z/2) there exists ℎ ∈ �

so that (ℎ/, 1)−1(6/, g) (ℎ/, 1) ∈  // ⋊ Z/2. This means exactly that there exists : ∈  such that

ℎ:g(ℎ)−1 ∈ 6/; this completes the reduction to 6 ∈  .

From now on, it suffices to consider  instead of �. We need to show that  g and  f have the same

rank. The centralizer � (6) is a closed subgroup of  . Since g(6) ∈ 6−1/ , the centralizer � (6) is

stable under g (and hence also f). Since 6 is contained in a maximal torus of  (for example, [36, 4.36]),

the maximal tori in � (6) are maximal in  . By Lemma 2.8, we find a maximal torus ) ⊆ � (6) that

is g-stable. In fact, 6 ∈ ) . This follows from Theorem 4.50 in [36] using that 6 centralizes ) , the group

 is connected, and ) is maximal in  .

We can write 6 = 60ℎ0 for elements 60, ℎ0 ∈ ) that satisfy g(60) = 60 and g(ℎ0) = ℎ
−1
0

: this follows

immediately from the eigenspace decomposition of the Lie algebra t with respect to g, and the fact that

the exponential map exp : t → ) is onto and g-equivariant. For later use, we further write ℎ0 = ℎ2 for

some ℎ with g(ℎ) = ℎ−1. Observe that 6g(6) = 62
0
∈ / . The automorphism f′ = int(60) ◦ g satisfies

f ◦ int(ℎ) = int(ℎ) ◦ f′; and, as above, conjugation by ℎ provides an isomorphism of the fixed-point

groups  f
′
and  f . This means we may assume that 6 = 60 and g(6) = 6. In other words, we assume

that 6 ∈  g ∩  f . Since  g and  f are connected, the centralizer of any element contains a maximal

torus. Finally, we observe that

� (6) ∩  
f =  g ∩  f =  g ∩ � (6).

This means a maximal torus of  g ∩  f is maximal in both fixed-point groups. �

Proof of Theorem 2.1. Recall that we are in the following situation: Γ8 are profinitely commensurable

arithmetic subgroups in theQ-points of two semisimpleQ-groups�
8
, 8 = 1, 2. Moreover, the congruence

kernel of each�
8
is finite. To simplify notation, we will assume that Γ8 are profinitely isomorphic (since

taking profinitely isomorphic finite-index subgroups in each does not change the hypotheses).

We start by reducing to the case where �
8

have no Q-factor whose R-points are compact. To do so,

let �
8
= �8 ×  8 , where �8 satisfies this hypothesis and  8 ×Q R is compact. Let 3 be the largest of

the minimal dimensions of a Q-rational representation of �
8
, and let Φ8 be the set of all morphisms

Γ8 → GL: (Z/3) for 2 ≤ : ≤ 3. Then the subgroups Γ′
8 =

⋂
i∈Φ8

ker(i) are profinitely isomorphic. By

Minkowski’s theorem, they are torsion-free. As  8 (Q) ∩ Γ8 is finite, we get that Γ′
8 is isomorphic to an

arithmetic subgroup of �8 (Q).

Similarly, we can reduce to the case where �
8

are simply connected: let �̃
8

be the simply connected

covers of �
8
, and let = be the largest between the minimal indices of a subgroup of Γ8 lifting to �̃

8
.

Taking Γ′
8 to be the intersection of all subgroups in Γ8 of index at most =, we get two groups Γ′

1
, Γ′

2
that

are profinitely isomorphic and also isomorphic to arithmetic subgroups in �
1
(Q), �

2
(Q), respectively.

These new �
8

satisfy the hypotheses of the Kneser–Platonov theorem [49, Theorem 7.12], and it

follows that they have strong approximation. We note that both replacement procedures above preserve

the property of having a finite congruence kernel, so we can apply to �
8

Proposition 2.4 to deduce that
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Lie(�
1
) (Q?) � Lie(�

2
) (Q?) for every prime ?. Applying Proposition 2.5, we subsequently conclude

that dim(-1) ≡ dim(-2) mod 4.

Proposition 2.7 implies that the group �
2
×Q R is an inner form of �

1
×Q R. Hence an isomorphism

i : �
1
×Q C → �

2
×Q C can be chosen so that i−1g2ig

−1
1

= int(6) for some 6 ∈ �
1
(C), where g8

denotes the involution on �
8
(C) induced by complex conjugation, so that �

8
(C)g8 = �

8
(R). Setting

f = i−1g2i, we have f = int(6) ◦ g1 and�
1
(C)f � �

2
(R). Since the groups�

8
are simply connected,

the real Lie groups �
8
(R) are connected; see [49, Proposition 7.6]. By Proposition 2.9, we have that

rkC(L( 2) ⊗ C) = rkC(L( 1) ⊗ C), and as X(�
8
(R)) = rkC(Lie(�

8
) (C)) − rkC (L( 8) ⊗ C), we can

conclude that X(�1) = X(�2). �

3. Conclusion of main results

We prove the main result, Theorem 1.1, and the slightly strengthened version, Theorem 1.6. Most of

what we need for the semisimple case is contained in Theorem 2.1. In this section, we put everything

together and describe the reduction to the semisimple case.

Lemma 3.1. Let � be a semisimple linear algebraic Q-group with finite congruence kernel, and let

Γ ≤ � (Q) be an arithmetic subgroup. Then Γ̂ has no (topologically) finitely generated infinite closed
normal solvable subgroup.

Proof. The desired property of Γ̂ stays unchanged by passing to finite index subgroups. The group �

is an almost direct product of simple Q-groups. A finite index subgroup of Γ is an arithmetic subgroup

of the product of simple Q-factors whose R-points are non-compact. Moreover, the latter product has a

finite congruence kernel [51, p. 400]. So we may and will assume that � contains no Q-simple (almost)

factor whose R-points are compact. By an observation of Serre, � is simply connected [57, 1.2 c)].

Hence � satisfies strong approximation [49, Theorem 7.12]. Since the congruence kernel of � is finite,

we can assume, by passing once more to a finite index subgroup, that Γ̂ is embedded into
∏
? � (Q?).

By strong approximation, Γ̂ is a compact open subgroup of
∏
?*? , where each *? < � (Q?) is a

compact open subgroup. Let pr? be the projection from the product to*? . Let # be a finitely generated

closed normal solvable subgroup of Γ̂. We have to show that # is finite.

If pr? (#) was infinite for some prime, its Lie subalgebra would be a non-trivial solvable ideal in

L(� (Q?)), contradicting semisimplicity of �. Thus �? := pr? (#) is finite for every prime ?.

We know that Γ is a subset of*? ⊆ � (Q?), and it is Zariski dense in� by [44, Proposition (3.2.11)].

Since the finite—in particular, algebraic—subgroup �? of � is normalised by the Zariski dense set Γ,

we conclude that �? is a normal subgroup of � [45, Proposition 1.38]. Thus it is contained in the center

of � by semisimplicity. Since there exist embeddings � (Q?) ⊂ � (C) for all ?, there is 4 ∈ N such that

�? is abelian with exponent 4 for every prime ?. In particular, # is abelian with exponent 4. Since it is

finitely generated as a profinite group, it is finite [53, Theorem 4.3.5]. �

Lemma 3.2. Let � be a linear algebraic Q-group, and let Γ ≤ � (Q) be an arithmetic subgroup. If Γ
has no finitely generated infinite normal solvable subgroup, then � is reductive and Γ ∩D(�) (Q) has
finite index in Γ, where D(�) denotes the derived subgroup.

Proof. Upon passing to finite index subgroups of � and Γ, we may assume � is connected, so that due

to [8, Théorème 7.15] and [44, Section 0.24], we have a decomposition

� = 'D (�) ⋊ (D(�)

as semidirect product of the unipotent radical 'D (�) and a reductive Q-subgroup (D(�). The latter

group is an almost direct product of the central Q-torus ( and the semisimple derived subgroup D(�).

By [8, Corollaire 7.13.(4)], Γ is commensurable with the group Λ = 'D (�) (Z) ((D(�)) (Z). Us-

ing [44, Corollary (3.2.9)], ((Z)D(�) (Z) and ((D(�)) (Z) are commensurable. As arithmetic sub-
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groups of unipotent groups are Zariski dense [44, Lemma 3.3.3.(iii)], it follows that 'D (�) (Z) is an

infinite normal nilpotent subgroup of Λ whenever 'D (�) is not trivial. Moreover, arithmetic groups

are finitely generated. So our assumption on Γ implies that 'D (�) is trivial and � is reductive. Since

the group ((Z) is abelian and normal in Λ, which is commensurable to Γ, it has to be finite. Thus

Γ ∩D(�) (Q) is of finite index in Γ. �

One says that a profinite group is adelic if it is isomorphic to a closed subgroup of some SL<(Ẑ).

See [41] for a discussion of this notion. One easily sees that a profinite group � that contains an adelic

subgroup � < (!< (Ẑ) of finite index is itself adelic—via an embedding into SL<[�:� ] (Ẑ).

Theorem 3.3 (Platonov-Rapinchuk, Lubotzky). Let � be a simply connected semisimple linear al-
gebraic Q-group such that each Q-simple factor of � satisfies the Platonov-Margulis conjecture. Let

Λ < � (Q) be an (-arithmetic subgroup. If Λ̂ is adelic, then � has a finite congruence kernel.

Proof. Being simply connected, the group � is a product of its Q-simple factors �
8
; hence Λ is

commensurable with a product of arithmetic subgroups Λ8 ⊆ �8 (Q). If each �
8
has a finite congruence

kernel, then so has�. Further, Λ̂ is adelic if and only if each Λ̂8 is adelic. Hence we may and will assume

that � is Q-simple.

Since Λ̂ is an adelic group, it is boundedly generated by [41, Theorem 12.2]. Finally, by [41, Theorem

12.10], which depends on the Platonov-Margulis conjecture as a global assumption, � has a finite

congruence kernel. To be more precise, the assumption in [41, Theorem 12.10] is that � is absolutely

simple over a number field. But as a Q-simple group, � is the Weil restriction of an absolutely simple

group � over a number field. So by [41, Theorem 12.10], � has a finite congruence kernel, and hence

� has a finite congruence kernel; see the remark at the beginning of Section 2. �

Proof of Theorems 1.1 and 1.6 (i). By passing to finite index subgroups, we may assume that Γ1 and Γ2

are profinitely isomorphic. As in the proof before, we conclude from the congruence subgroup property

of �
1

that Γ̂1 � Γ̂2 is adelic.

Assume first that Γ1 has a finitely generated infinite normal solvable subgroup. Its closure is a

(topologically) finitely generated infinite closed normal solvable subgroup of Γ̂1 � Γ̂2. The ℓ2-Betti

numbers of Γ1 vanish by a result of Cheeger and Gromov [16], and thus j(Γ1) = 0.

If Γ2 had an infinite normal solvable subgroup, then j(Γ2) = 0 for the same reason, and the proof

would be finished. Otherwise, Lemma 3.2 would imply that �
2

is reductive and, upon passing to finite

index subgroups, Γ2 is an arithmetic subgroup of the semisimple group D(�
2
). We show that this

cannot happen, thus concluding the proof in the case that Γ1 has a finitely generated infinite normal

solvable subgroup. The preimage Λ of Γ2 in �D(�
2
) is commensurable with Γ2 by [44, Corollary 3.2.9].

Hence Λ̂ is adelic because Γ̂1 � Γ̂2 is. So �D(�
2
) has a finite congruence kernel by Theorem 3.3

and the assumption regarding the Platonov-Margulis conjecture in Theorem 1.6. Moreover, Λ̂ contains

(topologically) a finitely generated infinite closed normal solvable subgroup because Γ̂1 � Γ̂2 does.

According to Lemma 3.1, this is absurd.

Next we assume that Γ1 has no finitely generated closed normal infinite solvable subgroup. By

Lemma 3.2, the group �
1

is reductive. Its derived subgroup D(�
1
) has a finite congruence kernel

as well [50, Lemma 2]. Again, by Lemma 3.2 and upon passing to a finite index subgroup of Γ1,

we may assume that �
1

is semisimple and has a finite congruence kernel. By the argument at the

beginning of the proof of Lemma 3.1, we may assume that�
1

is simply connected. Hence�
1

has strong

approximation [49, Theorem 7.12].

By Lemma 3.1, the group Γ̂1 � Γ̂2 has no (topologically) finitely generated infinite closed normal

solvable subgroup. In particular, Γ2 has no finitely generated infinite normal solvable subgroup. By

Lemma 3.2, the group �
2

is reductive, and, upon passing to finite index subgroups and replacing �
2

by

its derived subgroup, we may assume that Γ2 is an (-arithmetic subgroup of the semisimple group �
2
.

By passing to finite index subgroups once more and appealing to [44, Corollary 3.2.9] and replacing
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�
2

by its simply connected covering, we may assume that Γ2 is an (-arithmetic subgroup of the simply

connected semisimple group �
2
, which satisfies strong approximation by [49, Theorem 7.12]. Since Γ̂2

is adelic, �
2

has a finite congruence kernel by Theorem 3.3.

We can then apply Proposition 2.4 to conclude that ( contains no finite places and Theorem 2.1 to

obtain that dim -1 = dim -2 mod 4 and X(�1) = X(�2). Note that for the proof of Theorem 1.1, we

could just start at this point of the argument.

The semisimple Lie groups �8 possess uniform lattices Λ8 ≤ �8 , and Γ8 is measure equivalent to

Λ8; see [22, Definition 2.1 and Example 2.2]. Gaboriau’s proportionality principle [23, Théorème 6.3]

implies that 1
(2)
= (Γ8) = 0 if and only if 1

(2)
= (Λ8) = 0. Borel [9] computed that 1

(2)
= (Λ8) ≠ 0 if and only

if X(�8) = 0 and dim -8 = 2=. As we have j(Γ8) =
∑
=≥0(−1)=1

(2)
= (Γ8), it follows that

sign j(Γ8) =

{
0 if X(�8) > 0

(−1)dim(-8)/2 if X(�8) = 0.

This formula can also be deduced using Harder’s Gauß-Bonnet theorem [25] and Hirzebruch’s propor-

tionality principle. Be aware that X(�8) = 0 implies that dim -8 is even: since every root system has

an even number of roots, it follows that X(�8) and dim -8 have the same parity. This completes the

proof. �

The proof of the profiniteness of sign d (2) (Γ) is mostly parallel to the proof of profiniteness of

sign j(Γ).

Proof of Theorem 1.4 and 1.6 (ii). In addition to having vanishing ℓ2-cohomology, groups of type (�)

with infinite elementary amenable normal subgroups also have vanishing ℓ2-torsion [42, Theorem

3.113]. Hence, as in the previous proof, we may assume that�
1

and�
2

are semisimple and ( contains no

finite places. Further, we obtain dim -1 = dim -2 mod 4 and X(�1) = X(�2). Since rkQ�1
= rkQ�2

=

0, the arithmetic subgroups Γ8 are uniform lattices in �8 . Thus, using the equality of topological and

analytic ℓ2-torsion for closed manifolds [14], a result of Olbrich [48, Theorem 1.1.(c)] gives d (2) (Γ8) ≠ 0

if and only if X(�8) = 1. From Olbrich’s formulas in [48, Proposition 1.3], it follows moreover that if

X(�8) = 1, then sign d (2) (Γ8) = (−1) (dim-8−1)/2. This completes the proof of Theorem 1.4. �

4. The Euler characteristic of arithmetic spin groups

In this final section, we explicitly compute the Euler characteristic of arithmetic spin groups; and, as a

particular case, we obtain the proof of Theorem 1.2.

Let + be a free Z-module of finite rank 3 with a symmetric bilinear form 1 : + × + → Z. We will

assume that the form 1 is non-singular: that is, for every primitive vector E ∈ + , there is some F ∈ +

with 1(E, F) = 1.

The following examples will be of interest for us. Let <, = ≥ 0 be integers, and define 3 = < + =. We

consider +<,= = Z
3 with the standard basis 41, . . . , 43 . The bilinear form 1<,= defined by

1<,= (48 , 4 9 ) =




1 if 8 = 9 ≤ <

−1 if 8 = 9 > <

0 if 8 ≠ 9

is non-singular.

For every commutative ring �, we put +� = � ⊗Z + , and we write 1� for the �-bilinear extension of

1. We get an associated Clifford algebra

� (+�, 1�) = )�(+�)/(E
2 − 1�(E, E))

https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2020.43
Downloaded from https://www.cambridge.org/core. KIT Library, on 30 Nov 2020 at 13:36:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2020.43
https://www.cambridge.org/core


14 Holger Kammeyer et al.

as a quotient of the tensor algebra )�(+�) of +�. As �-module the Clifford algebra is free and, if

41, . . . , 43 is a basis of + , then a basis of � (+�, 1�) is given by the elements

4(�) = 4 91 · 4 92 · · · 4 9B

for every subset � = { 91, 92, . . . , 9B} ⊆ {1, . . . , 3} with 91 < 92 < · · · < 9B; see [38, IV (1.5.1)]. Here,

the convention 4(∅) = 1 is used. As a consequence, � ⊗Z � (+, 1) � � (+�, 1�). The Clifford algebra is

Z/2Z graded and decomposes as � (+�, 1�) = �0 (+�, 1�) ⊕ �1 (+�, 1�), where �0 (+�, 1�) is spanned

by the 4(�) for sets � of even cardinality.

We note that there is a unique anti-automorphism ] : � (+�, 1�) → � (+�, 1�) with ](E) = E for

all E ∈ +� (of order two). Moreover, the grading yields an involution G ↦→ G ′ with G = G0 + G1 and

G ′ = G0 − G1 for all G0 ∈ �0 (+�, 1�) and G1 ∈ �1 (+�, 1�). Composition of these two maps yields the

conjugation G ↦→ G = ](G ′) = ](G) ′ on the Clifford algebra.

Definition 4.1. For a commutative ring �, the spin group of 1 over � is defined by

Spin(1) (�) = {6 ∈ �0 (+�, 1�) | 66 = 1 and 6+�6 = +�}.

The functor Spin(1) from the category of commutative rings to the category of groups is an affine

group scheme of finite type over Z. In the following, we investigate only spin groups for the forms

1 = 1<,=. In this case, the basis vectors satisfy 48 · 4 9 = −4 9 · 48 in the Clifford algebra for all 8 ≠ 9 .

Hence, we have ](4(�)) = (−1) |� | ( |� |−1)/24(�), and therefore the identity

4(�) = (−1) |� | ( |� |+1)/24(�) (4.1)

holds for every subset � ⊆ {1, . . . , < + =}.

Definition 4.2. Let<, = > 0 be integers. In Spin(1<,=) (Z), we define the principal congruence subgroup
of level 4 as

Γ<,= = ker
(
Spin(1<,=) (Z) → Spin(1<,=) (Z/4Z)

)
.

Remark 4.3. We decided to work with the principal congruence subgroup of level 4 for two reasons.

First, a classical result of Minkowski shows that the principal congruence group Γ<,= is torsion-free (see

[33, III.2.3] for a formulation in terms of group schemes). Therefore, the work of Borel-Serre implies

that the arithmetic group Γ<,= is a group of type � [10, 11.1].

The second reason is that, as we shall see below, the group scheme Spin(1<,=) is not smooth at the

prime 2. Passing to the congruence subgroup of level 4 avoids some technicalities in the computation

of the Euler characteristic.

Theorem 4.4. Let 3 ≥ 3 with 3 = < + = for integers <, = ≥ 1. Put ℓ = ⌊ 3
2
⌋ and : = ⌊<

2
⌋. If < and =

are odd, then j(Γ<,=) = 0.
If at least one of < and = is even, then

j(Γ<,=) = (−1)<=/2'(3)

(
ℓ

:

) ℓ−1∏

9=1

(
(22 9 − 1) |Z (1 − 2 9) |

)
,

where '(3) is

'(3) =




25ℓ2−4ℓ (2ℓ − 1) |Z (1 − ℓ) | if 3 ≡ 0 mod 4

25ℓ2−5ℓ+1 |�k,ℓ |

ℓ
if 3 ≡ 2 mod 4

25ℓ2

(23−1 − 1) |Z (2 − 3) | if 3 ≡ 1 mod 2.

Here, �k,ℓ is the ℓ-th generalized Bernoulli number with respect to the primitive Dirichlet character k
modulo 4.
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Remark 4.5. For the definition of the generalized Bernoulli numbers, we refer to [47]. We have

�k,ℓ = 0 exactly if ℓ is even, a case that does not occur in the formula. The generalized Bernoulli

numbers can be computed easily. For convenience, we list the first values:

ℓ 1 3 5 7 9

�k,ℓ − 1
2

3
2

− 25
2

427
2

− 12465
2

Assuming Theorem 4.4 for the moment, we obtain the proof of Theorem 1.2 as a special case.

Proof of Theorem 1.2. We consider the groups Γ8,2 ⊆ Spin(8, 2) and Γ4,6 ⊆ Spin(4, 6). It follows

from [3] that these groups are profinitely isomorphic. We briefly recall the argument. The algebraic

groups Spin(18,2) ×Z Q and Spin(14,6) ×Z Q are simple and simply connected, and the associated real

Lie groups Spin(8, 2) = Spin(18,2) (R) and Spin(4, 6) = Spin(14,6) (R) are not compact. Hence, both

algebraic groups have strong approximation; see [49, Theorem 7.2]. Moreover, the quadratic forms 18,2

and 14,6 have Witt index 2 and 4, respectively; therefore, according to [37, 11.3], the congruence kernels

of Spin(18,2) and Spin(14,6) are trivial. We deduce that

Γ̂8,2 =  8,2 ×
∏

? odd

Spin(18,2) (Z?)

and

Γ̂4,6 =  4,6 ×
∏

? odd

Spin(14,6) (Z?),

where  <,= = ker
(
Spin(1<,=) (Z2) → Spin(1<,=) (Z/4Z)

)
is the open compact principal congruence

subgroup of level 4. However, the forms 18,2 and 14,6 are isometric over Z? for every prime number ?;

see [3, Corollary 3]. Thus the group schemes Spin(18,2) ×Z Z? and Spin(14,6) ×Z Z? are isomorphic

for every prime ?. In particular, Spin(18,2) (Z?) � Spin(14,6) (Z?) and  8,2 �  4,6; we deduce that the

profinite completions are isomorphic.

Now we use Theorem 4.4 to compute the Euler characteristic. We have 3 = 10 and ℓ = 5, and

thus we obtain '(3) = 2100 · 5. Since Z (−1) = −1/(12), Z (−3) = 1/(120), Z (−5) = −1/(252), and

Z (−7) = 1/(240) (see also [20, Section 1.5]), the product evaluates as

4∏

9=1

(
(22 9 − 1) |Z (1 − 2 9) |

)
=

3 · 15 · 63 · 255

12 · 120 · 252 · 240
=

17

211
.

For < = 8, we have : = 4; and with
(5
4

)
= 5, we obtain

j(Γ8,2) = 289 · 52 · 17.

For < = 4, we have : = 2; and since
(5
2

)
= 10, we have

j(Γ4,6) = 290 · 52 · 17. �

To prove Theorem 4.4, we need some preparation. For simplicity, from now on we will write 1 for

1<,=, and we set � = Spin(1<,=). As a first step, we determine the Lie algebra of �. It follows from

the next lemma that the group scheme � ×Z Z? is smooth if ? ≠ 2 but is not smooth for ? = 2. This

problem forces us to be more careful when dealing with the prime ? = 2.
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Lemma 4.6. Let � be a commutative ring, and let ann(2�) = {0 ∈ � | 20 = 0} be the annihilator of
2�. The Lie algebra of � over � is isomorphic to the Lie subalgebra of �0 (+�, 1�) given by

Lie(�) (�) �
⊕

|� |=2

�4(�) ⊕
⊕

�even
|� |≠2

ann(2�)4(�),

where the sums run over subsets � ⊆ {1, . . . , 3} of even cardinality.

Proof. Consider the ring �[Y] with Y2 = 0. Recall that the Lie algebra is defined as

Lie(�) (�) = {- ∈ �0 (+�, 1�) | 1 + Y- ∈ � (�[Y])}.

Let - ∈ �0 (+�, 1�). Write

- =
∑

� even

G� 4(�)

with coefficients G� ∈ �, and define 6 = 1 + Y- . Note that 6−1 = 1 − Y- . We determine under which

conditions - ∈ Lie(�) (�).

Using (4.1), we see that 1 = 66 = 1 + Y(- + -) holds exactly if G� ∈ ann(2�) for all � with

|� | ≡ 0 mod 4. Moreover, 6 satisfies 6486
−1 ∈ +�[Y ] if and only if -48 − 48- ∈ +� for all 8. Let

� ⊆ {1, . . . , 3} be a set with an even number of elements. Then 4(�)48 − 484(�) = 0 if 8 ∉ �. However,

if 8 ∈ �, then
4(�)48 − 484(�) = 4

2
8 (−1) | { 9∈� | 9>8 } |24(� \ {8}).

We deduce that -48 − 48- ∈ +� is satisfied precisely when G� ∈ ann(2�) for all � with |� | > 2. We

leave it to the reader to verify that the Lie algebra structure is indeed induced by the commutator bracket

on �0 (+�, 1�). For instance, one can use the formula given in [17, II, Section 4, 4.2]. �

Proof of Theorem 4.4. We first fix some notation. Let � (R) = Spin(<, =) be the associated real spin

group. The Lie algebra L(Spin(<, =)) will be denoted by g. We identify g with a Lie subalgebra of the

Clifford algebra� (+R, 1R); see also Lemma 4.6. The vectors 4(�) where � runs through the two-element

subsets of {1, . . . , 3} are a basis of g. The subalgebra k spanned by the 4(�) where � ⊆ {1, . . . , <} or

� ⊆ {< + 1, . . . , < + =} is maximal compact. The corresponding maximal compact subgroup will be

denoted by  ∞. A Cartan decomposition is given by g = k ⊕ p, where p is spanned by the 4(�) with

� = {8, 9} satisfying 8 ≤ < < 9 .

Let - = Spin(<, =)/ ∞ denote the associated Riemannian symmetric space. Note that dim(-) = <=

and dim(� ×ZQ) = 3 (3 − 1)/2, where 3 = < + =. Since - is simply connected and Γ<,= acts freely and

properly on - , the quotient space -/Γ<,= is the classifying space of Γ<,=. We will calculate the Euler

characteristic of this space. If < and = are odd, then the Euler-Poincaré measure on Spin(<, =) vanishes

and j(Γ<,=) = 0; see [56] or [34, Theorem 3.1]. From now on, we assume that dim(-) = <= is even.

The linear algebraic group � ×Z Q is simple and simply connected [45, Theorem 24.61]. The

associated real Lie group � (R) = Spin(<, =) is not compact, since we assume <, = ≥ 1. We infer that

� has strong approximation; see [49, Theorem 7.12]. It follows that the inclusion Spin(<, =) → � (A)

induces a homeomorphism

� (Q)\� (A)/ ∞ 5 � -/Γ<,=,

where  5 =  
(2)
<,= ×

∏
? odd � (Z?) is an open compact subgroup with

 
(2)
<,= = ker

(
� (Z2) → � (Z/4Z)

)
.

We will compute the Euler characteristic using the adelic formula given in Theorem 3.3 in [34]. We

choose � to be the symmetric bilinear form on Lie(�) (Q) for which the vectors 4(�) are an orthonormal

basis. The form � is nice in the sense of [34]: that is, the Cartan decomposition on g = k ⊕ p given
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above is orthogonal. Moreover, � induces a volume form vol� on � (QE ) at every place of E of Q. Now

Theorem 3.3 in [34] yields

j(-/Γ<,=) = (−1)<=/2
|, (gC) | g(�)

|, (kC) |
vol� (�D)

−1 vol� ( 5 )
−1, (4.2)

where g(�) is the Tamagawa number of � and , (gC) and , (kC) denote the Weyl groups of the

complexified Lie algebras of gC and kC respectively. Moreover,�D denotes the compact dual group: that

is, the compact group Spin(3) in our case.

Now we evaluate the terms in the formula step by step. We put ℓ = ⌊ 3
2
⌋ and : = ⌊<

2
⌋ and : ′ = ⌊ =

2
⌋.

Observe that ℓ = : + : ′ since we excluded the case that both < and = are odd.

In evaluating the volume vol� ( 5 ) there is, however, a subtle point: the adelic formula in [34] is

based on the assumption that the underlying group scheme is smooth over Z. This assumption is only

used in evaluating vol� ( 5 ). As we have seen in 4.6, our group scheme � is not smooth over Z since

there is a problem at the prime 2. In the last step, we shall take care of this problem.

Tamagawa number: g(�) = 1.

Since 3 ≥ 2, the spin group � ×Z Q is semisimple and simply connected. The assertion follows from

Kottwitz’s Tamagawa number theorem [40]. For spin groups, this was already observed by Tamagawa

and Weil.

Orders of Weyl groups: |, (gC) |
|, (kC) |

= 2
(ℓ
:

)
.

If 3 = 2ℓ is even, then gC is a simple Lie algebra of type �ℓ , and kC is a product of simple Lie algebras

of type �: and �:′ . The table in [27] yields

|, (gC) |

|, (kC) |
=

2ℓ−1ℓ!

2:−1:! 2:
′−1: ′!

= 2

(
ℓ

:

)
.

Similarly, if 3 = 2ℓ + 1, then gC is a simple Lie algebra of type �ℓ , and the Weyl group has order 2ℓℓ!;

see [27]. Now kC is a product of two simple Lie algebras either of types �: and �:′ or of types �: and

�:′ . A short calculation yields the formula.

Volume of �D: vol� (�D) = 2(33−32)/2
∏3
9=2 c

9/2Γ( 9/2)−1.

The compact dual group �D is Spin(3). Since Spin(3) is a twofold covering of SO(3), we obtain

vol� (Spin(3)) = 2 vol� (SO(3)). However, we have to relate the induced left-invariant Riemann metric

� to the standard left-invariant metric W on SO(3). More precisely, the vectors E8, 9 = �8, 9 − � 9 ,8 with

8 < 9 ≤ 3, where �8, 9 denotes the elementary matrix with entry 1 in position (8, 9), form a basis of the

Lie algebra so(3). At the identity W is the symmetric bilinear form for which (E8, 9 )8< 9 is an orthonormal

basis. Using induction one shows that the volume with respect to W is

volW (SO(3)) =

3∏

9=2

vol(( 9−1) =

3∏

9=2

2
c 9/2

Γ( 9/2)
.

The tangent map of the projection ? : Spin(3) → SO(3) maps the basis vector 4(�) with � = {8, 9} and

8 < 9 to 2E8, 9 ; therefore, � = 1
4
W and

vol� (SO(3)) = 2−3 (3−1)/2 volW (SO(3)).

Local volume vol� ( 5 ):
Here we obtain a formula for the local volume

vol� ( 5 ) = vol� ( 
(2)
<,=)

∏

? odd

vol� (� (Z?)).
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As in [34], we use the smoothness of�×ZZ? for all odd primes to apply Weil’s formula vol� (� (Z?)) =

|� (F?) |?
− dim� . The special ? = 2 is discussed in Lemma 4.7 below, which yields vol� ( 

(2)
<,=) =

4−3 (3−1)/2 = 2−3 (3−1) . It remains to evaluate the infinite product over all odd primes

∏

? odd

|� (F?) |
−1?3 (3−1)/2.

Recall that over F? , there are exactly two quadratic forms in 3 variables. They are uniquely determined

by their discriminant in F×?/(F
×
?)

2; see [55, Theorem 3.8]. We note that the canonical map � (F?) →

SO(<, =) (F?) has a two-element kernel; and, as 3 ≥ 3, the image has index 2 in SO(<, =) (F?), and

thus |� (F?) | = |SO(<, =) (F?) |.

Case 1: 3 = 2ℓ is even.

Let ? be an odd prime number. By assumption,< and = are even, and hence the discriminant det(1<,=) =

1. If a quadratic space (+, @) of dimension 3 over F? splits as an orthogonal sum of hyperbolic planes,

then we say that @ is of ⊕-type. Otherwise, @ has an anisotropic kernel of dimension 2, and we say that

@ is of ⊖-type.

Case 1a: 3 ≡ 0 mod 4.

In this case, ℓ is even, and thus det(1<,=) = 1 = (−1)ℓ = det(�⊥ℓ), where � denotes the hyperbolic

plane. We deduce that 1<,= is of ⊕-type over F? . In this case, |� (F?) | = ?
ℓ (ℓ−1) (?ℓ −1)

∏ℓ−1
9=1 (?

2 9 −1);

see [4]. We obtain

∏

? odd

|� (F?) |
−1?3 (3−1)/2 =

∏

? odd

(1 − ?−ℓ)−1
ℓ−1∏

9=1

(1 − ?−2 9 )−1

= Z (ℓ) (1 − 2−ℓ)

ℓ−1∏

9=1

Z (2 9) (1 − 2−2 9 ),

where Z is the Riemann zeta function.

Case 1b: 3 ≡ 2 mod 4.

In this case, ℓ is odd; and, as in Case 1a, we see that 1<,= is of ⊕-type exactly if −1 is a square: that

is, ? ≡ 1 mod 4. Let k denote the unique primitive Dirichlet character modulo 4. Then the order of the

spin group is |� (F?) | = ?
ℓ (ℓ−1) (?ℓ − k(?))

∏ℓ−1
9=1 (?

2 9 − 1); see [4]. Using this, we obtain

∏

? odd

|� (F?) |
−1?3 (3−1)/2 =

∏

? odd

(1 − k(?)?−ℓ)−1
ℓ−1∏

9=1

(1 − ?−2 9 )−1

= !(k, ℓ)

ℓ−1∏

9=1

Z (2 9) (1 − 2−2 9 ),

where !(k, B) is the Dirichlet !-function attached to k.

Case 2: 3 = 2ℓ + 1 is odd.

In this case, the order is |� (F?) | = ?
ℓ2 ∏ℓ

9=1 (?
2 9 − 1); see [4]. Consequently, we obtain the formula

∏

? odd

|� (F?) |
−1?3 (3−1)/2 =

ℓ∏

9=1

Z (2 9) (1 − 2−2 9 ).

Finally, we multiply the terms and simplify using the functional equations of the Riemann zeta

function and the Dirichlet !-function. More precisely, the functional equation of the Z-function [47,
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VII. (1.6)] and the well-known identity Γ( 1
2
− 9)Γ( 1

2
+ 9) = (−1) 9c imply that

Z (2 9) c−2 9/2Γ(
2 9

2
) c−(2 9+1)/2Γ(

2 9 + 1

2
) = |Z (1 − 2 9) |.

This identity makes it possible to combine one factor of the product in vol� ( 5 )
−1 with two consecutive

factors of the product occurring in vol� (�D)
−1. If 3 is even, there is a remaining term that needs to

be simplified. If 3 ≡ 0 mod 4, then Z (ℓ)c−ℓΓ(ℓ) = 2ℓ−1 |Z (1 − ℓ) |, as can be seen using the functional

equation. For the case 3 ≡ 2 mod 4, the functional equation of the !-function [47, VII. (2.8)] yields

!(k, ℓ)c−ℓΓ(ℓ) = 2−ℓ |!(k, 1 − ℓ) |.

Eventually, we use !(k, 1 − ℓ) = −
�k,ℓ

ℓ
to express the special !-value in terms of generalized

Bernoulli numbers; see [47, VII. (2.9)]. �

Lemma 4.7. In the notation above, we have vol� ( 
(2)
<,=) = 4−3 (3−1)/2.

Proof. We construct an explicit chart that will allow us to compute the volume. The exponential

series converges on 4�0 (+Z2
, 1) and defines an analytic function with values in 1 + 4�0 (+Z2

, 1). Let

G ∈ 4 Lie(�) (Z2). Then G = −G commutes with G, and thus exp(G)exp(G) = exp(G − G) = 1. Moreover,

we claim that exp(G)Eexp(G) ∈ +Z2
for every E ∈ +Z2

. Indeed, consider the endomorphism adG of +Z2

defined by adG (E) = GE − EG. Then a short calculation yields

exp(G) E exp(G) = exp(adG) (E) ∈ +Z2
.

We deduce that the exponential function maps 4 Lie(�) (Z2) to the group 
(2)
<,=. Similarly, the logarithmic

series !(1 + 0) =
∑∞
:=1

(−1):−1

:
0: converges on  

(2)
<,=, and with similar arguments, one verifies that

!( 
(2)
<,=) ⊆ 4 Lie(�) (Z2). Since exp and ! are inverses of each other, we deduce that

exp: 4 Lie(�) (Z2) →  
(2)
<,=

is an analytic isomorphism. It is straightforward to check that the pullback of the volume density on

 
(2)
<,= via the exponential map to 4 Lie(�) (Z2) yields the standard volume. As a consequence, we obtain

vol� ( 
(2)
<,=) = 4− dim� . �

Remark 4.8. The factors that eventually distinguish the Euler characteristics of the profinitely isomor-

phic lattices Γ<,= and Γ<−4,=+4 are the orders of the involved Weyl groups. These factors are special to

the normalization of the Euler-Poincaré measure. However, it seems possible that profinitely isomorphic

lattices in simple Lie groups have equal covolume with respect to some other geometrically relevant

normalization of measures.

Example 4.9. As discussed in the introduction, our methods do not suffice to prove Theorem 1.1 for

(-arithmetic groups. The sign of the Euler characteristic of an arithmetic group depends only on the

Archimedean place, whereas for (-arithmetic groups, the sign depends on all places in (. This makes it

necessary to understand the subtle interplay between the places. One class of examples that illustrates

this behavior quite well are special linear groups over quaternion algebras. Other intriguing examples

arise from (-arithmetic spin groups, as we will see now.

We consider the set ( = {2,∞} of places of the fieldQ and the two groups Spin(14,1) and Spin(12,3).

The quadratic forms 14,1 and 12,3 are equivalent over Z? for every prime ? > 2. Indeed, for odd primes,

13,0 is isotropic over Z?; see [15, Lemma 1.7]. Hence, 13,0 splits into a hyperbolic plane and a 10,1.

This proves the assertion since 11,1 is equivalent to the hyperbolic plane over Z? . We note further that

13,0 is anisotropic over Q2 ([15, Lemma 2.5]), and we deduce that the Witt index of 14,1 is 1 over Q2.
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The rank of a spin group over a field of characteristic ≠ 2 is the Witt index of the defining quadratic

form. We deduce that

rk( Spin(14,1) = rkR Spin(14,1) + rkQ2
Spin(14,1) = 1 + 1 = 2,

rk( Spin(12,3) = rkR Spin(12,3) + rkQ2
Spin(12,3) = 2 + 2 = 4.

In particular, the (-arithmetic groups Δ1 = Spin(14,1) (Z[1/2]) and Δ2 = Spin(12,3) (Z[1/2]) have the

congruence subgroup property (see also [32, Theorem 5]) and are hence profinitely isomorphic.

The symmetric space -1 associated with Spin(4, 1) has dimension 4, whereas the symmetric space

-2 of Spin(2, 3) has dimension 6. In particular, dim -1 . dim -2 mod 4, and the useful Theorem 2 fails

in the (-arithmetic case. However, the Euler characteristics of Δ1 and Δ2 nevertheless have the same

sign. Using Serre’s description of the Euler-Poincaré measure [56], we see that the sign of the Euler

characteristic of Δ1 is

sign(j(Δ1)) = (−1)dim(-1)/2 · (−1)
rkQ (Spin(14,1)) = −1

and the sign of the Euler characteristic of Δ2 is

sign(j(Δ2)) = (−1)dim(-2)/2 · (−1)
rkQ (Spin(12,3)) = −1.

The problem dim -1 . dim -2 mod 4 is repaired by the change of the Q2-rank modulo 2: that is,

rkQ2
Spin(14,1) . rkQ2

Spin(12,3) mod 2.
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