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Abstract
1.	 The idea that human impacts on natural systems might trigger large-scale, social–

ecological ‘crises’ or ‘breakdowns’ is attracting increasing scientific, societal  
and political attention, but the risks of such crises remain hard to assess or 
ameliorate.

2.	 Social–ecological systems have complex dynamics, with bifurcations, nonlin-
earities and tipping points all emerging from the interaction of multiple human 
and natural processes. Computational modelling is a key tool in understanding 
these processes and their effects on system resilience. However, models that 
operate over large geographical extents often rely on assumptions such as eco-
nomic equilibrium and optimisation in social–economic systems, and mean-field 
or trend-based behaviour in ecological systems, which limit the simulation of crisis 
dynamics.

3.	 Alternative forms of modelling focus on simulating local-scale processes that un-
derpin the dynamics of social–ecological systems. Recent improvements in data 
resources and computational tools mean that such modelling is now technically 
feasible across large geographical extents.

4.	 We consider the contributions that the different types of model can make to simu-
lating social–ecological crises. While no models are able to predict exact outcomes 
in complex social–ecological systems, we suggest that one new approach with 
substantial promise is hybrid modelling that uses existing model architectures to 
isolate and understand key processes, revealing risks and associated uncertainties 
of crises emerging. We outline convergent and efficient functional descriptions 
of social and ecological systems that can be used to develop such models, data 
resources that can support them, and possible ‘high-level’ processes that they can 
represent.
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1  | INTRODUC TION

While global attention has been focused on the COVID-19 pandemic, 
rapid climatic change and biodiversity loss threaten further ‘crises’ or 
‘breakdowns’ in which social–ecological dynamics undermine estab-
lished human and natural systems (IPBES, 2019; Masson-Delmotte 
et al., 2018). Such events are increasingly referenced in scientific and 
popular media, and actions to reduce their likelihood are the sub-
ject of intense debate (Hagedorn et al., 2019). Computational mod-
els provide valuable information to these debates because they can 
synthesise, quantify and extrapolate from large bodies of evidence, 
making them core elements of science–policy interface programmes 
such as those of the IPCC and IPBES (Nicholson et al., 2019; Rogelj 
et al., 2018). Models that deal with the social–ecological interactions 
that can cause or potentially avert crises are especially pertinent, but 
most have been developed to reproduce relatively stable historical 
dynamics (Filatova et al., 2016; Ripple et al., 2020).

In principle, models can fulfil a wide range of roles, from de-
veloping and testing theory to analysing data and exploring sys-
tem dynamics including breakdown or, conversely, recovery 
(Epstein, 2008). What they cannot do, in the context of complex 
social–ecological systems, is predict when, where and how specific 
future events will occur (Brown et al., 2016; de Matos Fernandes & 
Keijzer, 2020). This limit is significant, and essential to recognise, 
but within it exist a range of useful contributions that models can 
make. In this article, we consider whether and how models can 
be used to fulfil more of their realisable potential for simulating 
social–ecological crises or breakdowns as tools for informing so-
cietal and political responses. In doing so, we use the terms crisis 
and breakdown to refer to broad types of event in which social–
ecological dynamics have a destructive effect on (some of) the so-
cial or ecological properties of the system in question (see Box 1).

There are three main reasons to take stock of social–ecological 
modelling at this point in time. First, there is an ongoing increase 
in attention given to potential (and current) crises such as the ‘cli-
mate crisis’ (United Nations,  2019), ‘biodiversity crisis’ (Driscoll 
et al., 2018) and more specific ‘crises’ relating, for instance, to the 
management of water resources for ecological and societal sustain-
ability (Srinivasan et al., 2012) or the decline of pollinating insects 
(Levy, 2011). There is also an increasing use of computational models 
to identify ways to avoid such crises (Rogelj et  al.,  2018). Second, 
despite this attention and modelling, efforts to prevent expected cri-
ses in climatic and ecological systems have been largely unsuccess-
ful, with progress towards major international agreements such as 
the Paris climate targets and Sustainable Development Goals being 
inadequate at best (Brown, Alexander, et al., 2019; Xu et al., 2020). 
Third, there has been a proliferation in the number, scope and type 
of available modelling tools and supporting data, suggesting that 
necessary new approaches may now be feasible. It is this third rea-
son that we focus on here.

In the remainder of this article, we briefly outline aspects of cur-
rent social–ecological systems modelling that make the simulation of 
crisis dynamics particularly challenging. We then go on to consider 

the nature of required improvements, before suggesting promising 
new approaches, resources and precedents. We finally identify po-
tential contributions that new models can make and some main con-
straints that they will face.

1.1 | ‘Crisis-blind’ modelling

Social–ecological systems models have developed rapidly in num-
ber and scope, covering more and larger systems in increasing de-
tail (Hamilton et  al.,  2015; Harrison et  al.,  2016). While they have 
numerous valid uses (including the simulation of social–ecological 

BOX 1 Terminology

Social–ecological systems modelling involves concepts 
and terms from different scientific fields, applied to prob-
lems that are widely discussed across society as a whole. 
Terminology is often unclear as a result, with many over-
lapping terms being defined differently by different groups 
(Colding & Barthel,  2019; Filatova et  al.,  2016; Herrero-
Jáuregui et al., 2018). We do not attempt to select or de-
velop definitions here, but provide this brief glossary to 
explain our own use of terms.
We use ‘social–ecological’ to refer to interacting social and 
ecological processes or systems, where those interactions 
determine outcomes to a substantial extent. We use ‘social– 
ecological’ rather than ‘socio-ecological’ to formally give 
equal weight to both sides (Colding & Barthel, 2019).
We use crisis and breakdown as two words commonly used 
in popular discourse to refer to climatic, environmental and 
associated societal problems at large scales, with break-
down relating specifically to altered dynamics in the sys-
tem in question. We also use related (but not synonymous) 
terms that are more widespread in the scientific literature 
(e.g. ‘tipping points’, ‘thresholds’ and ‘regime shifts’; see e.g. 
Filatova et al., 2016), but as occurrences from which crises 
or breakdowns can emerge, or which can occur in their ab-
sence (see e.g. Figure 1). We also note that both ‘crisis’ and 
‘breakdown’ imply a value judgement, and that many rel-
evant changes in social–ecological systems can have both 
positive and negative impacts, depending on perspective. 
While our usage of the terms reflects their broad and sub-
jective meanings, it is also consistent with more formal (if 
disputed) definitions such as that of Craig (2017), in which 
crisis is the state in which societies’ ecological ‘conditions 
of possibility’ are no longer secure. The term ‘collapse’, as 
used and reviewed by Cumming and Peterson (2017), is 
largely equivalent, and literature that uses converse con-
cepts such as ‘resilience’ is also highly relevant (associated 
terminology is outlined by Egli et al., 2019).
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‘recovery’), their development to date does not necessarily make 
them suitable for simulating social–ecological breakdown, especially 
where those breakdowns are large-scale in nature. In fact, many of 
the models that operate over the large geographical extents relevant 
for climatic, environmental or other social–ecological crises contain 
basic assumptions that preclude breakdowns from emerging.

In ecology, models dealing with species, community or ecosystem 
dynamics across large geographical extents have often been correla-
tional, statistical or pattern based. For instance, the great majority 
of studies of species extinction risks rely on Species Distribution 
Models (Urban, 2015, 2019). The correlations that underpin these 
models are usually robust in observed conditions, but will not nec-
essarily hold as those conditions change in the future. Indeed, rapid 
and substantial changes in climate and human activity are likely to 
fundamentally alter the basic processes behind those correlations, 
and are already affecting most core ecological processes in terres-
trial and marine systems (Scheffers et al., 2016).

The correlational approach also makes it difficult to account for 
links to social system dynamics. Studies that seek to identify impacts 
of human land use on ecological communities (including around half 
of meta-analyses) do so using simple metrics such as total species 
richness and abundance that carry little information about ecosys-
tem composition, function or stability (Blüthgen et al., 2016; Hekkala 
& Roberge, 2018). In omitting many of the characteristics that actu-
ally determine ecological responses (positive and negative) to land-
use change, these studies can provide little guidance about potential 
future changes (Urban, 2019), and established models can become 
unreliable as a result (e.g. Williams et al., 2015).

Similarly, most models of large-scale human systems (e.g. eco-
nomic or land-use systems) have adopted simplifying assumptions 
that allow general trends to be extrapolated into the future with-
out accounting for underlying processes. Land-use models covering 
large areas tend to rely on assumptions that land management is opti-
mised to meet demand for food or economic returns, and not the re-
sult of the social, cultural and behavioural processes that shape land 
managers’ decisions (Huber et al., 2018; Rosa et al., 2014; Stehfest 
et  al.,  2019). Land uses such as forestry, which do not contribute 
to food production, are often left as ‘residual’ land covers on areas 
not assigned to agriculture (Brown et al., 2017; Rosa et al., 2014). As 
with ecology, the relevance of these equilibrium-based approaches 
to novel and variable future conditions is doubtful, and makes the 
simulation of crises particularly challenging.

Another consequence of such approaches is a disconnect be-
tween models and the stakeholders who use them. Stakeholders 
can find it hard to relate to models’ primarily biophysical parame-
ters, correlational structures and abstract output indicators, instead 
preferring models that represent recognisable processes and deci-
sion-relevant outcomes (e.g. Borsuk et al., 2001; Hunka et al., 2013; 
Jönsson et al., 2015; Scown et al., 2019). Quite apart from the basic 
need to improve model accuracy, this preference justifies improved 
representation of breakdown dynamics as a topic of great current 
interest to stakeholders and society at large (Holtz et  al.,  2015; 
Millington & Wainwright, 2017).

1.2 | New challenges: Seeing the wood for the trees

Closing the blind spots identified above is a major challenge for social– 
ecological modelling. It requires the development of models that 
can simulate the emergence of unprecedented dynamics and im-
pacts, including the feedbacks, regime shifts and thresholds in-
volved in pushing system behaviour away from that observed in 
the past (Filatova et al., 2016; Synes et al., 2019; Wisz et al., 2013). 
Inevitably, this forces modellers to grapple with highly complex 
relationships.

For example, the ongoing loss of tropical forests—a frequent 
subject of modelling studies—involves numerous social and eco-
logical processes. Approximately 50% of tropical forests have 
already been partially or completely cleared (Asner et al., 2009; 
FAO,  2016) and the remainder fragmented into more than 130 
million patches (Taubert et al., 2018). Forty percent of the world's 
population currently lives in the tropics (FAO,  2016; Harding 
et  al.,  2014), and land-use change is expected to have greater 
effects there than in any other biome this century (Sala, 2000). 
Deforestation is increasingly driven by international markets, 
trade flows and corporations (Austin et al., 2017; Newbold, 2019), 
the pressures of which interact with a range of local factors such 
as land tenure, social capital, value systems and institutional 
capacities (Feurer et  al.,  2019; Nepstad et  al.,  2014). Pervasive 
human disturbances such as selective logging, hunting and burn-
ing have dramatic impacts on the dynamics even of apparently 
pristine forest areas (Asner et al., 2009), but indigenous peoples 
practising sustainable forms of forest management currently 
protect more tropical forest than do designated protected areas 
(Schwartzman et al., 2000). Both positive and negative effects 
may be self-reinforcing, with negative impacts of forest clearance 
on local climate (e.g. rainfall and temperature) being particularly 
likely to undermine ecosystem dynamics and agricultural produc-
tion (Lovejoy & Nobre, 2018; Oliveira et  al.,  2013). Interactions 
can therefore ripple out through space and time, producing suc-
cessive waves of fragmentation, degradation and ultimate defor-
estation that may soon exceed a critical threshold beyond which 
runaway collapses in stocks of carbon and biodiversity occur as 
ecosystem functions break down (Laurance et al., 2011; Taubert 
et al., 2018).

The complexity of such systems represents a real problem for 
models intended to generate meaningful outcomes without them-
selves being excessively complex. Potential solutions might exist 
among the diversity of models used to simulate social–ecological 
dynamics across small geographical extents, but these models 
are usually impossible to apply over large extents because their 
data or resource requirements become impracticable (Elsawah 
et al., 2020). Where upscaling is possible, difficult choices must be 
made about which simplifications are achievable without undermin-
ing model utility or the coherence of the overall system representa-
tion. These choices are complicated by recent evidence, of the kind 
outlined above, that even very small-scale processes can have sys-
tem-level impacts under some circumstances. Without novel ways 
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of handling complexity at large scales, any insight gained through 
social–ecological modelling may therefore be limited.

1.3 | Ways out of ‘the mess’

Simulating complex, unpredictable systems to understand and 
avoid damaging outcomes is not a problem faced by social–ecologi-
cal modelling alone, and much can be learned from other disciplines 
(Schulze et  al.,  2017). Lawton (1999) pithily summarised commu-
nity ecology as ‘a mess’ when identifying a need for similarly novel 
approaches. Urban (2019) argued that biological modelling should 
follow the example of climate modelling and ‘improve in accuracy 
by incorporating mechanistic understanding, employing multi-
model ensemble approaches, coordinating efforts worldwide, and 
validating projections against records from a well-designed net-
work of [observational] stations’. Achieving this vision might re-
quire considerably larger resources than are currently available to 
biological modelling, but certain methods may facilitate the incor-
poration of mechanistic understanding without incurring exces-
sive costs or model complexity. We suggest that one approach in 
particular has promise in this regard: the simulation of ‘high-level’ 
social–ecological processes that play key roles in system dynamics.

Focusing on a few key fundamental processes that span scales 
and contexts, and omitting other less general or important dynam-
ics, is an approach that has had significant success in community 
ecology. This approach emphasises understanding the nature and 
effects of these fundamental processes, in isolation if necessary, as 
sufficient for capturing the effects of numerous sub-processes with-
out accounting for them directly (Rapacciuolo & Blois, 2019). In com-
munity ecology, Vellend (2010) argued that myriad processes belong 
to one of four fundamental ‘high-level’ processes—drift, specia-
tion, dispersal and selection—that together produce observed pat-
terns in the composition and diversity of species across timescales. 
Identifying such processes of course requires a strong conceptual 
basis and evidence of the importance and generality of the pro-
cesses included (Steel, 2007). Although the resultant processes are 
broad, this approach has been successful in prompting discussion, 
modelling and new results in community ecology, obviating the need 
for complex models and precise parameterisation to some extent.

We suggest that it is possible in principle to identify a similar 
group of processes from literature on social and ecological systems 
as being key in contributing to or averting breakdown dynamics. We 
do not perform a systematic search for such processes here, but offer 
tentative suggestions based on our interpretation of earlier reviews 
and categorisations (Brown et al., 2017; Urban et al., 2016) and a non- 
systematic review undertaken for this article (Table 1). We do so with 
the aim of prompting discussion, in the hope that debate, testing and 
refinement of these suggestions will benefit future modelling efforts.

For this purpose, we propose that high-level processes in social–
ecological systems could include adaptation, interaction, dispersal 
or movement, demographic change, and intervention by institu-
tional and governance actors (Table 1). Each of these processes has 

been identified as important in the literature (Table  1), although 
cases could certainly be made (and, we hope, will be) for additional 
or alternative processes. Notably, despite being broad in nature, 
these processes are currently not widely included in social–eco-
logical systems models (e.g. Brown et al., 2017; Urban et al., 2016). 
As a result, the appropriate inclusion of these or similar processes 
has the potential to increase the scope and utility of large-scale 
modelling.

These processes are analogous to classifications such as the 
mechanisms of collapse identified by Cumming and Peterson (2017), 
the ‘action-situation’ processes identified by Schlüter, Haider, 
et al. (2019) or the more empirical or theory-oriented classifications 
of review papers (Brown et al., 2017; Groeneveld et al., 2017; Huber 
et al., 2018; Meyfroidt et al., 2018; van Vliet et al., 2015). They dif-
fer in being specifically intended to contribute to modelling rather 
than theory, and in particular the modelling of dynamics that are 
outside the range observed in the recent past. They are intended to 
do so by focusing on general processes from which changes emerge 
(Figure 1), rather than providing a description of variation at a cer-
tain time, or specific effects or situations that lead to breakdowns.  
Research that highlights observed similarities among social–ecological  
contexts such as land system archetypes (Václavík et al., 2013) or 
decision-making types (Malek et al., 2019), can also aid identification 
of shared major processes (Rocha et al., 2019) or drivers of change 
(Harrison et al., 2018).

Another existing approach with notable relevance is the use of 
functional typologies to describe and model social or ecological dy-
namics (Grêt-Regamey et al., 2019; Rocha et al., 2019). Indeed, this 
functional approach has already been transferred from ecological 
modelling to social–ecological modelling as an efficient method of 
capturing major forms of human activity (Arneth et al., 2014; Brown, 
Seo, et al., 2019; Grêt-Regamey et al., 2019). In this case, functional 
typologies have been developed to represent not only the environ-
mental requirements and contributions of different land manag-
ers but also their decision-making characteristics (e.g. innovative, 
conservative, risk averse, profit-oriented, etc.; Blanco et  al.,  2015; 
Díaz et al., 2011). Such convergent descriptions lend themselves to 
interdisciplinary modelling, both in terms of similarity in model ar-
chitecture and in ability to capture key processes operating across 
large-scale systems.

A separate benefit of adopting a ‘high-level’ process approach 
is that the resulting models are likely to be widely understandable 
because the processes accord with those experienced by actors 
and stakeholders in any given system. This extra interpretability 
can be a benefit in itself, partially independent of ultimate model 
quality, because it allows models to enable informed dialogue by 
illuminating differing perspectives (Holtz et al., 2015; Millington & 
Wainwright,  2017; Parrott,  2017). Evidence suggests that models 
incorporating key, recognisable processes would be welcomed by 
many stakeholders who are uneasy about more ‘black box’ statistical 
models (Borsuk et al., 2001; Hunka et al., 2013). The shared under-
standings that can be developed in this way may additionally help 
to overcome social science's ‘incoherency problem’ by revealing—or 
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generating—links between apparently contradictory perspectives 
on the basis of fundamental processes common to all (Grimm & 
Berger, 2016; Watts, 2017). If so, models can play a highly benefi-
cial role in capitalising on a diversity of perspectives to generate im-
proved understandings and responses to social–ecological problems 
(Page, 2014).

Of course, high-level processes modelling represents just one 
possible approach in a field of great theoretical and practical diver-
sity. One notable alternative could be to represent only the most 
fundamental of processes, and allow all others to emerge from 
these. For example, it has been suggested that social system dy-
namics are ultimately reducible to individual cognition and social 
interaction, from which pressures of cultural selection and charac-
teristics of diversity emerge, determining the extent and impacts 
of negative disturbances in social–ecological systems (Figure  1; 
Baggio et  al.,  2019; Barnes et  al.,  2020; Freeman et  al.,  2020; 

Richerson & Boyd, 2020). In this case, all other outcomes, including 
the processes we identify above (with the exception of interaction 
itself), can be seen as emergent phenomena. This argument is well 
grounded in theory and offers an elegant basis for limiting model 
complexity, although may not in itself ensure model versatility, for 
instance if only specific, limited forms of cognition and interaction 
are represented (Page,  2014). The high-level, action-situation or 
functional processes identified above, among others, may there-
fore remain useful in informing model design even under this more 
fundamental approach.

1.4 | Suitable models and data

Whatever the theoretical advantages of high-level and other forms 
of ‘key’ process modelling, their practicability cannot be taken for 

TA B L E  1   Potential ‘high-level’ processes relevant to breakdown dynamics in social–ecological systems. References are provided to give 
examples of the importance of these processes in social and/or ecological systems, but are not exhaustive

Processes Explanation/role References

Adaptation Genetic, physiological or behavioural changes in 
response to (or in social systems, in anticipation of) 
alterations in environmental or other conditions. 
Includes learning and socio-cultural change in 
social systems

Social: (Adger et al., 2003; Crane et al., 2011; Holman 
et al., 2018; Vulturius et al., 2018; Wolf, 2011)

Ecological: (Holt & Gaines, 1992; Merilä & 
Hendry, 2014; Pelini et al., 2010; Romero-Mujalli 
et al., 2019)

Social–ecological: (Janssen et al., 2007; Preston 
et al., 2013)

Interaction Competition, cooperation, facilitation, (in social 
systems) knowledge and information diffusion, 
social learning and changes to norms or values

Social: (Baird et al., 2014; Brown, Alexander, 
et al., 2018; Gupta et al., 2010; Huet et al., 2018; 
Meyfroidt, 2012; Müller-Hansen et al., 2017; 
Wolf, 2011)

Ecological: (Butterfield et al., 2010; Götzenberger 
et al., 2012; Levine et al., 2017; Schweiger 
et al., 2008; Urban et al., 2012)

Social–ecological: (Krausmann et al., 2008; Stern 
et al., 1995)

Dispersal/movement The extent to which organisms, people or other 
entities can utilise space to generate, capitalise on 
or escape changes in conditions, for example, in 
species moving between habitat patches or people 
abandoning land uses and migrating. Can include 
many forms of human-mediated dispersal (e.g. 
species eradications or introductions) in social–
ecological systems

Social: (Bardsley & Hugo, 2010; Fig ueiredo & 
Pereira, 2011; Hermans-Neumann et al., 2017; 
McLeman & Smit, 2006; Pinho et al., 2015)

Ecological: (Aben et al., 2016; Carrasco et al., 2012; 
Ibáñez et al., 2013; Travis et al., 2013; Urban 
et al., 2016; Vellend, 2010)

Social–ecological: (Aide & Grau, 2004; 
Chazdon, 2003; Kannan et al., 2014; Warren, 2011)

Demographic change Changes in population structures, requirements and 
performance, as a cause of and response to wider 
systemic changes

Social: (Butzer, 2012; Downey et al., 2016; 
Goldstone, 2002)

Ecological: (Crozier & Dwyer, 2006; Jenouvrier 
et al., 2009; Pearson et al., 2014; de Silva & 
Leimgruber, 2019)

Social–ecological: (Ferrara et al., 2016; Kelly 
et al., 2015; Tadesse et al., 2014)

Institutional & governance 
interventions

Interventions associated with informal and formal 
groupings and entities. Includes institutional 
learning, architecture and adaptability, among 
others. Inherently related to social systems, even 
when operating on ecological systems

Brooks et al., 2005; Butzer, 2012; Cote & 
Nightingale, 2012; Dryzek & Stevenson, 2011; 
Grove, 2014; Jedd & Bixler, 2015; Juhola, 2016; 
Preston et al., 2013; Spies et al., 2010; Young, 2010



6  |    People and Nature BROWN and ROUNSEVELL

granted. Currently, relatively few models incorporate the processes 
suggested above (Figure  2; Brown et  al.,  2017; Egli et  al.,  2019; 
Holman et  al.,  2018; Urban et  al.,  2016), and advancing beyond 
this limited capability is likely to be challenging. Here too, cross-
disciplinary precedent can be a useful guide. The incorporation 

of high-level processes, functional typologies or similar categori-
sations in large-scale social–ecological models could be achieved 
via a number of existing modelling approaches in both ecology and 
social science.

Correlational statistical and pattern-based models can include 
greater process accuracy to some extent, as demonstrated, for 
example, by ‘joint attribute’ models that represent entire ecologi-
cal communities and their internal interactions (Clark et al., 2017). 
System dynamics modelling can also incorporate some social– 
ecological process accuracy (Elsawah et al., 2017), as can Earth System  
and marine ‘whole ecosystem’ models (Donges et al., 2020; Fulton 
et al., 2011; Pongratz et al., 2018). Network modelling has recently 
been used to explore the ways in which individual and social charac-
teristics affect responses to climate change (Barnes et al., 2020). A 
structured typology of social–ecological model types and the roles 
they can play in exploring system dynamics is provided by Schlüter, 
Müller, et  al.  (2019), and can be related to more general existing 
frameworks for social–ecological systems modelling (Robinson 
et al., 2018) and analysis (e.g. Binder & Hinkel, 2013).

In general, these analyses conclude that process-based approaches 
such as agent-based modelling (ABM) have particular promise for sim-
ulating key processes because they have an established history of 
representing social and ecological dynamics as emergent from such 
processes, and attempting to realistically represent real-world prob-
lems on this basis (Gras et  al.,  2009; Schlüter, Müller, et  al.,  2019). 
ABM is already used to represent the human decision-making that 
mediates social and environmental interactions (Egli et  al.,  2019; 

F I G U R E  2   Number (main plot) and identity (coloured insert) of 
three high-level processes and a converse economic optimisation 
in behavioural models of climate change adaptation and mitigation 
in land-based sectors (based on Brown et al., 2017). (An equivalent 
summary of ecological models can be found in Urban, 2019, and of 
social–ecological ABMs from the perspective of resilience in Egli 
et al., 2019)

F I G U R E  1   A stylised representation 
of social–ecological system dynamics 
relating ‘high-level’ processes to 
more fundamental processes, system 
properties and outcomes. Examples are 
illustrative, while the representation as 
a whole is presented as one possible 
conceptualisation that may support 
social–ecological modelling. The 
fundamental processes shown generalise 
the role of individual cognition and 
interaction in social systems described in 
the text. High-level processes can be seen 
as intermediate emergent phenomena, or 
as an alternative framework from which 
to construct models. Similarly, system 
properties and outcomes may emerge 
from either set of processes, but the high-
level processes listed may be especially 
pertinent to the simulation of breakdowns 
and crises
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Groeneveld et al., 2017; Lippe et al., 2019; Schulze et al., 2017) in-
cluding in the contexts of breakdowns in large-scale food systems 
(Brown, Seo, et al., 2019) and marine fisheries management (Gao & 
Hailu, 2012). It has also been used to some extent to identify high-
level or cross-context processes (Parker et al., 2008) and their relative 
impacts on social–ecological change (Brown, Holzhauer, et al., 2018). 
Such models have also been developed using functional accounts 
that are compatible across social and ecological sub-systems, and can 
similarly incorporate biologically and socially meaningful metrics re-
lated to system structure (Arneth et al., 2014; Blüthgen et al., 2016; 
Grêt-Regamey et al., 2019; Hekkala & Roberge, 2018). Nevertheless, 
a number of technical types of model overlap in their ability to pro-
vide process-based representations (Schlüter, Müller, et al., 2019), as 
illustrated by the further examples of model applications relating to 
suggested high-level processes in Table 2.

The advantages of different modelling approaches can be 
combined through various forms of integrated modelling (Lippe 
et  al.,  2019). Of particular relevance may be hybrid modelling, 
which allows model complexity to be tailored to the level of detail 
necessary for each process or component (Parrott, 2011). This has 
been used, for example, in land and marine management models 
that include distinct descriptions of different system components 
(e.g. relatively simple Bayesian Belief Networks to simulate human 
decision-making within broader modelling frameworks; Romagnoni 
et al., 2015; Stelzenmüller et al., 2010; Sun & Müller, 2013). Hybrid 
modelling has also been proposed for ‘World-Earth’ models that 
embed process-based social simulation within an Earth system 
model framework (Donges et al., 2020). Even more feasible from 
a technical perspective is the combination of a series of single 
human and natural process models to explore the dynamics that 
emerge from their interaction (e.g. Ullah,  2013) or, to avoid un-
wieldy combinations of different models, a targeted approach that 
focuses on specific social–ecological interactions (e.g. Sarjoughian 
et al., 2015).

Encouragingly, models that have adopted some of these methods 
to simulate fundamental social–ecological processes have repeat-
edly generated emergent dynamics that differ substantially from 
those produced by correlative or single-sector models, including 
dynamics that produce potential crises related to climatic, environ-
mental and social change (Brown, Seo, et al., 2019; Bury et al., 2019; 
Lade et al., 2013; Synes et al., 2019; Ullah, 2013). Upscaling these 
approaches to make them operate over the large geographical ex-
tents relevant to major crises currently remains an acknowledged 
challenge, but one for which progress is being made (Elsawah 
et  al.,  2020; Robinson et  al.,  2018). Given that, the above prece-
dents suggest that modelling high-level processes is both possible 
and profitable, with scope for rapid knowledge gains to be made.

While models may well be capable of modelling the roles of 
high-level processes in social–ecological crises, they will undeni-
ably require substantial data inputs. In fact, data requirements have 
often proved an insurmountable barrier to process-based models 
of social–ecological systems even at relatively small spatial scales 
(Verburg et al., 2019). Focusing on a few key, transferrable processes 

limits data requirements to some extent, particularly where it is 
used in hybrid modelling that seeks to remove unnecessary detail. 
Furthermore, considerable advances have recently been made in 
data resolution and availability, with a number of datasets and repos-
itories capable of supporting modelling of this kind (see e.g. Elsawah 
et al., 2020; Magliocca et al., 2018; Willcock et al., 2018). An illustra-
tive selection of these datasets is provided in Table 2, as examples of 
valuable building blocks for a new programme of high-level process 
modelling across large geographical extents.

1.5 | The potential of new models

1.5.1 | Possible contributions

A number of avenues for social–ecological systems modelling are 
now open, and steps are already being taken along each of them. 
While it is not yet possible to be certain where these avenues will 
lead, positive progress is likely for our ability to simulate and un-
derstand social–ecological crises. The correlational modelling ap-
proaches that are currently best-placed to simulate large-scale 
changes are notably constrained in their ability to simulate the emer-
gence of unprecedented dynamics, and the potential for models to 
produce novel, unexpected results is the clearest advance that new 
forms of modelling can make.

Many of the major challenges that human societies now face are 
a product of local processes operating in a global context. Thanks to 
increasing computational and data resources, modelling these pro-
cesses and context is now technically feasible. The exploration of 
social–ecological process interactions across scales that this permits 
is another clear and achievable objective for new models (Elsawah 
et al., 2020; Lippe et al., 2019; Robinson et al., 2018).

Nevertheless, the construction of more detailed process-based 
models is of limited utility in itself. Such models can quickly become 
excessively complex, and are in any case unlikely to have greater 
predictive accuracy than far simpler models (Grimm & Berger, 2016; 
Salganik et  al.,  2020). To maximise their contribution, models must 
be designed to focus in on the processes that are most relevant to 
the issues being studied, and most representative of social–ecological 
systems at large scales. The identification of such processes is a sub-
stantial challenge that requires engagement from a range of perspec-
tives. Our suggested ‘high-level’ processes (Table 1) are examples only, 
inspired by similar and successful categories used in community ecol-
ogy (Vellend, 2010), and presented here with the sole aim of prompt-
ing discussion, testing and refinement. To the extent that modelling 
can contribute to these aims, it may meaningfully contribute to social– 
ecological research as a whole simply by supporting conceptual dis-
cussions. In linking research models to the concepts through which 
people experience social–ecological change, high-level processes may 
also be able to support greater social engagement and knowledge 
exchange (Holtz et al., 2015; Millington & Wainwright, 2017).

While developments in other disciplines suggest that high-
level and analogous approaches are useful, recently developed 
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TA B L E  2   Examples of models and data that cover key social–ecological processes. Single examples are chosen to represent feasibility of 
incorporating processes in models, and do not provide a summary of existing approaches (relevant reviews include Brown et al., 2017; Egli 
et al., 2019; Fisher et al., 2018; Groeneveld et al., 2017; Huber et al., 2018; Leroux et al., 2013; Maguire et al., 2015; Robinson et al., 2018; 
Urban, 2019)

Processes Models Data

Adaptation Social: Agent-based modelling of water usage 
decisions under environmental variability (Arnold 
et al., 2015)

Social: Mobile phone usage and social media data 
for assessing vulnerability and adaptation (Ford 
et al., 2016)

Ecological: Loci-based modelling of genomic 
adaptation of poplar tree species to environmental 
gradient at community-level (Fitzpatrick & 
Keller, 2015)

Ecological: Long-term tropical forest censuses from 
permanent plots around the world, incorporating 
environmental change and human disturbance 
(Anderson-Teixeira et al., 2015; Sist et al., 2015)

Social–ecological: Modelling of adaptive forest 
management informed by socio-economic and 
ecological conditions under climate change 
(Yousefpour et al., 2017)

Social–ecological: FAO global fisheries data and 
participatory methods for vulnerability/adaptation 
assessments (FAO, 2015, 2019)

Interaction Social: Agent-based modelling of technology uptake 
based on social interactions and individual attitudes 
(Rai & Robinson, 2015)

Social: Collections of large-scale social network 
data (e.g. Stanford Large Network Dataset 
Collection, (Leskovec & Krevl, 2014)

Ecological: Large-scale mechanistic modelling 
of trophic interactions in ecosystems (Bartlett 
et al., 2016)

Ecological: Open-access data collections on  
species interaction networks and food webs  
(e.g. GlobalWeb, 2019; IWDB, 2016)

Social–ecological: Agent-/individual-based modelling 
of interactive species dynamics and responsive, 
interactive land management decisions (Synes 
et al., 2019)

Social–ecological: Global data on land use and land 
cover based on social–ecological modelling of 
observational data (Li et al., 2017)

Dispersal/movement Social: System dynamics modelling of human migration 
under climate change, incorporating a range of 
socio-economic and environmental drivers (Naugle 
et al., 2018)

Social: Official government-sponsored collections 
of global migration data (Global Migration Data 
Portal, 2019)

Ecological: Mechanistic modelling of honeybee 
populations based on individual-, colony- and 
population-level processes (Becher et al., 2018)

Ecological: Databases of species traits such as the 
‘TRY’ Plant Trait Database including dispersal 
traits (Kattge et al., 2011)

Social–ecological: Agent-based modelling of hunter-
gatherer strategies and environmental resources/
prey species in spatially explicit environment  
(Janssen & Hill, 2014, 2016)

Social–ecological: Use of invasive species 
monitoring data to disentangle human-mediated 
and natural dispersal processes (Horvitz 
et al., 2017)

Demographic change Social: Parallelised agent-based modelling of human 
population dynamics based on key processes 
(Montañola-Sales et al., 2016)

Social: Global demographic databases (United 
Nations Statistics Division, 2019)

Ecological: Stochastic population modelling of 
emperor penguin responses to climate change 
(Jenouvrier et al., 2009)

Ecological: Bayesian modelling to extend species 
demography data coverage to under-studied 
species (Kindsvater et al., 2018)

Social–ecological: Agent-based modelling of 
demographic change in indigenous hunting 
communities and their prey species (Iwamura 
et al., 2014)

Social–ecological: Long-term data records covering 
changes in social and ecological communities 
as, e.g., road network develops in Amazon 
(Klarenberg et al., 2019)

Institutional & governance 
interventions

Social: Agent-based modelling of individual and 
institutional activities in land system (Holzhauer 
et al., 2019)

Global/regional databases of policies and impacts 
relating to, for example, environment or climate 
(New Climate Institute, 2019; OECD, 2019)

Ecological: Multi-model framework to identify 
pathways and policies to reverse biodiversity loss 
trends (Leclère et al., 2020)

Social–ecological: Economic-environmental modelling 
to explore effects of different policies on land use 
and biodiversity (Bryan et al., 2016), and network 
modelling of the effects of social institutions on 
ecological conditions, for example, of coral reefs 
(Barnes et al., 2019)
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social–ecological models and datasets suggest that they are fea-
sible (Table 2). If this approach is successfully developed and ap-
plied, it could have a number of other benefits. Most obviously, it 
could extend the ability of process-based models to simulate the 
emergence of breakdowns and crises (e.g. Brown, Seo, et al., 2019; 
Ullah,  2013) to other contexts and scales. Such simulation is 
strictly distinct from prediction (see below), but it can reveal sit-
uations and dynamics from which crises can emerge that might 
otherwise not be recognised, opening up potential opportunities 
for designing new interventions. Less tangible, but possibly more 
fundamental, is the scope for such models to allow exploration of 
the ways in which social–ecological systems diverge from antici-
pated behaviour; the nonlinearities, thresholds and regime shifts 
that characterise complex system dynamics (Filatova et al., 2016; 
Synes et  al.,  2019). In particular, the roles of social processes in 
prompting such events remain poorly understood, but amena-
ble to modelling of this kind (Barceló & Del Castillo, 2016; Lade 
et al., 2013; Ullah, 2013). Where these social processes go beyond 
historical precedents or available data, process-based modelling 
has the important final advantage of allowing fuller exploration 
of uncertainties (Gostoli & Silverman, 2020; Salganik et al., 2020).

1.5.2 | Impassable constraints

Whatever the reach of new forms of data and analysis, social–
ecological models cannot be parameterised to exactly represent 
reality. They can only ever be an approximate guide to system dy-
namics, and cannot be used to predict how systems will develop in 
the future because the systems in question—and especially crises in 
those systems—are inherently unpredictable (de Matos Fernandes 
& Keijzer, 2020; Oreskes et al., 1994). This limit not only highlights 
the importance of rigorous and transparent uncertainty analysis as a 
way of exploring the scope for unexpected developments (Gregr & 
Chan, 2015) but also highlights the need for a range of models and 
modelling approaches to be developed.

In fact, many theoretical and computational approaches may 
be equally valid or useful for simulating social–ecological crises. 
Ecological and, especially, social theories remain diverse, difficult 
to precisely encode algorithmically, and legitimately open to dif-
fering representations (Watts, 2017). Making assumptions explicit 
and investigating associated uncertainties is essential in this con-
text (Gregr & Chan, 2015). Modelling nevertheless remains, to a 
small but crucial extent, an imaginative, interpretative exercise that 
is hindered by methodological convergence (Feyerabend,  1993; 
Yusoff & Gabrys, 2011). Rigorous model evaluation, including for-
mal sensitivity and uncertainty analyses, benchmarking, reproduc-
ibility checks and open, transparent model dissemination are all 
important contributions to model utility (Batty & Torrens, 2005; 
Gregr & Chan, 2015; Oreskes et al., 1994), but perhaps their great-
est value is to underscore the difficult questions that models 
raise and undermine the easy answers they sometimes appear to 
provide.

2  | CONCLUSIONS

The need for models that can simulate the emergence of crises re-
lated to climate and environmental change, biodiversity loss and as-
sociated human processes is growing. This need coincides with rapid 
advances in computational and data resources that allow for new 
forms of modelling to be developed. We argue that the simulation of 
social–ecological dynamics as emergent from ‘high-level’ processes 
or similar conceptual frameworks has particular promise. These pro-
cesses should have broad thematic and geographical relevance, and 
the potential to be simulated in existing process-based models using 
efficient functional descriptions of social and ecological systems. 
The further development of this approach across large (continental-
global) geographical extents appears to be both technically feasible 
and scientifically worthwhile on the basis of recent precedents. 
While this would not represent a step towards illusory predictive 
accuracy, it would have a number of potential benefits. These in-
clude the generation of ‘out-of-sample’ results, of which crises are 
one important kind, and exploration of how they can arise from the 
actions and interactions of basic processes. The ability to explore a 
wide range of system dynamics is valuable from a research perspec-
tive and, in principle, for policy support, to the extent that it allows 
various conditions associated with crises to be identified. Such mod-
els can also act as a focus for theoretical and empirical development, 
prompting debate and suggesting new research questions including 
via direct societal engagement. Perhaps most fundamentally, new 
models are required to illuminate the inherent complexity of social– 
ecological systems, marking out uncertainties in our knowledge 
and weaknesses in our strategies before they emerge as real-world 
impacts.
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