

Structural properties of superconducting Ba(Fe,Co)₂As₂ thin films

L. Grünewald¹, M. Langer², S. Meyer², J. Hänisch², B. Holzapfel² and D. Gerthsen¹

¹ Karlsruhe Institute of Technology (KIT), Laboratory for Electron Microscopy, 76131 Karlsruhe, Germany ² Karlsruhe Institute of Technology (KIT), Institute for Technical Physics, 76344 Eggenstein-Leopoldshafen, Germany

Introduction

- Iron-based superconductors exhibit large, nearly isotropic critical fields at low temperatures [1]
- Superconducting thin films [2] are of interest for their fundamental properties and applications like superconducting tapes [3]
- Superconducting properties like transition temperature T_c , upper critical field strength H_{c2} and critical current density J_c depend strongly on microstructure
- Co-doped BaFe₂As₂ (Ba122) is a widely studied model system (Fig. 1)
- Growth mechanism of Ba122 on single crystalline substrates is not yet fully understood due to different fabrication parameters and possible interactions with the substrate [4]

Goals

- Microstructural and chemical analysis of Ba122 in dependence of fabrication parameters and substrate material
- Understanding possible interaction of Ba122 with the substrate and the electron beam (i.e. beam damage)
- Correlation of microstructure and superconducting properties

Sample fabrication

- Ba(Fe_{1-x}Co_x)₂As₂ thin films with nominal doping of x = 0.08 and varying thickness (20 100 nm) were deposited on heated (700 750 °C) single-crystalline CaF₂, LaAlO₃ and MgO substrates (room temperature in-plane lattice mismatch of 2.6% (compressive), 4.6% (compressive) and 5.9% (tensile), respectively) by pulsed laser deposition
- Cross-section samples were prepared using the focused Ga-ion beam *in-situ* lift-out technique (final polishing at 5 keV) with an FEI Strata 400S dual-beam system

Experimental techniques

- An image C_s-corrected FEI Titan³ operated at 300 kV was used to analyze the microstructure with high-resolution (scanning) transmission electron microscopy (HR-(S)TEM) and to apply core-loss electron energy loss spectroscopy (EELS) with a Gatan Tridiem 865 imaging filter
- (High-angle) annular dark-field ((HA)ADF) STEM was used for material (*Z*-) contrast imaging
- Energy-dispersive X-ray spectroscopy (EDS) was performed on an FEI Tecnai Osiris operated at 200 kV and equipped with ChemiSTEM technology
- The signal-to-noise ratio of EELS and EDS spectrum images was improved by principal component analysis (HyperSpy / temDM MSA [5]) before extracting qualitative elemental maps (Cornell Spectrum Imager [6]/Digital Micrograph)
- Spectroscopic measurements of Ba122 on CaF₂ were mainly performed by EELS to avoid overlap of F K_{α} (677 eV) and Fe L_{α} (705 eV) in EDS

Results

c = 13.02 Å.

- Ba122 shows layered, epitaxial growth on CaF₂ and LaAlO₃ and polycrystalline structure on MgO (cf. Fig. 2a-c)
- An amorphous O-rich layer is observed on top of the Ba122 layer (marked in Fig. 2a)
- Stacking faults (SFs) on the Ba-planes show dark contrast in HAADF-STEM images
 - \rightarrow Most SFs present in Ba122 on LaAlO₃ (Fig. 2b and 3)
 - → Dark contrast (Fig. 2f) may arise due to dechanneling of electrons around defective region, presence of vacancies and/or outdiffusion of Ba and indiffusion of lighter elements (e.g. O)
- EELS reveals presence of O at SFs (Fig. 3)
- Ba122-CaF₂-interface is susceptible to beam damage in conventional TEM (Fig. 2d)
 - → Formation of an amorphous layer ("damaged region")
 - → STEM imaging gives better control over distributed dose and reduces beam damage
- Formation of BaF₂ at the Ba122-CaF₂-interface is visible in HR-STEM images (Fig. 2e) as determined by Fourier-transform analysis of the crystal structure
- Fe-rich precipitates are observed in all samples (cf. Fig. 4b,c, not shown for CaF₂)
- Additionally, O-rich phases showing dark HAADF-STEM contrast are observed in Ba122 on CaF₂ (Fig. 4a) which are currently under investigation

Fig. 2: HAADF-STEM overview images of Ba122 layers on (a) CaF_2 , (b) $LaAIO_3$ and (c) MgO. (d) HR-TEM image showing formation of an amorphous layer between CaF_2 and Ba122 under the electron beam. HAADF-STEM images of (e) the Ba122-CaF₂-interface and (f) a SF.

Fig. 3: ADF image and mappings of EELS coreloss signals for Ba122 on LaAIO₃ from the marked region in the overview image. The SFs show dark contrast in the ADF image, an increased O and Ba signal and a reduced Fe signal.

Fig. 4: (a) Mappings of EELS core-loss signals for Ba122 on CaF₂. EDS signals for Ba122 on (b) LaAlO₃ and (c) MgO show the presence of Ferich precipitates. An enhanced O signal is found at the film surface, near precipitates and grain boundaries.

Summary

(a)

- The investigated Ba122 layers contain (Fe-rich) precipitates and stacking faults, which are less frequent for layers with smaller lattice mismatch to the substrate
- The cleanest Ba122 phase is found on CaF₂ which is consistent with highest measured T_c of 23 K among the shown samples
- High electron doses can lead to destruction of Ba122 layer, especially on CaF₂

References

[1] H. Hosono et al., *Mater. Today* 21 (2018), 278–302
[2] M. Sakoda et al., *Supercond. Sci. Technol.* 31 (2018), 093001
[3] K. lida et al., *Appl. Phys. Rev.* 5 (2018), 031304
[4] M. Langer et al., *J. Phys. Conf. Ser.* (2019) in press
[5] HyperSpy: https://hyperspy.org/, temDM MSA: http://temdm.com/web/msa/
[6] Cornell Spectrum Imager: http://spectrumimager.com/

