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Abstract:

In cases where the private sector struggles to cope with the impact of a disaster, 

authorities try to reduce the burden on the population and set up supply chains to 

distribute essential goods. Therefore, they estimate demand and location of the 

affected people and open points of distribution to supply goods from, e.g. public 

buildings or sports facilities. However, the location of these points of distribution

depends heavily on accurate demand estimations. Combined with a high time pressure 

that prevents the collection of detailed data, inefficient decisions result. However, these 

decisions improve significantly if private actors share their market knowledge. Since 

this information is strictly confidential for companies and at the same time requires a lot 

of coordination effort from public actors to acquire, the quantification of the benefits of 

the collaboration is important for both sides. Moreover, the time at which the 

information is received and the way the information is utilized regarding different 

intervention intensities is supposed to be crucial. Therefore, we develop a framework to 

quantify the consequences of shared information for both actors and apply it to a case 

study for a tap water contamination in the city of Berlin. We highlight that both actors 

benefit from the collaboration and that the time the information is received

has a comparably low effect on the total supply. Moreover, we show that private actors 

can reduce the impact of market interventions on their processes significantly by 

actively collaborating with authorities.

Keywords: crisis management; humanitarian logistics; points of distribution; 
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1 Introduction and Motivation

While private actors manage the distribution of goods in peacetime, public authorities are responsible for

guaranteeing sufficient supply to the population in times of crisis. Therefore, they need to establish new supply

chains in a complex and uncertain environment (Holgúın-Veras et al., 2012). However, critical decisions taken

in disastrous situations are urgent, and information can therefore not be acquired in the level of detail that

is required to understand the situation thoroughly (Gralla et al., 2016). The required information comprises

both the supply side (production capacity, market quantities) as well as the demand side (location and

demographic characteristics of people in need).

In contrast to private actors who manage to build a deeper understanding of the market every day, public

actors usually only possess general market data about the firms’ capacities or production quantities. For

instance, German authorities conduct a survey that tracks the produced amounts of ”fats, cereal, starch,

feedstuffs, milk, and sugar industries” on a regular basis (Federal Office for Agriculture and Food Germany,

2019). However, it remains unclear if and how this static and production focused data can prove itself

valuable in disaster relief. Furthermore, the German government installed an interface where pharmacies can

report bottlenecks in critical supplies (Federal Institute for Drugs and Medical Devices Germany, n.d.). Even

though this approach seems promising to reduce the response time to crises in the medical sector, a holistic

approach to information acquisition seems more powerful.

To tackle this issue, the US Federal Emergency Management Agency is running a pilot study to test the

value of near-real-time data in disaster relief, proactively by purchasing access to market data for 3.6 million

USD for one year (Federaltimes, 2019).

A less costly approach to receive information in crises could be by collaboration. The importance of

collaboration in disaster logistics has been widely acknowledged and different aspects of collaboration have

been discussed (see for instance Rodŕıguez-Esṕındola et al. (2018a); Waugh Jr. and Streib (2006)). However,

market information represents a pivotal asset to companies and have therefore been highlighted as one of

the key challenges for effective collaboration (Nurmala et al., 2017). Therefore, it remains questionable if

private actors are willing to share their knowledge. Consequently, public actors need to both understand

the value of the information and the implications of their decision under the different levels of information

accuracy. However, to the best of our knowledge, no approach exists that quantifies the value of possessing

more accurate information in Public-Private Emergency Collaborations (PPECs). Therefore, we propose a

framework to quantify this value of information and analyze how this value is affected by the point of time

and the intensity of the state’s intervention.

Our paper is structured as follows. First, we provide an overview of related literature in the next Chapter.

Afterward, we present the framework and discuss the different components in Chapter 3. Following, we
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highlight the power of the framework by applying it to a case study, in which German authorities need to

open up Points of Distribution in the aftermath of a tap water system contamination. We conclude with

a discussion of the strengths and weaknesses of our approach and highlight potential directions for further

research.

2 Literature Review

This Section embeds our approach within the current body of literature. We focus on the following three

aspects of disaster management: collaboration, facility location models, and information management.

2.1 Collaboration in Disasters

Various actors become active in the aftermath of a disaster. For example, Kovács and Spens (2007) name

Government, Military, Logistics providers, Donors, Aid agencies, and other NGOs as key actors and high-

light the importance of effective collaboration. Various factors might affect the coordination of these actors

significantly (Balcik et al., 2010): the number and diversity of actors, donor expectations and funding struc-

ture, competition for funding and the effects of the media, unpredictability, resource scarcity/oversupply,

and cost of coordination. Consequently, a variety of articles suggest approaches to mitigate some of these

obstacles (Davis et al., 2013; Dubey et al., 2019; Heaslip et al., 2012; Nagurney et al., 2019; Rodon et al.,

2012; Rodŕıguez-Esṕındola et al., 2018b; Toyasaki et al., 2017).

Most of the studies discussed above involve some sort of collaboration that includes humanitarian orga-

nizations. On the other hand, the collaboration between public and private actors is especially critical for

efficient disaster management (Cozzolino, 2012). While private organizations are responsible for the distribu-

tion of goods in peacetime, public actors become responsible in times of crisis. Hence, efficient collaboration

between these two actors can have a significant impact on efficient relief management.

A growing body of literature is actively discussing various aspects of these so-called Public-Private Emer-

gency Collaborations (”PPECs”; Wiens et al. (2018)). For instance, Holgúın-Veras et al. (2013) discuss

different objectives of both actors and argue for extending cost-based objectives with a cost-proxy for human

suffering. Since commercial actors are profit-driven, effective mechanisms are required to offer the chance

to collaborate successfully (Carland et al., 2018). Furthermore, Gabler et al. (2017) mention two additional

barriers for PPECs: internalization and unidirectional communication. In the context of our study, uni-

directional communication is especially important since it is supposed to inhibit the willingness to share

information (Gabler et al., 2017).

However, to the best of our knowledge, no study exists that quantitatively measures the effects of collab-
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oration for both actors under combined operational and informational strategies.

2.2 Allocation and Facility Location Problems in Disasters

Researchers developed a variety of approaches to locate facilities in disasters or to allocate inventory or

parts of the population to these facilities. For a recent and sophisticated review, see Sabbaghtorkan et al.

(2020) who analyzed location, allocation, and location-allocation papers with a focus on the prepositioning

of facilities and the allocation of inventory to these facilities in anticipation of a disaster.

Additional approaches focus on the disaster relief phase, which starts right after the impact of the disaster

(Kovács and Spens, 2007). Baharmand et al. (2019) developed a bi-objective and multi-commodity location-

allocation model that minimizes logistics cost and response time. Zhao et al. (2017) developed a model that

minimizes opening cost and walking distance for beneficiaries dependent on the forecasted shelter demand.

Görmez et al. (2011) identified shelter locations in response to an earthquake in Istanbul. None of these

contributions explicitly consider strategies of information acquisition and information sharing.

Furthermore, it has to be mentioned that some covering models consider uncertainties in input values.

For instance, Arana-Jiménez et al. (2020) dealt with knowledge uncertainties through fuzzy techniques, and

Li et al. (2018) developed a stochastic cooperative maximum covering approach that analyzes the situation of

NGOs utilizing free capacities of other NGOs’ warehouses. Even though they regard different demand levels,

they generalize the demand and do not regard different demand intensities for different regions simultaneously.

However, to the best of our knowledge, no study exists in which different information levels and the

implications of alternative decisions are compared.

2.3 Uncertain Information in Disaster

Disasters are characterized by a high degree of uncertainty. Therefore, a variety of studies exist that deal

with different aspects of uncertainty, such as for example infrastructure status (Yagci Sokat et al., 2018),

travel time (Balcik and Yanıkoğlu, 2020), staff availability and customer behavior (Schätter et al., 2019), or

demand and supply (Bozorgi-Amiri et al., 2013).

Our study builds upon literature regarding demand information and the exchange of information.

Even though humanitarian organizations are experts in disaster management and adapt their whole supply

chain towards these uncertainties (see for instance van der Laan et al. (2016), who discuss the forecasting

methods at Médecins Sans Frontières (MSF)), their supply chains are designed to be flexible towards a

variety of potential disasters on a global level. Even though this increasingly leads to decentralized and

more regional supply chain structures (Charles et al., 2016), the determination of concrete demand of the

population after an unexpected disaster occurred still requires a significant amount of time. Therefore,
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humanitarian organizations use standardized guidelines like the Sphere-Handbook to define critical goods

and their related demand per person in disaster settings (Sphere, 2018) and determine the required amount

of goods directly after the disaster stroke (for instance via a rapid needs assessments, which is supposed to

take up to seven days (International Federation of Red Cross/Red Crescent Societies, n.d.)).

To speed up the time it takes to determine demand, some researchers tried to define criteria to quickly

identify areas in which potentially vulnerable parts of the population live (Kapucu, 2008; Kawashima et al.,

2012; Sandholz, 2019). For instance, Sandholz (2019) surveyed the population of the German city of Cologne

and identified that the likelihood of a person to possess specific emergency goods like flashlight, matches,

radio, and others increases with the duration a person lives in this apartment. In spite of the power of this

information, a high dependency on the availability of such data results.

In contrast to public actors or relief organizations, commercial business-to-customer (B2C) business units

are interacting directly with their customers on an everyday basis. Therefore, they are used to dealing

with demand fluctuations in response to unexpected incidents in the context of their Business-Continuity-

Management (BCM) and have therefore a good understanding of the population’s potential reaction to

the disaster (Schätter et al., 2019). Consequently, other actors in disaster relief would benefit from this

information significantly.

Even though information exchange in disasters is widely understood as a crucial aspect of disaster man-

agement (Celik and Corbacioglu, 2010), many impeding factors exist. Day et al. (2009) conducted interviews

with relief logisticians active during Hurricane Katrina and identified eight impediments on information flows:

inaccessibility, incompatible formats, inadequate flow of information, low information priority, source infor-

mation, storage, medium-activity misalignment, and unwillingness. Moreover, Altay and Labonte (2014)

analyzed challenges for information flows (extracted from ”27 evaluations, lessons learnt reports, and mission

reports”) from the Active Learning Network for Accountability and Performance in Humanitarian Action.

They highlighted that factors such as information quality and willingness to share information are especially

important and argue that this could be improved by installing the Global Logistics Cluster as coordinator of

the exchange of information. This could be combined with an approach from Sheu (2010) who developed an

entropy-based fusion approach that generates information estimations based on multiple sources and their

related belief strengths.

In spite of the possibilities to verify the quality of the information and to ensure that the information

reaches the right decision maker faster, it remains questionable if private actors are willing to share their

information with the whole cluster rather than in an exclusive and bilateral public-private setting. Moreover,

sharing information is not necessarily every actor’s objective. For instance, after the Haiti earthquake 2010,

”some organisations simply did not feel the need to coordinate or share information, especially those with
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their own unrestricted funding.” (Altay and Labonte, 2014).

Furthermore, the consequences of information exchange can be crucial for both actors - especially for

private actors that are, in the long run, dependent on monetizing their knowledge. Before private actors

agree on exchanging information, they therefore need to understand the consequences. At the same time,

public actors need to understand the value of the information in case they consider purchasing or seizing

critical information. However, to the best of our knowledge, no approach exists that quantifies the value of

the information and puts it in perspective with the consequences of sharing the information for both actors.

In the next Section, we describe the framework we developed to fill this gap.

3 Model Framework

3.1 Problem Statement

We take the perspective of public authorities, which aim to supply the population of a city or an urban

district with essential goods (e.g. water) during a crisis. Therefore, they need to decide which Points of

Distribution (PoDs) they should open to supply goods to the population. However, they do not possess

detailed information about the distribution of the total demand within the area. This demand depends on

the goods people stockpiled at home. On the other hand, private actors possess this knowledge since they

interact with their customers every day, e.g. by analysing Point of Sales data, and can therefore extract

information regarding the purchasing behavior and goods people store at home. An example could be a

district in which many diabetic people live, resulting in an increased number of diabetic-friendly products in

stores.

Before authorities start to contact private actors and ask them to share the information, they need to

determine the value of the information to decide for measures to take (extreme measures such as seizure can

only be considered in case obtaining the information makes an extremely significant difference).

3.2 Framework to Quantify the Value of Information

The following framework describes the problem mentioned above and an approach to quantify the value of

the information (see Figure 1). Three steps are required to determine the value of information.

First, we analyze the Scenario, in which the decision-maker possesses no accurate demand information.

Therefore, the demand of the population is assumed to be equally distributed (”ED”-Scenario; grey boxes in

Figure 1 and aggregated to Demand Points (DPs)). In the next step, we allocate these DPs to supermarkets,

so that the utilization of the capacities of the supermarket is as high as possible. Moreover, a maximum

walking distance is regarded. If the crisis is severe, the state - or in extreme cases NGOs - becomes active
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Figure 1: Overview of the framework.

and open up PoDs to support the population that is not supplied by the supermarkets (Wiens et al., 2018).

These PoDs can, for instance, be public buildings, churches, or stadiums (DHS, 2006; PAHO, 2009; U.S.

Department of Agriculture, 2017).

Second, we analyze the outcome, if the authorities had more accurate information with the same procedure

as mentioned above. The chosen PoDs differ significantly from the opened PoDs selected with more accurate

information (see ”I”-Scenario; green boxes in Figure 1).

Third, the quantification of the value of information follows. This requires an additional Scenario, the

”Combined Outcome” or CO-Scenario (see ”CO”-Scenario; blue box in Figure 1). The CO results from the

combination of PoDs chosen with theoretical, inaccurate demand information and the ”real-world” DPs. It

therefore represents the outcome of the plan in reality. Hence, the difference between CO and ED quantifies

the planning error, while the difference between I and CO represents the value of the information.

In the following Subsections, we provide a brief overview of the main components of the framework, while

the case study discussed in Chapter 4 highlights the power of the approach in practice. Moreover, potential

extensions of the framework, e.g. regarding different time of interventions or different intervention intensities

are discussed in Chapter 5.

3.3 Definition of Demand Points

DPs consist of two components - the location and the demand of a required good (or a combination of goods)

at time t.
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• The location of the DPs depends on the level of aggregation. While the highest level of detail results

from a per capita analysis, aggregations on a house, block, or district level might be more feasible in

terms of computation power and available data.

• The demand for a good depends on various factors such as the disaster context, individual preferences,

or the physical constitution of the population. While certain minimum standards in disaster situations

exist (see for instance Sphere (2018)), an assessment of the needs of the population is central.

3.4 Allocation of DPs to Supermarkets

The concrete formulation of the allocation model depends on the context of the disaster and many realizations

are possible. An example of objective functions could be the minimization of PoDs required to offer a target

service level (Charles et al., 2016), the minimization of total cost (Lin et al., 2012), or a multi-objective

approach (Baharmand et al., 2019). Dependent on the quality of the available data and the specific context

of the model, specifications such as customers’ supermarket chain preferences could also be included.

3.5 Facility Location Model

Similar to the allocation model mentioned above, the Facility Location Model (FLM) needs to be tailored

to the disaster context. Since public actors are not profit-driven, the objective functions could for instance

entail the minimization of the total walking distance between DPs and a number of PoDs (Görmez et al.,

2011), the maximization of supply to the population (Balcik and Beamon, 2008), or the minimization of

social costs (Loree and Aros-Vera, 2018). Furthermore, aspects such as differences in the suitability of a

building to become a PoD, or specific types of buildings could be considered (PAHO, 2009).

4 Case Study: Tap Water Contamination in Berlin

The case study was inspired by the water contamination from the city of Heidelberg, Germany, where the

drinking water was contaminated on February 7th, 2019, for a couple of hours (Heidelberg24, 2019).

We assume that the tap water system in the city of Berlin is contaminated. Even though it is still usable

to flush, wash clothes, or to shower, it is not drinkable anymore. Moreover, it is known that the tap water

will be drinkable again after one day, reducing the level of panic within the population. Due to the crisis, the

demand for bottled waters increases significantly and companies try to cope with the sudden increase. To

reduce complexity, we only focus on drinking water. Indirectly induced demands for products such as food

or soap will not be regarded.
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Public authorities realize that the supermarkets are not able to supply enough water to the population.

Therefore, they decide to open PoDs. Due to a contract with a logistics service provider, transportation of

water to these facilities is secured and does not need to be regarded in the model. Furthermore, we assume

that only public schools are considered as locations for PoDs and that these schools are all equally suitable

as a PoD.

4.1 Definition of Demand Points

As mentioned above, two key characteristics define DPs: the location and the demand.

4.1.1 Location of DPs

An aggregation level of an ”on a house basis” offers a high resolution. Data acquired from the city of Berlin

(Geoportal Berlin, 2019a)1 is the basis for the location of the 387, 083 buildings. However, not all of these

buildings are inhabited. Since the city of Berlin provides information on the population density on a ”per

block” base (Geoportal Berlin, 2019b), we only select the buildings that lie within one of those defined blocks,

reducing the numbers of buildings in the scope of our analysis to 372, 629 (see also Figure 2). Following,

the inhabitants per block are evenly distributed over the buildings that are located within this block. The

number of people per house results. The way the demand for each house is determined will be described

in Subsection 4.1.2 below. However, due to the extremely high computational effort that comes with the

allocation of 372, 629 buildings, the sum of the demand of the houses within one block is aggregated back on

a block base to reduce computational complexity. A total of 14, 759 DPs results.

4.1.2 Demand Estimation

According to the Sphere handbook, 15 liters of water per person and day are sufficient for short periods of

time (Sphere, 2018). Moreover, the authors of the handbook consider 2.5 − 3 liters of water per day as an

adequate amount for ”drinking and food” (Sphere, 2018). Therefore, we regard demand of 3 liters per day

and person.

We define the two different scenarios for the demand based on the respective actor: While private actors

can predict the demand due to their experience with demand fluctuations (accurate information), public

actors cannot estimate the demand as accurately, especially under high time pressure. Therefore, they can

only relate on immediately available data (e.g. census data; inaccurate information) or wait until the situation

becomes more clear (for example, Comes et al. (2020) states that the Philippine army was unaware of the

concrete impact of Typhoon Haiyan until it was covered by international media).

1Data licence Germany – attribution – Version 2.0
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Since private actors’ success depends heavily on their market knowledge, this information is not publicly

available, and we need to determine an approximation for our case study with the help of proxy data. Even

though this data is free to access, the data analysis and manipulation process is extremely time consuming

and cannot be done efficiently by authorities right after the disaster occurred.

We base our estimation on the assumption that, due to the short time of the crisis, only the part of the

population, which did not store bottled water at home, requires water. Following, the demand per person

we regard in the case study results from the required amount of water (3 liters) reduced by the stockpiled

amount.2

According to a recent study by Sandholz (2019), where the authors conducted a representative survey

of the stockpiling of 1,109 households in a major German city, 66.8% of the population stockpiles water for

more than five days. Therefore, the stockpiling amount of 33.2 % of the population is 0.

In the case of inaccurate information, we assume that authorities only know the number of people living

at each DP and the average amount of water stockpiled per person. Consequently, the demand for each

person is reduced by 66.8% for the ED-Scenario, while the demand in the I-Scenario is 0 liters for 66.8% and

3 liters for 33.2% of the population.

Regarding the approximation for the accurate demand information, we regard three indicators for the

number of goods stockpiled at home: the available space in the apartment (Bell and Hilber, 2006), the

financial or social status of the person (Havranek et al., 2017), or the distance to the closest supermarkets

(Jiao et al., 2016). Even though we acknowledge that multiple additional indicators influence the stockpiling,

we only regard these three characteristics for each house for the sake of simplicity. After all, the objective

of this study is not to provide an improved estimation of stockpiling behavior but to show how information

sharing can improve decisions.

To determine the stockpiling, we rank the DPs in terms of these indicators and sum up the individual

ranks to attain a merged rank.3 Finally, the best ranked 66.8% of the population is regarded with a demand

of 0 liters. Furthermore, the demand for each DP (each block) results from the aggregation of each building

within this block.

Size of the apartment

We use the population density per block as a proxy for the size of the apartment (see also Figure 2). Each

building receives the density value of the block it is located in.

2Even though a person that stockpiles a limited amount of water could still try to buy additional water, we do not regard
this ”exceeding” demand further.

3In case of equal values, each of the related buildings receives the highest value.
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Figure 2: Extract from map of Berlin with the
population density highlighted on a per block ba-
sis [in ppl per hectar] (Geoportal Berlin, 2019b)

Figure 3: Map of Berlin with 447 PRs and their
social status index (Geoportal Berlin, 2019c).

Financial situation

We estimate the financial situation with the help of the local ”Status Index” (SI), which is based on the

current and long term unemployment rates, the child poverty rate, and the ”proportion of not-unemployed

recipients of transfer payments” (Berlin.de, 2019a). The SI is defined on the level of the so-called ”Pla-

nungsräume” (PRs, see also Figure 3) - 447 geographically defined areas dividing Berlin into segments of

similar social and demographic characteristics (Berlin.de, 2019b).4 Consequently, we allocate the SI of the

related PR to each building.

Distance to supermarkets

The average distance between each building and the five closest supermarkets was calculated with ArcGIS

Desktop 10.6.1. and represents the distance to the supermarkets. Afterward, the buildings were ranked

accordingly.

Determination of stockpiled amount

As mentioned above, the individual ranks for each building were summed up to determine an overall ranking.

We combine these overall ranks with stockpiling data obtained from Sandholz (2019) to determine the demand

per DP. The allocation of DPs to supermarkets follows.

4Since January 1st, 2019, the city of Berlin slightly changed the structure and now defines 448 PRs. As the statistical data
available refers to 447 PRs, we will keep using the ”old” classification of the PRs without the minor adaptions.
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4.2 Supermarket Allocation

The model for allocating the DPs to supermarkets is a maximum covering model (Farahani et al., 2012).

With the binary decision variable xij (indicating if DP i is allocated to supermarket j), a demand of bi per

DP, a supply of aj per supermarket, a distance dij between DPi and supermarket j, and a maximum walking

distance of r, we define the model as follows:

max
∑
i∈I

∑
j∈J

xij ∗ bi (1)

s.t.
∑
i∈I

xij ∗ bi ≤ aj ∀j ∈ J (2)

xij ∗ dij ≤ r ∀i ∈ I, ∀j ∈ J (3)∑
j∈J

xij ≤ 1 ∀i ∈ I (4)

xij ∈ {0; 1} ∀i ∈ I, ∀j ∈ J (5)

While Eq.(1) defines the objective to maximize the allocated amount of water from all supermarkets j

to all DPs i, Eq.(2) ensures that the capacity limit of each supermarket is not exceeded. To compute our

calculations, we use supermarket data obtained from the Berlin Senate Department for Urban Development

and Housing (Berlin Senate Department for Urban Development and Housing, 2016). Since this data only

contained GIS coded data about 1062 supermarket locations and the corresponding size of the sales area, we

needed to determine the capacity per supermarket by approximation: we broke down the amount of bottled

water sold in Germany per year (VDM, 2019) on a per-day and capita base and multiplied it with Berlin’s

population to calculate the daily sales of bottled water in Berlin (in our case: 1.77 million liters per day).

Following, we divided this number by the total sales area to determine the water capacity per m2 of sales

area (in our case: 1.63 liters per m2). The capacity per supermarket follows by the multiplication with the

size of the corresponding sales area.

Eq.(3) ensures that a DP is only assigned to a supermarket (xij = 1) if the geodesic distance between

DP and supermarket is within walking distance of the DP. In the context of our case study, we follow

the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety and define the

maximum walking distance as 1,000 meters (BMUB, 2014). Moreover, Eq.(4) ensures that no DP is allocated

to more than one supermarket to reduce the complexity to collect the goods for the population. Finally, Eq.(5)

defines xij as a binary variable.
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4.3 Location Selection for PoDs

The remaining demand after the allocation to the supermarkets is considered as the input-demand for the

PoD location selection. We assume that the authorities are only able to open a limited amount of schools

as PoDs and that each of these PoDs has a capacity of 60,000 liters per day (roughly five trucks with a

load of 12 tons). This capacity would furthermore be in line with the recommendations of the World Food

Programme, who recommend limiting the number of people per distribution site to 20,000 (WFP, 2002).

Regarding potential schools to open, we use data received from the Berlin Senate Department for Education,

Youth and Sport (Berlin Department for Education, Youth and Sport, 2019) that included GIS data for all

public schools in Berlin. After data editing and preparation, the pool of potential PoD locations included

631 schools.

The following model decides, which of the schools k should be opened as PoD (yk = 1), and which DP is

allocated to which school (xik = 1) if a total number of L schools can be opened (L ≤ |K|):

max
∑
i∈I

∑
k∈K

xik ∗ bi (6)

s.t.
∑
i∈I

xik ∗ bi ≤ ak ∀k ∈ K (7)

xik ∗ dik ≤ r ∀i ∈ I, ∀k ∈ K (8)∑
k∈K

xik ≤ 1 ∀i ∈ I (9)

xik ≤ yk ∀i ∈ I, ∀k ∈ K (10)∑
k∈K

yk ≤ L (11)

xik, yk ∈ {0; 1} ∀i ∈ I, ∀k ∈ K (12)

Note that, even though I refers to the same set of DPs, the demand of the DPs of the second model differs

(whenever a DP x was allocated to a supermarket within the supermarket allocation model, the demand of

this DP x in the school allocation model is 0). Eq.(6-9) are equivalent to the supermarket allocation model

mentioned above, with the objective of maximizing the allocation to the population. Eq.(10) ensures that

an allocation is only possible, if a school k is open. Eq.(11) accounts for the maximum number of schools to

open (L), while Eq.(12) defines yk and xik as a binary variable.
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5 Results

5.1 Demand Points

The calculation of ranks and the allocation of demand to the DPs was conducted using Microsoft Excel

(16.0.4849.100 64-bit) and ESRI ArcGIS Desktop 10.6.1. A total demand for 3,720,554 liters results. Since

the information about potentially vulnerable blocks is very sensitive, we avoid highlighting the assessment

on a per-block base and aggregate the demand for each DP on the level of the PR (see Figure 4 and 5).

Figure 4: Visualization of the demand per PR as-
suming evenly distributed stockpiling estimation
[in l per PR].

Figure 5: Visualization of the demand per PR
highlighting the accurate demand stockpiling es-
timation [in l per PR].

Therefore, accurate information helps to identify potentially critical regions since the demand in different

regions of Berlin varies stronger than in the case of equal distribution. Following, it is possible to prioritize

regions more efficiently.

5.2 Allocation to Supermarkets

The model to allocate DPs to supermarkets was implemented in GAMS and solved using the CPLEX Solver

(on an Intel Xeon CPU E7-4850, 2.00 GHz, 256 GB RAM). It took approximately 45 minutes to solve the

problem with a relative MIP-gap of 0.5%, resulting in a total supply from the supermarkets of 1,734,812

liters and capacity utilization of 98%. Consequently, the exceeding demand results in 1,985,742 liters.

5.3 Location Selection for PoDs

Regarding the number of PoDs to open, we distinguish between two cases - 10 schools and 33 schools. Thirty-

three schools were chosen since this number ensures that the capacity of supermarkets and schools matches

the demand. On the other hand, the significant operational effort required to open 33 PoDs cannot be
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neglected. Therefore, we also regard 10 PoDs as a more feasible number of schools to open. This number is

further supported by the blackout in Berlin Koepenick in February 2019, in which five schools were opened

(RBB, 2019). Since Koepenick only represents a small part of Berlin, a safety cushion of 100% was chosen.

The PoD location model was implemented in GAMS and solved using the CPLEX Solver (on an Intel

Xeon CPU E7-4850, 2.00 GHz, 256 GB RAM). It took on average 9 minutes to solve the problem with a

relative MIP-gap of 0.5%, resulting in a total supply of 416,321 liters from 10 schools and 947,518 from 33

schools. Therefore, public authorities are able to estimate that opening ten schools lead to a total supply

of 2,151,133 liters of water (equivalent to 58% of the total demand of the population), while 2,682,330 liters

could be distributed with 33 schools (equivalent to 72% of the total demand). Therefore, it can be followed

that 28% of the capacities are unused due to the distance restriction if 33 schools are considered.

5.4 Quantification of the Planning Error

As discussed in Chapter 3, the planning error results from the difference of the CO- and the ED-Scenario.

Furthermore, the CO is determined by an additional run of the location selection model with the additional

restriction:

yj = 1 ∀ j ∈ {Locations selected in ED-Scenario} (13)

It follows that the results planned do not reflect potential outcomes since the chosen locations only lead

to a supply of 120,586 liters from 10 schools and 396,843 liters from 33 schools. Consequently, authorities

would overestimate the outcome of their intervention by up to 71%. This can have severe consequences. If,

for instance, a mayor of a city planned to supply goods for 10,000 people, aid would, in fact, only reach less

than 3,000 people. This effect is furthermore underlined by the fact that only 23 of 33 open schools actually

distribute goods, while 10 are left with all of their goods and nobody around to pick them up.

5.5 Quantification of the Value of Information

The value of information results from the comparison of the I-Scenario and the CO-Scenario described in

Section 5.4 above. If the state possessed all information before making its decision, the supply to the

population would result in 496,608 liters from 10 schools and 1,092,457 liters from 33 schools. Therefore,

public actors benefit significantly from the exchange of information, leading to an increase in supplies of up

to 412%.

Figures 6 - 8 furthermore highlight the results, presenting the 33 locations chosen for the ED-, the CO-,

and the I-Scenario. It follows that authorities would rather open schools in the center of Berlin, even though
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schools more towards the outskirts of the city are better if the real demand is considered.

Figure 6: 33 schools opened in
the ED-Scenario.

Figure 7: 33 schools opened in
the CO-Scenario.

Figure 8: 33 schools opened in
the I-Scenario.

6 Discussion and Further Analysis

The presented framework allows for a precise determination of the planning error and the value of information.

Therefore, it provides crucial insights for decision-makers in disaster management. They can, for example,

use the planning error from this study as an outcome estimation indicator in cases of high uncertainty.

Furthermore, it highlights the impact of an increase in information accuracy and provides an understanding

of how much the quality of disaster relief can be improved by higher information quality. However, it remains

questionable if private actors are willing to share information.

Moreover, the exchange of information is challenging, even if a company is willing to collaborate. For

example, agreeing on appropriate data-types, interfaces for the data-exchange, or update-cycles can - to-

gether with the time it takes to find a partner to collaborate - take a long time. Therefore, relief can

significantly speed up if public and private actors agree on the specific collaboration parameters before the

crisis. Moreover, PoDs chosen in the model can be regarded as designated disaster sites in disasters, reducing

the communicational and planning effort in the direct aftermath of the disaster drastically (similar to Dekle

et al. (2005) who identified designated relief sites in the US).

To gain a better understanding of the importance of time, we compare the decision in the case study

above with an alternative, accelerated decision where schools open up at the same time as the supermarkets.

Therefore, beneficiaries have more opportunities to receive goods while supermarkets might sell less.

6.1 A Comparison of Different Times to Start the Intervention

While market interference was implicitly excluded due to the dime lag between the start of the crisis and the

start of public actors’ intervention, it is also possible to analyze the consequences of an earlier intervention

of public actors. Earlier intervention in this context refers to opening the PoDs at the same time as the
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supermarkets open (see Table 1). Hence, parts of the population that were expected to go to supermarkets

in the Scenario above could go to schools. Therefore, earlier intervention leads to market interference.

This Subscenario ”B” is calculated similarly to the CO-Scenario described in Section 5.4: after the

selection of PoDs to open, an additional run of the supermarket allocation model follows, in which the

opened PoDs are included as additional distribution points.

Subscenario B leads to an increase in total supply (see Table 2). While total deliveries increase in each

Scenario analyzed, the overall effects are rather small, ranging from a 2% increase in the I-Scenario for 10

schools up to an increase of 12% in the ED-Scenario for 33 schools.

Table 1: Overview of the different Subscenarios.

Name of
Subscenario

A
Benchmark w/o

market interference

B
Simultaneous w/ limited

market interference

C
Simultaneous w/

market interference

Relevant demand
for public actors

Unmet demand after the
population is allocated to

supermarkets.

Expected unmet demand
after supermarkets ran out of

goods.

Total demand of the
population.

Time information is
shared and public
actors become

active

After supermarkets are
out of capacity.

At the beginning of the crisis.
At the beginning of the

crisis.

Narrative
description /

Interpretation of
strategy

Public actors wait until
supermarkets run out of

capacity before they
receive the information
and can start to supply
goods to people without

water.

Public actors estimate the
demand that will be left when
the supermarkets run out of
goods and choose the best

locations to fulfill this
demand. Each person can

either go to one of the
supermarkets or one of the

PoDs that are open.

Public actors choose
PoDs so that the total

demand can be supplied
best. There, PoDs are in

direct competition to
supermarkets for the

demand that could have
been met without public

intervention.

The implications of public interventions on private supply chains cannot be neglected and should be

considered carefully before intervening. In Subscenario B, public actors implicitly tried to reduce the impact

of their interventions by only focusing on the demand that cannot be supplied for by the market. However,

public actors could also try a more holistic approach and consider the total demand. Hence, the impact on

supermarkets is expected to be more significant. In the following Subsection, we analyze this Subscenario C.

6.2 A Comparison of Different Intervention Intensities

In the context of this case study, we define the difference in intervention intensity by the demand regarded in

the public actors’ optimization model (see also Table 1). In the case of a less severe intervention (Subscenario

B), authorities only consider the demand that would not be fulfilled by the supermarkets if the supermarkets

were to distribute goods by themselves. In the case of a stronger market intervention (Subscenario C), public

authorities consider the total demand of the population. Consequently, Subscenario C can be interpreted
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as the population’s favorite Subscenario since the best possible supply results, in which the allocation to

supermarkets and the facility decision for schools occurs at the same time.

From a mathematical perspective, we implemented this Subscenario as an extended location selection

model with M = I ∪ J. Furthermore, we set ym = 1∀m ∈ I. Consequently, the constraint that controls the

number of opened PoD (Eq. (11)) is adapted to include the 1,062 additionally opened PoDs:

∑
m∈M

ym ≤ L + 1, 062 (14)

Subscenario C leads to a better supply to the population than the baseline (A) and the less severe

intervention (B, see Table 2).5

Table 2: Overview of the results of the different Subscenarios.

#Schools 10 33

Distribution Strategy A B C A B C

Equally Distributed Scenario

Total Deliveries to Population 2,151,133 2,289,701 2,303,329 2,682,330 2,991,653 3,071,427
Utilization of Total Capacities 0.91 0.97 0.97 0.71 0.80 0.82
Proportion of Total Demand supplied 0.58 0.62 0.62 0.72 0.80 0.83
Deliveries from Supermarket 1.734,812 1,733,508 1,714,781 1,734,812 1,541,330 1,679,129
Utilization of Supermarket Capacities 0.73 0.98 0.97 0.73 0.87 0.95
Deliveries from Schools 416,321 556,192 588,548 947,518 1,450,323 1,392,297
Utilization of School Capacities 0.69 0.93 0.98 0.48 0.73 0.70

Combined Outcome Scenario

Total Deliveries to Population 1,562,120 1,584,712 1,593,988 1,838,377 1,904,606 1,884,325
Utilization of Total Capacities 0.66 0.67 0.67 0.49 0.51 0.50
Proportion of Total Demand supplied 0.42 0.43 0.43 0.49 0.51 0.51
Deliveries from Supermarket 1,441,534 1,408,424 1,369,340 1,441,534 1,256,422 1,279,380
Utilization of Supermarket Capacities 0.81 0.79 0.77 0.81 0.71 0.72
Deliveries from Schools 120,586 176,289 224,648 396,843 648,184 604,945
Utilization of School Capacities 0.20 0.29 0.37 0.20 0.17 0.31

Information Scenario

Total Deliveries to Population 1,938,142 1,977,576 1,982,790 2,533,991 2,705,482 2,709,825
Utilization of Total Capacities 0.82 0.83 0.84 0.68 0.72 0.72
Proportion of Total Demand supplied 0.52 0.53 0.53 0.68 0.73 0.73
Deliveries from Supermarket 1,441,534 1,397,066 1,408,249 1,441,534 1,290,523 1,361,218
Utilization of Supermarket Capacities 0.81 0.79 0.79 0.81 0.73 0.77
Deliveries from Schools 496,608 580,510 574,541 1,092,457 1,414,959 1,348,607
Utilization of School Capacities 0.83 0.97 0.96 0.55 0.71 0.68

However, the proportion of the supply that is taken care of by the private sector remarkably deviates

from the intuitively expected outcome since supermarkets lose, on average, a higher share of sales in the case

of weak intervention than in the case of strong intervention. A reason for this is the increased flexibility of

public actors regarding potential beneficiaries and the implicit division of the population between the two

actors that results from the holistic optimization approach. Consequently, supermarkets have an incentive to

collaborate closely with public actors in case they expect any kind of intervention. However, it is not possible

5It has to be mentioned that due to the increased complexity of the problem, we had to increase the allowed relative MIP-gap
to 3%.
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to eliminate crowding-out effects if public and private actors are active at the same time.

6.3 Effects of Different Subscenarios on Supermarket Chains

Since it is not possible to eliminate crowding-out effects, we further analyze the consequences of the different

intervention strategies on supermarket chains. Therefore, we aggregate the supply from the individual su-

permarkets on a ”per-corporate-group” level. In line with Kaufda (2019), we consider the following groups:

Aldi, Edeka, Metro, Norma, Rewe, Schwarz, and ”others”.

Figure 9 highlights the distribution per chain in the different Subscenarios.6 For example, group 7 is highly

affected by Subscenario B CO 33, while the sales of group 3 change significantly less due to the intervention.

Consequently, crowding-out affects different chains with different intensities. Therefore, public actors need

to be very careful to make sure that they do not ”pick winners” and have significant long term consequences

on the competition in the market.

Figure 9: Overview of the lost sales per group compared to no intervention (A).

7 Conclusion

Public actors strategies strongly depend on accurate demand information during crisis intervention. Within

the realm of our case study, inaccurate information can result in planning errors of up to 71%. At the

same time, the impact of the intervention can increase by up to 412%, if decision-makers receive accurate

6Due to reasons of confidentiality, we do not link the names of the groups to the data and generalize them as group 1-7.
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information. Moreover, the earlier public actors become active also has a positive effect, even though this

effect is comparably small. Furthermore, we were able to show that severe market intervention results in

better exploitation of supermarkets than a less severe market intervention. Consequently, private actors

should seek for collaboration in cases they are afraid that public actors would become active individually

otherwise.

However, additional research is necessary to gain a deeper understanding of the crisis mechanisms. First,

we did not consider the legal implications of the different Scenarios. We were able to show that the effects

of the interventions on supermarket groups differ significantly. Since authorities are not allowed to pick

”winners”, it remains critical if addition in total supply justifies different decisions.

Moreover, we did not consider crisis dynamics. The objective of this article was to quantify the value

of a current level of information in contrast to an alternative set of information. Therefore, we did not

consider dynamic effects, even though additional information might change the assessment (for an overview

of humanitarian logistics models that include real-time data, see, for example, Yagci Sokat et al. (2016)).

Therefore, the approach could, for instance, be combined with dynamic optimization approaches such as

the work from Paterson et al. (2019), who developed a work-in-progress approach for updating stochastic

models of human-centric processes in disaster management through unstructured data streams and encoded

information.

Furthermore, we treated every DP equally. Even though this is reasonable within an analysis of system

capacities, a prioritization of vulnerable parts of the population could help to make the results more applicable

for practice.

Closely connected is the definition of the next steps if authorities were to implement ways to receive

information in crises. This could include defining DPs together, to agree on the format of the data sent (e.g.

as an Excel, or as GEO-Coded files), or to discuss the way authorities can process the data.

Despite the challenges discussed above, the framework proved to quantify the value of information in

disasters efficiently. Therefore, it can establish itself as a powerful tool to improve disaster resilience.
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Einwohner in Berlin in LOR-Planungsräumen am 31.12.2018. Viewed online August 10th,

2020, https://daten.berlin.de/datensaetze/einwohnerinnen-und-einwohner-berlin-lor-planungsräumen-am-
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