KIT | KIT-Bibliothek | Impressum | Datenschutz

Profinite invariants of arithmetic groups

Kammeyer, Holger; Kionke, Steffen; Raimbault, Jean; Sauer, Roman

Abstract:

We prove that the sign of the Euler characteristic of arithmetic groups with CSP is determined by the profinite completion. In contrast, we construct examples showing that this is not true for the Euler characteristic itself and that the sign of the Euler characteristic is not profinite among general residually finite groups of type F. Our methods imply similar results for ℓ$^{2}$-torsion as well as a strong profiniteness statement for Novikov-Shubin invariants.


Zugehörige Institution(en) am KIT Institut für Algebra und Geometrie (IAG)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2020
Sprache Englisch
Identifikator KITopen-ID: 1000126997
Nachgewiesen in arXiv
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page