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Abstract. Within the EU-funded project FastGrid a resistive superconducting fault current
limiter for DC-application is actually under development. To reduce substantially the amount
of deployed superconducting tape an increase of voltage per length in the limitation case is
needed. Moreover, the resistive transition (quench) should be fast and uniform. In the present
work, the thermal behavior of three different architectures of coated conductors are investigated
by means of transient simulations. The first architecture is composed by an additional Hastelloy
shunt layer, which is supposed to avoid overheating of the conductor during fault limitation.
The other architectures include layers of silver and copper as stabilizers. Our parameter study
including the geometries of the different layers and the inhomogeneity of the critical current
density of the superconducting tape shall lead to an optimized tape layout. First comparisons
with experiment indicate, that, with the first architecture, electric field strength up to 100 V/m
should be within reach.

1. Introduction
In the forthcoming years the goal of European energy policy is to provide a secure, sustainable
and competitive energy supply [1]. Electricity is a key point to this goal because it can be
generated from a variety of sources (including renewable sources). To ensure that electricity
supply is maintained, the European Union wants to hasten the integration of dozens of electrical
connections across the continent and establish a competitive, secure, transparent and completely
harmonized Europe-wide internal electrical energy market [2].

High voltage direct current transmission (HVDC) technology plays a great role on large
capacity transmission systems [3, 4]. Therefore, the protection for the HVDC transmission line
becomes particularly important, because the impact of DC faults is wider and damage is more
serious. One of the barriers for the development of HVDC systems is the lack of technologies
which enable fault protection [5–7].

Resistive superconducting fault current limiters (R-SFCL) have been proposed in order to
mitigate the effects of fault currents in DC grids and to improve the system stability during
fault conditions [7–11]. The FastGrid project was launched in 2017, aims to develop “low
cost” robust HTS conductors for HVDC SFCL [12, 13] and gathers 12 academic or industrial
partners: CNRS Grenoble (coordinator), CSIC/ICMAB, EPM, EPFL, IEE, KIT, Oxolutia,
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RSE, SuperGrid Institute, STU, TAU and THEVA. The effectiveness of the solutions will be
tested on a 50 kV – 1.5 kA demonstrator (designed as a scalable solution for a HV device) [14].

In this work we investigate the thermal performance of the HTS conductor design proposed
within the FastGrid project by comparing it with HTS tapes frequently described in the
literature. Our goal is, by means of numerical simulation, to determine the temperature
distribution T (x, y, t) after the fault period for each tape architecture and evaluate if such
distribution can lead to permanent damages on the tape. Critical current inhomogeneity has
been taken into account in this study. The simulation model is based on the finite difference
method (FDM), which is solved using the alternating direction implicit routine (ADI) [15–17].

2. HTS Coated Conductors
The architecture of HTS conductors is a result of the manufacturing process and the need
for electrical, thermal and mechanical stabilization. In general, it consists of stacked layers of
different materials. Figure 1 illustrates the three tapes designs considered in this manuscript
whereas table 1 lists the thickness values of the layers. The design Tape 01 is that one proposed
in the FastGrid project and is manufactured by THEVA Dünnschichttechnik GmbH. It uses a
REBCO tape with an additional soldered layer of Hastelloy R© which serves as shunt and increases
the thermal heat capacity of the tape. Such conductor is designed to withstand an electric field
higher that 130 V/m for a clearing time of 50 ms

Figure 1. Tape designs considered for comparisons in this work. All the designs are
manufactured by THEVA Dünnschichttechnik GmbH.

Table 1. Thickness of each layer for all considered tape designs.

Design

Tape 01 Tape 02 Tape 03

Length 34 cm 34 cm 34 cm

Tin 10 µm -x- -x-

Nickel 1.0 µm -x- -x-

Hastelloy Shunt 500 µm -x- -x-

Silver 2.0 µm 2.0 µm 2.0 µm

REBCO 3.1 µm 3.1 µm 3.1 µm

MgO 3.5 µm 3.5 µm 3.5 µm

Hastelloy Substrate 100 µm 100 µm 100 µm

Copper -x- -x- 20 µm
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Designs Tape 02 and Tape 03 corresponds to the products TPL1100 and TPL4100 series,
likewise manufactured by THEVA. These both designs are considered for comparisons aiming
to determine the better tape architecture to support thermal stresses.

2.1. Critical Current Inhomogeneity
Since one deals with thermal performance in this work, it is meaningful to consider the variation
of critical current along the length of the tape Ic(x), i.e., the critical current inhomogeneity. We
have imported in the simulation algorithm measured data provided by THEVA. Measurements
were carried out using the TapeStar inductive measurement technique [18]. Precisely the same
tape is later used for experiments (see section 4.1).

Figure 2. Data of the critical current distribution along the length provided by THEVA.

The critical current distribution shown in figure 2 was considered for all the three designs
(average Ic,av equals to 780 A). In such a way we can obtain a meaningful comparison of the
thermal behavior of the different stabilized tapes. The Ic values shown in figure 2 were measured
at 77 K. In the simulations, each point follows a linear decrease with the temperature:

Ic(x, T ) = Ic(x, 77)

[
Tc − T

Tc − 77

]
(1)

From figure 2, it is to expect that points near to ` = 8.5 cm and ` = 22.5 cm should obtain
highest local temperature values, since at these positions the lowest Ic values are found.

3. Simulation Model
For the simulations we assume that the HTS conductors are in series with a R-L load and a DC
voltage source, as shown in figure 3. A DC electrical current i begins to flow in the system when
the switch S is closed. The magnitude of the electrical current is defined by the value of the
R-L load. Several simulations were performed (considering an applied voltage of 51 V = 34 cm
× 1.5 V/cm) to find out the dependence of the maximal temperature with the value of the fault
current i.

Figure 3. Electrical circuit for the simulation of the thermal behavior.
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In order to calculate the temperature T (x, y, t) of the HTS tapes, the heat conduction
equation must be taken into account. The y-direction is perpendicular to the tape surface.
The temperature along the width of the tape is assumed to be constant. This is justified since
in all cases the thickness of the tape is small compared to its width. The simulations are thus
made in two dimensions and the Fourier-equation for heat conduction has the form

dc
∂T (x, y, t)

∂t
= k

[
∂2T (x, y, t)

∂x2
+
∂2T (x, y, t)

∂y2

]
+ ġ (2)

where d, c, k, and ġ denote the specific mass, the specific heat, the thermal conductivity,
and the internal heat generation (per unit volume) for each, respectively. As a boundary
condition for equation 2, we have assumed a convective heat transfer between the tapes and the
cooling bath (LN2 at 77 K). The heat transfer coefficient h(∆T ) is not constant and depends
on the temperature difference between the surface of the tape and LN2. For the forthcoming
simulations, the h(∆T ) curve presented in [19,20] have been implemented.

The internal heat generation ġ is defined, for each layer, as:

ġ = ρ× J2 (3)

being ρ the resistivity and J the current density. For the HTS layer, the resistance depends on
the so-called E-J curve [21, 22] and has been also implemented in the current work. Because of
the high nonlinear resistivity of the superconducting material the aforementioned boundary and
initial value problem becomes highly nonlinear and its coupling to the differential equation of
the electrical circuit precludes a purely analytical solution.

The development of a numerical method for transient thermal analysis of HTS tapes for
SFCL have been widely developed in the literature [23]. The use of the FDM based on the ADI
routine was introduced in [15–17]. Basically, it consists on dividing each time step ∆t of the
simulation process in two parts: in the first half-timestep, equation 2 is solved implicitly in the
x-direction, whereas the y-direction is solved explicitly. In the second half-timestep, the process
is inverse. Hence, for the first half-timestep, the discretization of equation 2 is:

dc
T
t+∆t

2
i,j − T t

i,j

∆t/2
= k

T t+∆t
2

i,j−1 − 2T
t+∆t

2
i,j + T

t+∆t
2

i,j+1

∆x2
+
T t
i−1,j − 2T t

i,j + T t
i+i,j

∆y2

+ ġ (4)

For the second half-timestep the process is inverse, i.e., the y-direction is solved implicitly,
whereas the x-direction is solved explicitly:

dc
T t+1
i,j − T

t+∆t
2

i,j

∆t/2
= k

T t+∆t
2

i,j−1 − 2T
t+∆t

2
i,j + T

t+∆t
2

i,j+1

∆x2
+
T t+1
i−1,j − 2T t+1

i,j + T t+1
i+i,j

∆y2

+ ġ (5)

Further details about the simulation routine, as well as its effectiveness and stability for
simulations of SFCL devices are presented in [24–26].

4. Results
Figure 4 shows the simulated results considering that the DC voltage source is set at 51 V,
which corresponds to 150 V/m (tape total length is ` = 34 cm). The R-L load was configured
to produce a prospective fault current of about 2.5 kA.

As shown in figure 4a, the limitation is higher for Tape 02 and Tape 03. Because of the
additional layers (Hastelloy shunt, nickel and tin) the equivalent resistance of Tape 01 is at the
lowest (figure 4c), therefore, leads to a lower limitation factor. The voltage drop over the tape
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Figure 4. Comparisons of the simulated results for each tape design. (a) Limited current in
relation to the prospective fault current, (b) voltage drop over the tape in comparison with the
DC voltage source and (c) resistance development during the fault period.

Figure 5. (a) Critical current inhomogeneity Ic(x, 77) and temperature along the length at the
end of the fault period for (b) Tape 01, (c) Tape 02 and (d) Tape 03.

terminals is shown in figure 4b and is at highest for Tape 02, since this one presents the highest
resistance value.

For sake of clarity we have plotted the critical current inhomogeneity considered in this work
in figure 5a again, to show the corresponding position of hots-pots. It allows us to recognize
that, for all considered tape designs, the highest temperature values occurs invariably at the
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points where Ic(x, T ) is the lowest. As expected, near ` = 8.5 cm and ` = 22.5 cm, are the
hot-spot and at those points we observe higher temperature values, regardless of the tape design.

The tape design, however, is very important regarding the magnitude of the achieved
temperature value. Such values occur at the defect point, near ` = 22.5 cm. It is clear that, at
the end of the fault period, the temperature values of Tape 01 (figure 5b) are at the lowest in
comparison with those show by Tape 02 and Tape 03 (figures 5c and 5d respectively). Because
of the additional layers (i.e., hastelloy shunt, nickel and tin) the heat capacity of Tape 01
drastically increases and consequently slows down the heating during the fault period. Based
on the same argument, we can state that Tape 02 shows highest temperature values because of
its low thermal capacity.

An interesting feature to be observed in the results presented in figure 5 is the temperature
gradient along the thickness (figure 5b) which occurs in Tape 01. That is a consequence of
the thick hastelloy shunt layer soldered on the top of the conductor. Since Hastelloy has a low
thermal conductivity as well as an elevated specific heat, the heat generated at the bottom part
of the conductor can be barely transferred to the layers at the upper section. Such temperature
gradient does not develop in case of thinner tapes, how is the case of Tape 02 and Tape 03.
Both develop nearly no temperature gradient along the thickness.

Several simulations were performed in order to investigate the thermal response of each tape
architecture. Graphs shown in figures 4 and 5 presents only results of a same prospective fault
current (Ifault = 2.5 kA). Nevertheless, figure 6 shows the maximum temperatures obtained from
the simulations for different values of prospective fault current ranging from 0.5 kA to 3.5 kA
(i.e. from 0.64 · Ic,av to 4.5 · Ic,av). In this plot we can identify that the highest temperature
values occur between 1.0 · Ic,av to 1.5 · Ic,av. In [14] such range was named as hot-spot regime.

Figure 6. Calculated maximum temperature values at the end of the fault period (50 ms)
versus applied prospective fault current (in relation to Ic,av = 780 A).

In the hot-spot regime the quench begins earlier in the defect position and if the generated
heat is not removed (or propagated) effectively, the temperature at these positions will reach
huge values, which may lead to the complete destruction of the conductor. That is exactly what
happens for the designs Tape 02 and Tape 03 : the heat capacity in these tapes architecture is
to small and there is a large amount of heat generated in the hot-spots. Since the produced heat
is neither removed neither propagated efficaciously, one observes very high temperature values
in this range of prospective fault current (1.0 · Ic,av to 1.5 · Ic,av). It should be mentioned, that
in the real life application, all values of prospective currents may occur.
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In the case of design Tape 01, temperature values are lower since this tape has a higher
thermal heat capacity. Thus, we can conclude that the additional layers soldered on the upper
side enhance the heat propagation along the length of the tape.

For all observed cases in figure 6, the weak zone plays no role if the fault currents are high
compared to Ic,av since the full length quenches.

4.1. Comparison with Experiments
The simulation results shown in the last section indicate the design Tape 01 is the most
suitable to withstand DC fault currents under the 150 V/m condition. In order to validate
the simulations, we have performed fault current experiments with several samples provided by
THEVA (see figure 7a).

Figure 7. (a) Sample of the HTS conductor (design Tape 01 ) manufactured by THEVA for
the FastGrid Project, and (b) experimental setup for fault current experiments at KIT.

The samples were tested at the Institute for Technical Physics (ITEP) of the Karlsruhe
Institute of Technology (KIT), as shown in figure 7b. Although the goal is the development of
an optimal conductor for DC systems, the experiments tests were carried out in AC regime for
technical reasons. This is not a problem, since our target was to validate the simulation model.

Two different tests were carried out: in the first fault current limitation test (duration of 50
ms) a AC voltage of 28.9 V was applied to a sample of 34 cm (which corresponds to 85 V/m).
In the second test (duration of 20 ms), a AC voltage of 51 V (150 V/m) was applied to the same
sample. The critical current inhomogeneity for the tested tape is that one shown in figure 2.

Figure 8 presents a comparison of experiments and simulations for precisely the sample for
which the inhomogeneity is depicted in figure 2. We show the results for both applied voltages.
As can be seen, a very good agreement between the results was achieved. Differences between
simulations and experiments are below 3 %. Therefore, we can state the developed simulation
model is suitable to evaluate the thermal behavior of HTS conductors for fault current limitation.

5. Conclusions
In this work we have presented a simulation model based on the FDM-ADI solution developed
to simulate the thermal behavior of HTS conductors for fault current limitation. Since a good
agreement between experiments and numerical simulation has been found, it is fair to assume
that the simulation model can be considered reliable and credible to be used in this kind of
study, such us to optimize the architecture of HTS for an application case.

According to the results given by the simulation, we can conclude that the design Tape 01
is more indicated to withstand DC voltages of 150 V/m, since its thermal behavior can be
considered more effective when compared to the designs of Tape 02 and Tape 03.
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Figure 8. Comparison between experiments and simulations for (a) 85 V/m and (b) 150 V/m.

By means of the simulation model, we could observe that, although Tape 02 and Tape 03
yield to a better limitation factor, such designs may fail if the fault current lies between 1.0 ·Ic,av
to 1.5 · Ic,av. In this range, the observed temperature values would certainly lead to a complete
destruction of the HTS conductor.

It is important, however, to mention that the design Tape 01 contains soldering between the
ordinary tape architecture and the additional layers. It means, if the additional shunt layers are
not properly soldered to the tape, high temperature values will be observed in the defect solder
point what may also lead to the destruction of the tape. In fact, this has been already observed
in some experiments carried out at KIT/ITEP. At present, a good soldering process is under
investigation, in order to guarantee an optimal limitation factor and thermal properties of the
proposed tape design.
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