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Abstract

Data Mining — known as the process of extracting knowledge from massive data sets —
leads to phenomenal impacts on our society, and now affects nearly every aspect of our
lives: from the layout in our local grocery store, to the ads and product recommendations
we receive, the availability of treatments for common diseases, the prevention of crime, or
the efficiency of industrial production processes.

However, Data Mining remains difficult when (1) data is high-dimensional, i.e., has
many attributes, and when (2) data comes as a stream. Extracting knowledge from high-
dimensional data streams is impractical because one must cope with two orthogonal sets of
challenges. On the one hand, the effects of the so-called curse of dimensionality bog down
the performance of statistical methods and yield to increasingly complex Data Mining
problems. On the other hand, the statistical properties of data streams may evolve in
unexpected ways, a phenomenon known in the community as concept drift. Thus, one
needs to update their knowledge about data over time, i.e., to monitor the stream.

While previous work addresses high-dimensional data sets and data streams to some
extent, the intersection of both has received much less attention. Nevertheless, extracting
knowledge in this setting is advantageous for many industrial applications: identifying
patterns from high-dimensional data streams in real-time may lead to larger production
volumes, or reduce operational costs. The goal of this dissertation is to bridge this gap.

We first focus on dependency estimation, a fundamental task of Data Mining. Typically,
one estimates dependency by quantifying the strength of statistical relationships. We
identify the requirements for dependency estimation in high-dimensional data streams
and propose a new estimation framework, Monte Carlo Dependency Estimation (MCDE),
that fulfils them all. We show that MCDE leads to efficient dependency monitoring,.

Then, we generalise the task of monitoring by introducing the Scaling Multi-Armed
Bandit (S-MAB) algorithms, extending the Multi-Armed Bandit (MAB) model. We show
that our algorithms can efficiently monitor statistics by leveraging user-specific criteria.

Finally, we describe applications of our contributions to Knowledge Discovery. We
propose an algorithm, Streaming Greedy Maximum Random Deviation (SGMRD), which
exploits our new methods to extract patterns, e.g., outliers, in high-dimensional data
streams. Also, we present a new approach, that we name kj-Nearest Neighbours (kj-NN),
to detect outlying documents within massive text corpora.

We support our algorithmic contributions with theoretical guarantees, as well as ex-
tensive experiments against both synthetic and real-world data. We demonstrate the
benefits of our methods against real-world use cases. Overall, this dissertation establishes
fundamental tools for Knowledge Discovery in high-dimensional data streams, which help
with many applications in the industry, e.g., anomaly detection, or predictive maintenance.

To facilitate the application of our results and future research, we publicly release our
implementations, experiments, and benchmark data via open-source platforms.
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Zusammenfassung

Die Forschung im Bereich Data-Mining — gemeinhin bekannt als der Prozess der Extrakti-
on von Wissen aus riesigen Datensédtzen — hat phanomenale Auswirkungen auf unsere
Gesellschaft. Data-Mining beeinflusst fast alle Aspekte unseres Lebens, sei es die Produkt-
anordnung im ortlichen Lebensmittelgeschaft, die uns angezeigten Kaufempfehlungen,
das Finden passender Therapien fiir neue Krankheiten, die Verbrechenspravention oder
die Effizienz industrieller Produktionsprozesse.

Data-Mining bleibt jedoch schwierig, insbesondere wenn (1) die Daten hochdimensio-
nal sind, also viele Attribute haben, und wenn (2) die Daten kontinuierlich eintreffen.
Daten, die kontinuierlich eintreffen, werden als Datenstrom bezeichnet. Das Extrahie-
ren von Wissen aus hochdimensionalen Datenstromen ist kompliziert, weil man zwei
orthogonale Herausforderungen bewiltigen muss: Einerseits verringert der sogenannte
Fluch der Dimensionalitdt die Leistungsfahigkeit der statistischen Methoden, was zu immer
komplexeren Data-Mining-Aufgaben fithrt. Andererseits konnen sich die statistischen
Eigenschaften von Datenstromen auf unberechenbare Weise dndern. Dieses Phanomen ist
in der Fachwelt als Konzeptdrift bekannt. Daher muss unser Wissen iiber Daten im Laufe
der Zeit aktualisiert werden, was auch bedeutet, den Datenstrom standig zu tiberwachen.

Wihrend sich die bestehende Literatur bis zu einem gewissen Grad mit hochdimen-
sionalen Datensatzen und Datenstromen auseinandersetzt, ist die Schnittmenge der hier
beschriebenen Herausforderungen in der Forschung unterreprasentiert. Dennoch ist die
Extraktion von Wissen in diesem Umfeld fiir viele industrielle Anwendungen wichtig:
Die Echtzeit-Identifizierung von Mustern aus hochdimensionalen Datenstromen kann die
Betriebskosten senken oder das Produktionsvolumen erhéhen. Das Ziel dieser Dissertation
ist es daher, diese Licke zu schlieflen.

Zunéachst beschaftigen wir uns mit Verfahren zur Schatzung von Abhangigkeit, einer
grundlegenden Aufgabe des Data-Mining. Typischerweise schiatzt man dabei die Abhan-
gigkeit durch Quantifizierung der Starke der statistischen Beziehung zwischen Attributen.
Diese Schatzung basiert auf den verfiigbaren Beobachtungen. In dieser Arbeit identifi-
zieren wir die wiinschenswerten Merkmale fiir solche Verfahren in hochdimensionalen
Datenstromen. Anschlieend schlagen wir ein neues Verfahren mit dem Namen Monte-
Carlo-Abhéngigkeitsschiatzung (Monte Carlo Dependency Estimation (MCDE)) vor, das all
diese Merkmale erfiillt. Wir zeigen, dass MCDE eine effiziente Uberwachung der Abhén-
gigkeiten ermdglicht.

Im néchsten Schritt verallgemeinern wir die Aufgabe der Uberwachung von Statistiken.
Wir fithren die “Skalierenden Mehrarmigen Banditen”-Algorithmen (Scaling Multi-Armed
Bandit (S-MAB)) als Erweiterung des sogenannten “Mehrarmigen Banditen”-Modell (Multi-
Armed Bandit (MAB)) ein. Hierbei zeigen wir, dass unsere Algorithmen viele Statistiken
effizient iberwachen kénnen, indem sie benutzerspezifische Kriterien beriicksichtigen.



Zusammenfassung

Schlief3lich beschreiben wir Anwendungen unserer Beitrage zur Entdeckung von Wissen.
Wir schlagen einen Algorithmus mit dem Namen Streaming Greedy Maximum Random
Deviation (SGMRD) vor, der unsere neu entwickelten Methoden zur Erleichterung der Un-
terraumsuche in hochdimensionalen Datenstromen nutzt. Auflerdem hilft SGMRD, Muster,
wie zum Beispiel Ausreif3er, zu extrahieren. Abschlieflend stellen wir eine neue Methode
namens kj-Nachste Nachbarn (kj-Nearest Neighbours (kj-NN)) vor, um ungewdhnliche
Dokumente innerhalb grofier Textkorpora zu erkennen.

Fiir die von uns eingefithrten Algorithmen entwickeln wir zudem theoretische Ga-
rantien. Zusétzlich fihren wir umfangreiche Experimente mit synthetischen und realen
Daten durch. Wir demonstrieren die Vorteile unserer Methoden mit Hilfe von realer
Anwendungsfille. Insgesamt werden in dieser Arbeit grundlegende Werkzeuge fiir die
Wissensentdeckung in hochdimensionalen Datenstromen eingefiihrt, die bei einem breiten
Spektrum von Anwendungen in der Industrie helfen, um beispielsweise Anomalien zu
erkennen oder vorausschauender zu warten.

Um die Anwendung unserer Methoden und zukiinftige Forschung zu erleichtern, ver-
offentlichen wir unsere Implementierungen, Experimente und Benchmark-Daten tiber
Open-Source-Plattformen.
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1. Overview

1.1. High-Dimensional Data Stream Mining

1.1.1. Knowledge Discovery from Data

Data Mining, also referred to as Knowledge Discovery from Data (KDD), is known in the
community as the process of extracting useful patterns from massive data repositories,
such as large databases, data warehouses, or data streams [HKP11]. The KDD process
usually serves as a reference for the required steps of any data analysis task and draws
the plan of most textbooks in the field [MR10; HKP11; Kan19; Agg15]. In Figure 1.1, we
represent this process, which consists of seven steps, with multiple feedback loops:

Data Cleaning: Removing noise and inconsistency in the data.

Data Integration: Combining multiple data sources into a Data Warehouse.

Data Selection: Selecting the observations/attributes relevant to the task at hand.

Data Transformation: Transforming the data into a format adequate for further

analysis (e.g., deriving new features and aggregates from the existing attributes).

5. Data Mining: Using specific algorithms to extract patterns from data. Examples of
potentially interesting patterns are groups of frequent items, clusters or outliers.

6. Pattern Evaluation: Filtering the patterns found in the previous step by identifying
the most valuable ones for a given task, e.g., based on a set of quality criteria.

7. Knowledge Representation: Representing the patterns via representation and

visualisation methods to make them interpretable for the users.

Ll o A

The KDD process typically is treated as a cyclic pipeline, in which the knowledge gained
over each iteration helps to improve the execution of each step.

6,7 .
5 —
Knowledge
4 —ml
- — Patterns
/
Transformed Data
— Task-Relevant Data
Data Warehouse I

Data Sources <

Figure 1.1.: Knowledge Discovery from Data (KDD), according to [HKP11].



1. Overview

High Data

Dimensionality Streams

Figure 1.2.: A gap in the Data Mining research landscape.

As we can see, Data Mining also refers to the core step of this process (Step 5). The
literature uses the term Data Mining interchangeably with KDD, perhaps for conciseness
[HKP11]. In turn, the community usually describes Data Mining as a discipline at the
frontier of multiple fields: Database Management, Artificial Intelligence, Machine Learning,
Pattern Recognition, Data Visualisation. In this dissertation, we refer to Data Mining
or Knowledge Discovery as the whole process and leave the debate on the semantic
differences w.r.t. Machine Learning, Data Science, etc., to the literature [TSK19; Fri97].

Researchers have examined every step of the process, and a wide range of methods is
now available to extract patterns from data. However, Data Mining remains challenging
under certain circumstances. In particular, when (1) the data is high-dimensional, i.e.,
it has many attributes, and when (2) the data comes as a stream. These two problems
have raised the interest of the research community for years [ZSK12; Agg13; Ram+17;
Gam12]. While the literature separately addressed them to some extent, the intersection
of both has received less attention. For example, recent clustering [Sil+13; Gam10; ATS14;
WLH12] or prediction [TTL11; Wan+17; ZSK12; Ass+12; SA16; Che+17] algorithms tend
to tackle at most one of those aspects: either high-dimensionality restricted to static
data, or the streaming scenario, limited to few variables. The difficulty is that both the
high-dimensionality and the streaming setting come with distinct sets of challenges.

Data Mining at the intersection of both problems remains mostly unaddressed [SR18],
i.e., there is a gap in the current research landscape (Figure 1.2). While one option is
to extend or invent specific methods for high-dimensional data streams, as in [ZGW08;
Nto+12], a perhaps more general — but not less effective — contribution is to develop
fundamental tools for Knowledge Discovery in this particularly challenging setting.

This observation forms the starting point of our dissertation. We bridge this gap by
proposing algorithms to address both sets of challenges. We start with a fundamental task:
dependency estimation. We show that, combined with efficient monitoring techniques,
our algorithms support further Knowledge Discovery in high-dimensional data streams.

In the remaining of this chapter, we detail the challenges associated with high-
dimensionality and data streams. Then, we show that the task of dependency estimation
is critical to most Data Mining applications and present our running use case: the Bioliq
power plant. Finally, we detail our contributions and the outline of this dissertation.



1.1. High-Dimensional Data Stream Mining
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Figure 1.3.: [llustration of the effects of the curse of dimensionality.

1.1.2. Challenges of High-Dimensionality

When the data is high-dimensional, several effects, summarised as the curse of dimension-
ality [Bel57], bog down the performance of traditional statistical approaches [Bey+99].

A linear increase in the number of dimensions in the euclidean space leads to an
exponential increase in volume. The space becomes extremely sparse, and the distances
between each pair of points converge to the same value. This effect is known as distance
concentration. [Bey+99] showed that, under broad conditions, the probability that the
minimum P! and the maximum distance Dy, differ by a factor smaller than 1 + €
converges to 1 as the number of dimensions n increases, i.e.,

max — min

lim Pr [Z)" <(1+e)-D" ] =1, Ve>0. (1.1)

Figure 1.3(a) illustrates this via simulation. We report the maximum, average and
minimum euclidean pairwise normalised distances within 100 i.i.d. observations in U[0, 1].
We average the results over 1000 independent trials; The coloured areas show the standard
deviation. As we can see, the distances converge as n increases. Thus, in high-dimensional
spaces, observations tend to be equally far from each other. The performance of most Data
Mining algorithms, which rely on local neighbourhoods, drastically decreases.

A common workaround consists in restricting the analysis to small sets of attributes
(subspaces) of interest, e.g., via dimensionality reduction methods. However, dimensionality
reduction also is challenging: the number of pairs for a number d of attributes is w for
symmetric measures (Figure 1.3(b)), while the number of subspaces is 2" — 1 (Figure 1.3(c)).
As a result, they grow quadratically/exponentially with n, so that, even for a moderate
amount of attributes, one cannot afford to investigate each attribute pair or subspace.

For example, with 20 attributes, the number of subspaces is already more than one
million (Figure 1.3(c)). [Agg13] famously compared the task of finding a pattern (e.g., an
outlier) in high-dimensional spaces to that of searching for a needle in a haystack, while
the haystack is one from an exponential number of haystacks. Subspace search methods,
such as [Ngu+13; NMB13; KMB12; TB19], efficiently solve this problem to some extent.

We refer to [HTF09] for further illustrations of the effect of the curse of dimensionality
and to [ZSK12] for a discussion centred on outlier detection.
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T=1 T=2 T=3 T ={1,2,3}

Figure 1.4.: Concept drift — Patterns are only visible in their local context.

1.1.3. Challenges of Data Streams

In the real world, data often is a stream, i.e., data is collected online and may evolve in
unforeseeable ways. In this setting, static approaches are ineffective [Gam12] because of
changes in the data generation, characterised by a phenomenon known as concept drift.

Thus, patterns are meaningful only in the right time context. For example, in Figure 1.4,
an observed outlier at time T = 1 might not be relevant any more at time 7T = 2 and
vice-versa. Next, the scale of this time context also is unknown. In broader time contexts,
e.g., T ={1, 2,3}, the outliers may not be visible as such.

Data streams are subject to various types of concept drifts [BGE15], which can vary in
speed and intensity and may also have seasonal components. The streaming nature of the
data constrains system design in several ways, laid out by [DHO03] as follows:

+ Efficiency (C1): The system must spend a short constant time and a constant
amount of memory to process each incoming record.

« Single Scan (C2): The system may perform at most one scan over the data since
access to past observations is often unavailable or impractical.

« Adaptation (C3): Whenever the data distribution changes over time, the system
must adapt, e.g., by forgetting outdated information.

« Anytime (C4): The system must be available at any point in time, with an out-
put ideally equivalent (or nearly identical) to the one of a non-streaming system,
operating without the streaming constraints.

The streaming scenario is particularly challenging because one needs to monitor the evol-
ution of data. Data Mining algorithms must integrate an adequate forgetting mechanism
to discard obsolete information and monitor the stream.

Furthermore, streams often consist of observations with various types, e.g., numer-
ical, ordinal, or categorical. Such data sources are known as Heterogeneous Data Streams
[YZ06]. [Dit+15] identified mining from heterogeneous data as one of the most challenging
problems of Data Mining. Thus, heterogeneity adds up to the list of constraints above:

+ Heterogeneity (C5): The system must handle not only numerical types but ideally
all data types such as strings, categories, ordinal values.

The main challenge is to provide Data Mining techniques that can cope both with the
streaming constraints and high-dimensionality — our goal in this dissertation.
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1.1.4. The Central Role of Estimating Dependency

Dependency estimation is a fundamental technique in Data Mining [CHY96] and consists
of quantifying the strength of the statistical relationship between attributes, based on the
available observations. It helps to find the relevant variables for the task at hand, which
leads to a better understanding of data and improves both the runtime and the outcomes
of downstream mining tasks, e.g., classification, outlier detection, or clustering.

To this end, dependency estimators such as the Pearson correlation coefficient, or mu-
tual information [Sha48] as a non-linear counterpart, are perhaps the most well-known
examples. Dependency estimation techniques are a building block of many Data Mining
approaches, and play a role at every step of the process (see Figure 1.1), for example:

« Exploratory Data Mining (EDM) [DJ03; Ass+07; Tat+12] is fundamental for Data
Cleaning and Data Integration. EDM reveals structures in the data, e.g., arte-
facts and inconsistencies that one should clean, or relevant attributes to integrate
before subsequent analysis. Dependency estimators [PHL04; ZS02; MNP10] are a
characteristic tool of EDM to discover such structures.

« Filtering out the attributes irrelevant for the task at hand is key to deal with high-
dimensionality. Feature Selection [GE03] methods are critical for Data Selection
and heavily rely on dependency estimators [PLD05; HH03; BHS15; Liu+09].

+ Data Transformation, also known as Feature Engineering, consists in transforming
the data into an adequate format, and possibly enhancing the original data with
additional features. Dependency estimates can be used as feature to improve the
results of downstream analysis [ZS02; Tor03; YH09; Vol+19a].

+ Numerous Data Mining algorithms, e.g., clustering [Ngu+13; NMB13] or outlier
detection [KMB12; TB19] algorithms, intrinsically rely on dependency estimation.

« Finally, dependency estimation also helps for Pattern Evaluation and Knowledge
Representation. For example, [Geb+14; Geb+18; Vol+19b] leverage mutual inform-
ation to evaluate and represent rules learned from data.

Also, dependency estimation is essential in high-dimensional data streams, because most
tasks are unsupervised, i.e., the nature of objects (e.g., inlier/outlier) may be unknown or
revealed only with some latency [Dit+15]. Such tasks typically boil down to discovering
structures in data, which in turns often relies on dependency estimation.

However, there are - to our knowledge — no dependency estimation technique suitable
for high-dimensional data streams. The existing methods are impractical, because they
either are inefficient or restricted to the bivariate case.

Next, there exists no efficient solution to maintain an overview of statistics (e.g., de-
pendency estimates) concerning numerous subspaces. One often has no choice but to
recompute the measures of interest periodically, which can be very expensive. While there
exist a few monitoring techniques [ZS02; BG07], they can either (1) only monitor a single
statistic or (2) only support a specific estimator, and do not generalise beyond.

Data Mining algorithms currently are unable to leverage dependency estimation in high-
dimensional data streams. Therefore, developing new methods for dependency estimation
and monitoring in this setting is much needed.
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Figure 1.5.: Schematics of the Bioliq fast pyrolysis and monitoring example.

1.1.5. The Bioliq® Power Plant: A Real-World Use Case

Throughout this dissertation, we illustrate our results against a real-world use case: the
Bioliq power plant. In a nutshell, the goal of the Biomass-to-Liquid (Bioliq) project is to
develop the process chain for producing fuels from biomass at an industrial scale. The
Bioliq plant provides real-world data that we use to motivate and validate our research.

We focus in particular on the first part of the Bioliq process: the fast pyrolysis, which
takes place in the ‘Bioliq I pilot plant in the surroundings of Karlsruhe [Pfi+16]. We show
in Figure 1.5 a simplified representation of the process. The following example illustrates
the importance of monitoring statistics, such as dependency estimates, at Bioliq:

Example 1.1 (Monitoring at Bioliq). Let us observe a 24-hours measurement period of two
sensors at Bioliq: T is the temperature in the reactor, and F is the filling level of the flue gas
cyclone connected to its output. We report the Mutual Information (MI) between T and F at
any time over the last 15 minutes. In the beginning, the reactor heats up to its operational
temperature. The material introduced leads to the exhaustion of flue gas, stored temporarily
in the cyclone for further processing. The MI between the two streams suddenly drops from
2.5 bits to 0 at 7:45. The cyclone does not seem to operate as it should, i.e., as in the later
timespan between 12:00 and 20:00. The data indicates an interruption in production. Such
interruptions can become very costly if unnoticed. Thus, the careful monitoring of plant
elements is essential, as drifting dependencies might indicate abnormal events [Has11].
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1.2. Contributions

The goal of this dissertation is to address the challenges of Data Mining w.r.t. high-
dimensionality and streaming data. To this end, we first focus on fundamental problems
of Data Mining: estimating dependency and monitoring. Then, we show how our new
methods help to address Knowledge Discovery in high-dimensional data streams. We
organise our contributions around the three following research questions:

« Q1 (Estimating Dependency): The increasing number of dimensions and obser-
vations challenge dependency estimation. How to estimate dependency in high-
dimensional data streams efficiently and effectively?

« Q2 (Monitoring): By nature, data streams are infinite and may evolve, so the
relationship between variables might change. How can we keep track of the evolution
of statistics (e.g., dependency estimates) in streams with high-dimensionality?

« Q3 (Knowledge Discovery): We see the answer to Q1 and Q2 as fundamental to
extract knowledge from high-dimensional streams. Thus, we ask: how to leverage
our contributions to mine patterns (e.g., anomalies) in this setting?

To deal with Q1, we propose a list of desirable features an estimator must ideally
fulfil for high-dimensional data streams. Then, we introduce Monte Carlo Dependency
Estimation (MCDE), a framework that quantifies multivariate dependency as the average
statistical discrepancy between marginal and conditional distributions, via Monte Carlo
(MC) simulations. MCDE handles heterogeneity by leveraging three statistical tests: the
Mann-Withney U, the Kolmogorov-Smirnov and the Chi-Squared test. We determine a
lower bound for the quality of our estimates, which only depends on the number of MC
simulations. Such bound allows users to trade estimation accuracy for a computational
advantage. We demonstrate that MCDE goes beyond the current state of the art regarding
dependency estimation by meeting all the features defined previously. Finally, we show
against our real-word use case (Bioliq) that MCDE can discover useful patterns in high-
dimensional data streams. We recently published those results in [FB19; Fou+20a].

Concerning Q2, we propose to formulate the problem of monitoring statistics in high-
dimensional data streams as a Multi-Armed Bandit (MAB) problem. We find that our setting
requires to extend the existing models, and call our extension the Scaling Multi-Armed
Bandit (S-MAB). We propose a new algorithm based on Thompson Sampling [Tho33] (TS),
with strong theoretical guarantees and excellent empirical performance. Furthermore,
we combine our algorithm with Adaptive Windowing [BG07] (ADWIN), a state-of-the-
art change detector, to deal with non-static environments. We illustrate the benefits of
our contribution using synthetic data, as well as data from our real-world use case. We
published our findings in [FKB19].

Finally, we address O3 by exploiting synergies between our previous contributions.
We show that, by combining the ideas behind MCDE and S-MAB, we can facilitate the
search for subspaces in data streams. We introduce a new algorithm, Streaming Greedy
Maximum Random Deviation (SGMRD), and show that SGMRD leads to state-of-the-art
performance for Knowledge Discovery tasks, such as outlier detection. Then, we propose
a new method, kj-Nearest Neighbours (kj-NN), to detect outlying documents within large
text corpora. Those contributions are featured here [Fou+20b; FKB20].
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1.3. Outline

We structure the rest of this dissertation as follows:
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Chapter 2 is a joint introduction to our contributions w.r.t. Q1, Q2 and Q3. We
introduce a set of desirable features for dependency estimators in high-dimensional
data streams and formulate the problem of monitoring in high-dimensional data
streams as a Multi-Armed Bandit (MAB) problem. Then, we discuss our applications
to Knowledge Discovery in high-dimensional data streams.

Chapter 3 presents the related work concerning each of our contributions.

Part I focuses on Q1. In Chapter 4, we present a new framework for dependency
estimation: Monte Carlo Dependency Estimation (MCDE).

Part IIl answers Q2. Chapter 5 introduces the Scaling Multi-Armed Bandit (S-MAB)
algorithms, our solution to monitor high-dimensional data streams.

Part IV deals with Q3. Chapter 6 introduces a general method for Subspace Search
in Data Streams, named Streaming Greedy Maximum Random Deviation (SGMRD).
Chapter 7 presents a new algorithm, kj-Nearest Neighbours (kj-NN), to detect outly-
ing documents within large text corpora.

Part V concludes by summarising the outcome of this dissertation in Chapter 8,
while Chapter 9 provides an outlook on future work and research directions.

The content relevant to this dissertation extends beyond the scope of this document.
Readers may find complementary information about Bioliq in the literature [Pfi+16] and
the official website of the Bioliq project:

Bioliq: https://www.bioliq.de

Furthermore, we systematically release our source code, data and experiments via
open-source platforms, under the GNU Affero General Public License version 3 (AGPLv3):

MCDE: https://github.com/edouardfouche/MCDE-experiments; https://github.
com/edouardfouche/MCDE; https://github.com/edouardfouche/MCDE-extended

S-MAB: https://github.com/edouardfouche/S-MAB
SGMRD: https://github.com/edouardfouche/SGMRD

kj-NN: https://github.com/edouardfouche/MiningTextOutliers

See also the related entries on the author’s website (https://edouardfouche.com) and
the sources of this document (https://github.com/edouardfouche/phd-thesis), under
the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).
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2. Preliminaries

This chapter is a joint introduction to our core contributions. We describe the underlying
motivations and the notation for our work.

2.1. Estimating Dependency

2.1.1. Motivations

The discovery of relationships between attributes is fundamental to many Data Mining
applications, e.g., Feature Selection [PLD05], Clustering [Ngu+13] or Outlier Detection
[KMB12], and it is a prominent topic in the database community [CHY96; ZS02; HHO3].

One typically estimates the strength of a relationship by estimating the ‘dependence’
among the attributes of a subspace. To do so, one often leverages well-known ‘dependency
estimators’ such as the Pearson correlation coefficient (also known as correlation), or
Mutual Information (MI) [Sha48] as a non-linear counterpart.

Dependency estimation not only plays a central role in Data Mining - as we discussed
in Section 1.1.4 — but also delivers useful information per se: knowing the relationship
between attributes helps to predict and understand certain outcomes.

For instance, knowing that weight and arterial pressure correlate with the odds of
contracting certain diseases may guide physicians, when predicting whether a patient will
become sick within a year or not. Dependency may also reflect natural physio-chemical
relationships, say, between the temperature and pressure of a fluid in a pipe. When
dependency changes, it either means that the system’s state is transitioning, e.g., the fluid
solidifies, or that equipment deteriorates, e.g., there is a leak. Fluctuations of dependency
often reflect changes in the stream, i.e., the dependency matrix delivers information about
the state of a system. This applies, for example, to the Bioliq plant (Figure 1.5).

However, concerning real-world settings, dependency estimation remains mostly unad-
dressed: data often comes as an open-ended, ever-evolving stream of sensor signals. The
signals can be noisy, redundant or generated at a varying speed. In this setting, the timely
detection of changes in the stream is crucial; the early discovery of anomalies can, say,
facilitate predictive maintenance and yield tremendous cost savings.

Also, most dependency estimators only deal with numerical data, while the stream often
consists of measurements or indicators of various types, e.g., numerical, ordinal, or cat-
egorical observations. Such data sources are known as Heterogeneous Data Streams [YZ06].
In Section 1.1.3, we reviewed the constraints associated with data streams. Naturally,
addressing those constraints is a prerequisite for any algorithm operating on streams.

With this in mind, and orthogonally to the constraints of the streaming setting, modern
dependency estimators also have their own set of requirements — or desirable features —
that they ideally must fulfil. We describe those requirements hereafter.
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2.1.2. Requirements

Based on our observation of the current state of the art, our first contribution is to establish
the following set of requirements, that any dependency estimator must ideally satisfy:

« Multivariate (R1): Bivariate measures only apply to two entities (i.e., variables,
vectors). Estimating the dependency between more than two entities is useful as well,
but existing attempts to generalise bivariate measures lack efficiency or effectiveness.

» General-purpose (R2): Estimators should not restrict to specific types of dependen-
cies. Otherwise, they may miss relevant attribute relationships. Existing multivariate
estimators are typically limited to, say, monotonous or functional dependencies.

« Intuitive (R3): A method is intuitive if its parameters are easy to set, i.e., users un-
derstand their impact on the estimation. Existing solutions tend to have unintuitive
parameters, and the suggestion of ‘good’ parameter values happens (or does not
happen) at the discretion of the inventors.

« Non-parametric (R4): Since real data can exhibit virtually any kind of distribution,
it is not reasonable to use measures relying on parametric assumptions. The risk is
to miss relevant effects systematically.

« Interpretable (R5): The results of dependency estimators should be interpretable.
In particular, the returned estimate should have a maximum and a minimum, so that
one can interpret and compare two given estimates.

« Sensitive (R6): Dependency estimation is not only about detecting the existence
of a relationship, but also about quantifying its strength. Data points generally
are observations sampled from a potentially noisy process. The same dependency
should get a higher score when observed with more observations, as the size of the
observed effect — the ‘effect size” - is larger.

« Robust (R7): Real-world data may be of poor quality. Measuring devices often
have limited precision, so that values are rounded or trimmed, leading to points
with the same values. It is also common to discretise attributes, for a more compact
representation. Such artefacts can have a negative influence on the estimation. Thus,
estimators need to be robust against duplicates and imprecision.

To the best of our knowledge, any existing solution only fulfils some of those require-
ments at best. For example, the Pearson correlation coefficient is parametric (R4), targets
at linear dependencies (R2) and is only applicable to numerical data (C5).

There exist alternative criteria to compare dependency estimators. For example, [Rén59]
propose a set of rules that dependency estimators should satisfy. However, there is no
standard benchmark and, for most estimators, whether they meet those rules or not is
unknown. [Res+11] propose to evaluate measures against a notion of ‘equitability’. How-
ever, there is so far no commonly accepted formalisation of this notion [KA14; MMM14].
In contrast, we introduce a set of pragmatic characteristics, focusing on the real-world
requirements of dependency estimators in high-dimensional data streams.

In this dissertation, we propose a framework, Monte Carlo Dependency Estimation
(MCDE), which features these characteristics and compare MCDE via systematic experi-
ments with the existing competitors. In the next section, we introduce our notation.
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Xt—w X; = {Xtj)jeq,...|D|}

| | B

Figure 2.1.: The sliding window contains the w latest observations (here, w = 10).

2.1.3. Notation

A data stream is a set of attributes D = {sy,...,sp|} and an open list of observations
B = (X1,X3,...), where X; = (xjj)je(1,...p|} is a vector of values with |D| attributes, and we
see an attribute s; = (xy;, x2i, .. . ), with i € {1,...,|D|}, as an open list of values.

Since the stream is virtually infinite, we use the sliding window model: At any time
t > 1, we only keep the w latest observations, W; = (X;—y+1, - - - , X;). We assume, without
loss of generality, that observations arrive at equidistant time steps. Note that one could
easily adapt our methods to accommodate other summarisation techniques, such as the
landmark window or reservoir sampling [Gam12]. Figure 2.1 illustrates our notation.

We call a subspace S a projection of the window W; on |S| attributes, with S C D and
|S| < |D|. We treat an attribute s; € D as a random variable X;,. To address heterogeneity,
we also make the distinction between numerical, ordinal and categorical attributes:

+ We say that s; is of numerical type (s; € Num) if one can see X, as a continuous
variable on a given interval.

« We say that s; is of ordinal type (s; € Ord) if one can see Xj, as a discrete variable,
i.e., it can take a finite number of ordered values.

« We say that s; is of categorical type (s; € Cat) if one can see X;, as a categorical
variable, with a fixed amount of nominal categories.

Naturally, knowing whether a given attribute is numerical, ordinal or categorical requires
domain knowledge. Typically, ordinal attributes have many tying values, while values from
a numerical attribute are unique, given enough precision. On the other hand, values from
categorical attributes might not be numeric and do not have any meaningfully ordering.

Then, p(X) is the joint probability distribution function (pdf) of a random vector X =
<X3i>si65’ and p(X) denotes the empirical estimation of this distribution. We use p;,(X)
and ps,(X) for the marginal pdf and its estimation for each variable s;. P(S) is the power
set of S, i.e., the set of all attribute subsets. For any subset S” € $(S), its random vector is
Xy = <X5i>s,~es' and its complement Xy = Xs\sr = <Xsi>si€S\S" In our algorithms, ‘®’ and
‘A’ stand for concatenation and element-wise logical conjunction.

Dependency estimation determines to which extent a relationship differs from random-
ness. In this spirit, MCDE quantifies a dependency, i.e., a degree of independence violation,
based on marginal and conditional distributions. In Part II, we extensively describe MCDE.

Nonetheless, MCDE only estimates the dependency within a given subspace. In the next
section, we abstract from the underlying dependency estimator and consider the problem
of monitoring numerous estimates in high-dimensional data streams.
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Figure 2.2.: The MAB problem with K arms (one-armed bandits).

2.2. Monitoring

2.2.1. Motivations

Monitoring, i.e., the real-time computation of statistics (such as dependency estimates),
is crucial for Knowledge Discovery in data streams. Transient statistics may reveal the
current state of manufacturing machines or the ongoing behaviour of financial markets.

However, monitoring is computationally demanding, especially when the number of
dimensions and the rate of incoming data increase (cf. Sections 1.1.2 and 1.1.3). In this
setting, recomputing the statistics at every time step does not scale. Thus, stream statistics
monitoring — for say, high-frequency trading or the monitoring of large factories — is
impractical with current methods. At the same time, it can be advantageous. Think for
example of monitoring dependency in the Bioliq plant:

Example 2.1 (Dependency Monitoring). Dependency often results from physical relation-
ships between, say, the temperature and pressure of a fluid. When monitoring the pyrolysis
process at Biolig, it is useful to maintain an overview of dependencies to keep operation costs
down. However, continuously updating the complete dependency matrix is impractical with
current methods since the data is typically high-dimensional and ever-evolving.

From a practical point of view, all statistics are not equally interesting. For example, for
Knowledge Discovery, one is often interested in high dependency. Our idea is to update
only a few elements of the matrix, based on a notion of ‘utility’, e.g., high dependency
values. The system must minimise the cost of monitoring while maximising the total
utility. In other words, the system faces a trade-off between exploitation and exploration:
Should the system keep updating estimates known to deliver large utility (gain) or use
resources to update other estimates, for which the potential utility is not yet well-known?

In this dissertation, we see the problem of monitoring as a generalisation of the Multi-
Armed Bandit (MAB) problem. The MAB problem captures the dilemma between explora-
tion and exploitation in sequential decision-making. At every time step, a forecaster selects
a set of arms and observes a reward from each arm. The name of the MAB problem finds
its origin in the typical trade-off a gambler faces in a casino: given a set of slot machines
(see Figure 2.2), ak.a. ‘one-armed bandits’, which machine should the gambler play to
maximise their expected gains? Should they try different machines (exploration) or keep
playing the machine that they believe to be the best so far (exploitation)?

However, the existing MAB formulations do not quite match our problem, as we will
see. In what follows, we propose to cast data stream monitoring as a new bandit problem,
that we call the Scaling Multi-Armed Bandit (S-MAB).
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2.2.2. Monitoring as a Bandit Problem

In the classical MAB problem, a forecaster must choose one of K arms at each round, and
playing it yields a reward. Their goal is to maximise the cumulative reward over time.
In a variant of the problem, known as the Multiple-Play Multi-Armed Bandit (MP-MAB)
[AVW87; KHN15], the forecaster must choose L distinct arms per round, where L is an
exogenous parameter. However, while it is relevant for some applications (e.g., web content
optimisation), adequately setting L is not easy when monitoring streams.

Thus, we consider a new variant of the MP-MAB where the forecaster not only must
choose the best arms but also must ‘scale’ L, i.e., change the number of plays, to maximise
the rewards and minimise the costs. By doing so, the forecaster controls the efficiency of
playing. We name this setting the Scaling Multi-Armed Bandit (S-MAB) problem.

Think of a new casino game, which we call the ‘blind roulette’: the player places bets
on distinct numbers, and each number has an independent but unknown probability of
being drawn. Bets correspond to a fixed amount, e.g., one can only bet 1$ on a number or
nothing. In each round, the player must decide how many bets to place, and on which
numbers. The casino then reveals to the player which ones of their bets were successful
and pays the corresponding reward. To make the game more challenging, the casino may
sometimes change the underlying probability of each number without notice.

While placing a few but confident bets may seem to be an economically efficient option,
the absolute gain at the end of the day will not be significant. On the other hand, placing
many bets may not be a good strategy, as many numbers typically have a low chance to
be drawn. To maximise their gain, the player must place as many bets as possible, as long
as their expected gain is higher than the amount bet. Whenever the probabilities change,
the player needs to adapt their behaviour; otherwise, they may lose most of their bets and
experience much regret w.r.t. an optimal (but unknown) strategy.

This game matches not only dependency monitoring (cf. Example 2.1) but also many
other real-world applications, such as the placement of online advertisements or the invest-
ment in financial portfolios. The S-MAB problem introduces a new trade-off: one wants to
maximise the reward, but at the same time minimise the cost of each round/observation.
The problem consists of the following challenges:

« *1: Top-arms Identification. To maximise the reward from L plays, one needs to
find the L arms with the highest expected reward; This is the traditional exploration-
exploitation dilemma known from the MP-MAB problem.

« *2: Scale Decision. One should not play more arms than necessary: playing many
arms leads to high costs, but playing only a few arms leads to low rewards. One
should set L to control the efficiency, i.e., the ratio of the rewards to the costs.

« *3: Change Adaptation. The environment can either be static or non-static. In
the second case, one needs to ‘forget’ prior knowledge whenever a change occurs.
Forgetting that is too aggressive or too conservative leads to suboptimal results.

In the next section, we formalise the S-MAB problem considering those challenges'. We
use the most common notation from the bandit literature, e.g., as in [BC12].

1 See also https://youtu.be/wVogcI3fr7Q for a 3-minute introduction to this problem.
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2.2.3. Problem Definition

Let there be K arms. We associate each arm i € [K] = {1,...,K} with an unknown
probability distribution v; with mean p;. At each round t = 1,..., T, the forecaster selects
arms I(t) C [K], then receives a reward vector X(t). L; < K is the number of these arms.
The rewards X;(t) € X(t) of each arm i are i.i.d. samples from v;. We make the classical
assumption from bandit analysis that the rewards X;(t) are 0 or 1, i.e., the distribution of
rewards from arm i € [K] follows a Bernoulli distribution with mean p;. Selecting an arm
i € [K] leads to a unit cost 1, where cost and reward do not need to have the same unit.
Note that it is not very difficult to generalise our results to other reward distributions, as
long as they are bounded.

Let N;(t) and S;(t) be the number of draws of arm i and the sum of the rewards obtained
from it respectively before round ¢. Let ji;(t) = S;i(t)/N;(t) be the empirical estimation of
u; at time t. The forecaster is interested in maximising the sum of the rewards over arms
drawn, under the constraint that the sum of the rewards must be greater than the sum
of the costs by an efficiency factor n*. The parameter n* € [0, 1] controls the trade-off
between the cost of playing and the reward obtained, which is application-dependent.

Let us think of our ‘blind roulette’ metaphor and assume that, whenever a bet is suc-
cessful, the casino awards the double of the bet. Then, for positive expectations, the player
must set 7* > 0.5 and control #;, the admitted cost per arm, to be higher than n*. Thus, at
each step ¢, the forecaster is facing the following constrained optimisation problem:

2icl(r) Hi -

> (2.1)

max] Z Si(t) s.t. m =

ekl 4

The difficulty here is that the forecaster does not know p;, but only has access to an
estimate fI; from previous observations.

2iel(r) Si(t) is maximised when the forecaster chooses the arms with the highest ex-
pectation ;. For simplicity, we assume that all arms have distinct expectations (i.e.,
pi # pj, Vi # j) and we assume without loss of generality that y; > pp > --- > pg, and
thus [L;] is the top-L; arms. Under the assumption that the forecaster always chooses [L;],
the value of 5, is only determined by L, i.e., Eq. (2.1) is equivalent to finding the optimal
number of plays L*:

L .
L = mLa>§<L s.t. # >n* (2.2)
1<L<

Thus, the correct identification of the top-L; arms (" 1) is sine qua non to find the optimal
number of plays L* (*2). Next, in non-static environments, the expected rewards may
change, i.e., y; : t — [0, 1] becomes a function of ¢, as does L*. So the forecaster must
adapt its estimation f; (*2) to correctly select the arms with the highest reward, i.e., it
needs to discard outdated observations.

In Part III, we present algorithms that solve the S-MAB problem and those challenges.
Using our contribution, one can monitor dependency in data streams very efficiently.
In the next section, we start to reflect on the implications of those contributions w.r.t.
Knowledge Discovery in high-dimensional data streams.
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2.3. Knowledge Discovery

Part IV shows the impact of our contributions towards a higher-level goal: Knowledge
Discovery in high-dimensional data streams. Chapter 6 shows that combining our contribu-
tions from Part II and III, namely MCDE and S-MAB, helps to transfer the task of subspace
search to the streaming setting. We show that the efficient monitoring of subspaces of
interest helps with outlier detection in high-dimensional data streams. Then, we deal in
Chapter 7 with a real-world use case: the discovery of text outliers from large text corpora
and propose a new method to detect such outliers.

2.3.1. Subspace Search in Data Streams

Analysing high-dimensional data is notoriously difficult (cf. Section 1.1.2). As we discussed
in Section 1.1.4, a fundamental task of Data Mining is to quantify the dependence between
attributes. With this in mind, researchers have proposed subspace search methods, mainly
for static data, to find interesting low-dimensional projections. Such projections tend
to much structure, i.e., high dependence among their dimensions. Subspace search is
state-of-the-art to deal with data of high dimensionality and has numerous applications,
including Exploratory Data Mining [Ass+07; Tat+12], outlier detection [ZGW08; KMB12;
TB19], or clustering [Pro+02; Kai+03; Bau+04; PL07; ZLWO07].

One can see subspace search as an ensemble feature selection method [GE03], as the
goal is to find several projections (subspaces), not just one. The underlying assumption
of subspace search is that patterns (e.g., outliers, clusters) may hide in various subspaces
[Agg13], and that, when restricting the search to a single subspace, one may miss some
patterns. In a nutshell, existing subspace search methods consist of two building blocks:

(1) A quality measure to quantify the ‘interestingness’ of a subspace, i.e., the potential to
reveal patterns. Intuitively, subspaces with ‘structure’ are more likely to contain outliers
or clusters [Kel15]. That measure often is a multivariate measure of dependence.

(2) A search scheme to explore the set of subspaces. Since this set grows exponentially
with dimensionality, inspecting every subspace is not possible, and the search typically is
a heuristic, i.e., a trade-off between completeness of the search and result quality.

These two items tend to be specific for a given Data Mining algorithm, e.g., a certain
clustering method. The search then is helpful for this particular algorithm, but does
not generalise beyond [Tat+12]. Next, existing approaches for subspace search tend to
assume that the data is static. A straightforward generalisation to streams - i.e., repeating
the search periodically - is computationally expensive and limited by the speed of new
observations arriving.

In Chapter 6, we exploit synergies between our contributions [FB19; FKB19; Fou+20a] to
facilitate subspace search in streams by fulfilling the constraints of this setting (see Section
1.1.3). The core idea of our method, Streaming Greedy Maximum Random Deviation
(SGMRD), is to maintain a set of high-quality subspaces over time, by updating subspace-
search results continuously. We show that it is advantageous to detect patterns (e.g.,
outliers) in high-dimensional data streams, and that existing approaches are much less
efficient. To describe our approach, we use the same notation as in Section 2.1.3.
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2. Preliminaries

b R h F Conference?
Jobs esearc un Travel?
Email 1: Re: Your application... Email 5: Fw: Grant Proposal... Email 7: Re: The best cat memes...

Email 2: Interview scheduling... ~ Email 6: Support Vector Machines... | Email 8: ICDM Registration... I_f
Email 9: Get-together, RSVP... Type O

Email 3: Preparing your internship...

Email 4: Self-supervised methods... I_f

Type M

Figure 2.3.: Email Archiving: An Illustrative Example.

2.3.2. Mining Text Outliers
2.3.2.1. Motivations

Recent technological developments have led to an ever-growing number of applications
producing, sharing and managing text data. Document repositories, such as email accounts,
digital libraries or medical archives, have grown so large that it is now a necessity to
classify elements into categories, e.g., folders.

This is far from trivial, as text corpora tend to be highly multi-modal, i.e., there are
many classes/folders. Documents also may have ambiguous semantics or more than one
semantic focus, so that they do not perfectly fit into just one class.

Humans can order content to some extent and routinely do so: Users organise their
emails into folders, authors classify their contributions into existing taxonomies, and
physicians issue diagnoses as part of their duties. However, human classification is
inherently sloppy and unreliable. Humans may classify an email into an inadequate folder,
assign scientific papers to the wrong field, or — even more critical - issue a wrong diagnosis.

Sometimes one may not even notice these errors because the correct class is unknown.
For instance, an email does not fit into any existing folder, a paper belongs to an emerging
field, or a physician observes a new disease.

Detecting documents classified erroneously is difficult [FV14; GLH15]. This is because
folder structures typically are domain-specific and are user-defined taxonomies. At the
same time, documents can be misplaced in numerous, unforeseeable ways, which may or
may not be folder-specific. So seeing this problem as a supervised one — where a ground
truth is available — would be inadequate. Next, orthogonally to this ‘semantic’ level, two
types of errors/outliers can occur: (O) Out-of-distribution: A document does not belong
to any existing folder — the user should create a new class. (M) Misclassification: A
document belongs to another folder in the directory — the user misclassified it.

We illustrate this in Figure 2.3, with (fictitious) emails ordered into folders by a user:
Email 4 is a Type M outlier, as it belongs to the folder ‘Research’. Email 8 in turn is a
Type O outlier, because it does not fit into any existing folder — we should create a new
one. Intuitively, a document is a Type O outlier when it does not appear to be similar to
documents of any single class. In contrast, a document is a Type M outlier when it appears
to be most similar to documents from another class.
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In this work, we focus on mining text outliers in document directories. It is difficult
because documents are outlying w.r.t. their semantics, which is not easy to capture (even
for humans). An additional issue, which makes this contribution unique, is that both outlier
types must be detected jointly. Namely, the existence of one type harms the detection of
the other one. The noise introduced by Type M outliers hinders the detection of Type O
outliers. Conversely, Type O outliers may be detected as Type M by mistake, leading to
a poor treatment of such outliers. Existing methods only deal with one of these outlier
types, cf. Section 3.3.2. Interestingly, we show that the joint detection of both outlier types
leads to better performance for each type than approaches only dealing with one of them.

To solve this problem, we propose a new approach to detect text outliers, which we name
kj-Nearest Neighbours (kj-NN)?. Our approach leverages similarities of documents and
phrases, based on state-of-the-art embedding methods [Men+19], to detect both Type O/M
outliers. By extracting semantically relevant labels and the documents similar to each
outlier, it also supports interpretability. Our approach is efficient and robust to large
proportions of erroneous labels thanks to a ‘self-supervision’ mechanism, which estimates
the relevance of the original labels. Our experiments show that our approach improves
the current state of the art by a large margin while delivering interpretable results. In the
next section, we introduce our notation.

2.3.2.2. Notation

Let Doc = {dy,ds,...,d|po|} and Phr = {p1,pa,...,ppar|} be a set of documents and
phrases. We define O = Doc U Phr as the set of all text objects.

A common practice in the community is to project each text object in an n-dimensional
embedding space as a preprocessing step. In this paper, we use a recent technique [Men+19]
capable of projecting both words and documents into the same embedding space, i.e., each
object 0 has an embedding vector representation V : O — R" with n dimensions, with
typically n > 100. The vectors are all normalised, thus ||V (0)|| = 1, Yo € O.

We quantify the similarity between a pair of phrases, documents or phrases/documents
with a function Sim : O% [0, 1] where 1 is the highest possible similarity (identity) and
0 is the lowest one. In our setting, Sim is the normalised cosine similarity:

V(Oi) . V(Oj) +1
2

For simplicity, we equivalently refer to the vectorial representation of each object, i.e.,
o = V(o), in what follows. We also assume that there exists an initial classification of
documents into a set of classes C = {cy, ..., c|}, expressed as a function y : Doc + C.

Our self-supervision mechanism relies on estimating the representativeness of each
phrase p € Phr w.r.t. each class ¢ € C. We denote it as a function r : Phr X C — R*.

In Chapter 7, we extensively describe our approach and experiments. Note that for this
study, we restricted our experiments to static text repositories. Nonetheless, our other
contributions facilitate the extension of our approach to streams of text, e.g., news or
twitter feeds. In that respect, one may see Chapter 7 as preliminary work. Applying our
methods for Knowledge Discovery in streams of text is future work (cf. Chapter 9).

Sim(V(0;), V(0))) = Y(0;,0;) € O* (2.3)

2 See also https://youtu.be/6d13ZBxB3f0 for a 18-minute talk about our contribution.
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3. Related Work

This chapter reviews the related work for each of our contributions.

3.1. Estimating Dependency

Estimating the dependency, or ‘correlation’, between two or more variables, is a funda-
mental topic in data analysis and has motivated research for more than a century. Many
bivariate measures exist, e.g., [Spe04; Spe04; Ken38; Res+11]. Some of them also target at
quantifying the association between two vectors which are possibly multivariate [Gre+07;
SR09; LHS13; Bel+18]. However, they can only quantify the dependency between two en-
tities — not between several ones (R1). They also may have other drawbacks. The Pearson
correlation coefficient, for instance, is parametric (R4), targets at linear dependencies (R2)
and is only applicable to numerical data (C5).

There are attempts to extend bivariate dependency measures to the multivariate case. For
example, there exists an extension of Spearman’s p to multidimensional data (Multivariate
Spearman [SS07] (MS)), but it is limited to monotonous relationships (R2). Several authors
also propose multivariate extensions of Mutual Information (MI) [Tim+14]. For example,
Interaction Information [McG54] (II) [McG54] quantifies the ‘synergy’ or ‘redundancy’
in a set of variables. Similarly, Total Correlation [Wat60] (TC) [Wat60] quantifies the
total amount of information. However, information-theoretic measures are difficult to
estimate, as they require knowledge about the underlying probability distributions. Density
estimation methods, either based on kernels, histograms or local densities, all require
setting unintuitive parameters (R3) and may be computationally expensive (C1). Next, with
many attributes, density estimation becomes meaningless due to the curse of dimensionality
[Bel57]. Information-theoretic measures also are difficult to interpret (R5), since they
usually correspond to a number of bits or nats, which is theoretically unbounded.

More recently, Cumulative Mutual Information [Ngu+13] (CMI), Multivariate Maximal
Correlation [Ngu+14b] (MAC), Universal Dependency Score [NMV16] (UDS), Unbiased
Multivariate Correlation [Wan+17] (UMC) and Intrinsic Dimensionality Dependency
[Rom+16] (IID) were proposed as multivariate dependency measures. They are remotely
related to concepts from information theory, as they rely on the so-called Cumulative
Entropy [CL09] (CE). However, these measures are computationally expensive (C1) and
unintuitive (R3). They also are difficult to interpret, because their theoretical maximum
and minimum vary with the number of attributes (R5).

Another approach, High Contrast Subspaces [KMB12] (HiCS), is somewhat similar to
ours, Monte Carlo Dependency Estimation (MCDE). It uses subspace slicing as a heuristic
to quantify the potential of subspaces to contain outliers. Yet HiCS only addresses static
numerical data, and its suitability as a dependency estimator is not known.
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Also, most dependency estimators are designed to deal with numerical data only, and one
assumes that all relevant observations are available during estimation. In the real world,
however, data often consists of an open-ended, ever-evolving stream of measurements or
indicators of various types, e.g., numerical, ordinal, or categorical observations.

The current state of the art to handle heterogeneity (C5) is to rely on discretisation,
using methods such as the one proposed by [FI93]. Then one can compute an information-
theoretic measure, as in [Ngu+14a]. However, any discretisation essentially results in an
information loss and may not work as dimensionality increases.

A recent line of work focuses on estimating MI on numerical data streams. Mutual
Information Stream Estimation [KMB15] (MISE) is a data summarisation technique to
estimate MI over arbitrary time windows. [VRB18] provide dynamic data structures to
maintain MI over a sliding window. [VB19] extend this method to propose an anytime
estimator for MI, with confidence bounds. However, the resulting estimates inherit the
qualities and caveats from ML

3.2. Monitoring

We refer to ‘monitoring’ as the continuous surveillance of statistics in a multidimensional,
potentially high-dimensional data stream. The existing approaches for monitoring statistics
in streams fall into two classes: incremental and approximation schemes.

Incremental Schemes: One can monitor statistics on streams incrementally via a
forgetting mechanism, to discard past observations. The approaches are usually based
on a sliding window [BG07; VRB18] or a decaying factor [Koy00; Kli04; SG18]. However,
not every statistic can be computed incrementally, and the schemes only handle the
computation of a single statistic, not of multiple ones.

Approximation Schemes: Another line of research is approximating the statistics
via sampling strategies [BDM02; BH17; ABR19] or data transformations, such as Fourier
[ZS02; Sel+14] or wavelet [Cha+01; GHO05] transform. Other approaches explicitly target at
high dependency [Kar+06; ZX08]. However, most methods work only for specific statistics,
e.g., Pearson’s correlation, which limits their applicability to linear dependencies.

Work on change detection also is related, as detecting whenever a change occurs in
the stream helps with monitoring. [NV16], [Rei+16] or [Fri+15] all aim to detect sudden
changes. However, these approaches do not apply to stream data or require labels, which
make them unsuitable for the high-dimensional streaming setting in general and further
applications, e.g., predictive maintenance.

Our approach, Scaling Multi-Armed Bandit (S-MAB), does not fall into these categories,
since we target at monitoring virtually any statistics; the estimates are exact, but our
algorithm decides when to update them. To do that, we show that our method can
also leverage change detectors, such as Adaptive Windowing [BG07] (ADWIN). Thus,
our contribution is orthogonal to the existing work. For a broader overview of stream
monitoring methods, see [Gam10].

Since our approach bases on bandit theory, the existing bandit models also are related.
Work on bandits traces back to [Tho33], with the design of clinical trials. The theoretical
guarantees of bandits remained unknown until recently [Aue+00; ACF02; GM08; KKM12].
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Our work builds on several facets of bandits, which have been studied separately, such as
anytime bandits [Kle06; DP16], Multiple-Play Multi-Armed Bandit (MP-MAB) [AVW387;
UNK10; KHN15] and bandits in non-static environments [Aue+02; SU08; GM11].

One can see the S-MAB as an extension of the MP-MAB, with the novelty that the
player must control the number of plays over time. In particular, we build on the work
from [KHN15]. It shows that Multiple-Play Thompson Sampling [KHN15] (MP-TS) has
optimal regret while being efficient. We compare our results with other multiple-play
models, such as variants of the celebrated Upper Confidence Bound [Aue+02] (UCB)
and the Exponential-weight algorithm for Exploration and Exploitation [Aue+00] (Exp3),
namely Combinatorial UCB [Che+16] (CUCB), Multiple-Play Kullback-Leibler UCB [GC11;
KHN15] (MP-KL-UCB) and Exp3 with Multiple plays [UNK10] (Exp3.M).

Our problem is different from the profitable bandits [ACG18] since they aim at max-
imising a static notion of profit — as opposed to efficiency — which boils down to finding
the individual arms for which the rewards exceed the costs in expectation. Moreover, our
problem is more challenging than the MP-MAB and its extension called Combinatorial
MAB (CMAB) in that we are interested in a set of arms where the model parameters y;
satisfy an efficiency constraint (see Eq. (2.1)), and the algorithm needs to estimate them.

The S-MAB also is related to the budgeted MAB model [Tra+10; Xia+16], because it aims
at maximising a notion of efficiency, i.e., the ratio of the reward to the cost of playing arms.
In our case, the total number of plays — the ‘budget’ - is not an external constraint. Instead,
the S-MAB decides how many arms to play based on its observations of the environment.

Bandits have readily been applied to many real-world applications, such as packet
routing [AK04], online advertising [Cha+08], recommendation systems [Li+10], robotic
planning [SRL14] and resource allocation [Li+18]. Nonetheless, the application of bandits
to monitoring (see Example 2.1) has received much less attention. For an overview of
bandit algorithms, we refer the reader to recent surveys [BC12; BLL15; LS20].

3.3. Knowledge Discovery

Because of the unsupervised nature of tasks in high-dimensional streams, knowledge
discovery mainly is limited to two classes of applications: outlier/anomaly detection and
clustering. As mentioned in recent studies [Kri+11; Nto+12], little effort was devoted so far
to the discovery of patterns in high-dimensional data streams. Most contributions focus
instead on only one of the two aspects: high-dimensionality or data streams.

While recent studies, such as [Agg+04; ZGWO08; Kri+11; Nto+12], attempt to address
high-dimensional data streams, the dimensionality in benchmarks is limited - usually, to
less than 50 dimensions. Thus, whether those approaches can scale is not known. Recent
surveys [Gup+14; ATS14] provide a good overview of the state-of-the-art methods for
Knowledge Discovery in data streams w.r.t. the task of outlier detection and clustering.

While addressing every Knowledge Discovery problem is out of the scope of this
dissertation, the fundamental nature of our contributions helps towards this goal. We
focus in particular on two Knowledge Discovery tasks: ‘Subspace Search in Data Streams’
and ‘Mining Text Outliers’, for which we detail the related work hereafter.
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3.3.1. Subspace Search in Data Streams

Many methods for subspace search exist, but almost all of them are either coupled to a
specific Data Mining algorithm or are limited to the static setting. For example, various
approaches for streams [KPM06; ZLW07; ZGW08; Agg09] only tend to work with a given
static algorithm. Other methods in turn [KMB12; Ngu+13; NMB13; NMV16; Wan+17;
TB19] decouple the search from the actual task, but none of them can handle streams.
The existing work on subspace search mostly focuses on individual applications [PHL04;
KKZ09; ZSK12], e.g., clustering or outlier detection, while ‘general-purpose’ subspace
search has received less attention.

To our knowledge, there exist two proposals to extend subspace search to streams in a
general way: HCP-StreamMiner [Van+12] and StreamHiCS [Bec16]. But these approaches
boil down to a periodic repetition of the procedure in [KMB12] on synopses of the stream.
We will see that our method outperforms these approaches. Greedy Maximum Deviation
[TB19] (GMD) is the approach most similar to ours. It uses a so-called contrast measure
[KMB12] to quantify the interestingness of a given subspace and builds a set of subspaces
via a greedy heuristic. However, GMD assumes static data.

Subspace search has been used in the past to improve the results of Data Mining tasks
such as outlier detection [ZGW08; KMB12; TB19]. The authors compare their results with
full-space static outlier detectors. We perform an analogous evaluation in the streaming
setting and compare our results against several baselines and state-of-the-art stream outlier
detectors, such as xStream [MLA18] and Randomised Subspace Hashing in Streams [SA18]
(RS-Stream). See [Gup+14] for a survey of outlier detection in streams.

3.3.2. Mining Text Outliers

To our knowledge, none of the existing methods handles both outlier types. So we
categorise related work into two classes: (1) Type O and (2) Type M outlier detectors.

Type O outlier detectors. Type O is the standard definition of outliers, and detecting
such outliers has been studied for decades. Conventional outlier detection approaches
typically fall into the following classes: distance-based [KN98; RRS00], neighbour-based
[Bre+00; KSZ08], probabilistic-based [KS12; TB99] and subspace-based methods [SA18;
LKO05; Mil+12; KMB12; Kri+12]. Examples of conventional methods are the well-known
Local Outlier Factor [Bre+00] (LOF) or, more recently, Randomised Subspace Hashing
[SA16] (RS-Hash). However, textual data is typically extremely sparse, and thus few of the
above proposals can detect outlier documents, as they do not model semantics.

There exist a few methods addressing text outliers: [Zhu+17] proposes a generative
approach, which models the embedding space as a mixture of von von Mises-Fisher (vMF)
distributions. They identify ‘outlier regions’ that deviate from the majority of the embedded
data. TONMF [Kan+17], a Non-negative Matrix Factorisation (NMF) approach, bases on
block coordinate descent optimisation. Recently, Ruff et al. proposed Context Vector Data
Description [Ruf+19] (CVDD), a one-class classification model leveraging pre-trained
language models and a multi-head attention mechanism. However, all of these methods
treat outlier detection as a one-class classification problem, i.e., they try to describe an
‘abnormal’ class and a ‘normal’ class; none of them addresses Type M outliers.
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Type M outlier detectors. Type M outliers represent misclassified text. While this
type of outlier is ubiquitous, it has received little attention so far. Few publications try to
address the problem directly. Traditional supervised text classification methods, assuming
the ground truth to be error-free, have no choice but to tolerate Type M outliers during
training. While one can extend the existing supervised document classification models
(e.g., [Kim14; Con+17; Zho+16; Lai+15]) to mitigate the effect of Type M outliers, they are
in turn not helpful to detect Type O outliers.

As we explained earlier, the existence of both outlier types calls for methods that can
detect them simultaneously. In that respect, our method, kj-NN, is the first of its kind. In
our experiments, we compare our approach against the methods above and show that
we outperform all of them. We refer the reader to [Agg13] for an extensive overview of
existing outlier detection methods.
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4. Monte Carlo Dependency Estimation

The content of this chapter bases on the following publications:

+ Edouard Fouché and Klemens Bohm. ‘Monte Carlo Dependency Estimation’. In:
SSDBM. Best Paper Award. ACM, 2019, pp. 13-24. por: 10.1145/3335783.3335795

« Edouard Fouché, Alan Mazankiewicz, Florian Kalinke and Klemens Bohm. ‘A Frame-
work for Dependency Estimation in Heterogeneous Data Streams’. In: Distributed
and Parallel Databases (2020). DOI: 10.1007/510619-020-07295-x

Keywords: Multivariate Statistics; Exploratory Data Analysis; Dependency Estimation

4.1. Chapter Overview

Estimating dependencies from data is a fundamental task of Knowledge Discovery. Identi-
fying the relevant variables leads to a better understanding of data and improves both the
runtime and the outcomes of downstream Data Mining tasks. Dependency estimation from
static numerical data has received much attention. However, real-world data often occurs
as heterogeneous data streams. In this chapter, we make the following contributions:

We present Monte Carlo Dependency Estimation (MCDE), a framework which
satisfies both the constraints of heterogeneous data streams and the requirements of
dependency estimation. Over a given time window, MCDE estimates the dependency of an
attribute set as the average discrepancy between marginal and conditional distributions,
via Monte Carlo (MC) simulations. We determine a lower bound for the quality of our
estimates, which only depends on the number of MC simulations. Such bound allows
users to trade estimation accuracy for a computational advantage.

We explore three instantiations of MCDE, i.e., three new dependency measures,
dubbed Mann-Withney-P (MWP), Kolmogorov-Smirnov-P (KSP) and Chi-Squared-P (CSP),
which base on the corresponding statistical test. We show that using them in combination
allows dealing with heterogeneous data. We describe their implementation and compare
them to the existing multivariate methods in our experiments.

We introduce index structures for MWP, KSP, and CSP, to speed up contrast es-
timation. Our indexes support insertion/deletion operations for efficient estimation in
streaming settings, e.g., over a sliding window.

We feature a use case against real-world data from Bioliq (cf. Section 1.1.5) and show
how one can leverage MCDE to discover interesting and useful patterns. We release our
source code and experiments on GitHub'"?, with documentation to ensure reproducibility.

1 https://github.com/edouardfouche/MCDE-experiments
2 https://github.com/edouardfouche/MCDE-extended
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4. Monte Carlo Dependency Estimation

4.2. Theory of MCDE

Dependency estimation determines to which extent a relationship differs from randomness.
In this spirit, MCDE quantifies dependence, i.e., a degree of independence violation, based
on marginal and conditional distributions. Section 2.1.3 introduced our notation.

4.2.1. Quantifying Dependency via Contrast

A set of variables is independent or uncorrelated if and only if all variables are pairwise
mutually independent. By treating the attributes of a subspace as random variables, we
can define the independence assumption of a subspace:

Definition 4.1 (Independence Assumption). The independence assumption A of a subspace
S holds if and only if the random variables {X, : s; € S} are mutually independent, i.e.:

AS) & p(X) = | | paX) (4.1)
s;€S

Under the independence assumption, the joint distribution of subspace S is expected to
be equal to the product of its marginal distributions. We can define a degree of dependency

based on the degree to which A does not hold:

Definition 4.2 (Degree of Dependency). The degree of dependency D of a subspace S is
the discrepancy, abbreviated as disc’, between the observed joint distribution p°(X) and the
expected joint distribution p®(X):

D(S) = dise (p°(X), p°(X)) (4.2)

The discrepancy is a random variable. While one can estimate it between two probability
distributions, using for instance the Kullback-Leibler divergence, this is not trivial here
because p°(X) and p®(X) are a priori unknown. We work around this as follows:

Lemma 4.1 (Independence Assumption and Joint Distribution). The independence assump-
tion A of subspace S states that the joint distribution for allS’ C S is equal to its conditional
distribution on S \ S’:

AS) & pXsXs) = p(Xs) VS € P(S) (43)

Proof of Lemma 4.1. Since all variables in S are mutually independent, for any subspace
5" € P(S) we also have p(Xs) = [1;,cs ps; (X):

AS) e pX) = [pa)

s;€S
AS) & pX)=pXs)* [ | puX) VS’ € P(S)
SiES\S/
X
a6 o X _ i) VS’ € P(S)
p(Xs)
By the definition of the conditional pdf:
A(S) & p(Xs[Xs) = p(Xs) VS’ € P(S) O
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Lemma 4.1 provides an alternative definition of A. However, it still has issues. First,
multivariate density estimation is required to estimate p(Xs ) and p(Xs | Xs/) with |[S]| > 1.
Second, even if one could estimate p(Xs:) and p(Xs/|Xs), estimating the densities for all
S’ € P(S) is intractable. We instead relax the problem by considering only subspaces with
|S’| = 1, i.e., we only look at the marginal distribution of single variables.

Definition 4.3 (Relaxed Independence Assumption). The relaxed independence assumption
A* of a subspace S states that the marginal distribution ps,(X) of each variables; € S equals
ps;(X|Xs,), i.e., the conditional distribution of s;:

AS) & ps(XIXs) = ps,(X) Vs €S

Lemma 4.2 (Independence Assumption Relaxation). A(S) = A*(S), i.e., we can relax A
into A* for any subspace S.

Proof of Lemma 4.2. Using Lemma 4.1:

AS) & p(Xs'|Xs) = p(Xs) VS € P(S)
AS) = p(Xs1|Xs1) = p(Xs1) VSt e P(S): |S' =1
AS) = ps(XIX;,) = ps,(X) Vs €S O

Loosely speaking, the relaxed independence assumption holds if and only if the values
of all variables but s; do not reveal any information on s;. Next, A(S) = A*(S), then
- A*(S) = —~A(S), i.e., showing that A* does not hold is sufficient but not necessary to
show that A does not hold. Thus, we can define a relaxed degree of dependency D* of
a subspace S, namely the discrepancy disc of the observed marginal distribution p (X)
and the expected one p{ (X). Under the relaxed independence assumption A*, we have

P5.(X) = pg (X |X;,). We define D* as the expected value E[.] of this discrepancy:

Definition 4.4 (Relaxed Degree of Dependency).

D($)= B_|dise p5,00.p5(XIX,) | (4.4)
Si

This definition includes a whole class of dependency estimators, e.g., [KMB12], which
aim at quantifying the so-called contrast of a subspace. D* - or contrast - is a variant of
D which is much easier to estimate. First, it relies on the comparison of marginal against
conditional distributions, i.e., multivariate density estimation is not required. Second,
the number of degrees of freedom of A*(S) increases linearly with |S|, but exponentially
for A(S). Thus, estimating D* instead of D allows coping with the strict efficiency
requirements for data streams.

By definition, D* does not take the dependency between multivariate subsets into
account, but only of each variable versus all others. However, we argue that this relaxation
is not problematic, and it even supports interpretability. In fact, the detection of dependency
is only interesting as long as we can observe effects w.r.t. the marginal and conditional
distributions: in real-world scenarios, one is typically looking for interpretable influences
of particular variables - so-called targets — on the system and vice versa [HTF09].
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4. Monte Carlo Dependency Estimation

4.2.2. Estimating Conditional Distributions

The difficulty when estimating 9* is estimating the conditional distributions, because the
underlying data distributions are unknown. As proposed in [KMB12], one can simulate
conditional distributions by applying a set of conditions to S, in a process called subspace
slicing. The concept of subspace slice was defined so far only for numerical data. Here, we
extend the definition of subspace slice to handle heterogeneity by differentiating between
numerical, ordinal and categorical attributes:

Definition 4.5 (Subspace Slice). A slice c; in a subspace S w.r.t. attribute s; is a list of |S| — 1
conditions C; which restricts the values of each s; € S \ s;:

¢i=(C1,....Ci-1,Cit1,...,Cs|),  where

[lj, uj] s.t. |{?ck : Xkj € [lj,uj]}| =w ifsj € Num
[lj .. .uj] s.t. |{55k :Xkj € [lj...uj]}l =w if sj € Ord

{Uj :v; € sj} s.t. |{5€k D Xpj € {vj L vj € sj}}| =w ifs; € Cat

Vie{l,...,|S|}\i

Cj

where [lj, uj] is a continuous interval, [lj . uj] is a discrete interval, and {vj v € sj} isa
set of values of s;. w' < w is the number of observations per condition.

We call s; the reference attribute, the only attribute without a condition. We write that
Xk € ¢; if Xk fulfils all the conditions in c¢;. We define ¢; as the complementary slice, i.e., it
contains all observations which are not in c;.

Ps,|e;(X) and pg,c,(X) denote the conditional distribution of the observations in the slice c;
and its complement ¢;, respectively. P¢(S) is the set of all possible slices in subspace S.

We choose each condition in a slice independently at random, but so that they contain
w’ observations. Note that ordinal and categorical attributes (e.g., gender) may have many
tying values. In such a case, a random condition might not precisely have w’ elements. Our
solution is to take a random condition containing at least w’ observations and randomly
remove elements from the condition until only w’ observations remain.

We set w = [w Is 'W] with @ € (0, 1), so that, under the independence assumption,
the expected share of observations in the slice equals a. As a result, subspace slicing
happens in a dimensionality-aware fashion. When « is a constant, the expected number
of observations per slice does not change with dimensionality. Thus, subspace slicing is a
dynamic grid-based method based on the dimensionality of the subspace which alleviates
to some extent the effects of the curse of dimensionality.

Under the A*-assumption, the conditional distribution pj,|, is equal to the marginal
distribution py,, for any attribute s; and slice ¢;. For brevity, we omit (X)’ in p;,(X) and
Psife;(X) in the following.

Lemma 4.3 (A" and Conditional Distributions).

A*(S) © Py, =ps, Vs €S, Ve € PES) (4.5)
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4.2. Theory of MCDE

Proof of Lemma 4.3. By contradiction, using Lemma 4.2.

‘<’: From Lemma 4.2, assume A*(S) and that
3sj € S 1 ps,(XIX)) # s
= Jcj € PUS) : psy\e; # Ps;
= Contradiction of Lemma 4.3
‘=’: From Lemma 4.3, assume A*(S) and that
Js; € S,3cj € PUS) : psjle; # Ps;
= py,(XIX;,) # ps,

= Contradiction of Lemma 4.2 O]

4.2.3. Discrepancy Estimation

In reality, one only has a limited number of observations, i.e., one only has access to
empirical distributions. A solution is to use a statistical test 7

disc (ﬁsi’ﬁsilci) =7 (ﬁsi’psi|ci) (4.6)

However, the number of observations is finite, and the observations that we use to estimate
Ps;|c; are part of the ones used to estimate p, so far. This is problematic, as statistical tests
assume the samples to be distinct. Plus, when a = 1, ﬁsi|ci converges to ps,, i.e., the two
populations are nearly the same. Conversely, @ = 0 yields spurious effects, since the
sample from p;, |, then is small. We solve the problem by observing that py, ., and p;,z,,
the conditional distribution from the complementary slice c;, are equal under A*.

Theorem 4.1 (A" and Complementary Conditions).
ﬂ*(S) < Dsile; = Psilei Vs; €S, Ve, € PC(S) (4.7)

Proof of Theorem 4.1. By contradiction, using Lemma 4.3.
‘<’: From Lemma 4.3, assume A*(S) and that 3s; € S, 3c; € P(S) : pyj|c; # Ps;-

Since ps; = ps;|c,uz;» then 3s; € S, 3c; € PUS) : psjie; # Ps;le;uz

= 38]' €S, HCj € PC(S) 3st|cj * p3j|5j
= Contradiction of Theorem 4.1.

‘=’: From Theorem 4.1, assume A*(S) and that 3s; € S, 3c; € PS) : ps|; # Psjle;
= 33] €S, HCJ S PC(S) :st|chcj ;tpsj|5jUCj'
Since ¢; U ¢; = ¢j and ps; = ps;c;uc;» then 3s; € S, 3c; € PUS) : psj1; # ps;

= Contradiction of Lemma 4.3. O]
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Figure 4.1.: Slicing in numerical, categorical, and heterogeneous subspaces (|S| = 2).

Hence, one can evaluate A" by looking at the discrepancies between the conditional
distribution and its complementary conditional distribution. When doing so, the samples
obtained from both distributions are distinct.

We define our dynamic slicing scheme based on a parameter «, the expected share of
observations in the slice c;. Thus, the expected share of observations « in ¢; equals 1 — «.
As a result, we set @ = 0.5 so that @ = a. This choice is judicious for statistical testing, as
samples of equal size lead to higher statistical stability, and we get rid of parameter a.

We illustrate slicing in heterogeneous subspaces in Figure 4.1, with an exemplary
numerical and categorical subspace in the left half and a heterogeneous subspace in the
right half. The black lines show a random slice. The points in dark blue are in ¢;, and the
points in light orange are in c;. Figure 4.1(a) represents a numerical linear dependency.
We can see from the histograms that, after slicing, the distribution of the points in each
sample are very different. Figure 4.1(b) depicts the absolute frequencies of observing
various symptoms {U ... Z} in different groups of patients {A. .. F}. Since there is no
ordering within symptoms and patient groups, slicing in this case consists in selecting
categories at random, here {B, C, E}. By comparing the absolute frequencies after slicing,
we can determine whether there is a statistical association between groups and symptoms.
Naturally, the statistical test that we use to estimate the discrepancy between p;,z, and
Ps,|c; might differ depending on the type of the reference attribute, as we will discuss later.

Different attribute types can also be part of the same subspace, as we show in Figure
4.1(c) and 4.1(d). We graph the height from a sample of individuals of two sexes. When we
slice on the x-axis, the slice is a numerical interval. On the y-axis in turn, the slice is a
category drawn at random.

Intuitively, ordinal attributes share features from both numerical and categorical attrib-
utes: there exists an ordering between values, but typically also many tying values. In this
case, we recommend using a similar slicing methodology as for numerical attributes, by
selecting a discrete interval (see Definition 4.5), and a statistical test that is robust to tying
values to some extent.
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4.2. Theory of MCDE

4.2.4. Properties of Contrast

A statistical test 7 (By, B;) for two samples B; and B; typically yields a p-value. Tradition-
ally, one uses p-values to assess the statistical significance. Conversely, p = 1 — p is known
as confidence level. The rationale behind estimating the degree of dependency D* is to
yield values quantifying the independence violation. We define contrast, abbreviated as C,
as the expected value of the confidence level of a statistical test 7 between the samples
from the conditional distributions for all the possible attributes s; and slices c;:

Definition 4.6 (Contrast C).

C®) = E [T (Be).BE) (4.8)

c;ePE(S

where T yields p-values, and B(c;), B(c;) are the samples resulting from slicing. We draw the
conditions in c¢; randomly and independently, w.r.t. any reference attribute s; in subspace S.

By definition, 7 ~ U[0, 1] when the two samples are independent, and 7 ~ 1 as the
evidence against independence increases. The properties of C follow:

1. C converges to 1 as the dependency in S increases.
2. C converges to 0.5 when S is independent, since 7~ ~ U|0, 1].
3. C is bounded between 0 and 1.

4.2.5. Monte Carlo Approximation

It is impossible to compute C exactly; one would need to know the distribution of B(c;)
and B(c;) for every slice. Instead, we approximate C via Monte Carlo (MC) simulations,
with M iterations. In each iteration, we ChOOSf the reference attribute s; and slice ¢; at
random. We define the approximated contrast C:

—~

Definition 4.7 (Approximated Contrast C).
~ 1 U
— _ Z)) ;oo e
Cs) = 37 5 [T (B ). BE) - o P56) (+9)

where ¢; ~ P°(S) means that we draw c; randomly from P(S) in iteration m.

Interestingly, we can bound the quality of the approximation. From Hoeffding’s inequal-
ity [Hoe63], we derive a bound on the probability of C to deviate not less than ¢ from C.
The bound decreases exponentially with increasing M:

—~

Theorem 4.2 (Hoeffding’s Bound of C).
Pr [|5— Cl > e] < 2e72M¢ (4.10)

where M is the number of MC iterations, and0 < ¢ <1 - C.
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4. Monte Carlo Dependency Estimation

Proof of Theorem 4.2. Let us first restate Theorem 1 from [Hoe63] (see also Lemma 5.5):
Let Xi, Xy, . .., X, be independent random variables 0 < X; < 1fori =1,...,n and let
X = %(Xl +X,+- - -+Xp,) be their mean with expected value E[X]. Then, for 0 < t < 1-E[X],
it holds that Pr[X — E[X] > t] < e 2" and Pr[X — E[X] < t] < e 2",

We can treat each MC iteration my, ..., my as i.i.d. random variables X, , ..., Xpn,,
with 0 < X, < 1. C is the mean of the iterations with E[C] = C (Definition 4.6). Thus,
for 0 < ¢ < 1 —C it holds that

Pr[C - C > ¢] < e 2M Pr[C - C < ¢] < e 2V (4.11)
since Pr[|C = C| > ¢] = Pr[C+C > €] +Pr[C—C > ¢] itis easy to verify Theorem 4.2. [

This is very useful. For instance, when M = 200, the probability of C to deviate
more than 0.1 from its expected value is less than 2e™* ~ 0.04, and this bound decreases
exponentially with M. Thus, one can adjust the computational requirements of C given
the available resources, the desired quality level, or the rate of arrival of new observations
in a stream. In other words, users can set M intuitively, as it leads to an expected quality,
and vice versa. Observe that M is our only parameter.

4.2.6. Instantiating MCDE

One must instantiate 7~ as a suitable statistical test. Ideally, 7 is non-parametric (R4)
and suitable for the type of the reference attribute (numerical, ordinal, categorical). To
facilitate meaningful experiments, we investigate instantiations of MCDE based on three
well-known non-parametric tests: the Kolmogorov-Smirnov, the Mann-Whitney U and
the Chi-Squared test. We call the respective instantiations KSP, MWP and CSP.

The Kolmogorov-Smirnov test assumes the data to be continuous, i.e., it should be
adequate for numerical attributes. The Mann-Whitney U test specifically handles tying
values, so it might work well with ordinal attributes. Lastly, the Chi-Squared test bases on
frequencies from a finite number of categories, i.e., we hypothesise it to be suitable for
categorical attributes.

Algorithm 4.1 MCDE(S = {s1,...,55})
1: 7 < CoNSTRUCTINDEX(S) ; result < 0
2: form «— 1to M do
3 r « random integer in [1, |S|]
4: slice « SrLice(Z,r)
5
6

result «— result + TEST(Z, slice,r)
: return (result/M) € (0,1)

Algorithm 4.1 summarises the general idea behind MCDE for any arbitrary subspace
S = {s1,...,s5} of dimensionality |S|. In practice, we can significantly improve the
efficiency of slicing operations, which require the values of each attribute to be ordered,
with an index structure (Line 1). Afterwards, for M iterations, we slice the data (Line 4)
and carry out the statistical test (Line 5). The final estimate is the average of the test
outcomes over M iterations. In what follows, we present the specifics of the procedures
CoNsTRUCTINDEX, SLICE and TEesT for each instantiation of MCDE.
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4.3. Instantiation as Mann-Withney-P (MWP)

4.3. Instantiation as Mann-Withney-P (MWP)

We first consider the instantiation of 7~ as a two-sided Mann-Whitney U test [MW47]. An
advantage of this test is that it does not assume the data to be continuous, as it operates
on ranks. So it is robust and applicable to numeric and ordinal measurements.

4.3.1. Estimating The Mann-Whitney U Statistics

In a nutshell, the Mann-Whitney U test compares the difference between the median of
two samples. We review the definition of this test [SC88] between two samples B; and B,
with size n; and ny, and ny + ny = w. It tests the null hypothesis that it is equally likely that
a randomly selected value from one sample will be less than or greater than a randomly
selected value from the other sample. R; and R, are the sums of ranks of the objects in B;
and By, obtained by ranking the values of B; and B, together, starting with 0. In case of
ties, the ranks of the tying objects are adjusted, i.e., become the average of their ranks.

Ui—p _ni(ni —1)

U =R,

p=d2Z)or1-d(2) Z =
o 2

(4.12)

Here, one can choose U; = U; or U; = U, equivalently. ® is the cumulative distribution
function of the normal distribution, and p, o are defined as:

k 3
nins n1n2
= — 4.13
p 0=y v+ D)~ ZW _1) (4.13)

1=

The summation term of o is a correction for ties, where t; is the number of observations
sharing rank i, and k is the number of distinct ranks. Typically, for w > 20, the values
of U are normally distributed [MW47] with mean y and standard deviation o. Z is the
standardised score, since Z ~ N(0,1). If U = Uy, then Z <« 0 and p ~ 0 when the ranks
of A are stochastically smaller than those of A;. Conversely, when the ranks of A; are
stochastically larger, then Z > 0 and p =~ 1. Both cases indicate an independence violation.
As both directions are relevant, our test should capture them equally:

MWP = &'/2(2") Z' =|Z| U=U, (4.14)

Since Z ~ N(0, 1), Z’ follows the so-called half-normal distribution with cdf ®!/2, Since
|Uy — p| = |Uz — p|, we can simply set U = U; or U = U, arbitrarily.

However, the ability of this test to detect dependency — the ‘power’ — declines in the
case of unequal variance of the two samples [Zim03; FS09]. Thus, we include an additional
step into the slicing process. It restricts the domain of the reference attribute s; to a share
a of observations. Formally, we define the marginal restriction as follows:

Definition 4.8 (Marginal Restriction). A marginal restriction is a condition on the reference
attribute s;, i.e., an interval r; : [l u;] orri : [l ... u;], so that {X; : xj; € ri}| = [a - w] =
[w] and the subspace slice becomes c¢; U r;.
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4. Monte Carlo Dependency Estimation

(a) without MR (b) with MR (c) without MR (d) with MR

Figure 4.2.: Marginal Restriction (MR) w.r.t. a circular and linear dependency (|S| = 2).

We illustrate in Figure 4.2 the impact of the marginal restriction. We show in the left
half a circular dependency and in the other half a linear dependency. Two grey lines show
a marginal restriction (in 4.2(b) and 4.2(d)), and two vertical dashed lines stand for the
median of each sample. We can see that in both cases, the marginal restriction leads to
the median of the two samples having a larger difference. Thus, the discrepancy between
both samples will be better detected by the Mann Whitney U test. Intuitively, the marginal
restriction ‘breaks the symmetry’ between both distributions. Because of that, the MWP
estimator with marginal restriction generally has higher statistical power.

4.3.2. Implementation Details

Algorithm 4.2 is the pseudo-code for the index construction. The index 7 is a 1-dimensional
structure containing the adjusted ranks and tying value corrections for each attribute.
It consists of |S| elements {I;,..., s}, where I; is an array of 4-tuples sorted by s; in
ascending order. In this index, /; is the row numbers, X; are the sorted values of s;, a; are
the adjusted ranks and b; the accumulated correction terms of the standard deviation o.
I;[j] stands for the j-th tuple of I;, and l;, Xj;, a;;, bj; are its components.

Algorithm 4.3 shows the slicing process. We can slice the input data efficiently because
the tuples are already sorted in the index structure. We successively mask the row numbers
based on a random condition for all but one reference attribute s,. Additionally, we ensure
that the condition boundaries do not split any tying values and that each condition has
exactly w’ observations. The algorithm returns a slice, i.e., a list of w Boolean values, so
we write slice € Zy. Since we visit each value at most once, the complexity is in O(|S| - w).

Algorithm 4.4 implements the statistical test based on our index. We determine a
restriction [start, end] on s, and sum the adjusted ranks of the observations in the slice.
Since the ranks in this subset may not start from 0, we adjust the sum of the ranks R;
(Line 10). Then we compute a correction (Line 13) using the cumulative correction b, to
adjust o for ties (Line 14). ®/2 is the cumulative distribution function of the half-Gaussian
distribution. We compute the statistical test via a single pass, considering only elements
between start and end. Each operation requires constant time; The complexity is in O(w).
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Algorithm 4.2 MWP-CONSTRUCTINDEX(S = {s1,...,s|s/})

1
2
3
4:
5:
6.
7
8
9

: for

10:
11:
12:
13:
14:

15: return 7 : {Il, e ,I|5|} with Ii : (li,ii,ai,bi)

i=1to|S| do
ri —[0,...,w—1]
(I;, %;) « sort (r;, x;) by s; in ascending order, break ties randomly
Ii — [(Lis X115 710)s -+ 5 (yis Xawis i )]
j < 1; correction < 0
while j < wdo
ke« j;t<« 1;adjust<—0
while (k < w = 1) A (si[lki] = si[lg+1,:]) do
adjust < adjust + ry; ; increment k and ¢
if k > j then
adjusted < (adjust + ry;)/t ; correction < correction + t> — t
for m « j to k do I;[m] < (L,u;, Xmi, adjusted, correction)
else I;[j] < (lji, Xji, rji, correction)
je—j+t

Algorithm 4.3 MWP-Suice(J : {I1,...,Is},r € {1,...,[S|})

1: w o« |—w- ‘S'W]

2

: for

10:
11:
12:
13: slice, «— Array of w Boolean values initialised to true
14: slice « slice; A - - - A slicejs)

15: return slice € Z’

I; € I \Ir do
slice; « Array of w Boolean values initialised to false
start < random integer in [1, w — w’]
end « start + w’
while rggr i = Fstare—1,; do start = start — 1
while reyq i = Teng+1,i do end = end + 1
for j « start to end do slice[l};] < true
if end — start > w’ then
nb « end — start — w’
exclude < draw nb sample from [start, end] without replacement
for el € exclude do slice[el] « false

Algorithm 4.4 MWP-TesT(Z : {I3, ..

g )y slice € ZY,r € {1,...,|S]})

e e el

R A S i T

W’

: start « random integer in [1,w - (1 — a)]
: end « start + [w -«

Ri<—0;n «<0

for j < start to end do

if slice[l;,] = true then
Ry« R + ajr
ny «<—n; +1

« end — start

:if ny =0 orn; = w’ return 1
U; <« Ry — start - ng

gy —w —ng

D p— (ng-n2)/2

i correction «— (bend—l,r - bstartfl,r)/(w’ (W' = 1))
: 0 « \/((ny - ny)/12) - (W’ + 1 — correction)

: return ®2(|U; — p|/o) € (0,1)
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4.4. Instantiation as Kolmogorov-Smirnov-P (KSP)

4.4.1. Estimating Kolmogorov-Smirnov Statistic

We now describe another instantiation of MCDE, which uses the two-sample Kolmogorov-
Smirnov (KS) test. The KS test is non-parametric, and it is widely used to test the equality
of two continuous one-dimensional probability distributions. It is adequate in case the
reference attribute is numerical. However, it is known that the KS test has less power in
the presence of ties [LR05]. So it may not work well with ordinal attributes.

In a nutshell, the two-sample Kolmogorov-Smirnov statistic D is the supremum of the
absolute differences of the empirical cumulative distribution functions F;(x) and F;(x) of
Samples 1 and 2 with n; and n; elements:

D = sup |Fi(x) — Fa(x)| (4.15)

High Contrast Subspaces [KMB12] (HiCS) employed this test statistic to quantify contrast.
However, to comply with the MCDE framework, one must first derive the corresponding
p-value. The p-values are not trivial to obtain, because the distribution of D does not have
any known closed form, and the time required for an exact computation increases with n;
and ny in particular. To obtain the p-values, we approximate them using the asymptotic
Kolmogorov-Smirnov distribution proposed in [Dur73]:

Pr [D, [ o x] =1-2 Z(—1)i‘1e‘2i2x2 (4.16)
ni +n; P

Empirically, we found that summing up the first 1000 terms of the expansion provides
enough accuracy, without much impact on the execution time. Using this approximation
is common practice within most modern statistical software, such as R [R C19].

4.4.2. Implementation Details

Algorithm 4.5 is the pseudo-code for the index construction. The difference to MWP is
that we do not need to adjust ranks or precompute tie correction, because the Kolmogorov-
Smirnov test assumes that there are no tying values. The resulting data structure contains
the indices /; and the values x; of each attribute s;, ordered by s; in ascending order.

Algorithm 4.5 KSP-CONSTRUCTINDEX(S = {s1,...,s|s/})
1: fori=1to S| do
2: ri —[0,...,w—1]
3: (I, %;) « sort (r;, x;) by s; in ascending order, break ties randomly
4 L [(hi X10), - - - (byis Xoui)]
5: return 7 : {I;,...,Iis;} with I; : (I;, X;)

Similarly, Algorithm 4.6 is responsible for slicing, but does not require any further step
to handle ties. Algorithms 4.2 and 4.5 as well as Algorithms 4.3 and 4.6 respectively behave
in the same way whenever the data does not have ties.
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Algorithm 4.6 KSP-Suice(J : {I1,...,Is;},r € {1,...,[S|})
1w —[w- 5]
2: forI; e 7\ I, do
3: slice; < Array of w Boolean values initialised to false
4: start < random integer in [1, w — w’]
5: end « start + w’
6.
7
8
9

for j « start to end do slice[l;;] < true
: slice, « Array of w Boolean values initialised to true
: slice « slice; A - -+ A slice|s)
: return slice € Z'

Algorithm 4.7 implements the KS test. We compute the statistic D, i.e., the largest
difference of the two empirical cumulative distribution functions in Lines 7-10. Then we
approximate the p-value with Equation 4.16 in Line 12.

Algorithm 4.7 KSP-Test({ : {L;,...,I5}, slice € Z},r € {1,...,]S[})

ny— |{i:i€[1...w]Aslice[l;] = true}|
Ny «— w—ny
if ny =0orny =0 return 1
u—1/n ;v 1/ny
G e050<0
D« 0,00
fori <« 1towdo
if slice[l;,] = true then {; «— {1 +u
else b — &+ o
D «— max{D, |{, — (1|}
iz D/niny/(ny + ny)
for i — 1t0 1000 do ¢ — ¢ + (—1) "1 2= return (1 — 2¢) € (0,1)

SN Ao > s

_ =
DN =

4.5. Instantiation as Chi-Squared-P (CSP)

4.5.1. Estimating Chi-Squared Statistic

The Chi-Squared test, also known as Pearson’s Chi-Squared test, perhaps is the most
famous non-parametric test. In short, it determines whether there is a significant difference
between the expected frequencies and the observed frequencies of a set of categories.

For a reference variable s; € Cat with categories A = {ay,..., a4}, we sketch the
contingency table w.r.t. the two samples B(c;) and B(c;) in Table 4.1, where oji. is the
absolute frequency of Category a; in Sample i, and we have:

A
Zo; =0 je{1,2} (4.17)
lzl |

o} = o ie{1,...,|A]} (4.18)
j=1
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4. Monte Carlo Dependency Estimation

Table 4.1.: Exemplary Contingency Table.

ai az ... ap Total
. 11 1 1
Sample 1: B(c;) o; o, ... Ol 0
. R(F 2 2 2 2
Sample 2: B(c;) of o5 ... Ol 0
Total 01 0y ... Ol w

Then we can compute the test statistic Q as follows:

.
Q=ZZ% (4.19)

where ef = 0; - 0/ /w is the expected absolute frequency.

Under independence, Q follows the y? distribution with cumulative distribution function
le : R* + [0, 1], where k = |A| — 1 is the number of degrees of freedom. Thus, )(,f(Q)
leads to the p-value that we use for CSP.

4.5.2. Implementation Details

As with the other instantiations, we improve the execution time with an index. It contains
the position of each occurrence of a categorical value binned into its respective category.
Algorithm 4.8 is our pseudo-code for its construction. We can construct the index in linear
time with a single pass over each attribute, as it does not require any sorting.

Algorithm 4.9 is our slicing procedure for CSP. The main difference to MWP and KSP is
that the index is not ordered. Thus, slicing consists in selecting a random set of categories
per attribute. The algorithm ensures that exactly w’ observations are part of each condition.

Finally, Algorithm 4.10 shows how to compute the Chi-Squared statistic, based on the
information from the index and a subspace slice.

4.5.3. Complexity

The overall complexity of MWP and KSP is in O(|S|- (w-log(w)+w)+M-(|S|-w+w)). Since
|S| < w, this simplifies to O(w - log(w) + M - w). The index construction is asymptotically
the most expensive step, as it is in O(w - log(w)). Since the index construction for CSP does
not require sorting, this step simplifies to O(w). However, one only needs to construct the
index once for a given data set or window. When the index is available, one can compute
the estimator in linear time for the exponential number of subspaces.

Interestingly, MCDE is trivial to parallelise: one can compute the elements of the index
structure Iy, . . ., I ;s in parallel, as they are independent of each other. Similarly, one can
parallelise each Monte Carlo iteration. This is useful, as multi-core architectures are
ubiquitous in modern database systems. Thus, MCDE scales well with the size of the data
set. We will verify this claim via experiments in Section 4.7.2.7.
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4.5. Instantiation as Chi-Squared-P (CSP)

Algorithm 4.8 CSP-CONSTRUCTINDEX(S = {s1,...,S|s|})

1: fori=1to|S| do

2 Define I; as a mapping of categories to {positions C {0, ..., w — 1}, counts € N*}
3 for x;; € s; do

4 if Ii[Xﬁ] # ( then

5: Iilxji] < {Ii [xji].positions @ x, I;[xj;].counts + 1}

6: else

7 Lilxji] < {j, 1}

8: return 7 : {I;,...,I;s)} where I; : el € 5; > N*

Algorithm 4.9 CSP-Suice(J : {L,..., I}, r € {1,...,[S[})

1w —[w- Ja
2: forI; € T\ I, do
slice; «— Array of w Boolean values initialised to false

3

4 slicesize «— 0

5: positions < 0

6: categories «— I;.keys
7: while slicesize < w’ do

8 category « draw a random category from categories
9 categories < categories \ category

10: slicesize «— slicesize + I;[ category].counts

11: positions «— positions @ ;[ category].positions

12: if slicesize > w’ then

13: Delete slicesize — w’ random elements from positions
14: for pos € positions do

15: slice;[pos] « true

16: slice, «— Array of w Boolean values initialised to true
17: slice < slice; A - -+ A slicejs)
18: return slice € Z’

Algorithm 4.10 CSP-Test(Z : {L;,...,Is}, slice € Z},r € {1,...,[S[})

1: 0=0;k=0

2: ol = [{pos € [0...w — 1] : slice[pos] = true}|
3: 0 =w-o0;

4: for {positions, counts} € I, do

5: ol = |{pos € positions : slice[pos] = true}|
6: 0% = counts— ok

7: 0x = 0L + ofc

8: el = oy -ol/w

9: el =o0y-0°/w
10: k=k+1
1: Q=0+ (0 —e) /ey + (0 —e})*/el

return x;_(Q) € (0,1)
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4. Monte Carlo Dependency Estimation

4.6. MCDE in Heterogeneous Data Streams

4.6.1. Heterogeneity

For simplicity, we have described KSP, MWP and CSP, assuming a homogeneous data set,
being numerical, ordinal and categorical respectively.

In fact, each attribute is treated independently in each of our algorithms. So we can
easily extend Algorithm 4.1 to the heterogeneous setting, as we show in Algorithm 4.11.
We construct the index of each attribute depending on its type (Lines 1-3) and use the
corresponding slicing methodology (Lines 7-9). The resulting slice is the element-wise
conjunction for each type (Line 10). The type of the reference attribute determines which
test we should use (Lines 11-13). Independently of the underlying statistical test, the
p-values have the properties described in Section 4.2.4. So the final MCDE score is the
average of the p-values over each iteration.

Algorithm 4.11 HETEOROGENEOUS-MCDE (S = {sy, ..., S|s|})

1: Iy « KSP-CoNsTRUCTINDEX({s; € S : s; € Num})

2: To <« MWP-CoNSTRUCTINDEX({s; € S : s; € Ord})

3: I¢ < CSP-ConsTRUCTINDEX({s; € S : s; € Cat})

4: result «— 0

5: form < 1to M do

6: r « random integer in [1, |S]]

7: slicey < KSP-SLIcE(ZN,T)

8: sliceo «— MWP-SLice(Zp, 1)

9: slicec < CSP-Svice(Zc,r)
10: slice « sliceny @ slicep & slicec
11: if s, € Num do result «— result + KSP-TesT(y;, slice,r)
12: if s, € Ord do result « result + MWP-TEsST(Ip, slice, r)
13: if s, € Cat do result < result + CSP-TesT(I¢, slice, r)
14: return (result/M) € (0, 1)

4.6.2. Adaptation to the Streaming Setting

To deal with streams, we adopt the well-known sliding window model, i.e., we only consider
the w most recent observation. A naive way to support this model is to recompute the
index at the arrival of each new observation. Instead, we propose efficient insertion and
deletion operations for our indexes.

Furthermore, to maintain a dependency estimate over time, we propose to perform a
number M of MC iterations periodically and report the exponential moving average:

MCDE, =y - MCDE(W,_4) + (1 — y) - MCDE(W,) (4.20)

where y is the so-called decaying factor, and A is the step size.

We update the MWP index in Algorithm 4.12 in two steps: STEP 1: INSERT/DELETE and
STEP 2: REFRESH. Our algorithm maintains two data structures: a queue, which determines
for each new point the value of the point to delete in the current window, in a first-in-first-
out fashion, and a variant of our static index which supports binary search. In the first
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4.6. MCDE in Heterogeneous Data Streams

Table 4.2.: Algorithmic Complexity of MCDE instantiations.

MWP KSP CSpP
Index Construction O(|S| - w - log(w)) O(|S| - w - log(w)) O(|S| - w)
Slicing O(|S| - w) O(|S] - w) O(|S] - w)
Test O(w) O(w) O(w)
Update (STEP 1) O(|S] - log(w)) O(|S] - log(w)) 0(1)
Update (STEP 2) O(|S| - w) o(|S| - w) O(|S] - w)

step, we store the values for each attribute in a queue, in chronological order. Then we
find the positions where to insert the new point and where to delete the oldest point in
the index via binary search. Then, we shift all the values to insert the point. In the second
step, we recompute the adjusted ranks and cumulative correction as in Algorithm 4.2.
Using an adequate data structure like a binary tree, STEP 1 only has logarithmic com-
plexity, while STEP 2 has linear complexity. Besides this, one must perform StEp 1 for
each new point, but STEP 2 only once before slicing. So when re-estimating contrast only
every A-th step, we perform STEP 1 for each point, but STEP 2 lazily. As a result, we can
update the index in O(|S| - log(w)) in STEP 1 for each observation and postpone STEP 2,
which is in O(|S| - w), to contrast estimation. Updating the KSP index is somewhat simpler
because KSP does not handle tying values. The CSP index is unsorted, and thus STEP 1
only requires constant time. We refer to KSP-UPDATE and CSP-UPDATE as variants of
Algorithm 4.12 for those indexes. We summarise the complexity of each step in Table 4.2.
For efficiency, Algorithm 4.12 simultaneously inserts and deletes observations. Note
that one could also perform each operation via two independent methods. This way, one
may handle time-based windows, in which observations may arrive at arbitrary time steps.

Algorithm 4.12 MWP-UppATE(] : {I},... ,I|5|},?c,,ew = (Xnew,iie(1,...|S|})

1: fori=1to|S|do

2: queue;.insert(Xpew, i) ; Xoid,i = queue;.pop() > STEP 1: INSERT/DELETE
3: offset; = offset; + 1

4: insert = binarysearch(l;, Xy, ;) ; delete = binarysearch(I;, x,14.;)

5: if insert < delete for x « insert to delete do I;[x + 1] = I;[x]

6: else for x « delete to insert do I;[x] = I;[x + 1]

7: Ii[insert] = (w + offset;, Xpew,i, —1,—1)

8: for pos < 1to w do I;[pos] = (Ipos,; — offset;, Xpos,i» P0s, 0) > STEP 2: REFRESH
9: offset; < 0;j « 1; correction < 0
10: while j < wdo
11: k—j;t« 1;adjust«—0
12: while (k < w — 1) A (si[lgi] = si[lk+1.:]) do
13: adjust < adjust + ay; ; increment k and ¢
14: if k > j then
15: adjusted «— (adjust + ay;)/t ; correction < correction + t> — t
16: for m « jto k do I;[m] « (L,,;, Xmi, adjusted, correction)
17: else I;[j] < (lji, %j;, aji, correction)
18: jej+t

19: return 7 : {Il, e ,I|5|} with Il' : (li,ii,ai,bi)

45



4. Monte Carlo Dependency Estimation

4.7. Experiments

4.7.1. Methodology

To evaluate our dependency estimators, i.e., MWP, KSP, CSP and our competitors, we look
at how they behave w.r.t. an assortment of dependencies. See Figure 4.3; The dependencies
are scaled to [0,1]. [FB19] displays in appendix our algorithms for generating each
dependency. For benchmarking, we repeatedly draw w objects with |S| dimensions,
to which we add Gaussian noise with standard deviation o, which we call noise level.
Intuitively, noise-free dependencies should lead to higher scores than noisier ones.

We also show that MCDE handles heterogeneity by simulating numerical, ordinal, and
categorical attributes. To simulate ordinal attributes, we discretise numerical attributes
into a number Q of values from 1 to 20. To simulate categorical attributes, we randomly
permute the discretised values, to mimic the absence of an order. As in other studies
[NMV16; Res+11; KA14], we compute the statistical power, defined as follows:

Definition 4.9 (Power). The power of an estimator & w.r.t. dependency O with o, w and |S|
is the probability of the score of & to be larger than a y-th percentile of the scores w.r.t. the
independent subspace 1:

Pr [8 (Instgfm) > {3 (I”Sti;oxwl)}m]

I nstfv)f|5| is a random instantiation of a subspace as dependency O with noise level o,

which has w objects and |S| dimensions. {x}r stands for the y-th percentile of the set {x},
i.e., a value v so that y% of the values in {x} are smaller than v.

The attributes of the independent subspace I are i.i.d. in U[0, 1]. Note that, since the
attributes of I are independent, adding noise does not have any effect on dependence, so
we set noise to 0 when instantiating I. To estimate the power, we draw two sets of 500
estimates from O, ¢ and I, respectively:

Zgﬁ : {8 (Insto"’ )}500 Zf’ : {8 (InstI’O )}500

wX|S[) ] =1 wX|S|) ] =4
e &by
Then we count the elements in 35 _ greater than {EI } :

fxixess, A x> {3847
500

One can interpret ‘power’ as the probability to correctly reject the independence hypo-
thesis with y% confidence. Le., the power quantifies how well a dependency measure can
differentiate between the independence I and a given dependency O with noise level o.
For our experiments, we set y = 95, w = 1000. We let the noise ¢ vary linearly from 0 to 1,
with 30 distinct levels. We consider dependencies with dimensionality |S| from 2 to 20.

In our figures, Og denotes each dependency, where O stands for the dependency type
(e.g., L stands for ‘Linear’), and Q is the discretisation level, i.e., the number of distinct
values; O means that the attributes are numerical. ‘|S|D’ indicates the dimensionality, and
Og, indicates that the attributes are categorical, with a number Q of nominal values.

0,0,y
powerwx|5|(8) =
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(@) C (b) DI
Vj \J \ ,\
(g) L (h) P @) S1 (k) St

Figure 4.3.: An assortment of 12 dependencies (displayed here with three dimensions,
o = 0). C: Cross, DI: Double linear, H: Hourglass, Hc: Hypercube, HcG:
Hypercube Graph, Hs: Hypersphere, L: Linear, P: Parabolic, S1: Sine (P=1), S5:
Sine (P=5), St: Star, Zi: Z inversed.

4.7.2. Evaluation

In our evaluation, we first compare our three estimators (MWP, KSP and CSP) together.
Then, we compare MWP to our competitors and present our case study.

4.7.2.1. Specifics of Attributes Types

We first observe how MCDE handles numerical, ordinal, and categorical attributes. Fig-
ure 4.4 displays the empirical distribution of MWP, KSP and CSP iterations w.r.t. a 2-
dimensional independent (I) and a linearly dependent (L) space. Each distribution is
estimated as a histogram from 10 000 independent iterations. The vertical dashed lines
show the means of the distributions, and we display a scatter plot illustrating the corres-
ponding scenario.

According to Figure 4.4(a), MWP, KSP and CSP values are uniformly distributed in the
case of an independent subspace, with a few exceptions: First, the CSP values are all close
to 0 in the case of numerical attributes. Since each point is unique, they are all treated as a
single category, and the Chi-Squared test does not have power in this setting. We observe
the same effect with L (in 4.4(b)). Second, we see that the values of MWP and CSP are also
0 with I;. This corresponds to the desired behaviour. In this situation, every observation
in the subspace is equal, so contrast is undefined. KSP assumes that values are continuous,
and thus does not handle this case.

Also, we can see from 4.4(b) that the KSP values are generally closer to 1 with L and
Ljo. This indicates a larger power than MWP and CSP. However, we can see that the
CSP distribution does not change between Lo and L], while the mean of the MWP and
KSP distribution decreases significantly. Thus, CSP detects dependency from categorical
attributes better than MWP/KSP.
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Figure 4.4.: Distribution of the contrast estimation iterations (|S| = 2).

4.7.2.2. Statistical Power of MWP, KSP and CSP

We first look at the statistical power of MWP, KSP and CSP with confidence level y = 0.95
against a linear dependency of increasing dimensionality |S|, discretisation level Q, and
noise level o. Please note that the figures are best seen in colour. The expectation is that
the scores and statistical power are high for noiseless dependencies, i.e., the left side of
the plot is blue, and decrease gradually as we add noise. A noise level ¢ = 1 is comparably
high since the data is scaled to [0, 1]. Thus, the right side of the plot should be red, standing
for low scores, or low power. From Figure 4.5 (upper part), we see that MWP without
marginal restriction does not work well in high-dimensional and highly discretised spaces.

The marginal restriction alleviates this problem to some extent, in particular for numer-
ical subspaces. In fact, as dimensionality increases, it becomes more and more likely that
the points selected in the slice are ‘at the centre’ of the distribution. As a result, the mean
of the point in the slice and the point outside of the slice become nearly equal, leading
to low power with the Mann-Whitney U test, and thus a slight performance decrease
of MWP. This calls for further research on the MWP slicing scheme, or alternatives to
the Mann-Whitney U test. Nonetheless, the results indicate that MWP with marginal
restriction works well against numerical attributes. Next, we see that KSP has high power
in every case, although slightly decreasing with Q. CSP does not work with numerical
spaces but has more power in discrete spaces. CSP works best with categorical attributes.

We now compare the power of our estimators against the assortment of dependencies
from Figure 4.3. CSP does not apply to numerical attributes. Thus, for comparability,
we discretise the values with Q = 10. We can see from Figure 4.5 (lower part) that KSP
consistently has more power than MWP, and even alleviate some of its drawbacks, such as
the low power against the noiseless Hypercube (Hc). CSP generally has less power than
KSP but can detect categorical dependencies.

Our experiments show that MWP has a slight performance decrease in high-dimensional
discrete spaces. KSP seems to perform better, but its statistical power decreases with
discretisation. Overall, we recommend to use KSP for numerical and ordinal data but to
use CSP for categorical data. MWP still is a valid alternative with numerical attributes.
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Figure 4.6.: Power of MWP w.r.t. w.

4.7.2.3. Influence of parameters, w, M and |S|

Figure 4.6 shows that power globally increases with w, but it is still high for most de-
pendencies with low w, provided noise is moderate. As we can see, the average score of
MWP tends to increase with w, which explains the gain in power. That is because MWP
is sensitive (R6), as we discuss in Section 4.7.2.5. Similarly, Figure 4.6 shows that power
increases slightly as M increases, but the effect is visible only for S5 and Zi. We can explain
this increase of power easily by the fact that the standard deviation of MWP decreases,
which is what Theorem 4.2 predicted: with more iterations, the values concentrate around
C. In the end, we see that MWP is already useful for small w or small M, even though
more iterations or more data samples yield higher power when data is noisy.

Figure 4.8 graphs the evolution of MWP for |S| = 2,3, 5. As we see, the average MWP
decreases gradually for each dependency. The same level of noise does not seem to affect
each estimate equally, also regarding dimensionality. For instance, the estimates of L,
P and S1 are larger at |S| = 2. While the estimates of Hc, HcG, P and Zi decrease with
increasing |S|, they increase for C and St. While some dependencies (e.g., He, HcG) appear
to have lower contrast without noise, we see that this effect is not as visible when we
decrease the threshold for measuring power. The standard deviation of MWP increases
with noise and decreases with |S|. In particular, L, C and Hs have a low standard deviation.
This means that fewer iterations are required to estimate stronger dependencies. Power
does not seem to vary much with dimensionality for most dependencies. It decreases with
|S| for He, HeG, Hs, P and Zi, while it increases for C, S5 and St.

All in all, each dependency yields a score larger than I up to a certain level of noise,
leading to high power. Thus, MWP, and, by extension, MCDE, are general-purpose (R2).
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Figure 4.7.: Power of MWP w.r.t. M.

4.7.2.4. Comparison to Competing Approaches

We compare the score distribution for each competing approach with MWP in Figure 4.9.
First, we see that the average score of MWP is most similar to Total Correlation [Wat60]
(TC). However, TC is unbounded, and its scores follow a logarithmic scale. This means that
the estimates of TC change very abruptly. We see that MWP scores are slightly smaller
for noiseless dependencies with many ties w.r.t. marginal distributions, such as H and Hc,
which we attribute to the correction for ties in the Mann-Whitney U test.

Interaction Information [McG54] (II) can yield positive or negative values. We visualise
the absolute value of Il with a logarithmic scale. We mark the dependencies which obtain
a positive score in their noiseless form with a plus sign. II assigns high scores to every
noiseless dependency. However, the score decreases rapidly with noise, except for L.

HiCS shows a similar behaviour as MWP, except that the scores decrease faster, and
that many dependencies start with a relatively low score, even in the noiseless form,
such as C, DI, H, Hs, S5 and St. Next, Multivariate Spearman [SS07] (MS) and Universal
Dependency Score [NMV16] (UDS) are restricted to monotonous and bijective functional
relationships, respectively. They can detect only 3 out of 12 dependencies. Multivariate
Maximal Correlation [Ngu+14b] (MAC) and Cumulative Mutual Information [Ngu+13]
(CMI) behave curiously. Their scores change noticeably only for C, D1, L, P and S1. The
values of MAC also change abruptly and even non-monotonously with noise. For example,
L and S1 obtain lower scores with a noise level of 0.3 than with higher noise levels. CMI
evolves smoothly. However, for many dependencies, including I, the score increases again
with more noise: the shades on the right are lighter, which shows a bias towards noise,
independently of the underlying relationship.
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Figure 4.8.: MWP w.r.t. dimensionality |S|.
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By looking at MWP and MS, we see that the standard deviation behaves similarly: it
decreases as the score increases. We observe the opposite for HiCS. The standard deviation
of CMI reaches its highest level at a certain noise level, around 0.2 for L, and tends to
increase slightly again with more noise.

While HiCS, UDS, MAC and CMI are expected to be in [0, 1], the theoretical maximum
or minimum is never reached, even if our benchmark features both strong and weak
dependencies. On the other hand, MWP and MS exploit all the values of their range, being
[0.5, 1] and [0, 1] respectively. Thus, they are interpretable (R6).

Figure 4.10 reveals that MWP, TC and HiCS achieve high power in any situation up to
a certain extent of noise. MWP shows slightly more power with C, H, He, HeG, Hs and
St. II can detect almost every dependency, but the power decreases rapidly with noise
and dimensionality. MS detects DI, L, P, S1, S5 and Zi, but misses all other dependencies.
MAC looks unstable since its power evolves in a non-monotonous way and decreases with
increasing dimensionality by much. In fact, it is not able to detect most dependencies for
|S| = 5. UDS can only detect L, P and S1, a clear limitation. CMI has maximal power for
each dependency and noise level for |S| = 3, which is unrealistic: CMI reaches its lowest
score against the noiseless I, our baseline for power. This means that CMI does not clearly
distinguish noise from dependence.

4.7.2.5. Sensitivity

R6 states that estimators should reflect the strength of the observed effect w.r.t. the
number of observations. Figure 4.11 graphs the average score from 500 instances of
each dependency with a minimal noise of 1/30. The average of MWP obtained for each
dependency converges to 1 consistently with more samples, except for I, which stabilises
around 0.5. This means that MWP is sensitive (R6).

TC behaves similarly to MWP. However, it is not bounded. While the scores of II seem
to increase with sample size, their absolute value decreases. MS is insensitive to changes
in sample size. HiCS, UDS, MAC and CMI behave differently: their scores tend to go down
as the sample size increases, even with I. This implies that their minimum or maximum
score varies with the sample size, also highlighting interpretability (R5) problems.

4.7.2.6. Robustness

Data is often imperfect, i.e., values are rounded or trimmed. In some cases, this may lead
to wrong estimates, e.g., an independent space is declared as strongly dependent.

We simulate data imperfections by discretising a 3-dimensional linear dependency into
a number w of discrete values from 100 to 1. With only one value, the space is entirely
redundant, i.e., its contrast should be minimal. We compare the power of MWP and the
other approaches against L and I for different levels of discretisation. Since TC and II base
on local neighbourhoods, they do not work in this setting; We exclude them from the
analysis. Figure 4.12(a) displays the results.

HiCS yields high power in the case of discrete values, even for I. Thus, HiCS is not
robust. Also, the power of CMI wrongly increases as we add noise to I, provided that
@ > 10. This is why the power of CMI is high for every dependency in Figure 4.10. CMI
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rejects the independence for independent spaces, i.e., it is not robust. On the other hand,
MWP, MS, UDS and MAC seem robust (R7).

In Figure 4.12(b), we see that the score of CMI tends to increase slightly for I as we add
noise, whenever o > 5. Also, the score of HiCS increases for both I and L when o < 5.
MAC converges to 0.4 as noise increases for w > 10. On the other hand, MWP converges
to 0 as the space becomes discrete. This is an interesting feature of our estimator: discrete
spaces are of lower interest since the notion of contrast is not clearly defined there. It
allows analysts to draw a line between discrete and real-valued attributes, characterizing
their relevance for further analysis.

4.7.2.7. Scalability

We now look at the runtime requirements of our approach. We measure the average time
for each estimator against 500 independent data sets with growing w and |S|. Note that
which data set we use only has a marginal effect on the measured time. For consistency,
we use instantiations of I for every estimator. Figure 4.13 graphs the results. As we can
see, MWP is the second fastest after MS. HiCS and CMI scale relatively well with w and
|S|]. There is a second group formed by TC, II and UDS one order of magnitude slower.
However, II does not scale well with |S|. MAC is way behind all others. One should note
that the runtime of MWP can be further improved via parallelisation and prior indexing.

We evaluate the scalability of index construction for each approach, by increasing
the size of the sliding window w from 102 to 10° in an independent space I with three
dimensions. The red line (‘Construction’) is the average time for creating the index with
window size w (Algorithms 4.2/4.5/4.8). The other lines show the average time to insert a
new point into the window.

In Figure 4.14, we can see that the construction time of each index increases almost
linearly with increasing window size w. The KSP index is less expensive to update than
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MWP, regarding STEP 2 in particular. The first step of the CSP index update is very efficient,
as it requires more or less constant time (see Table 4.2). We can see that only performing
STEP 1 in our update operations, while delaying STEP 2 to the contrast estimation step,
reduces the execution time by up to 3 orders of magnitude, compared to standard index
construction. So we can significantly speed up the monitoring of MCDE contrast using
the index update operations.

In Figure 4.15, we compare the execution time estimating MWP, KSP, and CSP, with
increasing window size w. We can see that the three approaches have a comparable
execution time. KSP is slightly slower for small window sizes because the p-values are
more difficult to obtain than with the other approaches. However, as the window size
increases, KSP and MWP have the same execution time. CSP contrast estimation appears
to be slightly slower as the window size increases but scales similarly.
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4.7.2.8. Deployment to the Streaming Setting

We monitor contrast when the dependency gradually evolves. We simulate this setting by
concatenating 100 three-dimensional linear dependencies with 1000 observations each
and a level of noise ¢ linearly increasing from 0 to 1. We use the approach described in
Section 4.6.2, Equation 4.20 and instantiate MCDE with MWP. We estimate the dependency
over a sliding window of size w = 1000 and with a decaying factor y = 0.99.

We let A vary from 1 to 1000 and M from 1 to 500. We compare each configuration to a
baseline, which is the most expensive configuration (A = 1, M = 500), without the benefit
of our update operations. When A > 1, we simply set the current contrast estimate to the
value from the latest estimation. We define the following measures:

« The Absolute Error is the average absolute difference between the values obtained
with the tested configuration and the values from the baseline.

« The Relative Time is the ratio of the time required by the tested configuration over
the time required by the baseline.

+ The Index Speedup is the ratio between the time required by the tested configura-
tion without/with our index update operations.

We can see from Figure 4.16 that the absolute error decreases with A, while the relative
execution time increases. The speedup obtained by our index operations is responsible for
this gain in efficiency to a large part. As we increase the number of iterations M, the errors
tend to decrease, but at the same time, contrast estimation dominates the overall execution
time. In such cases, we see less benefit from our efficient insert/delete operations.

We identify the configuration M = 50, A = 50 as a sweet spot: for an absolute error as
small as = 0.01, the computational burden is reduced by up to 100 times, with a consistent
index speedup of 3. We mark this configuration with a star * in the figure.

4.7.3. Case Study: Discovering Dependency Patterns

We now apply MCDE to a real-world multivariate time series. The data was collected
during a 4-day production campaign at Bioliq, a pyrolysis plant in the surroundings of
Karlsruhe [Pfi+16]. It contains one measurement per second, i.e., 345 600 observations,
from a selection of 20 physical sensors in various components of the plant. We monitored
the evolution of dependency between each sensor pair with w = 1000, A = 50, M = 50, as
just explained. We obtained the evolution of dependency between the 20 sensors (i.e., 190
pairs) using a single CPU core in about 2 hours. Note that it would be easy to shorten the
computation time significantly by parallel processing.

We have presented the results of our monitoring technique to the plant operators. They
have identified several patterns which they deemed ‘interesting’, i.e., patterns yielding
insights that could help with plant operation.

Figure 4.17 displays one of these patterns. It is the result of monitoring two sensors,
namely the pressure at the reactor input, and the oxygen concentration at the output.
As we see, the dependency between these two measures changes significantly over time.
Some changes, marked in the figure from 1 to 4, appear to represent different stages in
the production process. A better understanding of the dynamics of the physical measures
involved in the reaction will help the plant owners to operate smoothly and efficiently.
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4.8. Discussion

Our experiments show that MCDE fulfils all requirements linked to heterogeneous data
streams and has the desirable features of a framework for dependency estimation.

First, we can see that MCDE is efficient (C1), and, thanks to the index update operations,
one can use it in combination with the sliding window model to mine data streams in a
single scan (C2) and adapt (C3) the contrast estimation over time, taking concept drift into
account. Second, one can also reduce or increase the number of MC iterations M to trade
between accuracy and computation time, in an anytime (C4) fashion. MCDE can handle
heterogeneity (C5) via the instantiation of various statistical tests.

Each approach, except MCDE and MS, has at least one unintuitive parameter (R3):
TC and II require k € N, CMI requires Q € N, MAC requires € € (0,1), UDS requires
B € N, HiCS requires « € (0, 1). Next, only MCDE and HiCS allow trading accuracy for
a computational advantage (C4). Note that, by adapting recent anytime estimators for
Mutual Information (MI) such as [VB19], TC and II maybe potentially also fulfil C4.

Last, MCDE is non-parametric (R4) and interpretable (R5) by design. Our experiments
against an assortment of dependencies show that it is multivariate (R1), general-purpose
(R2) and robust (R7). MCDE is sensitive (R6) because estimates are the average of p-values.
Table 4.3 summarises our findings.

Table 4.3.: Fulfilment of Constraints and Requirements.
Estimator | C1 C2 C3 C4 C5|R1 R2 R3 R4 R5 R6 R7

MS ++ X X X X |V Xx v v vV X V
TC - v v Vv X |V v Xx v X vV X
I - v vV /O X |V X X vV X X X
CMI + X X X x|V X x v X X X
MAC - X X X x|V X Xx v x Xx Vv
UDS - X X X X | v X x v X x V
HiCS + X X vV x|V vV X vV X X X
MCDE ~w v v v vV v v v v v /

All in all, MCDE vyields to state-of-the-art estimators: it is versatile, allowing quality-
runtime trade-offs and parallelisation, which is useful when time is critical, e.g., in large
data streams. At the same time, it shows excellent detection quality with no restriction on
the dependency type, while being easy to use and interpret. MCDE features a blend of
properties that so far no competitor offers.

In this chapter, we have described a framework to estimate multivariate dependency in
heterogeneous data streams. It fulfils all requirements one would expect from a state-of-
the-art dependency estimator. Compared to other approaches, it provides high statistical
power on a large panel of dependencies, while being very efficient. Furthermore, we
introduced index operations for the streaming setting and illustrated the benefits of our
framework against a real-world use case. In the next part, we generalise the task of
dependency estimation to monitoring large sets of statistics.
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5. Scaling Multi-Armed Bandit Algorithms

The content of this chapter bases on the following publication:

« Edouard Fouché, Junpei Komiyama and Klemens Béhm. ‘Scaling Multi-Armed Bandit
Algorithms’. In: KDD. ACM, 2019, pp. 1449-1459. Dor: 10.1145/3292500 . 3330862

Keywords: Bandit Algorithms; Thompson Sampling; Adaptive Windowing

5.1. Chapter Overview

The Multi-Armed Bandit (MAB) is a fundamental model capturing the dilemma between
exploration and exploitation in sequential decision-making. At every time step, the
decision-maker selects a set of arms and observes a reward from each of the chosen
arms. In this chapter, we present a variant of the problem, which we call the Scaling
Multi-Armed Bandit (S-MAB): the goal of the decision-maker is not only to maximise the
cumulative rewards, i.e., choosing the arms with the highest expected reward, but also to
decide how many arms to select so that, in expectation, the cost of selecting arms does
not exceed the rewards. This problem is relevant to many real-world applications, e.g.,
online advertising, financial investments or data stream monitoring. In Section 2.2.3, we
introduced the required notation to describe and analyse our algorithms. This chapter
makes the following contributions:

We address the S-MAB problem, a novel generalisation of the MAB problem.
The novelty is that the decision-maker not only decides which arms to play, but also
how many, to maximise her cumulative reward under an efficiency constraint. To our
knowledge, we are the first to consider this setting.

We first propose Scaling Thompson Sampling (S-TS), an algorithm to solve this
problem in the static setting, i.e., when the distribution of rewards does not change
over time. We leverage existing bandit algorithms, e.g., Thompson Sampling [Tho33] (TS),
and show that the regret of our method (i.e., the difference from the outcome of a perfect
oracle) only grows logarithmically with the number of time steps.

Then, we generalise our method for the non-static setting. To do so, we combine
our algorithm with Adaptive Windowing [BG07] (ADWIN), a state-of-the-art change
detector, which is at the same time efficient and offers theoretical guarantees.

Finally, we validate our findings via experiments. We illustrate the benefits of our
contribution via a real-world use case on predictive maintenance. The comparison with
existing approaches shows that our method achieves state-of-the-art results. — We release
our source code and data on GitHub', to ensure reproducibility.

1 https://github.com/edouardfouche/S-MAB
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5.2. Scaling Thompson Sampling

Let us first assume a static environment. Our algorithm consists of:

1. A Multiple-Play Multi-Armed Bandit (MP-MAB) to identify the top-L; arms (*1).
2. A so-called ‘scaling policy’, to determine the value of L;.; based on L; and the
observations at time t (*2).

For (1), we use an existing algorithm, Multiple-Play Thompson Sampling [KHN15]
(MP-TS). It is a Bayesian-inspired bandit algorithm, which maintains a Beta posterior with
parameters «;, §; over each arm i. In each round, MP-TS samples an observation 8; from
each posterior and selects the top-L; arms according to these observations. Then, the
parameters of this posterior are adjusted based on the reward vector X(t).

For (2), we propose to use a scaling policy, i.e., a strategy to control the number of
plays, such that the empirical efficiency 7; remains larger than n*. Whenever 7; < n*, we
‘scale down’, i.e., we set L;+; = L; — 1. Otherwise, we ‘scale up’. When we are confident
that adding one arm will lead to 7; < 5", we stop scaling. To do so, we estimate B;, an
upper confidence bound for 7,41, assuming that L,y = Ly + 1. B, is our estimator for B,
based on the observations from the environment so far. The confidence is derived from
the Kullback-Leibler divergence, as the so-called Kullback-Leibler UCB (KL-UCB) index
[GC11; Mail7]. We name our policy Kullback-Leibler Scaling (KL-S):

L,—1 if f]t < 7']>F
Lt+1 = Lt +1 if ﬁt > T]* and Bt > T]* (51)

L; otherwise

where1 < L;4; < K and

1 , L, 1
;= — i B; = 1 + b——(t 5.2
Ny Hi t I + 1’7t L +1 L[+1( ) (5.2)

B, is the empirical estimator of

T 1
B = —— > (b)) + ———by a1(2).
= O b

where b;(t) is the KL-UCB index of arm i and L; + 1 is the arm of the (L; + 1)-th largest
index. The KL-UCB index is as follows:

bilt) = max{Ni(t) - dw.(f1(1), 9) < log(t/Ni(t))} (5.3)

where dx;, is the Kullback-Leibler divergence. Intuitively, our policy maximises L; such
that the empirical efficiency 7; remains larger than n* at any time t. We stop scaling up
whenever By, which is an upper confidence bound of #;, is greater than *.

In S-TS, the algorithms of (1) MP-TS and (2) KL-S are intertwined. See Algorithm 5.1. S-
TS successively calls the two procedures MP-TS and KL-S, while maintaining the statistics
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Ni(t), Si(t) for each arm. We initialise the scaling policy with L; = K (Lines 1-2). The
rationale is that nothing is known about the reward distribution of the arms initially, so
pulling a maximum number of arms is informative. Previous studies showed that optimistic
initialisation improves the empirical performance of bandit algorithms [KP14; SB18].

Computational complexity of Algorithm 5.1: At each round, MP-TS draws a sample
from a Beta distribution (Line 12), and KL-S computes the KL-UCB index for each arm
(Line 25), which can be done efficiently via Newton’s method. Given that these op-
erations are done in constant time and that finding the top-L; elements among K ele-
ments takes O(K log K) in the worst case (L; = K), each round of the proposed algorithm
takes O(K log K) time. Therefore, the total computational complexity of the algorithm
is O(TK log(K)). The space complexity of the algorithm is O(K), as it only keeps four
statistics (a;, i, Ni, S;) per arm i € [K].

Algorithm 5.1 S-TS([K], ™)

Require: Set of arms [K] = {1, 2,...,K}, target efficiency n*
1: a;(1)=0,8;(1) =0 Vie[K]
2: Ni(1)=0,5;(1)=0 VielK]

3: L « K

4: fort=1,2,...,T do

5: I(t), X(t) « MP-TS(L;) > Play L; arms (as in MP-TS)
6: for i € I(t) do

7: N,’(t + 1) = Ni(t) +1

8: S,’(t + 1) = Si(t) + Xi(t)

9: L;+1 « KL-S(Ly) > Scale L; for the next round

10: procedure MP-TS(L;)

11: fori=1,...,Kdo

12: 0;(t) ~ Beta(a;(t) + 1, fi(¢) + 1)

13: Play arms I(t) := arg maxy (g |k’ |=L, >K6:(t)
14: Observe reward vector X(t)

15: for i€ I(t) do > Update parameters
16: (Xi(t + 1) = a,—(t) + Xi(t)
17: Bi(t +1) = Bi(t) + (1 - Xi(1))

18: return I(t), X(t)

19: procedure KL-S(L;)
20: Si ZSi(t+l),Ni =Ni(t+l) Vi € [K]

21: ﬁi =Si/Ni VIE[K] >ﬁi =1, ifNiIO
22: Nt = Xien(r) Hi
23: if 7j; < n* then return max(L; — 1,1) > Scale down
24: else
25: KL = {maxq{Ni - d (i, q) < log 1} : Vi € [K]}
26: brm = (Ly + 1)-th largest element from KL

. R _ _Le » 1y
27: By : r_ilﬂt + mbLt_H(t)
28: if B; > n* then return min(L; + 1, K) > Scale up
29: else return L, > Do not scale
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5.3. Scaling Thompson Sampling with ADWIN

To handle the non-static setting (*3), we combine S-TS with ADWIN [BG07]. We call the
resulting algorithm Scaling Thompson Sampling with ADWIN (S-TS-ADWIN).

ADWIN (Algorithm 5.2) monitors the expected value from a single (virtually infinite)
stream of values {x, x, . . . }, where x; € [0, 1]. ADWIN maintains a window W of varying
size |W| = w so that the nature of the stream is consistent. ADWIN reduces the size of
the window whenever two neighbouring subwindows have different mean, based on a
statistical test with confidence 8. For every two subwindows of size |[W;| + |W| = |W]|
with corresponding means fiy;, fiw,, ADWIN shrinks the windows to W, if

L (4w
A A ) )
|law, = fiw, | = €y Where ey = \/ o 108 (T) (5.4)

and m = 1/((1/|W]) + (1/|Wx])). [BG07] showed that ADWIN efficiently adapts to both
gradual and abrupt changes with theoretical guarantees (see Theorem 3.1 therein).

Algorithm 5.2 ADWIN(B, 9)

Require: Stream of values B = (x1, x2, . . . ), confidence level §
1: W {}
2: fort=1,2,... do
3: W — WU {x;}
4: Drop elements from the tail of W until |fiw;, — fiw,| < €2, holds for every split W = W; U W,.

The idea behind S-TS-ADWIN, showed in Algorithm 5.3, is to create an ADWIN instance
A; per arm i. At each step t, A; obtains as input the reward from the corresponding arm
Xi(t) if i € I(t). Thus, each instance A; maintains a time window W; of variable size, which
shrinks whenever ADWIN detects a change in y;.

However, for any bandit algorithm with logarithmic regret, the number of plays of
suboptimal arms grows with log(T). That is, after some time, the A; of any suboptimal
arm j does not obtain any input, and thus no change can be detected for arm j.

Thus, we use w; = min{|W;| : Vi € [K]}, i.e., the smallest window from each A;, to
estimate the statistics of any arm i € [K] at each step t. Here, we implicitly assume that
the change points are ‘global’, i.e., that they are shared across the y;, Vi € [K]. In principle,
changes may also be ‘local’, e.g., a single p; changes. But we will show that despite this
assumption, it works well in practice.

By default, we set § = 0.1 for each instance, since [BG07] showed that it leads to a very
low empirical false positive rate and good performance. We show in our experiments that
this parameter does not have a significant impact on our results and that S-TS-ADWIN
performs very well against synthetic and real-world scenarios.

Computational complexity of Algorithm 5.3: We use the improved version of
ADWIN, dubbed ADWIN2 [BG07]. For a window of size w, ADWIN2 takes O(log w) time
per object. Since we have K instances of them, the time complexity of the ADWIN2 part is
in O(K log w) = O(K log T) per round. The space complexity of ADWIN2 is in O(w), but
the window typically shrinks rapidly in the case of a non-static environment. We show in
our experiments that the scalability of S-TS-ADWIN is almost the same as S-TS.
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Algorithm 5.3 S-TS-ADWIN([K], n*, §)
Require: Set of arms [K], target efficiency n*, delta §
1: ai(l) =0, ﬁi(l) =0 Vi e [K]
(1) =0,6(1)=0 Vie[K]
: Ni(1)=0,5(1)=0 VielK]
: A; « instantiate ADWIN with parameter 8, Vi € [K]
L <K
fort=1,2,..., T do
I(t), X(t) « MP-TS(L;) > Play L; arms (as in MP-TS)
fori € I(t) do
Ni(t + 1) = Ni(t) +1
10: Si(t+1) =S;(t) + X;(¢)
11: Add X;(t) into A;
12: L;y1 < KL-S(L;) > Scale L; for the next round
13: w; «— min{|W;| : Vi € [K]} > Keep the smallest window
14: Nit+1)=3"¢ 1(i € I(j))

j=t—w;

15 Sit+1) =3¢ Xi(j) = 1(i € 1(j))

Jj=t=w;

16: Oli(t + 1) = Si(t + 1), ﬁl‘(t + 1) = Ni(t + 1) - Si(t + 1)

AN A

h

5.4. Theoretical Analysis

We analyse the properties of scaling bandits. In particular, we measure the capability of an
algorithm to control the size of L; by introducing a quantity called ‘pull regret’. Our analysis
is general: we show that not only S-TS (Algorithm 5.1) but that KL-S, combined with any
MP-MAB algorithm of logarithmic regret, has logarithmic pull regret. We introduce our
notation in Section 5.4.1 and proceed to our main theorem in Section 5.4.2.1.

5.4.1. The General Scaling Bandit

We assume there is a unique L*, such that XX, yi;/L* > n* and X5 1 /(L* + 1) < .
Let A = min(A,, Ap) be the ‘gap’, i.e., the absolute difference between n* and the closest
possible 1, with A, = (ZiL; pi—n*)>0and Ay = (n* - ,L:fl ui) > 0.

Let us first generalise S-TS in Algorithm 5.4. A ‘base bandit’ (MP-BASE-BANDIT, Line 4)
is an abstract bandit algorithm that, given the reward information up to the last round
and the current number of plays L;, decides on I(t), i.e., which arms to draw, and returns
the reward vector X(t) at each round ¢.

Algorithm 5.4 General Scaling Bandit ([K], ™)

Require: Set of arms [K], target efficiency n*
1: Ni(1)=0,S5(1)=0 Vie[K]

2: L « K

3: fort=1,2,...,T do

4 I(t), X(t) « MP-Base-BANDIT(L;) > Play L; arms
5 for i € I(t) do

6: N,’(t + 1) = Ni(t) +1

7 S,’(t + 1) = Si(t) + Xi(t)

8 L1 « KL-S(L;) > Scale L; for the next round

69



5. Scaling Multi-Armed Bandit Algorithms

If we set MP-BAse-BANDIT = MP-TS, then Algorithm 5.4 becomes Algorithm 5.1. As an
alternative to MP-TS, one could consider for example Multiple-Play Kullback-Leibler UCB
[GC11; KHN15] (MP-KL-UCB) (resp. Combinatorial UCB [Che+16] (CUCB)) that draws the
top-L; arms in terms of the KL-UCB indices (resp. Upper Confidence Bound [Aue+02] (UCB)
indices) or Exp3 with Multiple plays [UNK10] (Exp3.M) that uses exponential weighting.

To evaluate whether our scaling strategy converges to the optimal number of pulls L*,
we define a new notion of ‘pull regret’ as the absolute difference between the number of
pulls L; and L*:

T
PReg(T) = Z IL* — L, (5.5)

t=1

The ‘standard’ multiple-play regret, with varying L;, measures how many suboptimal arms
the algorithm draws. It is defined as:

T

Reg(T) = Z e Zuz Z Hi (5.6)

t= i€l(t)

Notice that, when an algorithm uses L; = L* in each round, the pull regret is 0, and the
regret boils down to the existing MP-MAB. Achieving sublinear pull regret means that the
algorithm satisfies the efficiency constraint, while sublinear regret means that it maximises
the total reward, so we need to minimise both regrets.

5.4.2. Regret Bound
5.4.2.1. Logarithmic Regret
For any event X, let X° be its complementary. For X, 1(X) = 1 if X holds or 0 otherwise.

Definition 5.1 (Top-L; Set). I(t) : |I(t)| = L; is a top-L; set if it contains the L, arms with
highest expectation y;. Let A; be the event that I(t) is the top-L; set.

Definition 5.2 (Logarithmic Regret Algorithm). A base bandit algorithm has logarithmic
regret if there exists a distribution-dependent constant Cyg = Cqo({p1;}) such that

Pr [Af] < ClogT

M=

t=1

Remark 5.1 (Logarithmic Regret of Multiple-Play Bandits). Note that Definition 5.2 is
equivalent to state that the regret of Eq. (5.6) is logarithmic. Based on the existing analyses
[Che+16], one can prove that MP-KL-UCB [GC11] and MP-TS [KHN15] have logarithmic
regret for varying L;. For completeness, we show that MP-TS has logarithmic regret in Section
5.4.2.2, using techniques from [AG13].

The following theorem states that our policy has logarithmic pull regret, i.e., that the
number of pulls converges to L* when we combine it with a base bandit algorithm of
logarithmic regret.
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Theorem 5.1 (Logarithmic Pull Regret). Let the general scaling bandit of Algorithm 5.4 with
a base bandit algorithm of logarithmic regret be given. Then, there exist two distribution-
dependent constants C-"%, Cy® = CY"8({1;}), Ci8({p;}) such that

E[PReg(T)] < C¥"®logT, (5.7)
Moreover, the standard regret of the proposed algorithm is bounded as
E[Reg(T)] < C;®logT. (5.8)

Let us first define the events needed for the proof:

Bi={L LN >nyU{L>L" N <n'} (5.9)
C={L > L"UB, > n*} (5.10)
Dy ={L, < L*UB, < 5"} (5.11)

The following lemmas are key to bound the pull regret:

Lemma 5.1 (Scaling). L; € {L*,L* + 1} holds if

Proof of Lemma 5.1. By N Cyp implies

o Ly 1=Lp+1 ith/ < L%,

o Ly e{l*L*+1}ifLy =L"

o Lyy=Ly—1ifLy >L"+1

AsL* —L;_g < K, there exists t, € {t - K,t =K +1,...,t — 1} such that L,y = L*, and
after the round ¢/, L € {L*,L* + 1} holds. O

Lemma 5.2 (Sufficient Condition of No-regret). L, = L* holds if

ﬂ {8y NCp} N Dyy.

t'=t—-K,...,t—1

Proof of Lemma 5.2. Lemma 5.1 implies L,y € {L*, L* + 1}, which, combined with B,_; N
Ci—1 N D;_4 implies that, at round ¢ — 1, it scales to L; = L*. O
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We can now proceed to the proof of Theorem 5.1:

Proof of Theorem 5.1. Lemma 5.2 implies that, if the direction of scaling is correct and the

confidence bound is sufficiently small, then L; goes to L*. We decompose the pull regret
using Lemma 5.2:

T
PReg(T) < KZ 1[L; # L*]

t=1

(since PReg(t) increases at most by K at each round)

T -1
<K)'1 [( ) (A usLuc) qu_l) NL #L*

(by the contraposition of Lemma 5.2)

T t—1
<K+K ) (1[ ) (A ussuc)

t'=t—-K

K+1
-1
ﬂ (ASNB,NC)NDF NL #L*

|

t'=t-K
T

<K +K? Z (1[AG] + 1[Ay N B5] + 1[Ay N C)
t'=K+1

T t—1
+K Z 1 ﬂ (ArNByNCHNDE NL # L (5.12)
t=K+1 t'=t—-K

The following lemma bounds each term in Eq. (5.12) in expectation.

Lemma 5.3 (Bounds on each Term). The following bounds hold:

T
Pr[AS] = O(logT) Z Pr[A, N BE] = O(1/A?)

t=1

WMH
X

N’

(A) (B)

T
Z Pr[A; N C¢] = O(1/A?) + O(loglog T)
t=1

(©)

T t—1
D Pr| ()(Ar 0 Br N Cr) N Dfy, Ly # L) =0(1/A%).

t=K+1 |t'=t-K

(D)

Eq. (5.7) now follows from Lemma 5.3. Eq. (5.8) follows from the fact that the base
bandit algorithm has logarithmic regret. We will prove Lemma 5.3 shortly after. [
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Discussion: Following the bandit literature, we assume that parameters {y;} (and thus
the gap A) are constants. Although Lemma 5.3 uses the Landau notation, all the terms®
in the analysis are explicitly written, i.e., they are finite-time. One can also see that the
leading term of the pull regret and the regret are O(log T/A?) when the regret of the base
bandit algorithm (Definition 5.2) is O(log T/A?): our scaling bandit algorithm targets at
the largest L such that (1/L) >};<; pi > 1", and the gap A characterises the hardness of
finding such an L. For ease of analysis, we omit the dependence on K.

In what follows, we show that Remark 5.1 holds for MP-TS. Then, we prove Lemma 5.3.

5.4.2.2. Performance of MP-TS as a ‘base bandit’ algorithm

Let the posterior sample of TS at round t be 60;(t) ~ Beta(a;(t) + 1, f;(t) + 1). Note that
Af, T = [ implies that there exists i < [, j > [ such thati ¢ I(t), j € I(t). Letd = pj —p; > 0
and x,y = pj+d/3, y;+2d/3. Let the events &; ,(t) = {/i;(t) < x} and &; »(t) = {0i(t) < y}.
Let 0)(t) be the [-th largest from {0;(t)} (ties are broken arbitrarily). We have

ZT:Pr[ﬂf] :i >opr[ANT =1]
t=1 t=1 Ie[K]
Siz > Pt[T=InigI)njelt). (5.13)

t=1 [e[K] i<l,j>1
Here,
PriT=Inigl(t)njelt)] <Pr|T=1ny < 6t)]
+Pr[T=1n06yt) <yno(t) <yl. (5.14)

Let p;, = Pr[6;(t) > y N Ni(t) = n]. The following discussion is essentially equivalent to
Lemma 9 in [KHN15]. Let 6;)\;(t) be the value of the I-th largest among {0;} je[x}\;- Thus,

Zl [T =10 60)t) <yn6it) <y]

t=1

M=
M=

< 1[T =1n0y(t) <yn6i(t) <ynNi(t) = n]

I
—_

t=1

n

M=
M=

1T =1n0u)i(t) <yn6i(t) < ynNi(t) = n]

n=1 t=1
T T T
< ZZI m< > 1[T=1n0y(t) <yn6i(t) <ynN/=n]|.
n=1 m=1 =1
The event .
m < > 1[60(t) <y N 6i(t) < y N Ni(t) = n] (5.15)
t=1

2 (including the involved underestimation term of Lemma 5.7, cf. [Mai17] for an explicit bound)
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5. Scaling Multi-Armed Bandit Algorithms

implies that {6;)\;(t) < yN;(t) < yNN;(t) = n} occurred at least m rounds, and {6;(¢) < y}
occurred for the first m rounds such that Eq. (5.15) holds. By the statistical independence
of O)\i(t) and 6;(t), we have

Pr [m <1 [T =1IN0Op\) <ynoi(t) <yn Nit = n]] <(1-pin)™.
and following the same steps as Lemma 9 in [KHN15], we have

T T T op,
3 30-pr <3 120
n=1 Ln

n=1 m=1

<

G =) (by Lemma 2 in [AG13]). (5.16)

Moreover, by Lemma 4 and Lemma 3 in [AG13]:

Pr|T=Iny<6,t)] <Pr[T=Injelt)ny < 0i(t)nx> fi]
+Pr[T=1njel(t)nx < fi]

<( log T +1)+(;+1) (5.17)
~ \dk(x,y) di(x, 1) ,

where dxi(p, q) = plog(p/q)+(1—p)log((1—p)/(1—q)) be the KL divergence between two
Bernoulli distributions. From Eqgs. (5.13), (5.14), (5.16), and (5.17), Zthl Pr [ﬂf] = O(logT).

5.4.2.3. Proof of Lemma 5.3

In this section, we bound each of the terms (A)—(D) in Lemma 5.3. Let us first describe the
following required lemma:

Lemma 5.4 (Uniform Bound). Let

Gi(t) = [ {Iu®) -l < A}

i<l

Forl € [K], the following inequality holds:

T
Z Pr[A, N T = 1N GE(t)] = O(1/A?). (5.18)
t=1

Proof of Lemma 5.4. Event A implies each arm i < [ is drawn, and thus

T T
D P ANT =10GH 0] < 1+ ) Prljisn — pul < Al
=1

n=1

1 1
<1+ We—chAz (by Lemma 5.6) = O (E) . O
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Bounding Term (A): Term (A) is directly bounded by the fact that the base bandit
algorithm has logarithmic regret.

Bounding Term (B): Note that B, = {T < L* N, < y*} U{T > L*N#; > n*}, and
{A; N Gi(t)} implies B;. By Lemma 5.4,

T

T
DPAN B < Y Y PrlA N Gi()] = O(1/A?). (5.19)

t=1 le[K] t=1

Note that A; N L; = [ implies arms 1,...,[ are drawn.
Bounding Term (C): The event A; N Bf(t) < n* implies G/ (t) U by4+1(t) < py+1 — A. By
using this, we have

L*-1 T
Pr[A,NCHI < Y Y PANT =10 Bi(t) < ']
=1 t=1

-
||M~1
N

h
*
R

Pr[A;NT =10 (G{(t) Ubu(t) < psr — A)]

DM T
D= 1= 1D

h
*
AN

(Prl A N T = 10 GF(E)] + Pr[bisa(t) < uer — Al)

5 o~

A
A

KA

IA

Pr[A;NT =1nG(t))] + O(loglog T)

—
Il
—

=1t
(By the union bound of Lemma 5.7 over ¢t € [T])
= 0(1/A?) + O(loglog T)  (by Lemma 5.4). (5.20)

Bounding Term (D): Note that ﬂi,_:lt_K (Ay N By NCyp) implies Ly € {L*,L* + 1}.
Thus, T # L* implies Bl.LH(t - 1) > n*, and BiLH(t —1) > n* implies gft_l(t) Ubr, (1) >
UL, ,+1 + A. Moreover, ﬂﬁ,_:lt_K (A N By N Cr) N Dy, implies that arm L* + 1 is drawn
in either round t — 1 or round ¢, and thus the event

t—1
ﬂ (A NBy NCr)ND;_; N Npeyy(t) =n
t’'=t—K

occurs at most twice for each n.
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By using these, we obtain

T t—1
Z Pr ﬂ (A N By NC)NDE NT # L)
t=K+1 t'=t—K

4logT
A2

<K Z ZT:Pr[ﬂt NGI(H] +K +

le{L*,L*+1} t=1

T
2logT
t=K+1
4log T
<O(1/A*) +K + 25
T
2log T
+ Z Pr|bpyi(t — 1) > pregq + AN Ny (2) > % ]
t=K+1

(by Lemma 5.4)
4logT
A2

U e 2 Hrs1 FANNL, = n)] : (5.21)

<O0(1/A*) +K + ——

+ZZPr

210gT

and the last term is bounded as

T

> Pr

2log T
n= Az

t

U (breg1(t) > pres1 + AN Npyq(t) = n)]

T
< Z Pr [ndx(fir+1m pres1 + A) < log T

_2logT
AZ
T

Z 2”(,UL *+1,n — HL*+1 — A)2 < log T]

(by 1nsker s inequality)

L . logT
Z r i S p+A-
2n
T T
Z s <p+af2] < Y e = 0(1T)
_2logT
= 2o
(by Hoeffdlng inequality). (5.22)
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5.4.2.4. Concentration Inequalities
The following inequalities are used to derive Lemma 5.3.

Lemma 5.5 (Hoeffding’s Inequality). Let X1, ..., X, be independent random variables tak-
ing values in [0, 1] with mean u = (1/n) 2.7 X;. Let ji = (1/n) 3.7, X;. Then we have:

2

Pri> p+e] <e 2 and Prlji < p—e] < e 2. (5.23)

Lemma 5.6 (High-Probability Bound). Let i; , be the empirical estimate of p; at Nj(t) = n.
For any e > 0 and n; > 0, the following bound holds:

Pr

" 1 e
N;(t)=nn U |,u,-,n—y| > E] < 2_626 2nee”,

n=n.
Lemma 5.6 is derived by using the Hoeffding inequality and the union bound over n.

Proof of Lemma 5.6.

Pr [Ni(t) =nn U |f(t) —pl > €

n=n,g
< Y Pr[Ni(t) =n 0 |jut) - pl > €]
n=n.g

< e—2nce2 Z e_2"€2 (by Hoeftding inequality)
n=0

2¢?
e —2n,e? 1

e -1~ 22’

—2nce2

—e O
Lemma 5.7 (KL-UCB Index Underestimation, Corollary 23 in [Mail7]). The following
inequality holds: Let € > 0 be arbitrary. There exists constants T., Cx;, = Cxr({pi}, €) such
that, fort > T,

CkL

. _ el < )
Pr(bi(t) < pi— €] < tlog t

(5.24)

5.5. Experiments

This section evaluates the performance of S-TS and S-TS-ADWIN. We compare against
alternative ‘base bandits’ and to the state-of-the-art non-static bandit algorithms. We also
highlight the benefits of scaling by comparing against non-scaling bandits. We simulate
scenarios with 10° steps to evaluate our approach in static (Section 5.5.1) and non-static
(Section 5.5.2) environments. Then, we present a study where we have monitored real-
world data streams (Section 5.5.3). We will also verify the scalability of our approach.

We have implemented every approach in Scala and averaged our experimental results
across 100 runs. Each algorithm was run single-threaded in a server with 64 cores at 3 GHz
and 128 GB RAM.
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5. Scaling Multi-Armed Bandit Algorithms

5.5.1. Static Environment

In this section, our goal is to verify the capability of S-TS to find L* and maximise the
reward in a static environment. We compare S-TS in terms of pull regret and standard
regret against alternative scaling bandits, i.e., by replacing the base bandit with MP-KL-
UCB [GM11; KHN15], CUCB [Che+16], and Exp3.M [UNK10]. We adapt each algorithm so
that they ‘scale’. The prefix ‘S-’ stands for the use of KL-S. For instance, Scaling Kullback-
Leibler UCB (S-KL-UCB) is Algorithm 5.4 where the MP-BAse-BANDIT chooses the top-L
arms based on the KL-UCB index [GC11]. We simulate a static scenario with K Bernoulli

arms with known means py, ... pg and T = 10°, such that
. K
K i 1
AWK _ )P 5.25
btz {K 3K}i:1 (525

Given this, the means of the K arms are distributed linearly between 0 and 1, such that,
when n* = 0.9, then L* = K/5, and when n* = 0.8, then L* = 2K/5, and so on. We set
K = 100. We measure the regret and the pull regret of each approach against a Static
Oracle (SO), which always pulls the top-L* arms in expectation. S-SO is a ‘Scaling’ Static
Oracle, i.e., it uses KL-S to determine L;.

In Figure 5.1, the first row shows the convergence to L*. The second and last rows show
the pull regret and standard regret, respectively. We see that S-TS and S-KL-UCB perform
best since they obtain the lowest regret for both measures. When ™ is smaller, the number
of pulls T converges faster to L*, for two reasons: (i) the optimal number of pulls L* is
closer to the starting condition L;, and (ii) a lower * allows more exploration and more
plays per rounds. So the top-L* arms are found in fewer rounds with higher confidence.

We also see that S-Exp3.M does not perform very well. S-Exp3.M targets at the ad-
versarial bandit problem [UNK10]. Le., its assumptions regarding the rewards distribution
are weaker. The policy, based on exponential weighting, forces Exp3.M to explore much
so that our scaling policy KL-S lets T quickly drop to 1. Nonetheless, we see that after
many steps, S-Exp3.M increases T again.

5.5.2. Non-Static Environment

In this section, we want to verify whether S-TS-ADWIN adapts to changes in the reward
distribution. We compare our results against the following state-of-the-art non-static
bandit algorithms:

+ Discounted Thompson Sampling [RK17] (dTS) applies a discounting factor y to the
parameter «;, f; of the Beta posterior for each arm i € K at each time step ¢.

« Epsilon-Greedy [SB18] (EG) successively selects with probability € the arm with the
highest reward seen so far. Otherwise, it selects an arm randomly.

« Sliding Window UCB [GMO08] (SW-UCB) discards any information older than a
sliding window of fixed size w.

We set n* = 0.6 and use the previous static setup to generate our non-static scenarios.
In line with the literature [Gam+14], we simulate ‘gradual’ and ‘abrupt’ changes:
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n*=0.9 n*=0.7
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Figure 5.1.: Static experiment: S-TS minimises both regrets.

« Gradual: We place 60 equidistant change points over the time axis. For the first 30
change points, we set y; = 0 for the arm h € K with the current highest expected
reward. Then, we revert those changes in a ‘last in - first out’ way. Thus, L* evolves
gradually from 80 to 20, and back.

« Abrupt: We place two change points, equidistant from the start and end. At the
first one, we set y, = 0 for the top-30 arms. We revert this change at the second
change point. Thus, L* abruptly changes from 80 to 20 and back.

Since the environment is non-static, y; and L* now vary as a function of t. Thus, we
measure regret against a piecewise static oracle, which ‘knows’ p;(t) and L*(t).

A key result from this experiment is that S-TS, which assumes that arms do not change
over time, fails to adapt to a changing environment. In contrast, our improvement, S-TS-
ADWIN, does (Figure 5.2) and even outperforms all alternatives (Figure 5.3).

Figure 5.2 shows that S-CUCB(-ADWIN) and S-KL-UCB(-ADWIN) behave similarly to
S-TS(-ADWIN), but have slightly higher regret and pull regret. S-Exp3.M has very high
pull regret. Overall, we see that our adaptation based on ADWIN made it possible to
handle both gradual and abrupt changes.
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Gradua Abrupt

100 . . .

+— S-CUCB 1 —— sxLucs
-+ 5-CUCB-ADWIN S-KL-UCB-ADWIN

s— S-Exp3M o STS

S-Exp3.M-ADWIN STS-ADWIN

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

T x10° T x10°
Figure 5.2.: Non-static experiment: S-TS vs. S-TS-ADWIN.

Figure 5.3 compares our approach to the existing non-static bandit alternatives. S-dTS
tends to underestimate L* in the case of a strong discounting factor, e.g., for y = 0.7. On
the contrary, S-SW-UCB overestimates L*, in particular when the window size w is small.
S-EG behaves similarly as the static approaches: it does not adapt to change quickly.

We also see that S-TS-ADWIN is robust for a large range of §, except for very small
values, e.g., 0.01 and 0.001. The best results are obtained with § = 0.1, which is consistent
with the results in [BG07]. Other approaches, in turn, are quite sensitive to their parameters.
For example, we can see that a weak discounting factor of y = 0.99 is beneficial for dTS in
the case of a gradual change, but that more aggressive discounting is better with abrupt
changes. The figure shows that our approach adapts to different kinds of change, as
opposed to the other approaches, without tuning its parameter.
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100 +
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1.0
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—+— S-EG; € =0.7 —#— S-SW-UCB; w = 100

Figure 5.3.: Non-static experiment: Non-static bandits.

5.5.3. Case Study: Monitoring Dependency

In this section, we look at our real-world example: the Bioliq power plant. We create a data
set corresponding to a week of measurements. It contains one measurement per second
from a selection of 20 sensors, such as temperature, pressure, in various components.

We consider Mutual Information (MI) [KSG04] as a measure of correlation, which we
have computed pair-wise between all attributes over a sliding window of size 1000 (~ 15
minutes) with step size 100 (~ 1.5 minute). Our goal in this use case is to employ bandit
algorithms as a ‘monitoring system’ to keep an overview of large correlation values in
the stream. Whenever the monitoring system detects a MI value higher than a threshold
T, it obtains a reward of 1, otherwise 0. The challenge is to decide which coeflicients to
re-compute and how many of them at each step. This results in a S-MAB problem with
6048 steps and (20 * 19)/2 = 190 arms.

Figure 5.4 is the reward matrix for I' = 2. We see that there are fewer rewards at the
beginning and end of time. This is because the week is bordered by periods of lower activity
in the plant. In the weekends, we observe fewer correlations than during weekdays.
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Figure 5.4.: Real-world experiment: Distribution of rewards.

Since there is no ground truth {y;(t)}, it is not possible to assess the pull regret nor the
standard regret. Instead, we compare the rewards and costs across algorithms: whenever
an Algorithm A obtains more rewards than an Algorithm B for the same cost (i.e., number
of plays), we conclude that A is superior to B. We compare against oracles with different
levels of knowledge: Random Oracle (RO), Static Oracle (SO) and Dynamic Oracle (DO)
are shown as a black, green and gold dotted lines respectively.

In Figure 5.5, we set n* = 0.8 and visualise the evolution of the number of plays over
time for various approaches. S-TS-ADWIN is the closest match to S-DO-ADWIN, our
strongest baseline. This indicates that S-TS-ADWIN adapts to changes of rewards to find
a proper value for T, unlike static algorithms such as S-TS.

Figure 5.6 shows the relationship between the average reward and the average cost
(in terms of number of plays) of each algorithm. S-TS-ADWIN consistently yields higher
rewards than DO for the same costs. TS-ADWIN (without scaling) also is superior to
SO. Here we see the full benefit of our scaling policy with S-DO-ADWIN: the scaling
dynamic oracle consistently achieves nearly maximal reward, while pulling fewer arms
than a non-scaling algorithm. In other words, it outperforms its non-scaling counterpart.

Surprisingly, the UCB-based approaches do not perform well without scaling; they
are close to the Random Oracle (RO). We hypothesise that ADWIN keeps the size of the
dynamic window small in the real-world setting; w; remains small, affecting the sharpness
of the confidence bound. However, when our scaling policy is used, both approaches
perform slightly better than DO.

We also verify that S-TS-ADWIN can adapt to different environments by changing I',
which influences the availability of rewards. We see here that the improvement against
our baselines is consistent, i.e., our algorithm also adapts the number of plays per round.
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Figure 5.5.: Real-world experiment: Variation of T and 7;.
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Figure 5.7.: Scalability of bandit algorithms w.r.t. K and T.

Finally, we evaluate the scalability of our approach w.r.t. K and T. To do so, we stick
to our real-world example and create versions of the problem of different size with 10 to
2000 arms and up to 10° steps, by resampling the arms and observations. Then, we run
our real-world experiment with I' = 2 and average the runtime with scaling parameter n*
from 0.1 to 0.9. Figure 5.7 shows the result.

We see that each bandit approach scales linearly with the number of arms and the
number of steps. S-CUCB is the fastest one, closely followed by S-TS and S-KL-UCB. S-
Exp3.M is two orders of magnitude slower w.r.t. K. By comparing S-TS and S-TS-ADWIN,
we see that the added computational burden from ADWIN is small and scales alike with
an increasing number of arms and time steps. Each bandit approach, except Exp3.M, is at
most one order of magnitude slower than choosing arms at random (RO). We see that our
approach requires on average one millisecond to decide which arms to play when K = 100.
This is typically less than the time required at each step to estimate MI on a single pair,
using state-of-the-art estimators [KSG04].

Altogether, our experiments verified that our algorithms, S-TS and S-TS-ADWIN, are
both effective and efficient. S-TS outperforms state-of-the-art bandits in the static setting,
while S-TS-ADWIN adapts better to different kinds of change than its competitors. In
our real-world example, S-TS-ADWIN obtains almost all the rewards in the environment
for a cost reduced by up to 50%, outperforming very competitive baselines, such as a
non-scaling dynamic oracle.

5.6. Discussion

We have proposed a new algorithm, S-TS, which combines Multiple-Play Thompson
Sampling [KHN15] (MP-TS) with a strategy to decide on the number of arms played per
round, a so-called ‘scaling policy’. Our analysis and experiments showed that it enjoys
strong theoretical guarantees and very good empirical behaviour. We also proposed an
extension of our algorithm for the non-static setting. We applied the proposed model
to data stream monitoring and showed its utility. However, we expect the impact of
our contribution to extend beyond this one application. In the next part, we discuss
applications to Knowledge Discovery in high-dimensional data streams.
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6. Subspace Search in Data Streams

This chapter builds on our contributions from Chapter 4 and 5. Our main results have not
been officially published yet, but we present them in the following manuscript:

« Edouard Fouché, Florian Kalinke and Klemens Béhm. Efficient Subspace Search in
Data Streams. 2020. arXiv: 2011.06959 [cs.LG]

Keywords: Subspace Search; Data Stream Monitoring; Outlier Detection

6.1. Chapter Overview

In the real world, data streams are ubiquitous — think of network traffic or sensor data.
Mining patterns, e.g., outliers or clusters, from such data must take place in real time.
This is challenging because (1) streams often have high dimensionality, and (2) the data
characteristics may change over time. Existing approaches tend to focus on only one aspect,
either high dimensionality or the specifics of streams. For static data, a common approach
to deal with high dimensionality — known as subspace search — extracts low-dimensional,
‘interesting’ projections (subspaces), in which patterns are easier to find.

However, searching for subspaces is difficult with static data already, because the
number of subspaces increases exponentially with dimensionality. In [Agg13], Aggarwal
compared the task of finding a pattern (e.g., an outlier) in high-dimensional spaces to that
of searching for a needle in a haystack, while the haystack is one from an exponential
number of haystacks. At the same time, [TB19] showed that to ensure high-quality results,
the set of subspaces found must also be diverse, i.e., have low redundancy.

The streaming setting comes as an additional but orthogonal challenge. Stream mining
algorithms are complex and must satisfy several constraints [DHO03] (see Section 1.1.3).
While a periodic recomputation of existing, static methods may cope with C2 (Single
Scan) and C3 (Adaptability), this is not efficient (C1) and results may not be available in
an anytime fashion (C4). Last but not least, data streams may also be heterogeneous (C5).
Considering these challenges, the analogy above becomes more complex: The haystacks
(subspaces) of interest are not only hidden but also change over time.

In this chapter, we address those challenges by extending the idea of subspace search to
data streams. We propose a new approach, Streaming Greedy Maximum Random Deviation
(SGMRD), to monitor subspaces of interest in high-dimensional data streams. In a nutshell,
we show that (1) our approach leads to efficient monitoring of relevant subspaces, and (2)
such monitoring also improves subsequent Knowledge Discovery tasks, such as outlier
detection. We compare our approach to competitive baselines and state-of-the-art methods.
We release our source code and benchmark on GitHub', to ensure reproducibility.

1 https://github.com/edouardfouche/SGMRD
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Figure 6.1.: Dimension-based subspace search versus other methods (d = 10).

6.2. Problem Formulation

6.2.1. Dimension-Based Subspace Search

Subspace search in the static setting has already been formalised in the literature. The
goal is to find a set of subspaces that fulfils a specific notion of optimality. Such subspaces
must at the same time (1) be likely to reveal patterns (the ‘haystacks’ from the analogy
above) and (2) be diverse, i.e., have low redundancy with each other.

To this end, the idea is to deem a set of subspaces optimal if adding or removing a
subspace to/from this set makes the search results worse. To ensure diversity, the notion of
optimality of each subspace must be tied to a specific dimension. This way, the resulting set
may consist of the best subspaces w.r.t. each dimension, and each dimension is represented
in this manner. This is the essence of what we call ‘dimension-based’ search.

To illustrate this, we show in Figure 6.1 an exemplary result from a dimension-based
search and from another scheme. Dimension-based results are more diverse compared
to other results, which tend to over-represent some dimensions. Previous work [TB19]
showed that the diversity from dimension-based approaches is key to improve the per-
formance of subspace search algorithms.

Formally, we define a so-called Dimension-Subspace Quality Function (D-SQF), to
capture how much a dimension s; helps to reveal patterns in a subspace S:

Definition 6.1 (D-SQF). Forany S € (D) and anys; € D, a Dimension-Subspace Quality
Function (D-SQF) is a function of type q : P(D) X D + [0, 1] with q(S,s;) = 0,Vs; ¢ S.

q(S,si) = 1 means that S has the maximum potential to reveal patterns w.r.t. s;. Put
differently, patterns may become more visible as one includes s; in S. In turn, ¢(S, s;) = 0
means that S cannot reveal any patterns w.r.t. s;. By definition, ¢(S, s;) = 0 if s; is not part
of S because the subspace cannot reveal any pattern in s;.

Recent studies [Wan+17; TB19] instantiate such D-SQF as a measure of correlation,
which one can estimate without any ex-post evaluation, i.e., it is not specific to any Data
Mining algorithm. With this, subspace search remains independent of any downstream
task. We can define a notion of subspace optimality:
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Definition 6.2 (Optimal Subspace). A subspace S € P (D) is optimal w.r.t. s; € D and a
D-SQF q if and only if

q(S,s1) 2 q(S',s1) VS € P(D).
Then the optimal subspace set S* is the set of optimal subspaces in D for all s; € D:

Definition 6.3 (Optimal Subspace Set). A set S* is optimal w.r.t. D and a Dimension-
Subspace Quality Function (D-SQF) q if and only if

Vs; € D, 3S € S* 5.t. VS" € P(D), q(S,s;) = q(S', s;).

Thus, the optimal set S* contains one subspace S for each dimension s; € D, each one
maximising the quality g w.r.t. s;. In other words, we can see S* as a mapping of each
dimension s; € D to an optimal subspace w.r.t. that dimension:

S*:s;€ D> SeP(D) s.t. VS e P(D) q(S,s) = q(S,s).

Finding S* is NP-hard [Ngu15]. This is because one needs to assess the D-SQF of a set
whose size grows exponentially with the number of dimensions. In fact, even finding
a single optimal subspace is NP-hard. Thus, existing techniques do not guarantee the
optimality of the results, but instead target at a good approximation of S*, while keeping
the number of subspaces considered small.

This idea is suitable in the static setting [KMB12; Wan+17]. [TB19] showed that it leads
to diverse sets of subspaces with better downstream mining results. Here, we propose a
generalisation for streams.

6.2.2. Dimension-Based Subspace Search in Data Streams

The quality of subspaces, estimated via statistical correlation measures, may change over
time, manifesting a phenomenon known as ‘concept drift’ [BGE15] (see Section 1.1.3).
Thus, in streams, the quality function q is time-dependent, and so we write S* and g;.
Then, the problem becomes more complex — observe the following example:

Example 6.1 (Variation of Mutual Information). We obtained measurement data from
the Bioliq power plant (cf. Section 1.1.5) and computed the evolution of Mutual Information
between a set of 10 sensor pairs for a single day. Figure 6.2 graphs the results. The Mutual
Information for pairs 1 and 2 remains stable for the whole duration, while it is more volatile
for pairs 3 to 6. The pairs 7 to 10 in turn show some change, but with less variance.

As the example shows, some subspaces remain optimal for a longer period of time,
while others frequently become sub-optimal. So the difficulty is that, even if one finds
the set of subspaces S}, there is no guarantee that this set is optimal at time t + 1. Next,
it is impossible to even test the optimality of S*, because one would need to evaluate an
exponential number of subspaces.

Let us assume that the cost of evaluating the quality of a subspace is constant across
different subspaces and time. This is the case when considering existing correlation
estimators. We define a function &; : P(D) X D +— {0, 1} such that &,(S,s;) = 1 if one
computes q;(S, s;), otherwise 0. We can now formulate subspace search in data streams as
a multi-objective optimisation problem at time t with two conflicting objectives:
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Figure 6.2.: Evolution of Mutual Information between 10 sensor pairs at Bioliq.

1. Find a set S; which approximates S} well. L.e., minimise the sum of the differences
between the quality of the optimal set and the quality of the approximate set for
each dimension. This is the first objective O; = Z'Dl [qt(S*(s ), $i) — qe(Se(si), s,)]

2. Reduce the computation of the search, i.e., minimise the number of subspaces for

which one computes the quality at time ¢. This is objective O, = ZD Zp(D) &Ei(S, si).

If O; = 0, then S; = S;. Conversely, if O, = 0, then choosing S; boils down to random
guessing. Thus, objectives O; and O, conflict. They capture the trade-off between the
quality of the set of subspaces and the computation effort.

Definition 6.3 implies that the search is independent for each dimension. Thus, to
optimise O;, we must find a dimension-based search algorithm, which for any dimension
s; € D, returns a near-optimal subspace S w.r.t. the dimension. More formally:

Definition 6.4 (Dimension-based Search Algorithm). We define a dimension-based search
algorithm as a function SEARCH; : D — P(D), which for any dimension s; € D, returns a
subspace S minimising q;(S;(s;), si) — q:(S, si) at time t.

Such an algorithm is associated with a cost, which depends on the number of subspaces
evaluated. Le., each run of SEARCH; negatively impacts objective O,. Thus, an additional
challenge is to find an update policy 7 : t — P(D) to decide at any time, for which
dimension(s) one should repeat the search. We define it as follows:

Definition 6.5 (Update Policy). An update policy is a function x : t — P (D) which returns
Vt a setI(t) € P (D), so that one repeats the SEARCH; algorithm fors; € I(t).

Overall, to achieve subspace search in data streams, we must come up with an adequate
instantiation of the following elements:

« A quality measure g; : (D) X D — [0, 1].
« A dimension-based search algorithm SEarcH; : D — P(D).
« An update policy 7 : t — P(D).

Our approach, Streaming Greedy Maximum Random Deviation (SGMRD), addresses the
challenges described previously by instantiating and combining each of these elements in
a general framework.
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Figure 6.3.: SGMRD: A High-Level Overview.

6.3. Subspace Search in Data Streams

6.3.1. Our Approach: SGMRD

Figure 6.3 shows an overview of our framework, which consists of two steps:

1. Initialisation. We find an initial set of subspaces Sy, using the first w observations
in the stream. To do so, we run the algorithm SeEarcH; for each dimension. The
outcome of this step is a set of subspaces Sy, ..., Sy, one for each dimension.

2. Maintenance. For any new observation in the stream, we monitor the quality
of subspaces ¢;(S,s;) for S € S;, and decide, by learning a policy =, for which
dimension(s) we repeat the search, i.e., algorithm SEARCH;.

Our approach is general to some extent, as one could consider various instantiations
of each building block (Search, Monitor and Update). With SGMRD, we instantiate the
search function SEARCH; as a greedy hill-climbing heuristic, g; as an efficient dependency
estimator, MCDE (Chapter 4), and the policy 7 as a Multi-Armed Bandit (MAB) algorithm
with variable number of plays, S-MAB (Chapter 5). We describe the specifics of each block
and explain our design decisions in the following sections.

6.3.1.1. Search

SGMRD'’s initialisation searches for an initial set of subspaces using the first observation
window. Since finding the optimal set (cf. Definition 6.3) is not feasible, we instantiate
SEARCH; as a greedy hill-climbing heuristic. Our heuristic constructs subspaces in a
bottom-up manner. Algorithm 6.1 is our pseudo-code, and Figure 6.4 illustrates our idea.

In a first step (Line 1), we select the 2-dimensional subspace maximising the quality w.r.t.
si. In our example, s; = s, and the subspace with the highest quality is {s1, sz}. Then, we
iteratively test whether adding the dimension associated with the next best 2-dimensional
subspace containing s; (Line 4) increases the quality of the current subspace (Line 5). If
this is the case, we add it into the current subspace (Line 6), otherwise, we discard it. In
our example, the heuristic first considers adding ss, then s4.

The advantage of only considering 2-dimensional subspaces is that it keeps the runtime
of the search linear w.r.t. the number of dimensions. More precisely, we can see that the
heuristic computes the quality of exactly (|D| — 1) + (|D| — 2) = 2|D| — 3 subspaces. Thus,
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Figure 6.4.: Example of search w.r.t. s; with four dimensions.

the runtime of Algorithm 6.1 is in O(|D|). The search is independent for each dimension.
At initialisation, we run it for each dimension, so the initialisation is in O(|D|?).

Algorithm 6.1 SEARCH(s;)

Require: A dimension/attribute s; € D

1. S™mx g U (arg max g q:(si U sj,s,-))

2: S« S\ S§m

3: while S is not empty do

4: Seand « arg max; g q:(si Usj,si)

5 if ¢,(S™* U S ) > q,(S™*,s;) then
6 Smax . gmax Uscand

7 S« S\ Seand

8

: return subspace S™* C D

6.3.1.2. Monitor

So far, we did not discuss any concrete instantiation of the quality ¢;. In practice, one has
only a sample of observations, and thus, the quality can only be estimated from a limited
number of points. In what follows, we describe a new method to estimate the quality.
Considering the constraints from the streaming setting and the nature of the required
quality function, our method must fulfil the following technical requirements:
Efficiency. Since the search includes estimating the quality of numerous subspaces,
the quality-estimation procedure must be efficient, to cope with the streaming constraints.
Multivariate. Since subspaces can have an arbitrary number of dimensions, the quality
measure must be multivariate. Traditional dependency estimators are bivariate [Joe89].
Asymmetric. Since the quality values are specific to each dimension, the measure is
not symmetric. The quality of subspace {s1, s2} does not need to be the same w.r.t. s; or s.
We define the quality as a measure of non-independence in subspace S w.r.t. s;. Recall
that Definition 4.1 implies that the marginal distributions of each variable X; € X must be
equal to their conditional distribution w.r.t. X \ X;. We can estimate the quality as a degree
of non-independence w.r.t. a dimension X, and quantify it as the discrepancy between the
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empirical marginal distribution py, and the conditional distribution px,|x\x;). For the ease
of discussion, let us consider q;({s1, s2},s1). Then,

qr({s1, 52}, 51) o disc (Ps,, Ps|s,) » (6.1)

where disc is the discrepancy between both distributions.

To estimate this discrepancy, we propose a bootstrap method. Iteratively, we take a
random condition w.r.t. the dimensions S \ s; (i.e., restricting the other dimensions to a
random interval) and perform a statistical test between the sets of observations within and
outside of this random condition w.r.t. s;. This is the idea behind our main contribution
from Chapter 4, Monte Carlo Dependency Estimation (MCDE).

In the end, the quality is as follows:

M
q(S,5) = ) [T (B(ci), B@))] (6:2)
m=1

where c; is chosen randomly over M independent iterations, but the condition c; is chosen
such that s; is the reference dimension (see also Equation 4.7). The underlying statistical
test 7~ depends on the type of attribute s;. For example, if the attribute is of numerical
type, we use the two-sample Kolmogorov-Smirnov test (see Section 4.2.6).

Thus, our quality function inherits the benefits of MCDE. The incremental index struc-
ture gives way to an efficient (C1) estimation of subspace quality on streams (see Sec-
tion 4.6.2). Our index operates on a sliding window, so it only requires a single scan (C2)
and supports efficient insert/deletion operations. Furthermore, the anytime flexibility of
MCDE helps to control the trade-off between the accuracy of the search and execution
time (C4). Finally, MCDE handles heterogeneous streams (C5).

To monitor the quality estimates of each subspace in S; over time, we smooth out the
statistical fluctuations of the estimation process via exponential smoothing with parameter
y (as in Equation 4.20). Previous experiments from Chapter 4 showed that M = 100 with
Yy = 0.9 leads to good estimation quality and performance w.r.t. downstream tasks. The
outcome is a smoothed quality function Q; : D — [0, 1]:

Qrs1(si) = ¥ - qe(Se(si), 1) + (1 = y) - qr41(Se(sy), 51)- (6.3)

6.3.1.3. Update

The initialisation is expensive, because one needs to run the search (Algorithm 6.1) for each
dimension. While running the search for every dimensions optimises the quality of the
subspace set (Objective O,), it curbs efficiency (Objective O,). However, as in Example 6.1,
the dependence between dimensions can unexpectedly change over time. Thus, without
any assumption, it is not possible to exploit our knowledge from step t — 1. We mitigate
the computational cost over time by only repeating the search for a few dimensions.
The challenge is to find a policy 7 : t — P (D) to decide at any time step ¢ for which L
dimensions to repeat the search, where L < |D| is a budget per time step. The budget L
can either be set by the user, or it is based on the available computational time available
between two subsequent observations. Basically, it is a trade-off between O; and O,.
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To solve this challenge, we cast the decisions of the policy 7 as a MAB problem with
multiple plays [UNK10]. Multi-Armed Bandit (MAB) models are useful tools to capture
the trade-offs of sequential decision making problems. We model each dimension s; € D
as an ‘arm’. In each round ¢t = {1,..., T}, the policy r selects L < |D| arms I(t) C D and
runs the search for each s; € I(t). Then, there are two possible outcomes for each s;:

1. Success: SEARCH(s;) yields a better subspace than S;_1(s;), so we update S;(s;). The
policy receives a reward of 1.

2. Failure: SEARCH;,(s;) does not yield a better subspace, so we set S;(s;) « S;_1(s;).
The reward is 0.

The S-MAB model [FKB19] (Chapter 5) provides an adequate framework to optimise
the gains from the policy 7 in such setting. Let each dimension be an arm, i.e., K = |D]|.
We associate arm i € [K| with a Bernoulli distribution $B; with mean y;. At each round
t =1,...,T, apolicy selects a set of L; arms I(t) C [K] and repeat the search for these
arms/dimensions. The policy receives a reward vector X(t). The reward X;(t) = 1 if
the search is successful, 0 otherwise. Selecting an arm i € [K] leads to a cost in O(|D|),
normalised to 1. The policy aims to maximise the sum of the rewards, but such that it
is greater than the sum of the costs by an efficiency factor n* € [0, 1]. The parameter
n* models the trade-off between objective O; and O,. If n* = 0, then minimising O;
(improving quality) is much more important than O, (reducing computation). Conversely,
whenever * ~ 1, one must minimise computation as much as possible (see Section 5.2).

Thus, we use Scaling Thompson Sampling (S-TS) as an update strategy for SGMRD.
Algorithm 6.2 is the pseudo-code for our strategy. We initialise the statistics for each
arm/dimension, a;, f;, N; and S; to 1 and the initial number of plays L = |D|. The scaling
policy, Kullback-Leibler Scaling (KL-S), requires an additional parameter r*, as discussed
earlier (cf. Algorithm 5.1).

Algorithm 6.2 UrDATE(S;)

Require: A setof subspaces S, A target efficiency * and number of plays L (For KL-S, the scaling procedure)
1: fori=1,...,Kdo
2: Hi(t) ~ Beta(ai(t),ﬂi(t))

3: I(t) = argmaxy, [k, jx/j=r 2p Oi(t)
4: for i € I(t) do
5: S « SEARCH(s;) > Serarching for a new subspace w.r.t s; (Algorithm 6.1)
6 if qr41(S,8:) > Qr+1(Ss(si), ;) and S # S;(s;) then
7 Str1(s:) « S
8 Xi(t) — 1
9: else
10: Str1(s:) < Se(si)
11: X;i(t) « 0
12: a;(t +1) = a;(t) + X;(t) > Update parameters
13: Bt +1) = Fi(t) + (1 = Xi(1))
14: L « KL-S(L) > Scaling policy (Algorithm 5.1)

15: return S,
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6.3.1.4. SGMRD

Algorithm 6.3 summarises our approach as pseudo-code. SGMRD finds an initial set of
subspaces using the first window (Line 2). Then SGMRD monitors and updates the set
of subspaces (Line 5 to 7) for each new observation X;,;. The parameter v controls the
frequency of the update steps.

Algorithm 6.3 SGMRD((D, B), w, v, )
Require: A data stream (D, B), a window size w > 0, the frequency of updates v > 0, decay y € (0, 1)

1: te—w > 1. Initialisation
2: S; « {s; : SEARCH,(s;), Vs; € D} > Initial search. Algorithm 6.1
3: while B has a new observation x;.; do > 2. Maintenance
4 te—t+1

5: fors; e Ddo > Monitoring
6 Qi(si) =y - qr=1(Se=1(s1), 1) + (L = y) - q¢(Se(s1), 51)

7 if t —w =0 (mod v) then S; « UPDATE(S;_;) else S; « S;_; > Updating. Algorithm 6.2
8: return at anytime the set of subspaces S;

Overall, our method is efficient (C1), as our quality estimates can be computed in linear
time. It also requires a single scan of the data (C2), as we monitor subspaces over a sliding
window. By design, SGMRD adapts (C3) to the environment by updating the subspace
search results with parsimonious resource consumption, and our experiments will confirm
this. Finally, results are available at any point in time (C4).

6.3.2. Downstream Knowledge Discovery

High-quality subspaces can be useful for virtually any downstream Data Mining task. For
example, previous work [KMB12; NMV16; Wan+17; TB19] leverages subspaces to build
ensemble-like outlier detectors. Other Data Mining tasks are possible as well, such as
clustering [PL07; ZLW07; Agr+05; Agg09; KPM06]. Our approach, SGMRD, yields a set of
subspaces S; at any time. While our approach is not tied to any specific Data Mining task,
we use outlier detection as an exemplary task in our evaluation.

The articles just cited apply an outlier detector to each subspace in S;, and the final
score is a combination of the individual scores. The outcome is a ranking of objects by
decreasing ‘outlierness’. In our experiments, we use the Local Outlier Factor [Bre+00]
(LOF) detector because it is a common baseline in the outlier detection literature [KMB12].

The best combination of the individual scores depends on the concrete application.
Literature has discussed this extensively [AS15; Ngu+16]. Several studies [LK05; PLL07]
argue that the average of the scores with LOF yields the best results overall in the static
case, so we stick to this choice. The final outlier score of ¥, is the average of the scores
from each subspace across every window containing X;:

SiA
N 1 A Se_ilsi) /=
score (x;) = —— score. 7Y (x 6.4
(1) W'|D|;Z WG (64)

Again, one may also reduce the computation effort of outlier detection by evaluating the
scores only once every v time steps, as with SGMRD.

95



6. Subspace Search in Data Streams

6.4. Experiment Setup

We evaluate the performance of our approach w.r.t. two aspects: (1) the quality of subspace
monitoring, i.e., how efficiently and effectively can SGMRD maintain a set of high-quality
subspaces over time, and (2) the benefits w.r.t. outlier detection, as an exemplary down-
stream Data Mining task. To facilitate reproducibility, we release our source code with
documentation on GitHub’.

6.4.1. Evaluation Measures
6.4.1.1. Subspace Monitoring

Evaluating the quality of subspace monitoring is difficult because finding S} is computa-
tionally infeasible for non-trivial data. Thus, based on the definition of objective Oy (cf.
Section 6.2.2), we measure the regret and the average quality:

T |D|

D
Rr=— > 3 [0i(s) - 0i(s1)] 0= > 0) (69
DI t=0 i=1 D] i=1

where Q;(s;) is the quality w.r.t. s; as defined in Equation 6.3, and Qj(s;) is the quality
obtained when one always updates the corresponding subspace, i.e., it the same as repeating
the initialisation. Rr is the regret, defined as the sum of the differences between Qj (s;) and
Q:(si) up to T. Q, is the average quality at time ¢, and Qr is the average quality up to T.
To characterise the behaviour of our update strategy, we also look at the relative update
frequency Fr(s;) for each dimension s; € D and the rate of successful updates Ur:

2l 1 [Ay(s0) A Bi(s)]

IDI-T

= (6.6)

T T
1(s; € I(t
FT(Si):Z [si ()]’ UT:Z
=0 ‘
where s; € I(t) means that SGMRD has selected dimension s; at time ¢, and A,(s;) and B,(s;)
are the conditions capturing whether the search was successful (i.e., the new subspace is
different and of higher quality than the previous one):

As(si) = Seo1(si) # Si(si),
Bi(si) = Qi(Si-1(si), 1) < qi(St(s), s1)-

6.4.1.2. Outlier Detection

By definition, outliers are rare, so the detection of outliers is an imbalanced classification
problem. We report the area under the Receiver Operating Characteristic (ROC) curve
(AUC) and the Average Precision (AP), which are popular measures for evaluating outlier
detection algorithms. Outlier detectors typically ranks the observation by decreasing
‘outlierness’ score. In most applications, end users only check the top X% items. So we
report the Recall (R) and Precision (P) within the top X% instances, with X € {1, 2, 5}.

2 https://github.com/edouardfouche/SGMRD
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6.4.2. Data Sets

We use an assortment of data sets for our evaluation. We use a data set from our real-world
use case, Bioliq (cf. Section 1.1.5), and two real-world data sets frequently used in the
literature, KDDCuP99 and ActiviTy. To cope with the lack of publicly available data sets
for outlier detection in the streaming setting, we also generate three synthetic benchmark
data sets: SYNTH10, SYNTH20 and SYNTH50. We describe each data set in detail hereafter;
Table 6.1 summarises their main characteristics. Our data sets only contain continuous
attributes, so we use KSP for our quality measure (cf. Section 4.4).

Table 6.1.: Characteristics of the Benchmark Data Sets (SGMRD).

Benchmark ‘ Type # Instances # Dimensions % Outliers
BroLig Real 10,000 100 NA
KDDCur99 | Real 25,000 38 7.12
AcTIvVITY Real 22253 51 10
SYNTHI10 Synthetic 10,000 10 0.86
SYNTH20 Synthetic 10,000 20 0.88
SYNTH50 Synthetic 10,000 50 0.81

6.4.2.1. Real-World Data Sets

« BroLig: This data set contains 10,000 measurements (one per second) from a selection
of 100 sensors, such as temperature or pressure, in various components of the Bioliq
plant. We use this data set to evaluate how well our method can search for subspaces
in data streams. However, there is no ground truth, so we cannot use this data set
for our downstream Knowledge Discovery application.

+ AcTiviTy: This data set, initially proposed in [RS12], describes different subjects
performing various activities (e.g., walking, running), monitored via body-mounted
sensors. Analogously to [SA18], we took the walking data of a single subject and
replaced 10% of the data with nordic walking data, which we marked as outliers. The
rest of the elements are inliers. We obtained the original data set from [DG17].

« KDDCuP99: This data set was part of the KDD Cup Challenge 1999. It is a network
intrusion data set. Analogously to [SA18], we excluded DDoS (Denial-of-Service)
attacks and marked all other attacks as outliers. We take a contiguous subset of
25,000 data points. We obtained this data set from [DG17].

Unfortunately, there exist only a few publicly-available data sets with outlier ground
truth, in particular in the streaming setting. Thus, we create three additional data sets,
inspired by the static benchmarks in [KMB12; TB19]. Our data sets simulate concept drift
[BGE15] via random variations of the data distribution over time. In the next section, we
describe how we generate our synthetic benchmark.
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Figure 6.5.: SGMRD: Synthetic Benchmark Generation (Example).

6.4.2.2. Synthetic Benchmark Generation

In addition, we create three data sets simulating concept drift [BGE15] via random vari-
ations of the data distribution over time. We generate n + 1 distributions Iy, I, . . ., I};, and
sample from each distribution I; a number e of observations, while letting the distribution
[ gradually drift towards the distribution I};; as we sample from it.

We initialise Iy = U|0, 1] over the full space D. Then we select a set of distinct subspaces
(i.e., the subspaces do not have any dimension in common) from $(D) for each other
distribution, so that 50% of the subspaces change from one distribution to the next one.
For each subspace and, with a small probability p € (0, 1), we sample the next point from
U[5, 1] for each dimension with § € (0, 1) chosen randomly. We call this point an ‘outlier’.
With probability 1 — p, we sample the next point uniformly from the rest of the unit
hypercube - this is an ‘inlier’. Figure 6.5 illustrates this principle with two dimensions.
For the dimensions not part of any subspace, every observations are i.i.d. in U|0, 1].

Outliers placed this way are said to be ‘non-trivial’ [KMB12], since they do not appear
as outliers in any other subspace — they are ‘hidden’ in the data. Our goal is to evaluate to
what extent different approaches can detect such outliers.

We generate three benchmark data sets with n = 10 distributions and e = 1000 observa-
tions. We set p < 0.01, since outliers are rare by definition. SYNTH10, SYNTH20, SYNTH50
have 10, 20 and 50 dimensions respectively, with subspaces up to 5 dimensions.

Note that we release the code for our data generator and our real-world benchmark
data sets via our GitHub repository as well.

6.4.3. Baselines and Competitors
6.4.3.1. Subspace Monitoring

Our goal is to assess how effectively SGMRD can handle the trade-off between compu-
tational cost and monitoring quality. We compare SGMRD to several alternative update
strategies and against several baselines.
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SGMRD-S-TS uses Scaling Thompson Sampling (S-TS) as an update strategy. We let
the efficiency parameter n* vary from 0.1 to 0.9.

SGMRD-TS uses Thompson Sampling [Tho33] (TS) as update strategy. This approach
is similar to SGMRD-S-TS, but the number of updates does not change over time.
SGMRD-RD uses a random (RD) update strategy. We update a single subspace per
time step, chosen randomly from the current set of subspaces.

SGMRD-GD uses a greedy (GD) update strategy. We update a single subspace per
time step and choose the subspace with the lowest quality in the current set.
BATcH repeats the initialisation of SGMRD periodically for every batch of data with
size w = 1000.

INIT runs the initialisation and then keeps the same set of subspaces for the rest of
the experiment (no update).

GoLD repeats the initialisation of SGMRD at every step. This baseline represents the
highest level of quality that one can reach with this instantiation of SGMRD, but it
also is the most expensive configuration. In fact, we can only afford to run it on the
BroLig data set.

6.4.3.2. Outlier Detection

We compare the results obtained with SGMRD-TS against the following outlier detectors:

RS-STREAM is an adaptation of the RS-HasH [SA16] outlier detector to the streaming
setting, presented in [SA18]. It estimates the outlierness of each observation via
randomised hashing over random projections. We reproduce the approach and use
the default parameters recommended by the authors.

LOF [Bre+00] is a well-known outlier detector. We run it periodically and average
the scores over a sliding window in the full space. We use the implementation from
ELKI [Sch+15], which profits from efficient index structures.

xSTREAM [MLA18] is an ensemble outlier detector. XSTREAM estimates densities via
randomised ensemble binning from a set of random projections. XSTREAM declares
the points lying in low density areas as outliers. We use the implementation from
the authors with the recommended parameters.

STREAMHICS [Bec16] is an adaptation of [KMB12]. Based on a change detector,
STREAMHICS repeats the computation from [KMB12] on a data synopsis (so-called
micro-clusters). We use the reference implementation with default parameters.

We average the scores obtained from each detector over a sliding window of size
w = 1000 for every v = 100 time steps (cf. Section 6.3.2). For approaches based on LOF,
such as ours, we repeat the computation with parameter k € {1, 2, 5, 10, 20, 50, 100} and
report the best result in terms of AUC. The performance may vary widely w.r.t. this
parameter; this is a well-known caveat of LOF [Cam+16]. We average every result from
10 independent runs. Each approach runs single-threaded on a server with 20 cores at
2.2GHz and 64GB RAM. We implement our algorithms in Scala.
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Figure 6.6.: Average Quality at time ¢ (BiorLiQ, L = 1, v = 2).
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6.5. Results

6.5.1. Subspace Monitoring

We first evaluate the quality of monitoring from SGMRD. We set w = 1000, v = 2 and
L =1, i.e, for each update strategy, SGMRD only keeps the latest 1000 observations, and,
for any new two observations, SGMRD attempts to replace one of the current subspaces.
As we can see in Figure 6.6, both SGMRD-TS and SGMRD-RD can keep the quality
0, close to that of GOLD, our strongest and most expensive baseline. In the beginning,
SGMRD-TS seems to perform slightly worse than SGMRD-RD, but after some time (once
SGMRD-TS has learned its update strategy), it tends to dominate SGMRD-RD. We can see
that BATcH occasionally leads to the same quality as GoLp, but the quality drops quickly
between the update steps. SGMRD-GD is not much better than INIT (no monitoring).
Figure 6.7 confirms our observations: While the regret of SGMRD-TS is slightly worse
than the one of SGMRD-RD at the beginning, it becomes better afterwards. The other
approaches lead to much higher regret. For larger step size v, we see that SGMRD-TS is
superior to SGMRD-RD. For smaller v, the environment does not change much between
observations, and it is more difficult to learn which subspaces to update more frequently.
In Figure 6.8, the update frequencies show how the strategies differ. As expected,
Random (RD) updates each subspace uniformly. Greedy (GD) tends to focus only on a few
subspaces; most subspaces are never replaced, although they may become suboptimal as
well. TS focuses more on some subspaces, the ones requiring more frequent updates.
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Figure 6.12.: Quality/efficiency (Biorig, SGMRD-TS, v = 100).

Figure 6.9 shows that the average quality Q; tends to decrease as we increase the update
step v. However, the rate of successful updates Ur (Equation 6.6) increases. As v increases,
it is more likely for any subspace to become suboptimal. For BaATcH, Ur is high, but the
quality Q; is low. We observe the opposite for GoLp. SGMRD is a trade-off between
these two extremes, and the strategy based on Thompson Sampling [Tho33] (TS) appears
superior to others, both w.r.t. Oy and Ur. Figure 6.10 shows that our observations are not
only valid for the BroriQ data set, but also for other benchmarks. SGMRD-TS consistently
achieves a higher rate of successful updates than other approaches.

Figure 6.11 highlights an important drawback of previous methods: The computation
for batch-wise techniques is concentrated in a few discrete time steps. For stream mining,
it is better to distribute computation uniformly over time. Computation-intensive episodes
can lead to long response times of the system, and this contradicts the efficiency sought
(C1) and anytime behaviour (C4). Besides this, the system becomes unable to adapt to the
environment (C3) between the different episodes.

Next, we set v = 100 and let L vary to observe the trade-off between quality of the
subspaces and the efficiency of the search in SGMRD-TS (see Figure 6.12). As L increases,
the cost of updating subspaces increases linearly. Similarly, the quality Qr increases while
the rate of successful updates Ur decreases.
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~
t
Figure 6.13.: SGMRD-S-TS (Brorig, v = 1).
Table 6.2.: Comparison with Scaling Bandits (BioLiQ, v = 1).
Baseline Lt Or Ur Rr/T |SGMRD-S-TS Ly [ Ur Ry/T
TS 1 9543  0.61 3.74 n*=0.1 100.00  99.45  0.16 0.09
RD 1 9520  0.54 3.97 N =0.2 7413 99.19  0.20 0.08
GD 1 9372 0.43 5.45 n =03 5448  99.22 029 0.06
Batch - 95.16  0.81 4.01 n =04 36.78  99.33  0.37 0.78
Init - 9250 - 6.67 n =05 5.73 98.79  0.46 2.46
Gold 100 99.16  0.16 N =0.6 1.68 97.62  0.53 2.81
n =07 1.58 97.68  0.53 2.26
N =0.8 1.57 97.75  0.55 2.32
N =0.9 1.56 9731 0.5 2.59

Scaling Multi-Armed Bandit (S-MAB) algorithms are convenient tools for controlling
this trade-off. Figure 6.13 shows the number of plays/updates L; over time for SGMRD-
S-TS. As we can see, L; converges to an optimal amount of updates according to the
efficiency criterion 5* for SGMRD-S-TS. Our scaling policy (KL-S, Algorithm 5.1) scales up
the number of updates/plays until we are confident that doing so violates the efficiency
constraint. Note that, in non-static environments, we can further adapt the number of
updates using Adaptive Windowing [BG07] (ADWIN), e.g., as in Section 5.3.

As we can see in Table 6.2, SGMRD-TS has the highest quality after GoLp, the best
success rate Ur after BATcH and the smallest average regret among the baselines. It is
interesting to see that the Scaling Bandits consistently lead to higher quality and smaller
regret. Also, SGMRD-S-TS adjusts the number of plays so that Ur approximately matches
n*. Naturally, this only works up to a certain point, depending on the distribution of
rewards in the environment.

In conclusion, the experiments show that SGMRD is a useful tool to monitor high-quality
subspaces over time, and it is highly versatile. Based on the available hardware, users can
set the number of plays per round, as with SGMRD-TS, to obtain the highest quality from
this budget. If the computation is no bottleneck, then users can set an efficiency threshold,
which leads to an adequate use of resources for subspaces monitoring.

In the next section, we show that SGMRD-TS helps to detect outliers and compare the
results with state-of-the-art outlier detectors for data streams.
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Table 6.3.: Outlier Detection Performance.

Benchmark Approach AUC AP P1% P2% P5% R1% R2% R5%
AcTIviTY SGMRD 97.32 85.39 94.59 9483 94.24 944 18.97 47.10
LOF 93.93 61.80 74.32 64.72 64.03 7.42 12.94 32.00
STREAMHICS 88.52 4738 70.72 54.61 51.89 7.06 10.92 2593
RS-STREAM 95.95 68.23 71.62 7258 75.00 7.15 14.52 3748
XSTREAM 77.71  20.41  3.60 10.14 1631 0.36 2.02 8.13
KobpCupr99 SGMRD 69.98 10.29 0.00 0.20 0.56 0.00 0.06 0.39
LOF 65.07 9.57 0.00 0.00 0.08 0.00 0.00 0.06
STREAMHICS 5711 7.89 0.00 0.00 0.08 0.00 0.00 0.06
RS-STREAM 43.21 5.73 0.00 0.00 0.08 0.00 0.00 0.06
XSTREAM 52.70  8.23 0.00 0.20 0.08 0.00 0.06 0.06
SYNTH10 SGMRD 92.70 59.93 50.00 26.00 12.00 58.14 60.47 69.77
LOF 88.77 31.44 33.00 18.50 10.40 38.37 43.02 60.47
STREAMHICS 88.81 31.16 33.00 19.00 10.40 38.37 44.19 60.47
RS-STREAM 71.23  1.87 0.00 0.00 2.80 0.00 0.00 16.28
XSTREAM 68.51 258 5.00 3.00 4.00 5.81 6.98 23.26
SYNTH20 SGMRD 85.05 41.19 36.00 19.50 9.20 40.91 44.32 52.27
LOF 72.55 5.57 8.00 6.00 4.40 9.09 13.64  25.00
STREAMHICS 71.71 5.37 8.00 6.00 4.00 9.09 13.64 22.73
RS-STREAM 48.39  0.80 0.00 0.00 0.00 0.00 0.00 0.00
XSTREAM 63.64 158 1.00 1.50 2.20 1.14 3.41 12.50
SYNTH50 SGMRD 75.87 31.27 27.00 16.00 7.60 33.33 39.51 46.91
LOF 6138 1.08 0.00 0.50 0.60 0.00 1.23 3.70
STREAMHICS 63.90 12.00 11.00 6.00 3.40 13.58 14.81 20.99
RS-STREAM 46.52 0.73 0.00 0.00 0.00 0.00 0.00 0.00
XSTREAM 48.43  0.90 1.00 0.50 1.40 1.23 1.23 8.64
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6.5.2. Outlier Detection
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Figure 6.14.: Outlier Detection Time (hatched area: search time).

We leverage the subspaces obtained from SGMRD-TS to detect outliers, as in Section 6.3.2.
We set w = 1000, v = 1 and L = 1. Table 6.3 shows the results. SGMRD clearly leads to
the best results w.r.t. each benchmark. It is interesting to see that LOF turns out to be our
most competitive baseline and often outperforms our competitors.

In Figure 6.14, we can see that our competitors, in particular RS-STREAM and XSTREAM,
are much faster than SGMRD, but they often are not much better than random guessing,.
Most of the computation required by SGMRD and STREAMHICS is due to the search.
Nonetheless, one may reduce the required computation with SGMRD, e.g., increase v,
without decreasing detection quality by much.
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6.6. Discussion

Finding interesting subspaces is fundamental to any step of the Knowledge Discovery
from Data (KDD) process. We have proposed a new method, SGMRD, to bring subspace
search to streams. Our approach leverages our previous contributions: on the one hand,
we use MCDE (Chapter 4) to estimate the quality of subspaces. We can monitor the
resulting estimates efficiently, thanks to our incremental index structure. On the other
hand, SGMRD learns an update strategy to determine the subspaces to update at each time
step. We use bandit theory and S-MAB algorithms (Chapter 5) to address the trade-off
between the quality of monitoring and the required computation.

Our experiments not only show that SGMRD leads to efficient monitoring of subspaces,
but also to state-of-the-art results w.r.t. downstream Knowledge Discovery tasks, such as
outlier detection. One may expect similar benefits for other mining tasks on streams.

An administrator can control monitoring via two parameters: the number of plays per
round L and the step size v. While SGMRD can leverage S-MAB to decide the appropriate
number of updates per steps L automatically, finding the most adequate step size v for a
specific problem is not trivial. In future work, it would be interesting to extend the S-MAB
framework, such that the underlying bandit algorithm can not only decide which arms
and how many arms to play, but also whether to play at all.

Next, we focus on a more specific Knowledge Discovery task: mining text outliers. This
task is more challenging than typical outlier detection tasks, so we first address it in the
static setting. Nonetheless, it is easy to see how SGMRD could help to transfer the problem
to the streaming setting, as we discuss in our future work (Chapter 9).
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7. Mining Text Outliers

The results from this chapter have been published as follows:

« Edouard Fouché, Yu Meng, Fang Guo, Honglei Zhuang, Klemens Bohm and Jiawei
Han. ‘Mining Text Outliers in Document Directories’. In: ICDM. In press. IEEE
Computer Society, 2020

Keywords: Text Mining; Anomaly Detection; Data Cleaning; Nearest-Neighbour Search

7.1. Chapter Overview

Nowadays, it is common to classify collections of documents into (human-generated,
domain-specific) directory structures, such as email or document folders. But documents
may be classified wrongly, for a multitude of reasons. Then they are outlying w.r.t. the
folder they end up in. Orthogonally to this, and more specifically, two kinds of errors can
occur: (O) Out-of-distribution: the document does not belong to any existing folder in
the directory; and (M) Misclassification: the document belongs to another folder. It is this
specific combination of issues that we address in this article, i.e., we mine text outliers
from massive document directories, considering both error types (see also the motivations
in Section 2.3.2). We make the following contributions:

We explore the problem of text outlier detection in document directories. The
task is challenging because text can be outlying in numerous ways, and directories are
domain-specific. At the same time, text outliers fall into two categories: Types O/M. To
our knowledge, we are first to propose an integrated outlier detection framework for text
documents that builds on this conceptual distinction.

We propose a new proximity-based approach to detect text outliers, which we
name kj-Nearest Neighbours (kj-NN). Our approach leverages similarities of documents
and phrases, based on state-of-the-art embedding methods [Men+19], to detect both
Type O/M outliers. By extracting semantically relevant labels and the documents similar
to each outlier, it also supports interpretability.

We introduce a ‘self-supervision’ mechanism to make our approach more robust.
Our idea is to weigh each decision by the relevance of neighbouring documents. A
document is said to be relevant w.r.t. a given class when its semantics, characterised by its
closest phrases in the embedding space, is representative of its class.

We conduct extensive experiments to compare our method to competitors and
provide example outputs. The experiments show that our approach improves the current
state of the art by a large margin while delivering interpretable results.

We release our source code on GitHub', together with our benchmark data, to
ensure the reproducibility of our experiments.

! https://github.com/edouardfouche/MiningTextOutliers
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Figure 7.1.: Our Framework: A High-Level Overview. In the illustrations, squares are
documents and dots are phrases.

7.2. The kj-NN Algorithm

7.2.1. Our Framework

Figure 7.1 provides a high-level overview of our framework. We assume as input a
collection of documents Doc, with an initial but imperfect classification y : Doc +— C
provided by the user. Squares stand for documents, and the colours represent their initial
class. Documents are composed of phrases, represented in turn as dots. We design our
framework in three steps:

1. Learning Joint Embedding: Text outlier detection relies on textual similar-
ity/dissimilarity measures, which can be effectively captured by embeddings. We segment
the phrases Phr from every document using AutoPhrase [Sha+18] and obtain the phrase
and document embeddings V' : O — R" in a joint spherical space via Joint Spherical
Embedding [Men+19] (JoSE).

The benefits of using JoSE are twofold: (1) JoSE trains document and phrase embeddings
jointly in the same space, where text similarity between phrases and documents can be
directly derived. (2) JoSE captures directional similarity by training in the spherical space,
which characterises textual similarity more effectively than Euclidean embeddings.

2. Mining Representativeness: We estimate the representativeness of each phrase
for each class, based on the initial classification. The representative phrases for a class are
indicative of the semantics of documents. As in [Tao+16], we define the representativeness
as a function of three criteria:

« Integrity: A phrase with high integrity in a given corpus is meaningful, under-
standable and of high quality.

« Popularity: A phrase is popular in a given class if it has many occurrences.

« Distinctiveness: A phrase is distinctive if it distinguishes a class from others.

For each phrase p € Phr and class ¢ € C, we estimate the integrity int(p,c) € [0, 1],
popularity pop(p, c) € R* and the distinctiveness disti(p, c) € [0, 1] as described in [ZH19].
The representativeness is the product of those three criteria:

r(p,c) = int(p, c) - pop(p, c) - disti(p, c). (7.1)
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The idea is that, even if each class may contain ambiguous documents or erroneous
labels, these are ‘rare’, so the impact on the estimation of representativeness is low. Our
experiments show that our method is robust against erroneous labels.

3. Text Outlier Detection: We introduce kj-NN, an outlier detector inspired by the
well-known k-NN classifier [FH89]. The main novelty is that inferring the class of each
element (document) does not only base on the class of its k nearest documents but also on
their relevance. We estimate the relevance of a document as the average representativeness
of its j nearest sub-elements (phrases) for its class. If a document d is closer to documents
which are (i) relevant and (ii) from another single class, then d likely is a Type M outlier.
On the other hand, if d is similarly close to relevant documents of various classes, then d
likely is a Type O outlier. This final step yields two ranked lists O and M of outliers for
Type O and Type M, respectively.

In our approach, self-supervision consists of estimating the relevance of the original label,
recognising that less relevant labels must have a lower influence on our predictions. The
rationale is to perceive irrelevant documents as such because they either were misclassified
or have ambiguous semantics.

In the next section, we present the technical details of our outlier detector. We first
provide a Bayesian formalisation, then describe the practical implementation of kj-NN.

7.2.2. Formalisation
We define the k nearest documents and the j nearest phrases of d € Doc as follows:

K(d) = {x € Doc \ d : |{x" € Doc \ d : Sim(x’,d) > Sim(x,d)}| < k},
J(d) = {x € Phr : |{x" € Phr : Sim(x’,d) > Sim(x,d)}| < j}.

where Sim : O% — [0,1] is a similarity function between text objects (documents,
phrases) defined as in Equation 2.3. We call K(d) and 7 (d) the k- and j-neighbourhood of
d. Then one can build a classifier based on local densities. For each document d € Doc,
the k-neighbourhood provides an estimate of the density within each class, and the j-
neighbourhood provides a pseudo-posterior probability for each neighbour.

Bayesian inference formulates the posterior probability of class membership of document
d € Doc as follows:

Pr[d|c] Pr[c]
Pr[d]

Now think of a sphere of volume v centred at d that contains k points. Then we can
express the likelihood as

Prc|d] = (7.2)

.(d
Pr[d|c] = l(IIJ(J(Izl’ (7.3)

where K.(d) is the set of documents in K(d) of class c, and D, is the set of all documents

of class c. Traditionally, the class prior is

_ D)
|Doc|”

Pr[c] (7.4)
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Since v, |Doc| and Pr [d] are independent of ¢, we have
Pr [c|d] o |K.(d)]. (7.5)

To minimise the misclassification probability, one must assign d to the class with the
highest density in its neighbourhood.

This only works under the assumption that all labels are correct, which is unrealistic
in our setting. Our idea is to weight each document d” in K.(d) by a pseudo-posterior
probability Pr(c|d"), capturing our belief that they indeed are of class c:

Ke(d)

r[c]d] o Z Pr[c|d], (7.6)

where we define Pr [c|d’] to be proportional to the representativeness r(p, ¢) of the phrases
p € J(d) for class c:
J(d’)
Pricld] e > r(p,c). (7.7)

P

With this specification of Pr(c|d’], we exploit additional information from the j-
neighbourhood as ‘self-supervision signals’. In contrast, the standard k-NN classification
rule assumes that Pr[c|d’] = 1,Vd" € K.(d), i.e., the labels of neighbours are accurate.
Finally, predicting the class of document d boils down to

Ke(d) I (@)
(d) = arg max Pr [c|d] = arg max Z Z r(p, c). (7.8)

ceC ceC FG

Whenever §(d) # y(d), we may declare that a user mlsclass1ﬁed documentd, i.e., it is a
Type M outlier. However, the reliability of such predictions may vary widely. For example,
if each class has a very similar posterior probability, deciding for one or the other might
not be meaningful. When a document does not prominently belong to any existing class,
we must declare a Type O outlier. We quantify the reliability of a prediction via the entropy
of the posterior probabilities, which measures the uncertainty of the prediction:

1d) = - Z Pr[c|d] - log Pr [c|d] . (7.9)
ceC

We obtain the posterior probabilities via normalisation:
Ke(d d’
S 2 o)
Ke(d d’ ’
$E D ST v(p, c)

We decide whether a prediction is uncertain using a threshold I' > 0 that we set to a
percentile p* of the empirical distribution of the entropy for every document in the corpus:

{d € Doc | I(d) <T}| .
|Doc| -P
In other words, our idea is to declare that p*% of the documents with the most uncertain

predictions are Type O outliers. For the remaining 1 — p*% documents, we declare that
they are Type M outliers if §(d) # y(d).

Pr(cld] = (7.10)

I'>0 s.t.

(7.11)
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7.2.3. Implementation

A well-known caveat of neighbour-based classifiers is that they tend to be sensitive to the
choice of parameter k. [Dud76] first proposed to weigh each neighbour by the distance to
the queried point. There exist many weighting schemes [BL16; Gou+19]. While finding
the best scheme is out of our scope, the consensus is that weighting improves empirical
performance and leads to more flexible parameter choice (see [HS04]). So we propose the
following score:

K.(d) J@)
scoreg . = Z Sim(d,d’) Z Sim(d', p) - r(p,c), (7.12)
d’ P

which uses both the inter-document and the document-phrase similarities for weighting.
By definition, if K.(d) = 0, then scoreg. = 0. We compute the entropy as follows:

C
I(d) = - Z scoreg . - logscoreq ¢, (7.13)

c

where scoreg . is the normalised score over the classes ¢ € C:

scorey
scoreg . = C—c (7.14)
2. Scoreg .

By convention, scorey - logscore;. = 0 if score;, = 0. Finally, the outcome is a list of
outliers for each type:

0= <di, dj, R ,d|@|> s.t. I(dy) >T A I(d;) = I(dj),
M = < d;, dj, ce ,d|M|> s.it. I(d;))<T A g(dl) * y(d,) ..
. A I(dy) <1(dj), Vi<j, (i,j) € Doc®.

Here, I is set by parameter p* (see Equation 7.11). The prediction is:

y(d) = arg max scoreg ;. (7.15)
ceC

Note that we sort O by decreasing uncertainty, while we sort M by increasing uncertainty.
The rationale is that the more uncertain the decision for document d, the more likely d is
a Type O outlier. On the other hand, the less uncertain a misclassification, the more likely
d is a Type M outlier. So we output a ranking of outliers for both. In particular, if users
only have a limited amount of time, they may only examine the most ‘flagrant’ outliers.

Algorithm 7.1 is our approach as pseudo-code. Since vectors are normalised, the cosine
similarity Sim (cf. Equation 2.3) is proportional to the euclidean distance. Thus, we can
use R*-trees to speed up the neighbourhood queries, and we cache the results for each
document. From our algorithm, it is easy to see that the complexity of the approach is
quasi-linear w.r.t. |Doc|, |Phr|, |C|, k and j, i.e., it can scale to very large corpora.
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Algorithm 7.1 kj-NN(k, j, Doc, Phr, y, r, p*)
Require: k, j, corpus Doc, phrases Phr, initial classification y : Doc — C, representativeness r : Phr X C
R*, threshold p* € [0, 1]
0=); M= > Initialisation
K « index Doc with a R*-tree
J « index Phr with a R*-tree
for d; € Doc do > Cache neighbourhood queries
K(d;) < the k nearest neighbours of d; in K
J (d;) < the j nearest neighbours of d; in J

for d; € Doc do > Get scores and entropy for each document
force Cdo
Ke(di) —{d" € K(d;) : y(d') = c}
scoreq, ¢ = Z§°<d") Sim(d;,d") ZLW"’ Sim(d’,p) - r(p,c)
I(d;) = ch scoregq, . - log scoreg,, .
: Choose T s.t. |{d; € Doc | I(d;) < T}|/|Doc| = p*
: Sort Doc by increasing I(d;), d; € Doc
: for d; € Doc do > Populate outlier lists
if I(d;) > T then O « (d;) VO
else if §(d;) # y(d;) then M «— M U (d;)
: return O, M

N A I

S g S Sy e
T N S T N N =)

7.3. Experiment Setup

We evaluate the performance of our approach w.r.t. both types of outliers. We compare
with the current state of the art, as well as with competitive baselines and ablations. We
create real-world benchmark data sets from publicly available data.

7.3.1. Evaluation Measures

Outlier detection typically is an imbalanced classification problem. For Type O outliers,
we report the area under the ROC curve (AUC) and the Average Precision (AP). These
are popular measures for the evaluation of outlier detection algorithms. Since Type M
outliers are more frequent, we report precision (P), recall (R) and the F1 score. In most
applications, users are more concerned with the recall [Zhu+17]. So we measure the recall
at a certain percentage, i.e., the share of detected outliers when the user checks the top X%
items (RX) from the ranked list of outliers. Our measures are in line with Chapter 6.

7.3.2. Data Sets

We evaluate our approach against an assortment of benchmark data sets of various size,
outlier ratio and number of inlier/outlier classes. Since emails and medical records typically
contain highly confidential information, they are not adequate for the reproducibility of
our study. Instead, we create the following sets of benchmarks from publicly available
news articles and paper abstracts:
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« NYT: We crawl 10,000 articles from 5 topics (Business, Sports, Arts, Politics, Science) with
the New York Times API° and add 1% articles (i.e., 100 articles) from 4 other topics (Real
estate, Health, Education, Technology), i.e., they are Type O outliers. We also increase the
ratio of outliers to 2% and 5% and downsample the data by 50%, 20% and 10%. Thus, we
create six benchmark data sets: NYT-1, NYT-2, NYT-5, NYT-50, NYT-20, NYT-10.

« ARXIV: We crawl 21,467 abstracts of the articles published on ArXiv ° from 10 computer
science categories (cs.Al ¢s.CC, ¢s.CL, ¢s.CR, ¢s.CY, ¢s.DB, ¢s.DS, ¢s.LG, cs.PL, cs.SE). Then
we choose 1 to 5 inlier classes at random and inject 1% outliers from 5 other classes. We
repeat the procedure, but let the number of outlier classes vary. In the end, we create
nine benchmark data sets: ARXIV-15, ARXIV-25, ARXIV-35, ARXIV-45, ARXIV-
55, ARXIV-54, ARXIV-53, ARXIV-52, ARXIV-51.

Table 7.1 shows the features of each benchmark data set, in particular: the number of
inliers (# Inliers), Type O outliers (# O), inlier classes (# Classes), Type O outlier classes (#
O Classes), and the ratio of Type O outliers (O%). As mentioned, we release the data sets
together with our source code.

Table 7.1.: Characteristics of the Benchmark Data Sets (kj-NN).

Benchmark ‘ # Inliers #0 # Classes # O Classes 0%
NYT-1 10,000 100 5 4 1.00
NYT-2 10,000 200 5 4 2.00
NYT-5 10,000 500 5 4 5.00
NYT-50 5000 50 5 4 1.00
NYT-20 2000 20 5 4 1.00
NYT-10 1000 10 5 4 1.00
ARXIV-15 3267 33 1 5 1.00
ARXIV-25 4619 46 2 5 1.00
ARXIV-35 6299 63 3 5 1.00
ARXIV-45 10,136 101 4 5 1.00
ARXIV-55 11,115 111 5 5 1.00
ARXIV-54 11,115 111 5 4 1.00
ARXIV-53 11,115 111 5 3 1.00
ARXIV-52 11,115 111 5 2 1.00
ARXIV-51 11,115 111 5 1 1.00

7.3.3. Baseline and Competitors

Since none of the existing approaches detects both Type O and Type M outliers, we must
compare with two different sets of competitors/baselines. To validate our design choices,
we also compare against a set of ablations derived from our method (see Section 7.4.2.3).

2 http://developer.nytimes.com
3 https://arxiv.org/archive/cs
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7.3.3.1. Type O

We compare kj-NN w.r.t. Type O outlier detection against the following competitors:

Local Outlier Factor [Bre+00] (LOF) is a well-known density-based outlier detector.
We report the best result with parameter k € [1, 100] in terms of AUC, as performance
may vary widely w.r.t. k [Cam+16]. We use the implementation from ELKI [Sch+15].
Randomised Subspace Hashing [SA16] (RS-Hash) is a subspace outlier detector. It
estimates the outlierness of each data point via randomised hashing. We implement it
as described by the authors, and we use the recommended parameters.

Average Negative Cosine Similarity (ANCS) is a baseline measuring the outlierness
of a document as the average negative cosine similarity to every other document. We
also propose k-ANCS, a variant which only uses the k nearest neighbours for each
document. We select k € [1, 100] maximising the AUC.

VMF-Q [Zhu+17] models word embeddings as a vMF mixture and penalises lexically
general words to identify semantically deviating documents. We use the implementation
provided by the authors with the recommended parameters.

TONMF [Kan+17] uses Non-negative Matrix Factorisation to detect documents with
unusual word frequencies. We use the implementation released by the and let the
parameters k, @ and f§ vary from 1 to 30. We report the best result in terms of AUC.
Context Vector Data Description [Ruf+19] (CVDD) is a one-class classification
model using a pre-trained language model and multi-head attention. We use the authors’
implementation with the recommended parameters.

7.3.3.2. Type M

To our knowledge, there is no approach explicitly handling the detection of misclassifica-
tions (Type M outliers). However, we can adapt virtually any supervised classifier to this
task. We compare against the following state-of-the-art approaches for text classification:

Word-level CNN [Kim14] (W-CNN) applies convolution kernels on stacked word
embedding matrix of a document followed by pooling operations.

Very Deep CNN [Con+17] (VD-CNN) uses up to 29 convolution layers that perform
feature learning starting from characters, aiming to capture the hierarchical semantic
structure encoded in characters, n-grams, words and sentences.

Attention-Based Hierarchical RNN [Yan+16] (AT-RNN) employs attention mech-
anisms both at the word and sentence level. It learns to focus on the most relevant words
and sentences for text classification.

Recurrent CNN [Lai+15] (RCNN) combines both bi-directional recurrent structures
and max-pooling layers to capture contextual information and extract relevant features.

For each approach, we train the classifier and predict the class of each instance. If the

prediction differs from the actual class, we conclude that it is of Type M. The rationale
is that such instances do not fit their class as well as other instances. Note that this is a
rather common approach for outlier detection.
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Since one typically does not have any ground truth in outlier detection tasks, performing
a hyper-parameter search is not realistic and falls out of the scope of our study. We run
each approach with default parameters.

7.3.4. Data Preparation

Since every Type O methods are unsupervised, they operate without labels. To evaluate
the approaches, we set the labels of inliers to 0 and the labels of Type O outliers to 1. LOF,
RS-Hash, ANCS and k-ANCS use as input the embedding representation that we mine in
our preprocessing step (cf. Section 7.2). For VMF-Q, TONMF and CVDD, we implement
the preprocessing steps recommended by their respective inventors.

For Type M methods, we control the proportion of Type M outliers by randomly assign-
ing a proportion m € [0, 0.5] of labels to a wrong class, i.e., when m = 0.5, we misclassify
half of the documents. The algorithms train with those erroneous labels, but we use the
original labels for evaluation. We assign Type O outliers to an inlier class at random.

For each method, we first tokenise and segment the raw text data using AutoPhrase
[Sha+18]. We learn the joint embeddings via JoSE [Men+19] with n = 100 dimensions. We
process the input data similarly for every method, taking into account the recommendation
of the respective authors. Our goal is to make the comparison as fair as possible.

7.4. Results

We perform our experiments on a machine running Ubuntu 18.04 with 20GB RAM and a
quad-core CPU at 2.40GHz. We average each of our results from 10 independent runs.

7.4.1. Parameter Sensitivity

We first study the sensitivity of our approach to its parameters k, j and p* against the
benchmark NYT-1, w.r.t. varying Type M outlier ratio m in particular. We first simulate an
extreme scenario by setting m = 0.5, i.e., we assign half of the articles to the wrong topic.
We can see from Figure 7.2 that the Type O recall and precision tend to increase with k
and j, but saturate for j > 30 and k > 30. We also see that p* captures a trade-off between
precision and recall: higher values of p* leads to higher Type O precision, but lower recall.
On the other hand, higher values of p* lead to higher Type M recall, but lower precision.
We see that the Type M precision and recall are high for p* > 0.9 for large enough k and j.
Given that the initial classification is very noisy (m = 0.5), the quality of the detection of
both outlier types is impressive.

Next, we set k = j = 30 and let m vary from 0 to 0.5. In Figure 7.3, we see that the
Type O recall and precision improve significantly for lower m, but the Type M precision
decreases. While imperfect labels negatively impact the quality of Type O outlier detection,
the Type M recall appears stable. Based on our observations, we recommend setting
k = j =30and p* = 0.9. For the remaining of our experiments, we set the parameters as
such and assume m = 0.2.

115



7. Mining Text Outliers

Recall

Precision

1.0

0.5

0.0

Lo Type O Type O Lo Type M Type M
051+ S o {men—u=s s
[“__*———ﬂ'—‘“—ﬂ—“ m
".-.———.———.———0———0
0.0 0.6
0.2 1.0
W‘VV\’VV
o -~ -——9---g---0 g 0.9
0.11 4% B »*
o —— 099 -7 09
MMM 081 e 098 = 03
0.0 —— 095 0.7
0 10 20 30 40 50 0 10 20 30 40 50 “75 10 20 30 40 50 0 10 20 30 40 50
J k J k
Figure 7.2.: Type O/M - k, j, p* sensitivity, NYT-1.
Type O — Recall Type M — Recall Type O — Precision Type M — Precision

“*-“.—‘
~e._

O0-0---o - o %

=

) 4 f
/// r*

—*— 099 -¥- 09
-®- 098 & 0.8
—*—= 0.95 0.7

0.0 0.1 0.2 03 04 0.5

m

0.0 0.1 0.2 03 04 05

m

0.

0 0.1 02 03 04 05
m

0.0 0.1 0.2 03 04 05
m

Figure 7.3.: Type O/M - p*, m sensitivity, NYT-1.

7.4.2. Performance Comparison

7.4.2.1. Type O

Table 7.2 and Table 7.3 list the results of our comparison against the NYT and ARXIV
benchmark. First, the results of every approach are generally better against the NYT
benchmark. The ARXIV benchmark is much more challenging because the corpus is
composed of abstracts from computer science sub-fields, with much semantic overlap.

Then, we see from both tables that kj-NN outperforms every competitor w.r.t. Type O
outlier detection. The performance in terms of recall becomes lower for smaller data sets
(e.g., NYT-20 and NYT-10). For small data sets, CVDD and our ANCS/k-ANCS baselines
appear competitive.

Finally, we see that our approach handles particularly well multi-modal settings, i.e.,
with multiple inlier/outlier classes. By design, our approach cannot handle only one inlier
class (e.g., ARXIV-15) — this does not fit our scenario. When there only is a single outlier
class, LOF performs best (see ARXIV-51).
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Table 7.2.: Comparison w.r.t. our Competitors (Type O, NYT).

Benchmark  Approach AUC AP R1% R2% R5%
NYT-1 LOF 66.45 1.62 3.00 3.00 9.00
RS-Hash 46.62 0.87 0.00 1.00 1.00
ANCS 66.63 2.57 6.00 10.00 21.00
k-ANCS 83.89 3.65 3.00 7.00 19.00
TONMF 58.66 7.30 0.00 2.00 9.00
VMF-Q 76.34 2.21 2.00 3.00 11.00
CVDD 78.47 7.75 11.7 18.09 22.34
kj-NN 92.51 17.57 25.00 39.20 61.40
NYT-2 LOF 60.66 2.45 2.00 2.50 6.00
RS-Hash 48.05 1.87 0.50 1.00 5.50
ANCS 67.59 5.19 8.00 12.00 18.00
k-ANCS 82.51 5.94 3.00 5.50 14.50
TONMF 54.61 1.78 2.50 3.00 9.00
VMF-Q 83.67 6.87 4.00 11.00 20.00
CVDD 73.10 10.00 11.58 14.74 22.11
kj-NN 94.51 42.64 30.40 44.50 64.50
NYT-5 LOF 52.28 5.44 1.80 3.40 7.00
RS-Hash 48.76 4.58 0.80 1.40 2.80
ANCS 67.67 11.13 6.60 9.80 19.20
k-ANCS 75.56 10.45 3.40 6.40 11.40
TONMF 52.95 1.50 1.40 2.40 6.40
VMF-Q 77.11 12.92 4.60 7.40 15.60
CVDD 72.81 18.69 9.04 13.05 21.49
kj-NN 97.04 71.69 19.12 36.96 68.28
NYT-50 LOF 60.91 1.77 2.00 6.00 12.00
RS-Hash 46.14 0.90 0.00 0.00 2.00
ANCS 63.94 4.35 14.00 16.00 20.00
k-ANCS 81.08 4.43 12.00 14.00 20.00
TONMF 61.42 31.01 0.90 0.90 4.90
VMF-Q 85.76 4.00 6.00 8.00 22.00
CVDD 76.29 15.89 21.62 27.03 29.73
kj-NN 93.33 27.76 37.20 46.80 62.80
NYT-20 LOF 74.76 4.12 5.00 5.00 15.00
RS-Hash 4291 0.89 0.00 0.00 0.00
ANCS 78.52 5.60 10.00 15.00 40.00
k-ANCS 88.56 6.59 15.00 20.00 30.00
TONMF 64.94 6.35 0.00 0.00 15.00
VMF-Q 83.98 4.59 5.00 10.00 20.00
CVDD 88.83 24.00 25.00 25.00 25.00
kj-NN 91.42 6.57 3.00 11.00 38.00
NYT-10 LOF 77.93 2.77 0.00 0.00 20.00
RS-Hash 56.94 1.76 0.00 0.00 10.00
ANCS 83.89 13.65 30.00 40.00 40.00
k-ANCS 91.37 10.93 30.00 30.00 30.00
TONMF 71.13 29.92 0.00 0.00 0.00
VMF-Q 63.39 2.55 0.00 10.00 20.00
CVDD 85.13 44.99 42.86 42.86 42.86
kj-NN 91.52 8.45 10.00 16.00 38.00
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Table 7.3.: Comparison w.r.t. our Competitors (Type O, ARXIV).

Benchmark  Approach AUC AP R1% R2% R5%
ARXIV-15 LOF 63.44 1.78 0.00 5.13 7.69
RS-Hash 54.22 1.17 2.56 2.56 2.56
ANCS 47.46 0.96 0.00 0.00 5.13
k-ANCS 67.14 1.98 0.00 7.69 10.26
TONMF 57.65 7.32 0.00 7.69 15.38
VMF-Q 71.71 2.69 5.13 10.26 15.38
CVDD 69.85 2.27 0.00 5.13 17.95
kj-NN 54.21 1.17 0.00 0.00 0.00
ARXIV-25 LOF 68.41 2.17 4.35 6.52 13.04
RS-Hash 44.21 0.91 0.00 0.00 4.35
ANCS 47.88 1.09 2.17 4.35 6.52
k-ANCS 67.87 2.00 2.17 4.35 10.87
TONMF 60.03 6.37 0.00 4.35 13.04
VMF- 71.71 2.69 5.13 10.26 15.38
CVDD 74.55 2.19 2.17 4.35 8.70
kj-NN 70.64 5.10 10.44 16.52 27.82
ARXIV-35 LOF 71.00 2.16 0.00 3.23 11.29
RS-Hash 47.77 0.96 1.61 1.61 4.84
ANCS 52.94 1.07 0.00 0.00 3.23
k-ANCS 73.43 2.36 1.61 4.84 16.13
TONMF 56.90 1.16 1.61 3.22 6.45
VMF-Q 60.97 1.28 0.00 0.00 1.61
CVDD 53.89 1.06 0.00 0.00 1.61
kj-NN 73.58 3.27 6.45 10.97 20.97
ARXIV-45 LOF 62.99 2.43 2.02 2.02 5.05
RS-Hash 49.18 0.99 0.00 0.00 6.06
ANCS 51.50 1.32 1.01 1.01 2.02
k-ANCS 70.11 2.23 1.01 3.03 17.17
TONMF 57.49 17.2 0.00 0.00 2.02
VMF- 66.59 2.20 3.03 7.07 15.15
CVDD 71.32 2.10 2.02 4.04 11.11
kj-NN 69.94 3.28 6.46 9.09 18.99
ARXIV-55 LOF 59.47 1.47 3.23 3.23 11.29
RS-Hash 49.00 0.94 0.81 0.81 3.23
ANCS 51.69 1.80 1.61 3.23 6.45
k-ANCS 67.59 2.25 3.23 6.45 14.52
TONMF 56.86 0.92 1.61 3.23 9.68
VMF-Q 72.99 2.65 4.84 8.06 16.94
CVDD 60.92 1.63 1.61 4.84 11.29
kj-NN 76.74 3.22 5.49 9.84 20.48
ARXIV-54 LOF 61.92 1.33 0.00 2.42 6.45
RS-Hash 47.95 0.92 0.00 0.81 2.42
ANCS 50.46 1.01 0.81 0.81 3.23
k-ANCS 68.93 1.83 0.00 1.61 8.87
TONMF 59.46 5.94 0.00 0.00 6.45
VMF-Q 61.81 1.33 0.81 1.61 6.45
CVDD 60.30 1.62 1.61 5.65 10.48
kj-NN 76.65 3.85 5.81 10.00 21.61
ARXIV-53 LOF 57.37 1.33 2.42 3.23 9.68
RS-Hash 42.32 0.79 0.00 0.00 0.00
CS 47.55 0.93 0.81 1.61 3.23
k-ANCS 63.56 1.54 2.42 4.03 9.68
TONMF 56.12 4.26 0.00 1.61 8.06
VMF- 77.29 3.16 3.23 8.06 25.00
CVDD 69.28 1.98 2.42 4.03 12.90
kj-NN 79.16 5.10 7.74 15.65 32.42
ARXIV-52 LOF 55.58 1.09 0.81 0.81 4.84
RS-Hash 52.52 1.08 0.00 1.61 5.65
ANCS 45.02 0.84 0.00 0.00 0.81
k-ANCS 66.26 1.61 0.81 3.23 8.87
TONMF 54.04 2.70 1.61 3.23 8.06
VMEF- 67.57 2.06 2.42 7.26 13.71
CVDD 55.64 1.39 1.61 4.84 11.29
kj-NN 78.10 3.07 3.87 7.90 19.35
ARXIV-51 LOF 82.57 4.50 7.26 14.52 25.81
RS-Hash 51.22 1.10 1.61 4.03 6.45
ANCS 65.91 2.36 5.65 10.48 15.32
k-ANCS 54.19 1.68 4.03 7.26 11.29
TONMF 55.23 1.01 1.61 1.61 7.26
VMEF- 62.54 1.54 1.61 4.84 8.87
CVDD 66.93 2.54 4.84 8.87 23.39
kj-NN 65.24 2.19 4.68 7.90 14.36
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Table 7.4.: Comparison w.r.t. our Competitors (Type M, NYT).

Benchmark  Approach P R F1 R10% R20%
NYT-1 W-CNN 54.38 86.04 66.64 27.28 53.51
VD-CNN 90.71 69.22 78.52 15.04 30.18
AT-RNN 67.12 51.88 58.52 32.92 51.34
RCNN 96.02 9.65 17.54 9.55 9.55
kj-NN 95.93 90.02 92.88 50.19 90.02
NYT-2 W-CNN 54.16 88.02 67.06 27.30 54.56
VD-CNN 88.99 69.69 78.17 14.71 29.61
AT-RNN 80.36 49.03 60.90 40.29 48.14
RCNN 89.60 5.59 10.52 5.49 5.49
kj-NN 94.63 91.15 92.86 50.74 91.15
NYT-5 W-CNN 51.12 89.07 64.96 25.14 50.38
VD-CNN 58.21 82.39 68.22 8.98 18.46
AT-RNN 61.71 70.49 65.81 31.38 61.62
RCNN 90.82 44.93 60.12 42.86 42.86
kj-NN 92.43 93.44 92.93 52.27 93.44
NYT-50 AT-RNN 47.38 87.61 61.50 22.28 47.62
RCNN 98.58 55.44 70.97 49.31 54.95
VD-CNN 89.75 69.22 78.16 14.83 29.92
W-CNN 57.46 87.31 69.31 27.23 56.93
kj-NN 95.78 90.36 92.99 50.22 90.36
NYT-20 W-CNN 39.34 91.56 55.03 20.54 40.59
VD-CNN 93.50 81.80 87.26 15.20 30.81
AT-RNN 50.44 85.11 63.34 25.25 52.23
RCNN 39.63 91.56 55.32 20.54 40.59
kj-NN 93.80 90.64 92.19 50.52 90.64
NYT-10 W-CNN 36.12 88.94 51.38 16.83 35.15
VD-CNN 86.20 69.40 76.89 14.10 27.26
AT-RNN 36.12 88.94 51.38 16.83 35.15
RCNN 36.12 88.94 51.38 16.83 35.15
kj-NN 88.57 90.77 89.65 50.50 89.97
7.4.2.2. Type M

Our approach also outperforms its competitors w.r.t. Type M outliers. See Tables 7.4 and
7.5. RCNN and VD-CNN have high precision, but much lower recall. Neural networks
tend to fit the data very well, including Type M outliers. The performance decreases
dramatically with smaller data sets. VD-CNN occasionally ranks high in terms of F1-score.
However, those approaches do not rank outliers, so the recall at a certain percentage (e.g.,
R10, R20) is equivalent to that from a list of detected outliers in random order.

7.4.2.3. Ablation Analysis

We verify each of our design choices by comparing against the following ablations:

« A1l: No self-supervision; we set j = 0, i.e., our approach boils down to a k-NN

classifier as in Equation 7.5.

« A2: No entropy; we do not estimate the entropy of the prediction, i.e., objects can

be in both outlier lists O and M.

« A3: No neighbourhood; the predictions only base on the relevance of document

d, and not on the relevance of its neighbours, i.e., we set K(d) = {d}.

+ A4: Unweighted kj-NN; we do not weigh the score by the inter-document and
document-phrase similarities, as explained in Section 7.2.3. Each neighbouring
document and phrase have the same impact on the decision.
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Table 7.5.: Comparison w.r.t. our Competitors (Type M, ARXIV).

Benchmark  Approach P R F1 R10% R20%
ARXIV-25 W-CNN 95.33 82.51 88.46 47.77 82.15
VD-CNN 72.97 59.71 65.68 15.52 31.60
AT-RNN 65.90 72.24 68.92 32.97 65.94
RCNN 96.75 26.01 41.00 25.90 25.90
kj-NN 96.09 88.85 92.33 49.22 88.85
ARXIV-35 W-CNN 54.97 84.40 66.58 27.45 54.49
VD-CNN 66.06 80.08 72.40 11.73 23.01
AT-RNN 84.37 38.59 52.96 38.12 38.12
RCNN 80.21 25.02 38.14 24.72 24.72
kj-NN 80.04 86.98 83.36 48.25 83.40
ARXIV-45 W-CNN 51.47 81.26 63.02 24.830 49.40
VD-CNN 73.68 72.24 72.95 10.48 21.00
AT-RNN 74.20 49.97 59.72 37.70 49.60
RCNN 65.49 26.10 37.32 25.90 25.90
kj-NN 70.29 86.87 77.70 45.78 76.89
ARXIV-55 W-CNN 53.62 87.71 66.55 27.79 53.66
VD-CNN 92.65 91.97 92.31 12.01 24.08
AT-RNN 86.50 54.56 66.91 43.07 54.06
RCNN 83.80 33.87 48.24 33.56 33.56
kj-NN 70.70 88.23 78.50 46.77 78.67
ARXIV-54 W-CNN 58.07 87.94 69.95 28.03 57.40
VD-CNN 87.22 85.12 86.16 11.38 22.71
AT-RNN 69.81 56.33 62.35 34.79 55.77
RCNN 58.10 41.09 48.14 28.98 40.68
kj-NN 70.38 88.05 78.23 46.83 77.78
ARXIV-53 W-CNN 47.12 85.91 60.86 24.56 47.97
VD-CNN 82.78 82.64 82.71 10.95 21.62
AT-RNN 58.65 60.31 59.47 29.22 58.48
RCNN 63.25 22.58 33.28 22.33 22.33
kj-NN 70.77 88.46 78.63 46.69 78.24
ARXIV-52 W-CNN 49.10 84.35 62.07 24.84 49.12
VD-CNN 86.92 91.59 89.19 11.49 22.77
AT-RNN 78.94 61.65 69.23 39.41 60.87
RCNN 45.24 27.02 33.83 22.53 26.67
kj-NN 71.08 88.43 78.81 47.28 78.79
ARXIV-51 W-CNN 56.00 86.47 67.98 28.14 56.49
VD-CNN 78.89 82.56 80.68 10.24 20.42
AT-RNN 76.27 59.04 66.56 38.57 58.36
RCNN 79.67 25.09 38.16 24.80 24.80
kj-NN 70.91 88.63 78.79 46.25 78.18
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7.4. Results

From Table 7.6 and 7.7, we can see that kj-NN consistently outperforms every ablation on
average. A2 leads to higher Type M recall, and often high Type O AUC, but much lower
Type M precision. Al and A3 yield worse results for both outlier types. A4 values are
consistently below, but only by a few hundredth. The overall average ranks are as follows:

« kj-NN: 1.67, A2: 2.50, A4: 2.69, A1: 3.30, A3: 4.29

Thus, we can see that taking the neighbourhood into account improves the performance
of our approach the most, followed by self-supervision. Measuring decision uncertainty
and weighting by similarity, as in Equation 7.12, improves the performance further.

Table 7.6.: Ablation Analysis (NYT).

Type A ‘ Type B
Benchmark Ablation AUC AP P R F1 Rank
NYT-1 Al 89.57 16.65 94.56 90.04 92.25 3.6
A2 92.51 17.57 86.43 99.07 92.32 2.2
A3 90.56 8.45 91.85 89.28 90.54 4.6
A4 92.48 17.07 95.88 90.00 92.85 2.8
kj-NN 92.51 17.57 95.93 90.02 92.88 14
NYT-2 Al 93.29 43.23 93.61 91.23 92.40 2.6
A2 94.51 42.64 83.15 99.32 90.52 2.6
A3 91.23 18.62 90.22 89.89 90.05 4.8
A4 94.50 42.12 94.55 91.07 92.78 2.8
kj-NN 94.51 42.64 94.63 91.15 92.86 1.6
NYT-5 Al 96.61 72.33 92.12 93.55 92.83 2.6
A2 97.04 71.69 75.92 99.18 86.01 2.8
A3 92.33 41.43 86.12 91.97 88.95 4.6
A4 97.04 71.63 92.23 93.45 92.84 24
kj-NN 97.04 71.69 92.43 93.44 92.93 1.8
NYT-50 Al 91.20 27.29 94.20 90.36 92.24 3.2
A2 93.33 27.76 85.40 99.34 91.84 2.4
A3 90.78 13.34 92.68 89.11 90.86 4.8
A4 93.30 27.44 95.64 90.34 92.91 2.8
kj-NN 93.33 27.76 95.78 90.36 92.99 1.2
NYT-20 Al 89.01 5.94 93.10 90.29 91.67 4.0
A2 91.42 6.57 83.56 98.90 90.58 2.6
A3 89.93 9.45 91.19 87.44 89.27 3.8
A4 91.42 6.51 93.60 90.49 92.02 2.2
kj-NN 91.42 6.57 93.80 90.64 92.19 1.4
NYT-10 Al 91.25 8.05 88.18 90.47 89.31 3.6
A2 91.52 8.45 80.98 98.50 88.88 2.6
A3 89.65 14.06 87.30 85.17 86.20 4.6
A4 91.23 8.49 88.19 90.57 89.36 24
kj-NN 91.52 8.45 88.57 90.77 89.65 1.4

7.4.2.4. Execution Time

Figure 7.4 graphs the execution time for each approach. We neglect the common prepro-
cessing time for each of them and report the sum of training and testing time. RS-Hash
is extremely fast, but as we saw the performance is not better than guessing. LOF and
k-ANCS, which leverage index support, are relatively fast. Our method, kj-NN, is only
slightly slower than LOF but seems to scale better (observe the difference in execution
time between NYT-1 and NYT-10). The other methods appear slower.
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Table 7.7.: Ablation Analysis (ARXIV).

Type A Type B
Benchmark Ablation AUC AP P R F1 Rank
ARXIV-25 Al 67.75 3.70 95.01 88.93 91.87 44
A2 70.64 5.10 91.22 98.17 94.56 2.2
A3 81.23 5.93 97.30 88.16 92.50 2.0
A4 70.48 5.09 96.10 88.98 92.40 3.0
kj-NN 70.64 5.10 96.09 88.85 92.33 3.0
ARXIV-35 Al 71.98 3.02 80.03 87.14 83.43 2.8
A2 73.58 3.27 72.75 95.60 82.62 2.4
A3 74.14 2.72 71.60 84.32 77.44 4.2
A4 73.54 3.27 79.92 86.99 83.30 2.8
kj—NN 73.58 3.27 80.04 86.98 83.36 2.0
ARXIV-45 Al 69.42 2.96 70.02 86.64 77.45 4.0
A2 69.94 3.28 63.93 95.41 76.56 2.6
A3 71.56 3.17 65.43 84.83 73.87 3.8
A4 69.88 3.27 70.09 86.88 77.59 2.6
kj-NN 69.94 3.28 70.29 86.87 77.70 1.6
ARXIV-55 Al 75.84 3.07 70.33 88.24 78.27 3.2
A2 76.74 3.22 63.78 96.82 76.90 2.4
A3 72.31 2.24 66.06 87.02 75.10 4.8
A4 76.60 3.18 70.49 88.19 78.35 2.8
kj-NN 76.74 3.22 70.70 88.23 78.50 14
ARXIV-54 Al 75.54 3.63 70.19 87.95 78.07 3.6
A2 76.65 3.85 63.38 96.94 76.65 2.4
A3 76.33 3.40 66.09 86.68 75.00 4.6
A4 76.54 3.82 70.19 88.01 78.10 2.6
kj-NN 76.65 3.85 70.38 88.05 78.23 1.2
ARXIV-53 Al 78.55 491 70.58 88.35 78.47 3.6
A2 79.16 5.10 63.54 96.75 76.71 2.4
A3 76.48 3.22 65.89 86.98 74.98 4.8
A4 79.04 5.08 70.65 88.51 78.58 2.4
kj-NN 79.16 5.10 70.77 88.46 78.63 1.4
ARXIV-52 Al 77.44 3.39 70.86 88.53 78.71 24
A2 78.10 3.07 63.76 96.73 76.85 2.6
A3 69.53 1.56 65.85 86.51 74.78 44
A4 77.93 3.03 70.90 88.45 78.71 3.0
kj-NN 78.10 3.07 71.08 88.43 78.81 2.0
ARXIV-51 Al 68.41 3.03 70.76 88.33 78.58 2.6
A2 65.24 2.19 63.81 96.89 76.94 2.8
A3 57.35 1.12 65.83 86.86 74.90 4.2
A4 64.76 2.11 70.80 88.68 78.74 3.0
kj-NN 65.24 2.19 70.91 88.63 78.79 2.0
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Figure 7.4.: Execution time of each approach.




7.5. Discussion

7.4.3. Interpretation

The design of our method gives way to interpretable results. To find similar documents,
we can simply perform a nearest-neighbour search in the embedding space. We find in
turn the most representative phrases for a given outlier d,,; via a similar approach as
in preprocessing (see Section 7.2.1), with this time only two classes: an outlier class ¢,y
containing the k-neighbourhood of document d, i.e., K(d) U d and a class c;, containing
the rest of the documents in the corpus.

Figure 7.5 shows the two top-ranked Type O and Type M outliers we found in NYT-1,
along with the most representative phrases and excerpts from the most similar documents.

It is interesting to see that the three nearest neighbours of the Type O outlier either relate
to building construction projects or political decisions in education (or both). Actually, the
ground truth label ‘Education’ even appears at position five within the most representative
phrases — a useful information in practice.

With the Type M outlier, the nearest documents all relate to science and business in
some way, and the top phrases (energy, fuel, ...) strongly relate to their specific topic.

We then run our approach on the ARXIV benchmark with all the ten classes. Figure
7.6 shows the top-ranked outliers. The Type O outliers are indeed abnormal: they are
not paper abstracts, so one should remove them from the corpus. The Type M outlier is
from [Bor+11]. The authors chose to publish this article in the category cs.Al (Artificial
Intelligence), but our approach suggests that it should be under ¢s.CL (Computation and
Language). Intuitively, this makes sense, given the general topic of the abstract and the
most representative phrases.

7.5. Discussion

We have studied the detection of text outliers in document directories. This task is chal-
lenging because text outliers are manifold, domain-specific, and the task is unsupervised.

We observe that such outliers fall into two types: out-of-distribution (Type O) and
misclassified (Type M) documents. We are first to propose an approach that (i) detects
text outliers from multiple folders and (ii) effectively distinguishes between both outlier
types. Our algorithm, kj-NN, leverages self-supervision signals mined from an initial but
imperfect classification. Interestingly, our experiments show that detecting both outlier
types simultaneously leads to better performance than with existing approaches, which
only deal with one type. Our method also yields interpretable results, by finding adequate
alternative names for folders and by describing the particular semantics of text outliers.

This chapter only addressed text outlier detection in the static setting, while text can
also be seen as a stream of information. An interesting future work would be to combine
it with our other methods, such as MCDE (Chapter 4) and S-MAB (Chapter 5), similarly
as in Chapter 6. Doing so would facilitate Data Mining in massive streams of textual
information, such as news feeds or twitter data. Text outlier detection in such a setting is
an interesting application of Knowledge Discovery in high-dimensional data streams.
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O (Education): NYC will
build a new home for one
of its premier high schools,
Stuyvesant, [...] for the 91-
92 school year, under a sched-
ule that seeks to show that
its public schools can be built
fast and well, Mayor Koch and
Governor Cuomo said yester-
day. The new school, incor-
porating the latest in modern
laboratory equipment, fiber
optic systems and an olympic
size swimming pool will be
built [...] in lower manhattan,
with work to begin at the end
of next year...

—

1st-NN (Business): On
the first floor of a hulk-
ing residential building,
at the end of a dimly
lighted corridor, a nar-
row door opens up into
Hong Kong’s economic
underbelly [...]. Hong
Kong’s housing situation
is now one of the reasons
the government of Leung
Chun Ying, who took the
helm of the city ’s ad-
ministration last year, is
deeply unpopular. Mr. Le-
ung has pledged to add ...

2nd-NN (Politics): Prais-
ing the work of young sci-
entists and inventors [...],
President Obama on mon-
day announced a broad
plan to create and expand
federal and private sector
initiatives designed to en-
courage children to study
science, technology, engi-
neering and mathematics.
[... Mr. Obama said
he was committed to giv-
ing students the resources
they need to pursue edu-
cation [...] in STEM...

3rd-NN (Education): Af-
ter more than a week of
intense political pressure
[...], schools chancellor
Rudy Crew [...] said he
would accept the candi-
date. Dr. crew had pro-
voked harsh criticism last
month when [...] he
used his new veto power
[...] to reject Claire Mcin-
tee, an elementary school
principal who was unan-
imously selected by com-
munity [...] to be the dis-
trict’s top administrator. ..

\—> Top phrases: city, state, program, buildings, education, office, schools, year, project, company...

M (Sport — Business): Set
between an indoor tennis club
and a home appliance show-
room, dozens of engineers,
physicists and nuclear experts
are chasing a radical dream of
Bill Gates. The quest is for
a new kind of nuclear reac-
tor that would be fueled by
today’s nuclear waste, supply
all the electricity in the United
States for the next 800 years
and, possibly, cut the risk of
nuclear weapons proliferation
around the world. the people
developing the reactor work
for a startup ...

>

1st-NN (Science): At a
legendary [...] labora-
tory in California, Lock-
heed Martin is working on
a plan that [...] might
transform the world’s en-
ergy system: a practica-
ble type of nuclear fu-
sion. Some 900 miles to
the north, Bill Gates and
another Microsoft veteran
[...] have poured millions
into a company develop-
ing a fission reactor that
could run on today’s nu-
clear waste...

2nd-NN (Business): Far-
mers, Waste manage-
ment companies and the
energy industries have
long experimented with
converting methane [...]
into transportation fuel.
Those efforts have met
with mixed success, and
a renewable natural gas
fuel has not been widely
available in the United
States. But now, one
leading supplier [...] is
taking a big step toward
changing that.

3rd-NN (Business): Ho-
ping to give new mean-
ing to the term natural
light, a small group of
biotechnology hobbyists
entrepreneurs has
started a project to de-
velop plants that glow,
potentially leading the
way for trees that can re-
place electric streetlamps
[...]. Rather than being
the work of a corporation
[...], it will be done by a
small group of hobbyist
scientists. ..

and

\—' Top phrases: gas, reactor, energy, fuel, plant, nuclear, electricity, project, company, USA...

Figure 7.5.: Interpretation of Type O/M outliers (NYT-1 benchmark).

Type O: Review of : Brigitte Le
Roux and Henry Rouanet, geomet-
ric data analysis, from correspon-
dence analysis to structured data
analysis, Kluwer, Dordrecht, 2004.

- Top phrases: data, paper, chal-

lenges, learning, ...

Type O: The paper has been with-
drawn due to an error in Lemma 1.

Type M (cs.AI — ¢s.CL): Open-text (or open-domain) semantic parsers are de-
signed to interpret any statement in natural language by inferring a correspond-
ing meaning representation (MR). Unfortunately, large scale systems cannot be
easily machine-learned, due to lack of directly supervised data. We propose here
a method that learns to assign MRs to a wide range of text (using a dictionary of
more than 70,000 words, which are mapped to more than 40,000 entities) thanks
to a training scheme that combines learning from WordNet and ConceptNet with
learning from raw text. The model learns structured embeddings of words, enti-
ties and MRs via a multi-task training process operating on these diverse sources
of data [...]. This work ends up combining methods for knowledge acquisition,
semantic parsing, and word-sense disambiguation ...

- Top phrases: problem, work, er-

ror, conjecture, ...

tion, word embeddings, ...

- Top phrases: representations, word, semantic, model, embeddings, informa-

Figure 7.6.: Interpretation of Type O/M outliers (ARXIV benchmark).

124




Part V.

Conclusions
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8. Outcome

This dissertation deals with fundamental topics of Data Mining under the constraints of
high-dimensional data streams. We addressed them from the most specific to the most
general: Estimating Dependency (Q1), Monitoring (Q2) and Knowledge Discovery (Q3).

Those topics are intertwined: virtually any Knowledge Discovery task benefits from
estimating dependency (c.f. Section 1.1.4). However, in the high-dimensional streaming
setting, one also needs solutions for the efficient monitoring of such estimates. Data Mining
in such context is difficult because one must simultaneously address two orthogonal
challenges: high-dimensionality and data streams (c.f. Sections 1.1.2 and 1.1.3).

In Part II, we addressed the challenges of estimating dependency (Q1) in high-
dimensional data streams. After identifying the constraints and requirements, we
introduced Monte Carlo Dependency Estimation (MCDE), a framework to estimate
multivariate dependency in heterogeneous data streams. In a nutshell, MCDE quantifies
dependency as the statistical discrepancy between marginal and conditional distributions
over multiple Monte Carlo simulations. Based on different statistical test, we derived three
new estimators: Kolmogorov-Smirnov-P (KSP), Mann-Withney-P (MWP) and Chi-Squared-
P (CSP), and showed that they fulfil all the requirements described earlier. Compared to
other approaches, MCDE provides high statistical power on a large panel of dependencies,
while being very efficient. Furthermore, we introduced index operations for the streaming
setting and illustrated the benefits of our framework against a real-world use case: the
Bioliq power plant. Due to its anytime nature and efficient index structure, MCDE gives
way to efficient monitoring of dependency in data streams.

Then, we generalised the task of monitoring (Q2) statistics in Part III. We proposed a
novel bandit model, named the Scaling Multi-Armed Bandit (S-MAB), which captures the
efficiency trade-off that is central to many real-world applications. We presented a new
algorithm, Scaling Thompson Sampling (S-TS), which combines Multiple-Play Thompson
Sampling [KHN15] (MP-TS) with a new procedure to decide on the number of arms played
per round, a so-called ‘scaling policy’. Our analysis and experiments showed that it enjoys
strong theoretical guarantees and excellent empirical behaviour. We also proposed an
extension of our algorithm for the non-static setting, by combining it with Adaptive
Windowing [BG07] (ADWIN), a state-of-the-art change detector. We illustrated with the
example of Bioliq that one can use our algorithms to monitor multiple statistics online.

In Part IV, we addressed Knowledge Discovery (Q3) in high-dimensional data streams.
While the knowledge of dependencies in streams already is valuable as such, we illustrated
the impact of efficient dependency monitoring systems on downstream Data Mining tasks.
First, we achieved Subspace Search in Data Streams (Chapter 6) by proposing a new al-
gorithm, Streaming Greedy Maximum Random Deviation (SGMRD), that leverages MCDE
and S-MAB algorithms. We showed that SGMRD leads to state-of-the-art performance
against a typical Data Mining task: the detection of outliers. Then, we looked at a specific
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8. Outcome

application: detecting text outlier from large corpora (Chapter 7). This task is particularly
challenging because text outliers are manifold, domain-specific, and the task is unsuper-
vised in nature. We are the first to make the distinctions between two types of outliers:
out-of-distribution (Type O) and misclassified (Type M) documents. We proposed an
approach which simultaneously detects both types of outliers. Our algorithm, kj-Nearest
Neighbours (kj-NN), leverages self-supervision signals from an initial but imperfect clas-
sification. Our experiments show that our approach outperforms each competitor and
baseline w.r.t. both outlier types while delivering interpretable results. Using our results
may increase the quality of massive text archives by much and assist the annotators.

All in all, this dissertation presents fundamental contributions to the field of Data
Mining, focusing on the particularly challenging setting of high-dimensional data streams.
Our contributions have been well-received in peer-review conferences: MCDE [FB19]
was presented at the 31st International Conference on Scientific and Statistical Database
Management (SSDBM’19) and received the ‘Best Paper Award’. We published an extended
study of the MCDE framework [Fou+20a] in the ‘Distributed and Parallel Databases’
(DAPD) journal (Springer). We presented the S-MAB [FKB19] algorithms at the 25th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (KDD’19), and kj-NN
[Fou+20b] at the 20th IEEE International Conference on Data Mining (ICDM’20).

Our contributions raised several interesting questions, in particular about their impact
on downstream analysis tasks. While we did make a few strides towards answering those
questions with SGMRD [FKB20] and kj-NN [Fou+20b], we elaborate on the open problems
and future challenges of this dissertation hereafter.
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9. Future Work

Our contributions raise several interesting questions. While we partially addressed some
of them, the required research efforts extend beyond the scope of this dissertation. We
identify the following open research directions:

Multi-Scale Dependency Monitoring: While we showed that Monte Carlo Depend-
ency Estimation (MCDE) (Chapter 4) leads to efficient monitoring of dependency in streams,
e.g., via exponential weighting, MCDE could benefit from a more flexible update mechan-
ism, using for instance a sliding window of adaptive size [BG07]. Breaking free from the
fixed-size sliding window model may help to generalise dependency estimation to time
contexts of various scales. While doing so, one may need to investigate the integration of
newer statistical test into the MCDE framework, such as [FP81] or [BMO00].

Regret Analysis of the Non-static Scaling Multi-Armed Bandit: In Part III, we
solved the Scaling Multi-Armed Bandit (S-MAB) problem in the static setting with Scaling
Thompson Sampling (S-TS). For the non-static environment, we proposed an improvement
based on Adaptive Windowing [BG07] (ADWIN). Our algorithm performs better than
the existing approaches empirically. However, the static regret analysis already is quite
involved, and extending it to non-static environments is a challenge. We hypothesise
that this success is due to a class of non-stationarity that our solution exploits — but
which we have not formalised yet. A first step is to leverage the theoretical guarantees of
ADWIN to derive general guarantees for Scaling Bandits with ADWIN. Still, the technical
difficulty arises in guaranteeing that change points are accurately detected. For the analysis,
non-trivial modifications of the ADWIN algorithm might be necessary.

Anytime Trade-off Strategies: We proved in Chapter 4 that the estimates from MCDE
converge as one increases the number of simulations. This is a crucial characteristic of
MCDE that we call anytime flexibility. Based on a computational budget, users can bound
the estimate quality. Conversely, one can interrupt the computation whenever the estimate
reaches a desired quality level. The same year, [VB19] published an estimator for Mutual
Information (MI) with the same characteristic. With the popularisation of edge computing,
reducing the cost of basic tasks — e.g., dependency estimation - is very appealing, because
computation typically is distributed among systems with limited resources. However,
in Knowledge Discovery, one is often interested in finding sets of attributes with high
dependency. In other words, the value of each estimate, which is unknown a priori, may
not all be equally interesting to the end-user. The question is then how to distribute in
an anytime fashion a global computational budget among concurrent estimates? While
our contribution [FB19] and [VB19] addressed this question for individual dependency
estimates, generalising the optimisation of anytime algorithms w.r.t. multiple problems
remains open. Now, it would be interesting to refine bounds, like the one presented in
Theorem 4.2, via further assumptions, and to leverage user-specific criterion to guide the
allocation of resources between concurrent problems.
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9. Future Work

High-Dimensional Stream Mining with User Constraints: In the literature, in-
tegrating user constraints into Data Mining algorithms often is seen as a complication
[HLN99]. With the S-MAB model (Chapter 5), we have seen that user information (such
as a threshold on the interestingness of estimates) may also help to reduce computational
costs drastically. Integrating such information into algorithms might be an essential aspect
to tackle Data Mining in high-dimensional data streams. This idea is in line with our
future work on Anytime Trade-off Strategies (see above). The question is how to formally
integrate user constraints into mining algorithms, in particular, considering the type of
information one may receive from users with different levels of expertise?

Mining Causality: With MCDE (Chapter 4) and S-MAB (Chapter 5), one can estimate
the dependence between attributes in high-dimensional data sets and discover interesting,
previously unknown associations. The next step is to ask, for each of those associations,
whether they emerge from a causal relationship, or turn out to be spurious. Recent advances
in a related field, Causal Inference [Pea09; Nan16; Lop16; Peal9], provide elements to
answer this question solely based on observational data. While passive causal inference
methods are somewhat limited, because they require relatively strong assumptions, it
would be interesting to extend the MCDE framework in this direction. Our intuition is
that slight modifications of our subspace slicing scheme may allow testing the existence of
confounding variables for a given association. One could then build a so-called ‘dependency
network’ [Hec+00; Sch+16; DM17], i.e., a graphical representation of dependency in the
stream, providing new insights to end-users as well. By extending our methods, we could
mine such networks in real-time in high-dimensional data streams.

Analysis of Multivariate Times Series Embeddings: In Chapter 7, we showed that
exploiting local neighbourhoods in word/document embeddings helps to detect outlying
text. Integrating the methods from Chapter 6 may bring an incremental improvement
in the static setting already, and solve similar tasks in massive streams of text. Perhaps
even more interesting is to transfer our approach to other domains, e.g., multivariate
times series. For example, we could project sequences of measurements from the Bioliq
power plant into an embedding space. Then, using kj-Nearest Neighbours (kj-NN), we
may automatically detect normal and abnormal states in the plant, and, with Streaming
Greedy Maximum Random Deviation (SGMRD), adapt to changes in the streaming setting.
In predictive maintenance, there typically are only very few labels, such setting is known
as ‘weakly-supervised’ [Zho17; Men+18]. It would be interesting to investigate extensions
of our approach to handle weak supervision or further complications.

To conclude, this dissertation advances the state of the art of the Data Mining field.
We provided fundamental contributions with significant impacts on the general task of
Knowledge Discovery in high-dimensional data streams. Last but not least, our work
paves the way for multiple exciting future research topics.
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Acronyms

ADWIN Adaptive Windowing [BG07]. 9, 22, 65, 68, 69, 79, 82, 84, 103, 127, 129, 143
ANCS Average Negative Cosine Similarity. 114-118

AP Average Precision. 96, 112, 117, 118, 121, 122

AT-RNN Attention-Based Hierarchical RNN [Yan+16]. 114, 119, 120

AUC Area Under the Curve (e.g., of the ROC curve). 96, 99, 112, 114, 117, 118, 121, 122
Bioliq Biomass-to-Liquid. vii, 4, 8, 9, 11, 14, 29, 59, 81, 90, 97, 127, 130, 139, 140, 145
CE Cumulative Entropy [CL09]. 21

CMAB Combinatorial MAB. 23

CMI Cumulative Mutual Information [Ngu+13]. 21, 51, 54, 57, 61

CSP Chi-Squared-P. viii, 29, 36, 41-49, 58, 127, 139, 143

CUCB Combinatorial UCB [Che+16]. 23, 70, 78, 79, 84

CVDD Context Vector Data Description [Ruf+19]. 24, 114-118

DO Dynamic Oracle. 82

dTS Discounted Thompson Sampling [RK17]. 78, 80

D-SQF Dimension-Subspace Quality Function. 88, 89, 138, 145

EDM Exploratory Data Mining. 7

EG Epsilon-Greedy [SB18]. 78, 80

Exp3 Exponential-weight algorithm for Exploration and Exploitation [Aue+00]. 23
Exp3.M Exp3 with Multiple plays [UNK10]. 23, 70, 78, 79, 84

GMD Greedy Maximum Deviation [TB19]. 24

JoSE Joint Spherical Embedding [Men+19]. 108, 115

HiCS High Contrast Subspaces [KMB12]. 21, 24, 40, 51, 54, 57, 61, 99, 104

Il Interaction Information [McG54]. 21, 51, 54, 57, 61
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Acronyms

IID Intrinsic Dimensionality Dependency [Rom+16]. 21
k-ANCS ANCS from the k nearest neighbours. 114-118, 121
KDD Knowledge Discovery from Data. 3, 4, 105, 139

kj-NN kj-Nearest Neighbours. iii, vi, ix, 9, 10, 19, 25, 107-109, 111-114, 116-123, 128, 130,
141, 143

KL-UCB Kullback-Leibler UCB. 66, 67, 70, 77, 78, 145

KL-S Kullback-Leibler Scaling. 66, 67, 69, 78, 94, 103

KSP Kolmogorov-Smirnov-P. viii, 29, 36, 40-42, 44-49, 57, 58, 97, 127, 139, 143
LOF Local Outlier Factor [Bre+00]. 24, 95, 99, 104, 114-118, 121

MAB Multi-Armed Bandit. iii, v, 9, 10, 14, 15, 23, 65, 137, 139

MAC Multivariate Maximal Correlation [Ngu+14b]. 21, 51, 54, 57, 61

MCDE Monte Carlo Dependency Estimation. iii, v, viii, 9, 10, 12, 13, 17, 21, 29-36, 38, 40,
42, 44-48, 50, 52, 54, 56, 58-61, 93, 105, 123, 127-130, 141, 143

MI Mutual Information. 8, 11, 21, 22, 61, 81, 84, 129

MISE Mutual Information Stream Estimation [KMB15]. 22

MP-KL-UCB Multiple-Play Kullback-Leibler UCB [GC11; KHN15]. 23, 70, 78
MP-MAB Multiple-Play Multi-Armed Bandit. 15, 23, 66, 69, 70, 137

MP-TS Multiple-Play Thompson Sampling [KHN15]. 23, 66, 67, 69, 70, 73, 84, 127
MS Multivariate Spearman [SS07]. 21, 51, 54, 57, 61

MWP Mann-Withney-P. viii, 29, 36, 37, 39, 40, 42, 44-52, 54, 57-59, 127, 139, 143
RCNN Recurrent CNN [Lai+15]. 114, 119, 120

RO Random Oracle. 82, 84

ROC Receiver Operating Characteristic. 96, 112

RS-Hash Randomised Subspace Hashing [SA16]. 24, 99, 114, 115, 117, 118, 121
RS-Stream Randomised Subspace Hashing in Streams [SA18]. 24, 99, 104
S-KL-UCB Scaling Kullback-Leibler UCB. 78, 79, 84

S-MAB Scaling Multi-Armed Bandit. iii, v, viii, 9, 10, 14-17, 22, 23, 65, 66, 68, 70, 72, 74,
76,78, 80-82, 84, 94, 103, 105, 123, 127-130, 138
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Acronyms

S-TS Scaling Thompson Sampling. viii, 65-69, 77-80, 82, 84, 94, 99, 103, 127, 129, 139, 140,
143

S-TS-ADWIN Scaling Thompson Sampling with ADWIN. viii, 68, 69, 77-80, 82, 84, 139,
143

SGMRD Streaming Greedy Maximum Random Deviation. iii, vi, ix, 9, 10, 17, 87, 90, 91,
94-100, 102-105, 127, 128, 130, 140, 141, 143

SO Static Oracle. 78, 82
SW-UCB Sliding Window UCB [GMO08]. 78, 80
TC Total Correlation [Wat60]. 21, 51, 54, 57, 61

TONMF Text Outliers using Non-negative Matrix Factorisation [Kan+17]. 24, 114, 115,
117, 118

TS Thompson Sampling [Tho33]. 9, 65, 73, 82, 99, 100, 102-104, 140
UCB Upper Confidence Bound [Aue+02]. 23, 70, 82

UDS Universal Dependency Score [NMV16]. 21, 51, 54, 57, 61
UMC Unbiased Multivariate Correlation [Wan+17]. 21

VD-CNN Very Deep CNN [Con+17]. 114, 119, 120

vMF von Mises-Fisher. 24, 114

VMF-Q Von Mises-Fisher Quantiles [Zhu+17]. 114, 115, 117, 118

W-CNN Word-level CNN [Kim14]. 114, 119, 120
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Notation

D A set of attributes, D = {sq, ..., sp|}. 13, 88-96, 98, 137, 143
B An open list of observations, B = (X1, X2, ...). 13, 95, 137, 143

X; An observation, i.e., a vector of values with |D| attributes, X; = (xj)je(1,..p}- 13, 32,
37, 45, 95, 137, 143

s; An attribute in a data stream D, a.k.a. dimension, variable. 13, 30-33, 35, 37, 38, 40, 41,
43, 44, 88-96, 137, 143

t The current time step. 13, 16, 44, 66-79, 82, 89, 90, 93-96, 100, 103, 137, 138, 145

w The number of observations in a sliding window. 13, 32, 37-46, 50, 56-59, 68, 69, 78, 80,
82,91, 95, 100, 104, 137, 139, 143

W; A window containing the latest w observations, W; = (X;—y+1, - - . , X¢). 13, 44, 137

S A subspace, i.e., a projection on |S| attributes, S C D, |S| < |D|. 13, 30-36, 38-46, 48, 50,
52-55, 57, 88—94, 137, 139, 143

X;, A random variable associated with an attribute s; € D. 13, 30, 137

Num A set of attributes of numerical type. 13, 32, 44

Ord A set of attributes of ordinal type. 13, 32, 44

Cat A set of attributes of categorical type. 13, 32, 41, 44

p(X) The joint probability distribution function (pdf) of a random vector X. 13, 30
X A random vector, X = (X, ) ¢ 13,3033, 92, 137

ps;(X) The marginal probability distribution function (pdf) of variable s;. 13, 30-32
P The power set (e.g., of a subspace S or set of attributes D). 13, 30, 31, 88-90, 93, 98
K The number of arms in a MAB problem. 14-16, 66-76, 78, 79, 84, 94, 139, 140, 143

L The number of plays per round in a MP-MAB problem. 15, 16, 54, 66, 67, 69-73, 75, 78,
93, 94, 100—-104, 140, 145

yi The expected reward of arm i. 16, 66, 68-71, 73, 74, 77-79, 82, 94
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Notation

T The total number of time steps (potentially infinite in streams). 16, 67-76, 78, 82-84, 94,
96, 102, 103, 139, 140

I(t) The set of arms selected at time t. 16, 66-70, 73, 74, 90, 94, 96

X(t) The reward vector received at time t. 16, 66, 67, 69, 94

X;(t) The reward vector received from arm i at time t. 16, 67-69, 94

N;(t) The number of draws of arm i before time ¢. 16, 66, 67, 69, 73, 74, 76, 77
Si(t) The sum of the rewards obtained from arm i before time ¢. 16, 67, 69

n* The efficiency factor of a S-MAB, controling the trade-off between the cost of playing
the reward obtained. 16, 66, 67, 69, 71, 73, 75, 78, 82, 84, 94, 99, 103, 143

L* The optimal number of plays of a S-MAB, see Equation 2.2. 16, 69-72, 75, 76, 78-80
q A Dimension-Subspace Quality Function (D-SQF) (cf. Definition 6.1). 88, 89, 93, 94, 138
q: The D-SQF g at time t. 89-93, 96

S* An optimal set of subspaces (cf. Definition 6.3). 89, 138

S; The optimal set of subspaces S* at time ¢. 89, 90, 96, 138

S¢ An approximation of S;. 90, 91, 93-95, 143

S An arbitrary set of subspaces. 92

Doc A set of documents, Doc = {d1,d>, . ..,d|pe|}. 19, 108-112, 138, 143

d A document, d € Doc. 19, 109-112, 119, 123, 138

Phr A set of phrases, Phr = {p1,p2, ..., p|phr|}- 19, 108,109, 111, 112, 138, 143

p A phrase, p € Phr. 19, 108, 110-112, 138

O A set of text objects (documents and phrases), O = Doc U Phr. 19, 108, 109, 138

o An object (document or phrase), o € O. 19, 138

V' An embedding vector representation V : O +— R" with n dimensions. 19, 108, 138
Sim A similarity function between text objects, Sim : O? — [0,1]. 19, 109, 111, 112, 138
C A setof classes, C = {cy,...,c|c}. 19, 108, 110-112, 138

¢ Aclass,ce C.19,108-112, 123, 138

y An initial classification function of documents, y : Doc — C. 19, 108, 110, 112, 138, 143

r A representativeness function of phrases, r : Phr X C — C. 19, 108, 110-112, 138, 143
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