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Abstract— We propose a fast method for deterministic multi-
variate Gaussian sampling. In many application scenarios, the
commonly used stochastic Gaussian sampling could simply be
replaced by our method – yielding comparable results with
a much smaller number of samples. Conformity between the
reference Gaussian density function and the distribution of
samples is established by minimizing a distance measure be-
tween Gaussian density and Dirac mixture density. A modified
Cramér-von Mises distance of the Localized Cumulative Dis-
tributions (LCDs) of the two densities is employed that allows
a direct comparison between continuous and discrete densities
in higher dimensions. Because numerical minimization of this
distance measure is not feasible under real time constraints,
we propose to build a library that maintains sample locations
from the standard normal distribution as a template for each
number of samples in each dimension. During run time, the
requested sample set is re-scaled according to the eigenvalues
of the covariance matrix, rotated according to the eigenvectors,
and translated according to the mean vector, thus adequately
representing arbitrary multivariate normal distributions.

I. INTRODUCTION

Context: Gaussian sampling is a core component of
nonlinear Gaussian filtering [1], [2], [3], [4], [5], [6] and
Gaussian sum filtering [7], [8], furthermore in particle filters
for proposal density sampling [9], [10] or smoothing [11], in
sequential Monte Carlo methods [12], in control scenarios
[13], [14], and many kinds of simulations [15], [16], [17],
[18]. For mixed Euclidean and non-Euclidean manifolds like
the Special Euclidean groups, normally distributed samples
are necessary for the Euclidean part [19], [20]. Even in purely
non-Euclidean Riemannian manifolds, Gaussian samples can
be used in the Euclidean tangent space and subsequently
projected on the manifold [21], [22], [23].

In lots of cases, random Gaussian samples can be replaced
by much fewer deterministic samples. This reduces computa-
tional complexity, especially if the nonlinear system equations
involve expensive computations like numerical integration.

Considered Problem: In this work we consider the
problem of deterministic Gaussian sampling. We present
a method that 1) is very fast and 2) provides a sampling
quality that is suboptimal but sometimes better than existing
methods.

State-of-the-art: The simplest Gaussian sampling
scheme is employed by the Unscented Kalman Filter (UKF)
with just two samples on each principal axis [24], [25].
Estimation quality can be improved by placing more than
two samples on the principal axes [6]. Sample locations are
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Fig. 1: Visualization of the proposed deterministic sampling
scheme for a bivariate standard normal density (blue shade),
starting from the univariate case. First, a one-dimensional
standard normal distribution is sampled (1) on the x-axis (blue
points). Second, a two-dimensional standard normal density
(yellow points) is sampled (2) by adding y-coordinates (black
arrows) to the existing samples. Subsequent re-scaling (4)
against the arrows to obtain arbitrary Gaussians (not shown
here) retains much of the uniformity of sample distribution.

thereby obtained by minimizing the L2 distance between the
respective scalar cumulative distribution functions of Gaussian
and Dirac mixture (DM). Even better is to distribute the
samples freely in space, wherever probability mass of the
desired Gaussian function is located. Cumulative distributions
of multivariate random variables are however ambiguous in
their definition. One possibility to overcome this is to take
all possible projections into account [26].

In this paper, we instead exploit the properties of the
Localized Cumulative Distribution (LCD) as a unique contin-
uous representation of multivariate continuous or discrete
densities [27]. Using the LCD for the specific case of
approximating multivariate Gaussian densities with DM
densities gives very good results [28], [29]. However, it is
computationally expensive, which prohibits online application,
e.g., in Gaussian filtering. The Smart Sampling Kalman Filter
(S2KF) circumvents this problem by using an offline generated
library of standard normal distributions [1], [30], [31]. An
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Fig. 2: For obtaining deterministic conditional samples with arbitrary covariance C, at first the sample points for the standard
normal distribution have to be determined offline. Performing the scaling and rotation operations online completes the
approximation. A similar figure for Gaussian sampling only on principal axes appeared in [6].

open source implementation of the S2KF and its library-based
Gaussian sampling is available [32].

Open Problems: Problem remains with the sampling
approach used in the S2KF that the online transformation of
the standard normal samples often leads to unwanted sample
aggregation such that the distribution of points is not very
uniform. Furthermore, the severity of this behaviour depends
not only on the eigenvalues of the covariance matrix, what can
be expected, but also on its eigenvectors, i.e., the rotational
part. This behaviour is undesired.

II. KEY IDEA

We propose a standard normally distributed set of samples
in the N -dimensional Euclidean space that is designed to be
re-scaled only along the N coordinate axes, see Fig. 1. The
resulting “elliptic” (but still axis aligned) point cloud can
subsequently be rotated and therefore represent correlated
normal distributions likewise, see Fig. 2.

Said template is generated by deterministic conditional sam-
pling, i.e., samples are only moved on lines in parallel to the
coordinate axes. This has several advantages. First, the wanted
“uniformity” of samples is mostly retained when the point
cloud is subsequently re-scaled (along the coordinate axes).
As a welcome side effect, computational costs to compute
the template are reduced. Coordinates of each dimension can
be optimized separately, as coordinates of lower dimensions
do not change anymore when higher dimensions are added.
This makes the numerical optimization easier and decreases
memory requirements for sample libraries.

III. OVERVIEW

Our method provides real-time capable deterministic Gaus-
sian sampling. Required inputs are

I1 the number L of wanted samples,
I2 eigenvalues of the covariance matrix,
I3 eigenvectors of the covariance matrix,
I4 and the mean vector.

Based on these, and a previously generated offline sample
library, we compute a deterministic set of particles that well
approximates the thereby specified normal distribution.

We will now in Sec. IV focus on the generation of the
offline library of standard normal samples. After that, in

Sec. V we describe how during runtime deterministic samples
for any (non-standard) Gaussian density can be obtained
quickly. Sec. VI details the distance measure we use to
compare normal distributions to DMs. We also present visual
examples in an evaluation, Sec. VII.

IV. OFFLINE CONDITIONAL SAMPLING

Consider a standard multivariate Gaussian density fG s
N
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Deterministic samples from this density are to be stored in
an offline library. We will now describe the individual steps
we propose to draw these samples.

A. One-Dimensional Sampling

According to our conditional sampling scheme, a univariate
problem is considered initially. Note that the approximation
quality along this “first” dimension will be superior to the
following ones; therefore it will be assigned the biggest
eigenvalue later during covariance adaptation in Sec. V-B.

We approximate the scalar Gaussian density fG s
1(x)

fG s
1(x) =

1√
2π

exp

{
−1

2
x2
}

with an unweighted DM density fDM s
1(x) with L samples xi

fDM s
1(x) =

1

L

L∑
i=1

δ(x− xi) .

The approximation is performed by finding the L sample
locations xi such that a distance measure D1(·, ·) for density
functions is minimized

{xi}Li=1 = argmin
xi

{
D1

(
fG s
1(x), fDM s

1(x)
)}

. (1)

The resulting sample spacings are in accordance with the
desired underlying continuous density, i.e., samples are closer



(a) Initial marginal distribution (b) Conditional distribution (one possibility) (c) Final joint distribution, product of (a) and (b)

Fig. 3: Visualization of the formal procedure determining the deterministic standard normally distributed samples: Adding
y-coordinates to a given marginal distribution f(x) can be written as multiplication with the conditional density f(y|x) (3).
Note that there are conditional distributions other than the one shown in (b) that would yield the same joint distribution (c).

in the region of high density and further apart for regions of
low density, see blue points in Fig. 1.

The distance measure Dn(·, ·) will be described later.
Important for now is that the distance measure serves as
a nonlinear objective function for the L unknown parameters
xi. Thus, the optimal sample locations can be found using
nonlinear optimization.

B. Two-Dimensional Problem

Now we consider the two-dimensional standard normal
distribution fG s

2(x, y)
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and the two-dimensional DM density fDM s
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The sample x-values xi as defined by (1) are inserted here
as constants and not modified anymore. Only the L unknown
y-vales yi along the second dimension are computed by
solving

{yi}Li=1 = argmin
yi

{
D2

(
fG s
2(x, y), fDM s

2(x, y)
)}

. (2)

Clearly the samples
[
xi yi

]>
move on lines (black arrows

in Fig. 1) along the y-direction until the overall arrangement
corresponds to a two-dimensional standard normal distribution
(yellow points in Fig. 1).

Formally, the augmentation of fDM s
1(x) with y-coordinates

yielding the joint density fDM s
2(x, y)

fDM s
2(x, y) = fDM s

2|1(y|x) · fDM s
1(x) (3)

can be seen as multiplication with a conditional density

fDM s
2|1(y|x) =

{
αi · δ(y − yi) , x = xi

undef , other x

with ai such that
∫
R fDM s

2|1(y|xi) dy = 1, i ∈ [1, . . . , L] ,
see Fig. 3 for a visualization.

For representing a non-standard normal distribution later
during runtime, the points can easily be moved along the
same lines (black arrows in Fig. 1). This results in a relatively
smooth point cloud without forming “lumps”. For example,
an uncorrelated normal distribution with σx = 1 and σy , with
0 ≤ σy ≤ 1, would be represented as

fDM
2(x, y) =

1

L
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i=1

δ

([
x
y

]
−
[

xi
σy · yi

])
. (4)

Even in the extreme case of σy = 0 (positive semidefinite
covariance matrix), the samples would not “clump” but rather
optimally arrange side by side as defined by (1), see blue
points in Fig. 1. The samples are thus “backward compatible”
to lower dimensions.

C. N -Dimensional Problem

Extending this scheme to any dimension N is straightfor-
ward. It can be formulated as a recursion from dimension
n to (n+ 1). The start of the recursion has been described
in Sec. IV-A (n = 0) and in Sec. IV-B (n = 1). The goal
here is the DM approximation of the (n + 1)-dimensional
standard Gaussian density fG s

n+1
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with an (n+ 1)-dimensional DM density with L samples
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Now suppose an n-dimensional DM approximation

fDM s
n

(
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)
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δ
(
x(1:n) − x(1:n)i

)
of the n-dimensional marginal distribution
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is already given.
Similar to Sec. IV-A and Sec. IV-B, there are L unknown

scalar coordinates x(n+1)
i defined by{

x
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They can be obtained via nonlinear optimization.
The formal perspective of this procedure involves a certain

conditional density that augments another dimension

fDM s
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(
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)

�

= fDM s
n+1|n

(
x(n+1)|x(1:n)

)
· fDM s

n

(
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)
.

Note that this conditional density fDM s
n+1|n is not uniquely

defined for DM densities: the multiplication in (5) cancels
all parts where fDM s

n has no support, see Fig. 3. The general
conditional density fDM s

n+1|n is never explicitly calculated in
our method. We only determine it where fDM s

n has support.

V. REAL-TIME COVARIANCE ADAPTATION

This section will describe how samples for any (non-
standard) normal distribution can quickly be obtained by
applying a linear transformation to the standard normally
distributed reference samples from Sec. IV. The process of
modifying the covariance matrix of a set of samples is also
called covariance adaptation. Additionally, a nonzero mean
vector can be impressed.

A. Arbitrary Multivariate Normal Distribution
The continuous Gaussian density fG N to be approximated

is given as a general multivariate normal distribution

fG N

(
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)
= N

(
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exp
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2
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)}√
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N
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,

with x(1:N) ∈ RN , mean vector µ ∈ RN , and general non-
diagonal, positive semidefinite covariance matrix C ∈ RN×N .
The covariance matrix can be decomposed according to

C = RΣR> (6)

into i) an orthogonal (i.e., pure rotation) matrix R consisting
of the eigenvectors of C, and ii) a diagonal matrix Σ

Σ =


σ2
1 0 . . . 0

0 σ2
2

. . .
...

...
. . . . . . 0

0 . . . 0 σ2
N


that contains the eigenvalues, i.e., the variances σ2

n along
the main axes that are spanned by the columns of R. The
variances are sorted from large to small, σ2

n ≥ σ2
n+1.

B. Anisotropic but Axis Aligned Scaling
Let the standard normally distributed DM for L samples

in N dimensions be given by

fDM s
N
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from the offline library as described in Sec. IV. We re-scale
this point cloud, see Fig. 2, by moving the samples back
along the same lines they were moved during construction
by conditional sampling. The resulting DM

fDM u
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now approximates the uncorrelated Gaussian density fG u
N

fG u
N

(
x(1:N)

)
= N

(
x(1:N) − 0, Σ

)
.

If the standard deviations σn are not all the same, this oper-
ation is anisotropic re-scaling. Note that the approximation
quality generally deteriorates from anisotropic re-scaling.
Only the standard normally distributed point locations are
actually optimized. However the proposed conditional sam-
pling scheme pursued here keeps the loss of approximation
quality at a tolerable minimum while providing an invaluable
saving of computation time.

C. Rigid Transformation
Finally, the now “elliptical” but still axis aligned point

cloud is rotated, see Fig. 2, to represent the potentially non-
diagonal covariance matrix C. In addition, it is translated by
the mean vector µ. This results in fDM

N
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as the final DM approximation of the wanted Gaussian density
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.



(a) S2KF (state-of-the-art) (b) Conditional (proposed) (c) Online (optimal but more complex)

Fig. 4: Visualization of three different Gaussian sampling schemes.
Yellow: standard normal distribution.
Red: one axis re-scaled to 10%.
Blue: one axis completely collapsed.

Samples are shown as points, density contour lines enclosing 95% of the probability mass are shown as dashed lines (circle
or ellipse). Vertical grey lines show the paths along which the points move during rescaling in (a) and (b).

(a) Standard normal Gaussian sampling with subsequent re-scaling, as used in the S2KF.
(b) Proposed conditional sampling of standard normal distribution with subsequent re-scaling along principal axes.
(c) Online sampling, i.e., numerically optimizing the distance measure separately for each of the three Gaussians.

Note that in (a), the standard normal samples (yellow) are optimal. In (b), the marginal distribution (blue) is optimal, and the
scaled distribution (red) is suboptimal but better than in (a). In (c), all three DM distributions are optimal.

VI. DENSITY FUNCTION DISTANCE

We will now sketch the distance measure Dn that we use
to compare DM densities to Gaussian densities. For a detailed
introduction and motivation of the distance measure, see [27].
For more details on DM approximation of Gaussian densities
using this distance measure, see [28] and [29].

Distance measures between continuous densities (like
Gaussians) and discrete densities on continuous support (like
DMs) are not straightforward to define. Typical distance
measures such as the L2 norm or the Kullback–Leibler
divergence fail here, because it is not feasible to simply
compare density function values as both functions do not share
a common support. Instead, the local point density of samples
(DM components) must be taken into account. Therefore, in a
first step, a transformation (the LCD) using kernel functions is
employed, ensuring common support. An L2-based distance
is then calculated between these transformed distributions.

A. Localized Cumulative Distribution (LCD)

First, each density function f(x) is transformed to its LCD
F (m, b) that is defined as

F (m, b) =

∫
Rn

f(x) ·K(x−m, b) dx ,

with an isotropic Gaussian kernel K(x−m, b)

K(x−m, b) =
n∏

k=1

exp

{
−1

2

(
x(k) −m(k)

)2
b2

}
.

Intuitively, this can be seen as a convolution of the density
function with a Gaussian kernel with variable kernel width b.

B. A Modified Cramér-von Mises Distance

Second, a distance measure Dn(·, ·) between the LCD
FG s
n(m, b) of the Gaussian density and the LCD FDM s

n(m, b)
of the DM density is defined

Dn =

∫
R+

w(b) ·
∫
Rn

(
FG s
n(m, b)− FDM s

n(m, b)
)2

dm db ,

(7)

where w(b) is a weighting function, here w(b) = b−(n−1).
The inner integral is the L2 norm between both LCDs for

a fixed kernel width b. The outer integral collects information
regarding the distance from many different kernel widths into
one scalar value, Dn.

Closed form solutions of the integrals exist for standard
normal distributions [28].

C. Nonlinear Optimization

The distance measure (7) is the objective function of the
nonlinear optimization problem in (1), (2), and (5) yielding



(a) S2KF (state-of-the-art) (b) Conditional (proposed)

Fig. 5: Various Gaussian samplings with different rotational part R in the covariance matrix C = RΣR>. Standard deviations
along principal axes are 1 and 0.2 in each case, i.e., Σ = diag(1, 0.04). Mean vectors µ are chosen such that all Gaussians
can be shown without overlapping. (a) For state-of-the-art S2KF sampling, arrangement of points and sampling quality clearly
depend on R. (b) With the proposed conditional sampling, the achieved sampling quality is invariant against R.

the desired deterministic sample locations. We used stochastic
Gaussian samples as initial guess. For optimization, we
applied the MATLAB function fminunc() that uses a
BFGS Quasi-Newton method.

VII. EVALUATION

In this section, we provide visual examples of various
deterministic sampling schemes. This helps to compare
the proposed deterministic conditional sampling to existing
approaches.

A. Anisotropic Re-Scaling of Deterministic Samples

The effect of anisotropic re-scaling on deterministic stan-
dard normally distributed samples is visualized in Fig. 4a for
the existing S2KF approach and in Fig. 4b for the proposed
conditional sampling scheme. Yellow points represent the
standard normal distribution as stored in the sample library
for 16 samples in two dimensions in this case. Covariance
adaptation is then applied such that the standard deviation
of one axis is reduced from 1 to 0.1, see red points. Blue
points show the extreme case where the standard deviation of
one axis is reduced to 0, as is the case for singular, positive
semidefinite covariance matrices.

Clearly the conditional sampling scheme provides a more
uniform arrangement of samples than the S2KF approach
while causing just about the same online computational load
and even reduced offline computational load and library size.

If the LCD sampling is performed entirely online, sep-
arately for each specific Gaussian density, see Fig. 4c,
the sampling quality is of course better than the proposed
conditional sampling or S2KF sampling. However, the online
computational load for this scheme is much higher and not
well suited for real-time applications.

B. Rotation of Deterministic Samples

In Sec. VII-A, we visualized the effect of anisotropic
re-scaling encoded in the diagonal matrix Σ. Yet the full
covariance matrix C may also contain some rotational part
R (6), which will be discussed here.

Fig. 5 shows various instances of deterministic sampling of
Gaussian densities with identical eigenvalues Σ but different
rotational parts R. With S2KF sampling in Fig. 5a, the
samples are obviously arranged differently for different R.
The relevant state space that contains significant probability
mass (inside the dashed ellipses) is not always covered
uniformly. In the conditional sampling scheme however, Σ
and R are applied separately and in a way that is tailored
to the standard normal reference sample set. Therefore
the arrangement of samples after covariance adaptation is
invariant against R which is generally desirable. Overall
distribution of samples, see Fig. 5b, appears to be relatively
smooth and superior to S2KF sampling.



VIII. CONCLUSIONS

We have proposed an efficient, real-time capable determin-
istic sampling scheme for multivariate Gaussian densities.

Compared to similar existing sampling schemes, it has
provided superior coverage of the relevant state space. Addi-
tionally, and in contrast to the state-of-the-art S2KF sampling
scheme, the arrangement of samples is invariant against the
rotational part, i.e., the eigenvectors of the covariance matrix.
See Fig. 5 for a comparison.

Computational complexity for online sampling of arbitrary
Gaussian densities has not increased significantly compared
to S2KF sampling, as we only need the eigenvalues and
eigenvectors of the covariance matrices instead of their
Cholesky factorization. Computational load and storage space
for building the required offline library have even been greatly
reduced.

We are currently including the proposed sampling scheme
into the nonlinear estimation toolbox [32]. Instead of MAT-
LAB’s fminunc(), this library uses C++ code and MEX
files to perform Quasi-Newton optimizations much faster.
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