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1
Chapter 1

Introduction

Once after a seminar talk, I received a rather peculiar question. A colleague
asked: ’What is the difference between your work and one of my childhood toys, a
humming top?’1 Although meant jokingly, his remark left me both baffled
and stunned at the same time. Is our research outperformed by a simple toy?
Unsurprisingly, my follow up response was pretty unconvincing.

To put this into perspective, the talk I gave dealt with our most recent
work on push-to-twist coupling in mechanical metamaterials, which is also
the subject of this thesis. The related paper was published just a couple of
days prior to said talk in a quite prestigious journal. In this, we presented a
3D printed material which twists when being compressed. So technically,
the colleague’s assessment was accurate. Our material twisted upon com-
pression, just like the humming top starts rotating when pushing down the
pole. One could even argue that the humming top is in fact more advanced,
since it continues spinning and starts making music when releasing the pole.

The intriguing part my colleague’s question was of course its subtext: How
could a mechanism so simple that even toys have exploited it for decades,
resonate so well in the scientific community? At the time, I had no good
answer to that. Thus, after a while I figured that my colleague and I thought
of the 3D printed material in totally different terms. He thought of it in terms
of a structure. And in fact, there are plenty of structures converting a linear
motion or deformation into a rotation or twist. Just think of crankshafts
in car engines, the coupling rods of a locomotive, or the spiral pole of the
mentioned humming top.

In contrast, we thought of our 3D printed structure as a material. For these
to deform like that is a very particular property. As a matter of fact, this trait

1 Paraphrased question of Prof. Dr. Heinz Kalt, Seminar of the Institute of Applied Physics,
Karlsruhe Institute of Technology, Karlsruhe, December 2017.
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1 introduction

is so unusual that the classical Cauchy theory describing the deformation
of bodies forbids such deformations for homogeneous materials altogether.
Within the scope of Cauchy mechanics, homogeneous bodies are allowed
to deform in a multitude of different ways. They can shear, expand, and
even contract laterally when being compressed [1]. Yet, a twist deformation
is strictly prohibited. So from this point of view, a twist deformation is
highly surprising. Even more so since the observed effects were not only a
small correction, but were as big as the common deformation modes of the
body [2].

So, should our 3D printed structure be considered a material? And what
distinguishes a material from a structure? I would argue now that structures
are materials, if one can describe and use them like regular materials. Take
ordinary glass as an example, which is nothing but an amorphous structure
of atoms. Yet, everybody would consider it a material. Usually, we do not
care about the position of every atom, the direction of every bond, or the
mobility of every electron. Instead, we use material parameters like the
refractive index to describe its optical properties or the Young’s modulus for
its elastic traits. The same holds true e.g. for concrete. There, the ingredients
can be centimeter sized stones. Still, nobody would object to calling concrete
a material. So whether the substructure of the material is on the atomic scale
or on the macroscopic scale does not influence our perception of materials
either. The only thing that matters is that we can use and describe the
structure as a regular constituent material. Hence, being able to assign
such material parameters, or at least locally defined intensive quantities that
describe the response is key.

One might argue that one can still assign effective material parameters
to any structure. Yet, our understanding of material goes along with a
specific expectation of its scaling behavior. Material parameters are always
intensive quantities [3]. Once again exploiting glass as an example: the
refractive index does not change whether the thickness of a pane is one
centimeter or one meter. Likewise, every other property we would refer to as
a material trait stays the same. In essence, this is the key difference between
the humming top and our 3D printed material. When stacking multiple
humming tops or crankshafts together as you would do with a material, the
intended working mechanism will fail. The coupled crankshafts will not
drive a car and the humming tops will not form one big rotating top. Yet,
the material we conceived will twist and its effective material parameters
will be independent of the sample size.

Obviously, this generalized notion of materials is not new. So called
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metamaterials have been around for decades already. These man-made
rationally designed structures [4] exhibit properties that can go well beyond
the properties of its constituents, hence the prefix ’meta’ [5]. Metamaterial
research is a fast growing field and giving a sufficient overview is a nearly
impossible task for this introduction. Not least because the metamaterial
idea is a broad and versatile concept, which has been applied in optics [6,
7], photonics [4], acoustics [8–10], heat conduction [11–13], or continuum
mechanics [14–16], just to mention a few.

With their versatility, metamaterials enable a multitude of applications.
The one attracting most attention might be the invisibility cloak [17, 18].
Therein, metamaterials smoothly guide light around an object. Yet, in case
somebody hopes to be able to buy Harry Potter’s cloak of invisibility soon,
that person would have to be be reminded that the proposed devices only
operate in a small frequency range [19, 20]. Broadband devices are forbidden
by causality. Hence, perfect invisibility remains a science fiction for now. Yet,
cloaking devices for antennas to avoid coupling between different frequency
bands are promising applications [21–23].

Surprisingly, designing cloaks for mechanical waves is amongst the most
challenging processes [24]. Not least because transverse and longitudinal
polarized waves, as well as mixing and conversion between those, have
to be taken into account. Therefore, many cloak designs rely on so called
Cosserat materials. These materials are named after the Cosserat brothers,
who developed a theory involving additional degrees of freedom in 1909 [25].
As a result, Cosserat materials possess broken minor symmetries of the
elasticity tensors by definition [26].

This raised some question for us: How does a Cosserat metamaterial look
like and which qualitatively new effects can be expected? Can we use meta-
materials to enhance these effects? Some questions were already answered
theoretically. In the 1960s, Eringen formulated the micropolar theory of
elasticity [27–31], which explicitly assumed elasticity tensors lacking minor
symmetries. Therefore, his theory is sometimes also referred to as Cosserat
continuum mechanics and will be used as a continuum model for Cosserat
materials throughout this thesis. Yet, the micropolar generalization is just
one approach amongst many [32].

As a matter of fact, in contrast to the classical Cauchy theory, the microp-
olar theory can describe chiral media [30, 33]. It has been shown that in
chiral materials qualitatively new effects like acoustical activity [34–36], the
elastic counterpart of optical activity, and the push-to-twist coupling [33]
mentioned at the beginning can occur.
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1 introduction

The main goal of this thesis is to achieve a chiral Cosserat metamaterial.
Therefore, I will introduce and discuss different blueprints for metamaterial
unit cells. Their properties beyond Cauchy elasticity will be proven by
characterizing both the push-to-twist coupling in these materials and their
acoustical activity.

Outline of this thesis

This thesis is generally split into two parts. Part I focuses on the elastostatic
push-to-twist coupling in chiral metamaterials. I will begin with a recapitu-
lation of the classical Cauchy continuum theory in chapter 2. From that, it
will become clear that the Cauchy theory is fundamentally not capable of
describing chiral material. Consequently, I will introduce a generalization of
the Cauchy continuum theory, the so called micropolar continuum theory.
Therewith, I will outline the analytical solution derived by Roderic Lakes,
which predicts qualitatively new twist deformations for a strained chiral bar.
In chapter 3, I will sketch the basic principles of the finite element method,
which was used for all numerical calculations in this thesis. The measure-
ment setup and the fabrication methods are presented in chapter 4. Therein, I
will present our basic sample design and give details on the setup to measure
the push-to-twist coupling. Furthermore, I will present the 3D printers used
for sample fabrications. In chapter 5, I will depict the mechanism and unit
cells that lead to push-to-twist coupling. Subsequently, I will present the
realization, as well as the numerical and experimental characterization of a
certain cubic metamaterial design. Based on that, I will present our findings
of a modified version of this unit cell that showed remarkably large twist
deformations and characteristic lengths scales in chapter 6. Furthermore, I
will introduce a simple analytical model, which helps understanding the
inner mechanisms of this modified metamaterial.

Part II deals with the propagation of elastic waves in chiral metamaterial.
In chapter 7, I will give a brief overview of elastic waves in the different
continuum theories. Additionally, I will introduce the notion of acoustical
activity. The necessary numerical and experimental methods will be men-
tioned in chapter 8 and chapter 9. In chapter 10, I will present the numerical
and experimental results for two different unit cell designs. Additionally, I
will compare these results to calculations of a micropolar continuum. Finally,
I will summarize and discuss the thesis in chapter 11, followed by a brief
outlook.
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Part I

elastostatics : push-to-twist

coupling





2
Chapter 2

Fundamentals of

Continuum Mechanics

Artistic illustration of a deformed continuum

"Ut tensio, sic vis"[37] or "as the extension, so the force." This law was formulated
by Robert Hooke in 1678, when he described the deformation of springs for the first
time. Little did he know that this simple statement was going to be the guiding
principle of every linear theory of elastic materials until today. In this chapter, I
will give a short introduction to different continuum theories of elastic bodies that
generalize Hooke’s law into three dimensions and which will be used later in this
thesis to model our metamaterials. In that, I will show that a qualitatively new
push-to-twist coupling emerges when considering chiral material. Finally, I will
define the term metamaterial and give a brief overview of the field of mechanical
metamaterials.
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2 fundamentals of continuum mechanics

Figure 2.1: Illustration of a spiral and its mirror image. Spirals are chiral objects,
since a spiral and its mirror image cannot be superimposed by only using
rotations and translations.

2.1 Chirality

The first definition of chirality was brought forward by Kelvin in 1894. He
wrote:

"I call any geometrical figure, or group of points, ’chiral’, and say that
it has chirality if its image in a plane mirror, ideally realized, cannot be
brought to coincide with itself."[38]

It is important to know that bringing two objects to coincide implies that
only translations and rotations are allowed operation. Maybe the most
prominent example of chiral objects are human hands. No matter how one
would turn them, they are non-superimposable. Another example is the
spiral and its mirror image depicted in Figure 2.1. In analogy to our hands,
the original spiral can be called right-handed, whereas the mirror image is
left-handed. These terms are quite commonly used when distinguishing
chiral molecules. Notably, the right- and left-handed version of a molecule
can have totally different effects. The sedative thalidomide, better known by
its trade name Contergan, can serve as an example. One handedness had the
desired sedative effects, whereas the other caused major birth defects [39].

12



2 .2 cauchy theory of elastic solids

In 1957 and 1958 [40, 41], in an effort to sharpen the definition of chirality,
Whyte formulated a set of conditions any object or system has to fulfill to be
chiral.

"The necessary and sufficient condition for the presence of chirality is
the absence of all three of the following symmetry elements: a plane
of symmetry, a centre of symmetry, and any 4n-fold inversion axis.
The definition applies both to mathematical forms and to observed phe-
nomena, and does not presuppose their representation in any particular
manner..." [41]

Although chiral objects and materials play a major role in chemistry and
physics, e.g. optical activity is caused by chiral media, chiral elastic materials
have only recently sparked the interest of a wider scientific community. One
of the reasons for that might be that chiral effects were considered to be
rather small and therefore negligible for macroscopic objects. Consequently,
the classical Cauchy theory of elasticity cannot distinguish between materials
of different handedness, as will be shown in the following section.

2.2 Cauchy Theory of Elastic Solids

Continuum mechanics deals with the deformation of bodies and the re-
lated forces and stresses within these bodies. The origins of the classical
Cauchy Theory traces back to the 18th century mathematician Augustin-
Louis Cauchy and is subject of many standard textbooks. Here, I am closely
following the didactic approaches of Slaughter [42], and of Timoshenko and
Goodier [43]. Since this is meant as a short introduction only, I refer the
interested reader to one of these books for more insights.

In continuum theories, a body B consist of an infinite number of material
points or infinitesimal material elements, each occupying a unique position in
space. If all points lie inside a continuous region with only a finite number of
regular surfaces, this is called a configurationR of the body B. Deformations
of the body B are characterized by comparing a current configuration Rt at
time t and boundary ∂Rt to a reference configuration R with boundary ∂R.
The reference configuration usually represents the natural state of the body,
i.e. a state without external stimuli.

13



2 fundamentals of continuum mechanics

Figure 2.2: Illustration of
the body B in the reference
configuration R and cur-
rent configuration Rt. The
position of a certain mate-
rial point P in R is given
by

Ñ

X(P) and by Ñx in Rt re-
spectifly. The displacement
vector Ñu connects P in the
reference system to its posi-
tion in the current system.

X
x

R R
t

P
P

O

u

2.2.1 Kinematics

In a fist step, measures to characterize deformations in these two config-
urations of the same body are introduced. The position of point P in the
reference system R relative to an origin O is given by the vector

Ñ
X(P). Like-

wise, Ñx (P) denotes the position of P in the current configuration Rt, as
depicted in Figure 2.2. As already mentioned above, each material point
occupies a unique position for a given time t, meaning that two different
material points cannot be at the same position at the same time. Of course,
different material points can occupy the same positions at different times.
Therefore an isomorphic vector operator

Ñ
χ(•, t) exists, which maps all points

of the reference configuration R onto the current one Rt.
Ñ
χ(•, t) : R → Rt (2.1)

Hence, every position of P in the current configuration can be expressed as a
function of its position in the reference configuration

Ñx =
Ñ
χ(

Ñ
X, t). (2.2)

Due to the isomorphism of the mapping, the inverse relation
Ñ
χ−1

(•, t) :
Rt → R also exists, yielding the position

Ñ
X of P in the reference configura-

tion as a function of the position in the current configuration
Ñ
X =

Ñ
χ−1

(
Ñx , t). (2.3)

With this, it is possible to define the displacement vector Ñu
Ñu =

Ñ
χ(

Ñ
X, t)−Ñ

X, (2.4)
Ñu =

Ñx −Ñ
χ−1

(
Ñx , t), (2.5)
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2 .2 cauchy theory of elastic solids

R

R t

Q

P

R
rP QPQ

PQ

dX dx

Figure 2.3: The two points
P and Q are connected by
the material curve C in the
reference and by Ct in the
current configuration. Us-
ing these curves, the vec-
tors

Ñ

RPQ and Ñr PQ can be
defined, describing the dis-
tance between P and Q
in the respective configura-
tion.

which connects the position of P in the current configuration with the
reference. Intuitively, Ñu describes the positional change of P when changing
between the configurations R and Rt. Both definitions Equation 2.4 and
Equation 2.5 are equivalent. Merely different view points are chosen, either
the reference system

Ñ
X = XA êA or the current system Ñx = xi êi to describe all

quantities. Nevertheless, the result does not depend on the particular choice
of the base, only the representation of physical quantities does. The material
or Lagrangian description chooses the reference coordinates

Ñ
X, whereas

the spatial or Eulerian description chooses the current position Ñx . When
considering solid bodies, the material description seems the natural choice,
whereas in fluid mechanics, the spatial representation is more favorable.

The displacement vector field Ñu is a state function in linear elasticity.
Hence, it only depends on the current and reference configuration and not
on the history of the system. Consequently, every solution Ñu must fulfill∮

P

dÑu = 0, (2.6)

for every closed path P . Although the body is completely described by
its displacement vector field Ñu(

Ñ
X, t), for deformations, only the change of

the distance between neighboring points P and Q is important. Current
configurations, where all distances between points of the body are equal to
the distances in the reference configuration are so called rigid body motions.
For the scope of this thesis, these are of lesser importance.

A measure for deformation of a body can be derived by considering two
arbitrary paths C and Ct, which connect the points P and Q in R and Rt as
depicted in Figure 2.3. The vector RQP connecting the two points in R can

15



2 fundamentals of continuum mechanics

be expressed in terms of a path integral along the curve C
Ñ
RQP =

∫
C

d
Ñ
X, (2.7)

in the reference system. Equivalently, the vector rQP in the current configura-
tion is given by

Ñr QP =
∫
Ct

dÑx . (2.8)

Both are illustrated in Figure 2.3. Again, by exploiting the isomorphism of
the mapping, a non-singular, second-order tensor F must exist, that uniquely
links dÑx and d

Ñ
X via

dÑx = F d
Ñ
X ⇐⇒ dxi = FiAdXA. (2.9)

The second-order tensor F is called the deformation gradient tensor. It is
defined as

FiA =
∂xi

∂XA
. (2.10)

Likewise, the inverse deformation gradient tensor F−1 is given by

F−1
Ai =

∂XA

∂xi
, (2.11)

and fulfills
dXA = FAi dxi. (2.12)

The deformation-gradient tensor F contains all information about the body’s
rotations and deformations, whilst neglecting pure translations. More pre-
cisely, it describes only the changes in length and direction of an infinitesimal
vector d

Ñ
X as a function of the the position

Ñ
X.

2.2.2 Strain Tensor

Although pure translations are not captured by the deformation-gradient
tensor, it still contains rigid body rotations, which is not desirable either.
Thus, yet another quantity need to be introduced, the so called strain tensor.
A simple derivation starts by calculating the length of the material lines C
and Ct depicted in Figure 2.3

S =
∫
C

dS, s =
∫
Ct

ds. (2.13)
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2 .2 cauchy theory of elastic solids

Therein, the infinitesimal path lengths ds and dS are defined by

d
Ñ
X = Υ̂ dS, dÑx = υ̂ ds, (2.14)

where Υ̂ and υ̂ are unit tangent vectors. Using this, it follows

(ds)2 = dÑx · dÑx (2.15)

= (F · dÑ
X) · (F · dÑ

X) (2.16)

= d
Ñ
X · (FT · F) · dÑ

X (2.17)

=
[
Υ̂ · (FT · F) · Υ̂

]
(dS)2. (2.18)

This can be rewritten using the symmetric and positive definite right Cauchy-
Green deformation tensor C = FT · F

ds = (Υ̂ACABΥ̂B)
1/2dS. (2.19)

The Cauchy-Green deformation tensor C correctly grasps the local deforma-
tions of a material, and neglects rigid body translations and rotations. Yet, in
case of such a rigid body motion, the Cauchy-Green deformations tensors
yields C = 1 for all points in Ct. Therefore, the Lagrangian strain tensor is
defined as

E =
1
2
(C− 1) ⇐⇒ EAB =

1
2
(CAB − δAB). (2.20)

In contrast to the Cauchy-Green deformation tensor, it is zero for undeformed
bodies. As a final step, the Lagrangian strain tensor will be expressed as a
function of the displacement field Ñu . By exploiting the relations Equation 2.5
and Equation 2.10, the deformation gradient F can be rewritten as

FiA = δiA +
∂ui

∂XA
. (2.21)

Together with the definition of the Lagrangian strain tensor Equation 2.20, a
representation depending on the displacement field in the material frame
can be derived

EAB =
1
2

(
∂uA

∂XB
+

∂uB

∂XA
+

∂uA

∂XB

∂uB

∂XA

)
. (2.22)
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Totally equivalent considerations in the spatial coordinates yield an expres-
sion for the Almansi-Hamel strain tensor

eAB =
1
2

(
∂ui

∂xj
+

∂uj

∂xi
+

∂ui

∂xj

∂uj

∂xi

)
. (2.23)

Considering only small displacements, the last term in Equation 2.22 vanishes
and the infinitesimal strain tensor ε can be defined as

εij =
1
2

(
∂ui

∂Xj
+

∂uj

∂Xi

)
. (2.24)

This linearizion procedure is sometimes referred to as the geometrical lin-
earization of the strain tensor and is distinct from the linearization of the
constitutive equations later on.

At this point, it is worth introducing a commonly used short notation for
the partial derivatives. The derivative of the k-th element of an arbitrary
physical quantity

Ñ

ζ with respect to the coordinate Xi is defined as

∂ζk
∂Xi

= ζk,i. (2.25)

By applying this definition to Equation 2.22, the infinitesimal strain tensor
reads

εij =
1
2
(
ui,j + uj,i

)
. (2.26)

In the following, the infinitesimal strain tensor of Equation 2.26 will simply
be referred to as the strain tensor.

2.2.3 Forces and Stresses

So far, only the description of the motion of points and the deformation of a
body B has been established. Now, measures of forces and stresses inside
B will be introduced. Generally, two types of forces can be distinguished.
External forces are stimuli that act on the boundary of the body (surface
force) or the volume. Common examples are contact forces from interaction
with other objects or the gravitational field. On the other hand, there are
internal forces that arise form the interaction of the body with itself.
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Figure 2.4: An arbitrary de-
formed body B with a set
of external forces

Ñ

Fext ac-
tion on the outer surfaces.
The self-interaction of B is
illustrated by virtually cut-
ting B in half and examine
the forces δ

Ñ

F acting on a in-
finitesimal area δa.

To grasp these internal forces, the small gedankenexperiment depicted in
Figure 2.4 has been considered. A body B in the current stateRt with a set of
external forces

Ñ
Fext acting on its outer surface is cut into two separate bodies

B′ and B′′. The former internal forces of B, arising from the interacting of
the subparts B′ and B′′, can now be interpreted as external forces acting on
the surface ∂B′ of the body B′. In other words, it is possible to represent
the internal forces as set of external forces δ

Ñ
F i acting on each area δa of an

imaginary surface ∂B′ inside the body. When choosing a point P ∈ δa, the
set of external forces acting on δa can be rewritten in terms of a total force
Ñ
F δa and a total angular momentum

Ñ
Mδa, both acting on P.

The classical Cauchy continuum theory now makes the following funda-
mental assumptions about the total angular momentum

Ñ
Mδa and the total

force
Ñ
F δa:

1) The total angular momentum
Ñ
Mδa per area vanishes when reducing δa

to P

lim
δa→P

Ñ
Mδa

δa
= 0. (2.27)

2) The total force
Ñ
F δa per area tends to a definite limit, the so called

traction vector
Ñ
t

lim
δa→P

Ñ
F δa

δa
=

Ñ
t (

Ñ
X, n̂, t), (2.28)

with n̂ being the face normal of δa.

These expressions are explicitly formulated in the spatial frame. For body
forces, analogous assumptions yield that the total angular momentum van-
ishes and that the total force per volume element is finite. At this point it
is worth mentioning that requiring the total angular momentum to vanish
is a drastic simplification and limits the applicability of the Cauchy theory.
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So-called generalized theories relax this assumption, i.e. couple-stress the-
ory [44–46] and all micro-mechanical theories [27, 28, 31]. The latter will be
discussed in greater detail in section 2.3.

Although the traction vector already contains all information about the
forces within the body, it is an ill-suited quantity, since it depends on the
normal vector n̂ of a virtual plane. However, the second order Cauchy stress
tensor T(

Ñ
X, t) can be defined as a measure independent of the cutting plane

ti(
Ñ
X, n̂, t) = n̂jTji(

Ñ
X, t). (2.29)

The Cauchy stress tensor has a straight forward physical interpretation. It
describes the current force δ

Ñ
F acting on the point P as

δFi = n̂jTjiδa. (2.30)

2.2.4 Equations of Motion

The relations between accelerations and stresses is grasped by the equations
of motion. A straight forward way of deriving them is considering the
equation for the balance of linear momentum of a body B′ occupying the
area R′t with external boundary ∂R′t∫

∂R′t

tida +
∫
R′t

ρbidv =
∫
R′t

ρaidv. (2.31)

Thereby,
Ñ

b denotes the force vector, the body force equivalent of the traction
vector

Ñ
t . ρ is called the mass density, ai the acceleration. The equation of

motion in integral form is derived by inserting the definition for the Cauchy
stress tensor Equation 2.29 into Equation 2.31 and applying Gauss’s theorem∫

R′t

ρaidv =
∫
R′t

(
Tji,j + ρbi

)
dv. (2.32)

The more commonly used differential form is given by

ρai = Tji,j + ρbi. (2.33)

A second equation of motion can be derived by considering the condition
for the balance of angular momentum. It reads∫

∂R′t

εijkxjtkda +
∫
R′t

ρεijkxjbkdv =
∫

∂R′t

ρεijkxjakdv, (2.34)
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2 .2 cauchy theory of elastic solids

with the Levi-Civita symbol εijk. Again, by exploiting Equation 2.31 and
applying Gauss’s theorem in integral form, the second equation of motion is
found

εijkTjk = 0. (2.35)

Equation 2.35 implies that the Cauchy stress tensor is generally symmetric

Tji = Tij. (2.36)

From similar considerations in the reference configuration, the second
Piola-Kirchhoff tensor S̃ can be derived. It can be shown that for small
deformations

Fi J ≈ δi J , (2.37)

the Piola-Kirchhoff tensor S̃ and the Cauchy tensor T are identical.

S̃ij ≈ Tji = σij. (2.38)

To emphasis this approximation, the kinematically infinitesimal stress tensor
σ is defined. In the following, this infinitesimal stress tensor σ will simply
be referred to as the Cauchy tensor or stress tensor. Finally, the equations of
motion read

σji,j + fi = ρai (2.39)
σij = σji (2.40)

Note that after this linearizion, the material and spatial frame are approxi-
mately the same. Therefore, all quantities will be represented in the material
frame implicitly and instead of distinguishing between upper and lower case
indices, only the latter will be used.

2.2.5 Linear Constitutive Model

The constitutive relation establishes a connection between the stress and
strain measures introduced before. In general, this can be a complicated and
highly nonlinear relation. Nevertheless, for infinitesimal strains and stresses,
a linear ansatz is reasonable. The most general of these is given by

σij = Cijklεkl, (2.41)

where C denotes the rank four elasticity tensor. Equation 2.41 is also referred
to as the generalized Hooke’s law.
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Generally, the elasticity tensor C has 34 = 81 elements, but not all of them
are independent. In fact the number is significantly reduced by symmetry.
Since both the stress and the strain tensor are symmetric, the elasticity tensor
must also be symmetric with respect to a permutation of the indices ij and
kl respectively

Cijkl = Cjikl, Cijkl = Cijlk. (2.42)

These minor symmetries of the elasticity tensor already reduce the number
of independent entries to only 36. Additionally, the strain energy should
only depend on the strain in the deformed configuration, but not an the
history of the deformation. This is equivalent to the condition

Cijkl = Cklij. (2.43)

Equation 2.43 defines the so called major symmetries of the elasticity tensor.
These reduce the number of independent entries to only 21. However, by
exploiting material symmetries, this number drops even further.

Using this, the elastic energy or strain energy U can be defined as

U =
1
2

Cijklεijεkl. (2.44)

2.2.6 Voigt Notation

To take full advantage of the major and minor symmetries when writing
down these tensor equations, the Voigt notation rearranges the 3× 3 stress
and strain tensor into vectors with 6 elements

σ̄1 = σ11, σ̄2 = σ22, σ̄3 = σ33, σ̄4 = σ23, σ̄5 = σ31, σ̄6 = σ12, (2.45)
ε̄1 = ε11, ε̄2 = ε22, ε̄3 = ε33, ε̄4 = 2ε23, ε̄5 = 2ε31, ε̄6 = 2ε12. (2.46)

Consequently, instead of a 3× 3× 3× 3 tensor, the elasticity tensor is repre-
sented by a symmetric 6× 6 matrix C̄

C̄ =


C1111 C1122 C1133 C1123 C1113 C1112
C2211 C2222 C2233 C2223 C2213 C2212
C3311 C3322 C3333 C3323 C3313 C3312
C2311 C2322 C2333 C2323 C2313 C2312
C1311 C1322 C1333 C1323 C1313 C1312
C1211 C1222 C1233 C1223 C1213 C1212

 , (2.47)

without losing information or generality.
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Figure 2.5: Illustration of
the Bravais lattices of (a) a
cubic material system and
(b) a tetragonal material
system.

2.2.7 Material Symmetry

Considering symmetries of the material enforces further restrictions on the
entries of the elasticity tensor. Generally speaking, the higher the symmetry
of a material, the less independent entries remain in the elasticity tensor.
Here, only the symmetry classes and their respective elasticity tensors that
are going to be used later are introduced. Illustrations of the corresponding
Bravasi lattice are depicted in Figure 2.5 when possible.

tetragonal materials :
Tetragonal materials only have one fourfold rotation axis and the
Bravais lattice is characterized by a = b 6= c and α = β = ϕ = 90.
The corresponding elasticity tensor has 6 independent entries and is
given in its most general form by

C̄tet =


C1111 C1122 C1133 0 0 0
C1122 C1111 C1133 0 0 0
C1133 C1133 C3333 0 0 0

0 0 0 C1313 0 0
0 0 0 0 C1313 0
0 0 0 0 0 C1212

 . (2.48)

cubic materials :
Cubic materials have three mutual orthogonal fourfold rotation axis and
the Bravais lattice is characterized by a = b = c and α = β = ϕ = 90.
The corresponding elasticity tensor has 3 independent entries and is
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given in its most general form by

C̄cub =


C1111 C1122 C1122 0 0 0
C1122 C1111 C1122 0 0 0
C1122 C1122 C1111 0 0 0

0 0 0 C1212 0 0
0 0 0 0 C1212 0
0 0 0 0 0 C1212

 . (2.49)

isotropic materials :
The physical properties of an isotropic material do not depend on
its orientation. Hence, it can be rotated around an arbitrary axis
by an arbitrary angle, whilst leaving the elasticity tensor unchanged.
Hence, the elasticity tensor C̄iso has only 2 independent entries. Its
general structure is the same as for cubic case, but additionally C1212 =
(C1111 − C1122)/2. Often, the isotropic elasticity tensor is expressed in
terms of the Lamé-constants λ and µ. They are related to the elasticity
tensors entries by C1212 = µ, C1111 = λ + 2µ, and C1122 = λ and allow
for a compact notation of the generalized Hooke’s law for isotropic
material:

σij = λδijεkk + 2µεij (2.50)

2.2.8 Material Moduli

Each entry Cijkl relates a certain strain component to a specific stress com-
ponent. Hence, these entries do not have an easy physical interpretation
and cannot directly be related to any measurable quantity in a real word
experiment. Instead, the following set of material moduli is commonly used
to describe elastic solids. Illustration for their interpretation are shown in
Figure 2.6. In principle, they can be defined for any symmetry classes, but
for the sake of clarity, only the definitions in the isotropic case are given.

bulk modulus B :
Measure of the rigidity against hydrostatic pressure as depicted in
Figure 2.6(a)

B = λ +
2µ

3
. (2.51)
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Figure 2.6: Exemplary deformation modes related to the definition of material
moduli. (a) For a deformation under hydrostatic pressure (Fx = Fy = Fz), the
bulk modulus is the ratio between relative volume decrease of an object and
external pressure increase. (b) The Young’s modulus is the ratio between axial
force and relative length change of a bar for uniaxial loading. For the same
boundary conditions, the Poisson’s ratio relates length decrease to the increase
of the width of the bar.

young’s modulus E:
Measure for the rigidity against uniaxial deformation as shown Fig-
ure 2.6(b). It relates the axial force Fz to the axial strain via Fz =
E(L′ − L)A/L. It is related to the entries of the elasticity tensor by

E =
µ(3λ + 2µ)

λ + µ
. (2.52)

poisson’s ratio ν:
Ratio between lateral and transverse strain ν = − (b′−b)L

((L′−L)b for a uniaxial
deformation as depicted in Figure 2.6(b). It is related to the entries of
the elasticity tensor by

ν =
λ

2(λ + µ)
. (2.53)
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For less symmetric materials, the material moduli have to be defined for
every direction individually. For example in the tetragonal case with z-axis
as symmetry axis, there are two distinct Young’s moduli E1 = E2 and E3.
Thereby, E3 corresponds to a rigidity against a uniaxial compression or
elongation in z-direction, E1 and E2 the rigidity along the x- and y-axis,
respectively.

2.2.9 Limits of the Cauchy Theory

The classical Cauchy theory has proven to be a suitable approximation for
most materials. Yet, due to its simplifying assumptions, important effects
drop out.

For example, the history of a deformation is neglected entirely. The strains
and stresses in a Cauchy material only depend on its current configurations
and its reference, but not on how it got there. Due to viscoelastic effects,
this assumption often does not hold true for polymers. There, effects like
hysteresis, relaxation, and creep play a major role.

Most importantly for the scope of this thesis, Cauchy elasticity is inherently
centrosymmetric. Hence, it cannot distinguish between a right- and left-
handed material. This has been pointed out by Lakes [33]. He showed that
an inversion has no effect on the elasticity tensor of a Cauchy continuum

Cijkl =
∂xm

∂xi

∂xn

∂xi

∂xo

∂xk

∂xp

∂xl
Cmnop = (−1)4Cijkl = Cijkl. (2.54)

More precisely, he argues that tensors of even rank are generally invariant
under inversion and hence, cannot describe chiral effects.

2.3 Micropolar Theory of Elastic Solids

Although the classical Cauchy theory has proven to be a mighty and versatile
tool to describe deformations and stresses in a body, it remains a first and
sometimes crude approximation. As discussed at the end of the previous
section, the classical theory even fails to describe some material symmetries
and the related effects entirely. The micropolar theory that is going to be
introduced in this chapter solves some of these problems by introducing
new degrees of freedom and thereby generalizing the equations of motion
and the constitutive model of the classical theory. Most importantly, for
the scope of this thesis, it can properly describe chiral media and predicts
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Figure 2.7: A micropolar
continuum is a continuum
of point particles. One of
these is sketched here in
the referenceR and current
configuration Rt. The addi-
tional degrees of freedom
of such a point particle are
described by the vectors

Ñ

Ξ
and

Ñ

ξ , respectively.

new effects related to them. The explanations closely follow the text books
of Eringen [31], as well as the work of Dyszlewicz and Altenbach [47, 48].
This section is merely intended to be a brief introduction. For a profound
derivation of the theory, I refer the interested reader to one of these text
books, as well as to Eringen’s original publications [27–30].

2.3.1 Kinematics

Some of the problems of the Cauchy theory are rooted in the definition of a
continuum itself. Each material point P is unambiguously and completely
characterized by the displacement vector Ñu . In other words, the classical
Cauchy continuum is a collection of undeformable points particles. It has
been shown that this assumption is insufficient if the deformation is dom-
inated by effects related to the substructure like in bones [49, 50] or grid
structures [51–53]. The latter often serve as toy models for real crystals.
Therefore, Eringen starts his derivations of the micropolar continuum theory
for elastic solids with a definition of a microcontinuum:

"A microcontinuum is a continuous collection of deformable point
particles."[31]

As before, every point P is going to be characterized by its coordinate vector
Ñ
X, but additionally, a vectorial quantity

Ñ
Ξ is attached to P, that describes the

orientation and the deformation state of the point particle

Ñ
X
′
(

Ñ
X, t) =

Ñ
X(t) +

Ñ
Ξ(

Ñ
X, t), (2.55)

Ñx ′(
Ñ
X, t) = Ñx (

Ñ
X, t) +

Ñ

ξ (
Ñ
X,

Ñ
Ξ, t). (2.56)
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An illustration of such a point particle is given in Figure 2.7. As in the
Cauchy continuum, the deformations are expressed as mappings between
the reference and the current configuration

Ñ
χ :

Ñ
X → Ñx ,

Ñ

ζ :
Ñ
Ξ →

Ñ

ξ . (2.57)

Note that the motions of
Ñ
X and

Ñ
Ξ are represented by independent mappings.

Therefore,
Ñ
Ξ represents additional degrees of freedom of the motion that

characterizes the inner structure of P. As depicted in Figure 2.7,
Ñ
X and

Ñ
Ξ describe the material particle P ∈ B in the reference configuration R,
whereas Ñx and

Ñ

ξ refer to the current configuration Rt.

Ñx =
Ñ
χ(

Ñ
X, t) ⇐⇒ xk = χk(XK, t), (2.58)

Ñ

ξ =
Ñ

ζ (
Ñ
X,

Ñ
Ξ, t) ⇐⇒ ξk = ζk(XK, ΞK, t). (2.59)

Equation 2.58 defines the macrodeformations and in analogy to the reasoning
in section 2.2b the deformation gradients are defined accordingly

xk,K =
∂xk
∂XK

, XK,l =
∂Xk
∂xl

. (2.60)

The micromotions, defined by Equation 2.59, are considered to be small
compared to the macromotions in Equation 2.58, since the material particles
are generally considered small compared to the overall body B. Therefore, a
linear ansatz for the mapping ζk(XK, ΞK, t) is reasonable

ξk = ζkK(XK, t)ΞK, (2.61)
ΞK = XKk(XK, t)ξk, (2.62)

with the microdeformation tensor ζkK and the inverse microrotation tensor
XKk. When multiplied with Cartesian base vectors Î and î, the independent
directors ζK and Xk can be defined

ζK = ζkKik, Xk = XKk IK. (2.63)

These deformable directors are depicted in Figure 2.8. In a simplified picture,
the directors can be imagined as a tripod attached to P. In the most general
case, these directors can be rotated and stretched with respect to arbitrary
axes independently from each other. This means that the relative angles
and relative lengths of the directors can change arbitrarily. Obviously, this
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Figure 2.8: The maps relat-
ing the new degrees of free-
dom in the current to those
in the reference, and vis
versa, can be expressed as
two sets of directors ζi and
Xi. In principle, the length
and direction of each di-
rector ζi and Xi can be de-
formed individually.

can lead to a large number of additional degrees of freedom. Yet, in the
micropolar theory as considered here, only a subclass of deformations are
taken into account. In essence, the directors are considered to be a set of
orthonormal vectors with fixed lengths and fixed relative angles. Therefore,
microdeformations are restrained to rigid body rotations and only three
additional degrees of freedom are introduced. This directly implies

ζkKζlK = δkl, XKkXLk = δKL. (2.64)

Using this, it can easily be shown that

ζkK = XKk, (2.65)
j = det ζkK = 1, (2.66)

with the Jakobian determinate j.

2.3.2 Strain Measures

Suitable strain measures are again found, when calculating the arc lengths
dS in the reference frame. Equation 2.56 yields

dx′k = xk,KdXK + ζkKdΞK + ζkK,LΞKdXL. (2.67)

With that, the arc length is given by

(ds)2 = (dx′k)
2 = [xk,Kxk,L + 2(xk,Kζk,L + xkM,LζkM,K)ΞM

+ζkM,KζkN,LΞMΞN]dXKdXL+

2(xk,KζkL + ζkLζkM,KΞM)dXKdΞL + ζkKζkLdΞKdΞL. (2.68)
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According to [27–31], the Cosserats’ deformation tensor CKL and the wryness
tensors ϕKL are appropriate strain measures, which fulfill Equation 2.68, as
well as the conditions Equation 2.64, Equation 2.65, and Equation 2.66

CKL = xk,KζkL, ϕKL =
1
2

εKNMζkM,LζkN. (2.69)

The Cosserat deformation tensor CKL can be interpreted as the micropolar
generalization of the Cauchy-Green deformation tensor defined in Equa-
tion 2.19. Again, in case of a rigid body motion, the Cosserats’ deformation
tensor is equal to the identity matrix. Therefore, the Lagrangian deformation
tensors are defined as

EKL = CKL − δKL, ϕKL =
1
2

εKNMζkM,LζkN. (2.70)

Finally, these strain tensors should be linearized and rewritten as a function
of the displacement vector Ñu and the microdisplacement vector

Ñ
φ

Ñu =
Ñx −Ñ

X,
Ñ
φ =

Ñ

ξ −Ñ
Ξ. (2.71)

First, the deformation gradient is kinematically linearized following the rea-
soning of section 2.2. Furthermore, the microdeformations are approximated
by a rotation matrix R(φ) for infinitely small rotations. This can be expressed
in terms of the microdisplacement vector

Ñ
φ

Rkl(φ) = δkl − εklmφm. (2.72)

Using this, the gradients of deformation read

xk,K = δkK + uk,K, ζkK = δkK − εkKlφl. (2.73)

Ultimately, by exploiting Equation 2.73, the Lagrangian strain tensors defined
in Equation 2.70 are given in their linearized form

εkl = ul,k + εklmφm, ϕkl = φk,l. (2.74)

Once again, to emphasis the difference between the linearized tensors and
the strain tensors of Equation 2.70, these are denoted by lower case Greek
letters. Also, since the material and spatial frame are equivalent in this
approximation, the distinction between upper and lower case indicis becomes
obsolete.
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Figure 2.9: Depiction of an infinitesimal cubic volume element. The tripods
illustrate the directions of the stress (left) and couple stress tensors (right). Note
that the stresses and couple stresses related to these tripods only act on the
surfaces the tripods are resting on.

The most important finding of this subsection is, that the strain tensor
εkl is inherently nonsymmetric. This becomes immediately clear, when
considering the second term in the definition εklmφm, since the Levi-Civita
tensor is a skew-symmetric tensor.

As a result, in contrast to the classical Cauchy continuum, the micropo-
lar continuum introduces point particles that have additionally rotational
degrees of freedom. Therefore, points are not only characterized by a posi-
tion vector

Ñ
X, but also have a microdisplacement vector

Ñ
φ . Consequently,

deformations in a micropolar material are defined by two tensors, the strain
tensor εkl and the microdeformation tensor ϕkl.

2.3.3 Stress measures

In the previous subsection, the concept of point particles lead to additional
degrees of freedom due to their deformability. When considering forces, it
becomes immediately clear that a particle can be subject to momenta and
couple stresses in contrast to the infinitesimal points in Cauchy elasticity. This
is in sharp contrast to the postulations of Cauchy mechanics in section 2.2.
Therefore, the postulations for micropolar continua are reformulated:
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1) The total angular momentum
Ñ
Mδa per area tends to a definit limit, the

so called coupled stress vector Ñm, when reducing δa to P

lim
δa→P

Ñ
Mδa

δa
=

Ñm(
Ñ
X, n̂, t). (2.75)

2) The total force
Ñ
F δA per area tends to a definite limit, the so called

traction vector
Ñ
t , when reducing δA to P

lim
δa→P

Ñ
F δa

δa
=

Ñ
t (

Ñ
X, n̂, t), (2.76)

with n̂ being the face normal of δa.

Once more, following the reasoning of section 2.2, δA is meant to be part of a
virtual cut plane through the body B. To eliminate the cut plane dependency,
the stress tensor σ and couple stress tensor m are defined as

ti(
Ñ
X, n̂, t) = n̂jσji(

Ñ
X, t), mi(

Ñ
X, n̂, t) = n̂jmji(

Ñ
X, t). (2.77)

Illustrations of these tensors are depicted in Figure 2.9. As for the strain mea-
sures, one additional stress measure is needed in micropolar elasticity, the
couple stress tensor m. Together, these two tensors completely characterize
the forces and momenta in a micropolar material. Note that both the stress
and the couple stress tensor are generally not symmetric.

2.3.4 Equations of Motion

The equations of motion can be derived from the energy balance law, as
well as the balance of momentum and angular momentum. Yet, these are
lengthy calculations with only little insights. Therefore, only the results are
presented here. More details are given in [27–31]. The equations of motion
of a micropolar continuum are

ρal = σkl,k + ρbl (2.78)
ρσl = mkl,k + εlmnσmn + ρll, (2.79)

with mass density ρ, body forces
Ñ

b , body moments
Ñ

l , the acceleration Ña ,
and the microacceleration σl.
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2.3.5 Constitutive Model

When considering only small displacements Ñu and microdisplacements
Ñ
φ , it

is reasonable to assume a linear relation between the strain tensors and the
stress tensors. As it can be shown, the most general definition of the total
elastic energy U for a micropolar material is given by

U =
1
2

Cklmnεklεmn +
1
2

Aklmn ϕkl ϕmn + Bklmnεkl ϕmn. (2.80)

With the three rank-four tensors A, B, and C. From that, the constitutive
equations can de derived

∂U
∂εkl

= σkl = Cklmnεmn + Bklmn ϕmn (2.81)

∂U
∂ϕlk

= mkl = Aklmn ϕmn + Bmnlkεmn. (2.82)

In principle, each tensor A, B, and C has 81 entries, leading to a total number
of 243 tensor elements. Since both the strain measures εkl and ϕkl as well as
the the stress measures σkl and mkl are nonsymmetric tensors, the elasticity
tensors presented here do not have minor symmetries. Only the major
symmetries persist, yielding

Cklmn = Cmnkl, Aklmn = Amnkl. (2.83)

This reduces the number of independent entries of both C and A to 45,
leaving a total of 171 independent entries. These are significantly more
than have previously been found for Cauchy elasticity. Generally speaking,
this complicates a complete experimental characterization of micropolar
materials, since the number of independent experimental observables has to
be equal to the number of independent tensor entries.

2.3.6 Voigt Notation and Material Symmetries

Although not as many symmetries can be exploited to reduce the number
of parameters in the micropolar theory, it is useful to go to a representation
where the elasticity tensors C, A, and B are represented as a 9× 9 matrix.
The strain tensor is written as

ε̄1 = ε11, ε̄2 = ε22, ε̄3 = ε33, ε̄4 = ε(23), ε̄5 = ε(31),

ε̄6 = ε(12), ε̄4 = ε [23], ε̄8 = ε [31], ε̄9 = ε [12], (2.84)
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with the symmetric ε(kl) and antisymmetric ε [kl] parts of the strain tensor

ε(kl) =
1
2
(εkl + ε lk), ε [kl] =

1
2
(εkl − ε lk). (2.85)

The stress tensors σkl and mkl , as well es the microdeformation tensor ϕkl are
treated equivalently.

Yet again, the number of independent parameters are significantly reduced,
when taking material symmetries into account. The general shape of an
arbitrary 9 × 9 tensor T is given here. Keep in mind that for C and A
additional elements might be equal due to their major symmetries Cklmn =
Cmnkl and Aklmn = Amnkl . This time, for the sake of readability, the indicis of
the tensor are also contracted.

tetragonal materials :
Tetragonal materials have a total of 32 independent material parameters.

T̄ tet =



T11 T12 T13 0 0 0 0 0 0
T12 T11 T13 0 0 0 0 0 0
T13 T13 T33 0 0 0 0 0 0
0 0 0 T44 0 0 T47 0 0
0 0 0 0 T44 0 0 T47 0
0 0 0 0 0 T66 0 0 0
0 0 0 T74 0 0 T77 0 0
0 0 0 0 T74 0 0 T77 0
0 0 0 0 0 0 0 0 T99


(2.86)
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cubic materials :
Cubic materials have a total of 12 independent material parameters.

T̄cub =



T11 T12 T12 0 0 0 0 0 0
T12 T11 T12 0 0 0 0 0 0
T12 T12 T11 0 0 0 0 0 0
0 0 0 T44 0 0 0 0 0
0 0 0 0 T44 0 0 0 0
0 0 0 0 0 T44 0 0 0
0 0 0 0 0 0 T77 0 0
0 0 0 0 0 0 0 T77 0
0 0 0 0 0 0 0 0 T77


(2.87)

isotropic materials :
The tensor of an isotropic material looks the same as for the cubic case,
but additionally T44 = 1

2(T11 − T21). It has a total of 9 independent
material parameters. Another compact representation of the isotropic
tensors is given by

Cklmn = λδklδmn + (µ + κ)δkmδln + µδknδlm, (2.88)
Aklmn = αδklδmn + βδkmδln + γδknδlm, (2.89)
Bklmn = B1δklδmn + B2δkmδln + B3δknδlm. (2.90)

The parameters µ and λ are related to the Lamé-parameters introduced
in section 2.2.

chiral and achiral mateials

This generalized elasticity was discussed in the scope of this thesis
only to be able to describe chiral materials. The following example will
shine a light on how micropolar elasticity deals with chirality. It has
been defined before that a material is chiral, if its mirror image cannot
be brought into congruence with the original material. Equivalently,
equations describing a chiral material should not recover their original
form after performing a mirror operation on the coordinate system, e.g.
z → −z. As an illustration, the transformation of a single element of
the stress tensor σ33 of an isotropic material is examined for said mirror
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operation.

σ33 =λ(ε11 + ε22 + ε33) + (2µ + κ)ε33

+ B1(ϕ11 + ϕ22 + ϕ33) + (B2 + B3)ϕ33, (2.91)
⇔ σ33 =λ(u1,1 + u2,2 + u3,3) + (2µ + κ)u3,3

+ B1(φ1,1 + φ2,2 + φ3,3) + (B2 + B3)φ3,3, (2.92)

Performing the mirror operation z→ −z is equivalent to u3 → −u3 and
∂/∂z → −∂/∂z. Therefore, the second order tensors σ and ε remain
unchanged. On the other hand,

Ñ
φ is a rotation vector and therefore

a pseudovector. Hence, it transforms as φ1 → −φ1, φ2 → −φ2, and
φ3 → φ3

σ33 =λ(u1,1 + u2,2 + u3,3) + (2µ + κ)u3,3

+ B1(−φ1,1 − φ2,2 − φ3,3)− (B2 + B3)φ3,3. (2.93)

Obviously, due to the sign in front of the φi,i components, Equation 2.93

and Equation 2.92 are not equivalent. Thus, this equations describes
a chiral medium. Yet, the equations are equal for arbitrary mirror
operations or inversions, and in consequence the material would be
achiral, for the special case of B1 = B2 = B3 = 0.

In general, chiral material have B 6= 0, whereas achiral, hence cen-
trosymmetric material, exhibit B = 0. Evidently, chirality is introduced
in micropolar elasticity by mixing vectorial and pseudovectorial (tenso-
rial and pseudotensorial) quantities.

the cauchy limit

It becomes obvious from Equation 2.88, Equation 2.89, and Equa-
tion 2.90 that for κ = α = β = γ = B1 = B2 = B3 = 0, a form
equivalent to the isotropic Cauchy continuum is recovered. Generally
speaking, it can be shown that any Cauchy material can be modeled
by setting some parameters of C to zero and A = B = 0. Hence, the
Cauchy limit is contained as a special parameter configuration in the
micropolar theory. As a result, the micropolar continuum is indeed a
generalization of a Cauchy continuum.

Note that the nomenclature in this section slightly deviates from the
one in [31] or other text books and publications. The author chose this
representation to point out similarities between the micropolar and the
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Cauchy theory. Therefore, the tensor connecting σkl and εkl is called C.
Others might call this tensor A instead. Generally speaking, a commonly
used notation is not yet fully established and directly comparing results
from different authors has to be done with caution. Not least, since even the
definition of Voigt’s notation is done inconsistently.

2.3.7 Material Moduli

To ease physical interpretation, a set of technical constants is derived from
tensor entries, the so-called material moduli. For an achiral isotropic medium,
they are defined as follows [31, 54, 55]:

Young’s modulus E = (2µ+κ)(3λ+2µ+κ)
2λ+2µ+κ

shear modulus G = 2µ+κ
2

Poisson’s ratio ν = λ
2λ+2µ+κ

characteristic length for torsion lt =
√

β+γ
2µ+κ

characteristic length for bending lb =
√

γ
2(2µ+κ)

coupling number N =
√

κ
2(µ+κ)

polar ratio Ψ = β+γ
α+β+γ

The Young’s modulus E, shear modulus G, and Poisson’s ratio ν have
the same meaning as their classical counterparts. Interestingly, two of the
material moduli are lengths with unit meters. Loosely speaking, they are
connected to the size of the point particles, or to the structural elements
in the material that couple the microdeformational degrees of freedom to
the usual ones. This is in sharp contrast to the classical Cauchy continuum,
where all material moduli either have the dimension of a stress or none at
all.

The occurrence of material moduli carrying information about a length
scale has far reaching consequences and eventually leads to the breakdown
of scale invariance. Meaning that some physical properties will not only
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Material E(MPa) G(MPa) ν lt(mm) lb(mm) N2 Ψ
Human
bone [49, 50] 12000 4000 - 0.22 0.45 ≤ 0.5 1.5

Graphite [56] 4500 - 0.06 1.6 2.8 1 -
Polyurethane
foam [58] 300 104 0.4 0.62 0.33 0.04 1.5

Table 2.1: Examples of experimentally determined micropolar material param-
eters for some selected materials.

depend on the outer dimensions of the sample, but also how these relate to
characteristic lengths scales of the material. An example pointing out this
length scale dependency of the torsional rigidity of a cylindrical bar will be
discussed in the next subsection.

It has been shown experimentally that micropolar effects and the cor-
responding degrees of freedom are present in a multitude of materials.
Especially human bone [49, 50], graphite [56], and foams [57, 58] showed de-
viations from the classical behavior. A couple of exemplary material moduli
are given in Table 2.1.

For the case of a chiral isotropic medium, Lakes defines yet another set of
nine material parameters [33]. Those especially relevant for chiral effects are:

K0 =
B1 + B2 + B3√

(α + β + γ)(λ + 2µ + κ)
,

K3 =
B1

B1 + B2 + B3
,

l1 =
B1 + B2 + B3

2µ + κ
.

l1 has the dimension of a length. K0 is related to the strength of the noncen-
trosymmetric coupling and K3 plays the role of a Poisson’s ratio [33].

For passive media, meaning media that do not have an internal energy
source, the entries to the elasticity tensor are not independent from each
other. Instead, they can only be varied within strict bounds. A passive
material basically means that every possible deformation of a body leads to
an increased total elastic energy U compared to the undeformed or natural
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Figure 2.10: Illustration of
an undeformed cylinder
(left) and of the same cylin-
der subjected to a twist
(right). Thereby, the bottom
of the cylinder is fixed and
the top surface is rotated
by an angle θ around the
z-axis.

configuration of the body. Assuming every arbitrary deformation can be
decomposed into eigendeformations of the material, a material is passive
if all corresponding eigenenergies are positive. These eigenstates and the
according energies can be derived by rewriting Equation 2.80. Thereby, the
three 9× 9 elasticity tensors A, B, and C are rearranged into a single 18× 18
tensor C̃

C̃ =

(
C B
BT A

)
. (2.94)

The reasoning above implies that for all passive material, C̃ is positive definite.
From that, restrictions on the tensor elements can be derived, both for the
micropolar [33, 59, 60] and Cauchy mechanics [1, 61–63]. Consequently, the
material moduli cannot have arbitrary values. Instead, strict bounds can be
derived.

2.3.8 Torsion of an Achiral Circular Cylinder

When a cylinder with circular footprint or radius R and height L is subjected
to a small torsion θ as illustrated in Figure 2.10, the resulting shear stresses
τ assuming Cauchy elasticity are simply given by

τ = θG
R
L

, (2.95)

with shear modulus G [42]. It only depends on the cylinder’s aspect ratio
R/L and the constant material moduli. The torsional stiffness Ω, the ratio
between total torque at the end of the bar T and torsion angle θ is defined as

Ω =
T
θ
= G

J
L

, (2.96)
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with the polar momentum J =
∫

A r2dA. In 1975, Gauthier and Jahsman
solved the same problem of a circular cylinder, but this time considering
a micropolar material. Their expression derived in [54] for the torsional
stiffness reads

Ω = G
J
L

(
1 + 6

(
lt
R

)2 1− 4
3 ΨF

1−ΨF

)
. (2.97)

The lengthy analytical expressions for F are given in [54]. Although F also
depends on lt and R, one can directly tell from the prefactor that the result
not only depends on the aspect ration of the bar as before, but also on the
ratio between characteristic length and cylinder radius lt/R. Furthermore,
the deviations from the classical result increase for cylinders that are small
compared to the characteristic length. In the large sample limit R→ ∞ the
last term on the right hand side vanishes and the Cauchy limit is recovered.

These findings are the crucial novelties of micropolar mechanics and can
be summarized as follows:

1) Micropolar media have intrinsic characteristic length scales. When
sample dimensions are in the same order of magnitude as these length
scales, deviations from the classical behavior are expected.

2) In the large sample limit, the Cauchy elasticity and micropolar elasticity
are equal. In this limit, the dimensions of the point particle become
neglectable and can be treated as ordinary points.

Now the key questions are: What determines the magnitude of charac-
teristic lengths scales? And can these characteristic length scales be much
larger than the building blocks the material is made of? Our design efforts
for chiral micropolar metamaterials, that are presented later, directly foot on
these questions.

Gauthier and Jahsman also showed that not all experiments show devi-
ations from the classical behavior. Especially simple tension experiments
yield no length scale dependency of the effective material moduli, nor of the
displacement fields [54]. Instead, they only find deviations for boundaries
involving torsion or bending deformations.

2.3.9 Twist-to-Push Coupling in Chiral Materials

Apart from these rather quantitative deviations in achiral material, quali-
tatively new effects have been found in chiral media. Lakes and Benedict
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Figure 2.11: Illustration of
an undeformed cylinder
(left) out of a chiral con-
stituent material. When
subjected to an axial strain
along the z-axis, the cylin-
der twist by an angle θ
around this axis (right).
The bottom of the cylinder
is fixed and otherwise no
external torques or forces
are applied.

showed in [33] that a chiral isotropic cylinder with circular foot print twists
when subject to an axial compression. Thereby, the twisting occurs in a plane
orthogonal to the axial strains as illustrated in Figure 2.11. In their paper [33],
they were able to solve the static problem analytically in polar coordinates
(z, r, θ) and arrived at the following solutions

uz = εzzz, φz = b0z,
uθ = b0rz, φθ = 0.

In that, b0 is a twist angle per unit length which depends on the radius R
of the cylinder. The rather complex radial dependency of the displacement
fields are not shown here and are of minor importance for the discussions
later. They found that the twist angle increases linearly with the sample
height and that this angle is constant in every plane orthogonal to the
pushing direction. As in the classical case, the axial strain εzz is constant
along the axis of the external compression.

Lakes and Benedict also give analytical expressions for b0 for different
assumptions on the material moduli. Here, the most general case will be
skipped, since it is difficult to gain any physical insights from this expression.
Assuming, B1 = 0, λ = 0, α = 0 they found a rather compact expression

b0 = − K0lt
l2
t +

R2

4 + R2 I2(pR)N
(pR)2 I0(pR)−pRI1(pR)

εzz, (2.98)

with p = (2κ)/((α + β + γ)(1− K2
0)) and the Bessel functions I0, I1, and

I2 [33]. Importantly, the twist per unit length b0 is proportional to the strain
εzz and the chiral coupling K0. Interestingly, when changing the sign in
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front of the tensor B, K0 also changes sign, and hence the twisting direction.
Yet, the magnitude stays the same. Therefore, by changing the sign of B,
the material is switched from a right-handed to a left-handed material, or
vice versa. Furthermore, Lakes and Benedict show that for large sample
radii R the twist per unit length b0 decreases proportional to the inverse
square of the radius and approaches a constant for sufficiently small radii
(R� lt). This means that for a sample with fixed aspect ratio R/L the twist
angle, meaning the difference in rotation angle between the ends of the bar,
decreases ∝ 1/R. Hence, for large samples the twist deformation uθ vanishes
and the Cauchy limit is recovered again. These findings will be of utmost
importance in later chapters.

2.4 Other Generalized Theories

Of course, the micropolar approach is not the only generalization of Cauchy
elasticity, that describes chiral effects and chiral materials. The author simply
chose this theory since it is a linear generalization, that already shows good
agreement with the simulations and experiments shown later. In doing so, it
additionally requires comparatively few independent material parameters
(9 in the isotropic case). In this section, a short overview is given over
alternative theories, without going into the details. This is by no means a
complete list of existing theories.

2.4.1 Microstretch and Micromorphic Elasticity

In fact, micropolar elasticity is only an edge case of the more general mi-
crostretch and micromorphic elasticity. Whilst starting from the same as-
sumptions of a microcontinuum made up out of deformable point particles,
microstretch elasticity allows not only for rigid body rotations of the direc-
tors, but also length changes. Thereby, a microstretch continuum possesses
even more degrees of freedom and therefore requires even more material
parameters.

The micromorphic theory even goes one step further and also allows for a
change of the relative angles between the directors. This actually leads to
the definition of an additional strain and stress tensor and five additional
elasticity tensors.

In both microstretch and micromorphic elasticity, the chiral coupling
results from mixing tensorial and pseudotensorial quantities. These theories
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are also summarized by Eringen in [27–30].

2.4.2 Gradient-Theories

Within the framework of these theories which have been established by
Toupin [44] and Mindlin [64, 65], the elastic energy does not only depend on
the elastic strains, but also explicitly on the gradients of the strain. Therefore,
a third-ranked tensor appears in the constitutive equations making the previ-
ous reasoning for tensors of even rank obsolete [66] (compare section 2.1).
Hence, chiral material can be described using gradient-theories.

2.4.3 Willis-Elasticity

The Willis elasticity [67–69] is mostly used in the context of elastic waves. It
is somewhat related to a dielectric medium [69] in a sense that the frequency
dependency of effective mass resembles the frequency dependency of the
dielectric constant. In the past it has been shown that this theory can describe
chiral effects [69] for time dependent problems. Again, this is related to
tensors of odd rank appearing in the constitutive relations. In 2019, Kadic
derived equations for the static regime [70]. This approach seems especially
promising, since it needs only a minimum number of independent material
parameters to describe a chiral medium. Yet, further studies are needed to
validate and expand this theory.

2.5 Mechanical Metamaterials

2.5.1 Definition of Metamaterials

The term metamaterial was introduced by Walser in 2001 [71] in the context of
electromagnetic laminates that showed "previously unattained properties" [71].
The prefix meta (ancient Greek for beyond) should emphasize that the
observed properties go beyond the mere average of atoms and chemical
bonds constituting the material. Unfortunately, there is not a clear definition
of metamaterials that all researchers could relate to [15]. Kadic, Wegener,
and colleagues therefore formulated this loose definition, within most of
today’s metamaterials fall:

"Metamaterials are rationally designed composites made of tailored
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building blocks that are composed of one or more constituent bulk
materials. The metamaterial properties go beyond those of the ingredient
materials, qualitatively or quantitatively."[15]

The rational design is key to metamaterials and makes them distinct from
alloys, mixtures or foams, which are patterned in a random process. Usually,
metamaterials consist of material building blocks, or in case of crystals unit
cells, much bigger than the atomic scale, but small compared to a crucial
experimental length scale like wavelength or sample size. These building
blocks are sometimes also referred to as metaatoms, in analogy to atoms -
the building blocks of regular materials.

In a way, metamaterials turn the traditional approaches of material science
on its head. Instead of trying to describe what can be found in nature,
metamaterials present us with the creative challenge of finding the building
blocks or unit cells that lead to the desired material properties. Therefore,
laying down a strategic roadmap of how to arrive at a certain design is noto-
riously difficult. It often starts with the idea of a certain micro-mechanism
on the unit cell level [14, 72], like coinciding a magnetic and electric reso-
nance [73–75], or the bending of a bi-material beam [76, 77], that will result in
the desired properties of the material. Other approaches exploit topological
optimization techniques [78–81].

It has been argued in the past that metamaterials only gain relevance for
real world applications, if their complex microstructure can be mapped on
effective material parameters referring to a fictitious continuum [15]. For
elastic materials, this might be an effective Young’s modulus, for optical mate-
rials, an effective electric permittivity might be an appropriate representation.
In this homogenization procedure, the complexity of the microstructure is
represented by only a couple of parameters [82–84]. Engineers then might
use these effective parameters for modeling and planing, just as they use
the material parameters for every ordinary material. Yet, retrieving these
parameters is notoriously difficult. Currently, there is no straight forward
routine to extract effective parameters for arbitrary structures [15].

In general, the metamaterial concept is very versatile, and is of course not
restricted to a single discipline [11, 85]. Instead, numerous metamaterials
have been realized not only for mechanical applications, but for optical [4,
18, 86] and acoustical applications [8, 87, 88], seismic protection [89–91], or
even Hall effect metamaterials [92–95], only to mention a few examples. A
mechanical metamaterial is tailored to exhibit special mechanical properties.
Meaning, they seek to control deformations, mechanical forces, or stresses.
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2.5.2 Brief Overview of Mechanical Metamaterials

Metamaterials in general, and the field of mechanical metamaterials in
particular, has been a thriving discipline with new design proposals and
experimental studies appearing on a weekly basis. Therefore, a complete dis-
course of prior work is illusive and only selected examples are presented. A
broad overview of the state of the art is also given in these review papers [14–
16].

Linear Mechanical Metamaterials

Many metamaterial designs of the past targeted the realization of arbitrary,
and sometimes exotic, Cauchy elasticity tensors and material moduli. Maybe
the most prominent example is the so-called pentamode material. This solid
effectively behaves like a liquid in the sense that it is easy to deform, but
hard to compress hydrostatically [61, 96]. Such pentamode structures also
led to the design of unfeelability cloaks [97].

Auxetic metamaterials on the other hand exhibit a negative Poisson’s
ratio. In contrast to most ordinary materials, which expand laterally when
being compressed axially, auxetic materials contract laterally upon axial
compression. Many different designs have been proposed in the past [98,
99], some even approaching the most extreme case of a Poisson’s ratio of
ν = −1 [100].

Other metamaterials that might become important for many engineering
applications exhibit extraordinary high stiffnesses, whilst having a low mass
density [101, 102].

Other Mechanical Metamaterials

But the properties of mechanical metamaterial already go well beyond what
can be described by the classical Cauchy elasticity tensors. For example, struc-
tures with highly nonlinear responses based on mechanical instabilities have
been proposed for shock and energy absorption [103, 104]. Such mechanical
instabilities also led to the development of programmable metamaterials,
whose properties can be adjusted even after fabrication [105].

Topologically protected edge states have been discussed to provide robust
functionalities. The concept originated from condensed matter physics, yet,
exciting mechanical counterparts have been proposed recently [106–108].
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3
Chapter 3

Numerical Methods for

Elastostatic Problems

Artistic illustration: from numerics to real world samples

Designing metamaterials for a specific purpose without numeric models is a nearly
impossible task. Not least, because numerics enables us to test and precharacterizer
a huge number of structures with only little effort, compared to time consuming
and sometimes expensive experiments. On the basis of the numerical modeling, we
pick the best performing structures that will be fabricated and put to test. Due to
its versatility, the so-called finite element method is a suitable tool. In this chapter,
I will give a short introduction to the method. Furthermore, I will discuss the
implementation of the Cauchy and micropolar equations.
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3.1 The Finite Element Method

The finite element method (FEM) is a well established numerical routine to
find approximate solutions to partial differential equations (PDE). As such,
it is already subject of many textbooks like [109, 110]. Therefore, this is only
meant as a short introduction to the method. The author closely follows the
didactic approach by Bower [111].

First, the domain Ω on which a PDE should be solved is separated into
non-overlapping subdomains Ωi, the so-called finite elements

Ω =
e⋃

i=1

Ωi. (3.1)

The solution u(x) is approximated by a linear combination of ansatz func-
tions ψa(x), each of them is nonzero only on one subdomain Ωi. At the same
time, the field of the desired quantity u is discretized, meaning it will only
be calculated at a number of nodes at xa. These nodes are the characteristic
points of finite elements. For example, in case of a tetrahedral element, the
nodes are simply the four corners of the tetrahedron. Hence, elements share
common nodes. Therefore, the ansatz is chosen as follows

uh(xa) =
n

∑
a=1

caψa(x), (3.2)

with real coefficients ca. The superscript h denotes that a discretization and
approximation took place and is called the discretization parameter. It is
assumed that for h→ 0, the approximated solution converges to the exact
solution uh → u. Note that a is not only the summation index, but at the
same time denotes the index of the node. Therefore, ψa(xb) = 0 for a 6= b,
since the subdomains do not overlap. By applying the principle of virtual
work [109], the PDE are expressed as integral equations, the so-called weak
form. Since the ansatz functions are nonoverlapping, the integrals can be
solved for each domain individually and yield conditions for the coefficients
ca. These can be expressed as a system of linear equations

MÑc =
Ñq , (3.3)

with the quadratic matrix M, the vector Ñc containing linear combinations of
the coefficients ca, and the vector

Ñq representing the boundary conditions.
Since the functions ψa(x) are only nonzero on a couple of elements, M is a
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sparse matrix with most of its entries being zero. If
Ñq is a linear function of

the coefficients ca, which holds true for linear elastic problems, the system of
linear equations is simply solved using a direct or iterative solver.

3.2 Cauchy Mechanics in Finite Elements

Now, the previously described method is applied to describe the Cauchy
elastic properties of the object represented by the domain Ω. The principle
of virtual work is a calculus of variations method and as such, a different
form of expressing the equations of motion [111]. It states, if for all virtual
displacements δv the stress field σij satisfies∫

Ω

σijδεijdV −
∫
Ω

biδvidV −
∫

∂Ω

tiδvidA = 0, (3.4)

the equations of motions are also satisfied. In that, the virtual strain tensor
δεij is defined as δεij = 1/2(δvi,j + δvj,i). By utilizing the symmetries of both
strain and virtual strain tensor, as well as the symmetry of the stress tensor,
and inserting the constitutive relations, the weak form is derived as∫

Ω

Cijklui,jδvi,jdV −
∫
Ω

biδvidV −
∫

∂Ω

tiδvidA = 0. (3.5)

Another way to derive this weak form, is multiplying the equations of motion
with a test function and subsequently integrating over the domain Ω and its
boundary ∂Ω.

Every component of the displacement vector ui and virtual displacement
vector δvi is replaced by the ansatz given in Equation 3.2

uh
i (x) =

n

∑
a=1

caiψa(x), vh
i (x) =

n

∑
b=1

cbiψb(x). (3.6)

After some algebraic transformations, the weak form Equation 3.5 can be
represented by

Kaibkcbk = Fai, (3.7)

with

Kaibk =
∫
R

Cijklψa,jψb,ldV; Fai =
∫
R

biψadV +
∫
R

tiψadA. (3.8)
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K is called the stiffness matrix, Ñc b is a vector containing the degrees of
freedom of the system. Note that the result does not depend on the test
function δv anymore. A more detailed derivation can be found in [111].

3.3 Micropolar Mechanics in Finite Elements

For a micropolar continuum, Joeng and coworkers [112] found the following
expression for the weak form∫

Ω

(σijδεij + mijδϕij)dV −
∫
Ω

(biδvi + diδηi)dV −
∫

∂Ω

(tiδvi + miδηi)dA = 0,

(3.9)
with the body microdisplacements vector

Ñ

d , and the virtual strain tensors
δεij = δuj,i − εijkδηk and δϕij = δηi,j [112]. Actually, all information concern-
ing the physics of a system are already contained in the weak form. The
following treatment to arrive at the matrix equation is totally equivalent to
the case discussed before and will therefore be skipped here.

3.4 Implementation of the Finite Element Method

For all FEM calculations performed by the author in this thesis, the com-
mercial software COMSOL Multiphysics has been used, unless explicitly
state otherwise. The geometry was split up, or mashed, into tetrahedral
elements and the displacement fields were discretized using quadratic ansatz
functions. The resulting matrix equation was solved using the multifrontal
massively parallel sparse direct solver (MUMPS). Detailed information are
given in the COMSOL user manual [113].

In the first part of this thesis, only static experiments are considered.
Therefore, forces connected to the accelerations, ρai and ρσi, vanish in Equa-
tion 2.39, Equation 2.78, and Equation 2.78.

Cauchy Continuum

The Cauchy elasticity as introduced in section 2.2 is already implemented in
the solid mechanics module [113]. It also offers the possibility to account for
geometrical nonlinearities. When doing so, instead of the linear strain and
stress tensors εij and σij, COMSOL uses the Lagrangian strain tenor E and
the second Piola-Kirchhoff stress tensor S.
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Micropolar Continuum

The micropolar theory is not predefined in COMSOL. Yet, the program
allows the user to implement any desired physical model by entering the
weak form [113]. Therefore, Equation 3.9 was implemented using the weak
form PDE module. Two independent models have been set up that gave
matching results. The fist model was set up by the author using a linear
isotropic constitutive model. The second by Yi Chen, who implemented
the most general linear constitutive relations, was used to treat cubic and
tetragonal materials. Additional details about implementing a micropolar
model in COMSOL are given in [112, 114, 115].
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4
Chapter 4

Setups and Fabrication

Methods

Artistic illustration of the 3D-printing process

In this chapter, I will introduce a self-build measurement setup that characterizes
the push-to-twist coupling and the Young’s modulus of our metamaterial samples.
Before, I will present a clever sample design facilitating the experimental boundary
conditions drastically. Afterwards, I will introduce the image cross-correlation
routine, which tracks displacements as small as a couple of nanometers. Finally, I
will describe the two three-dimensional laser printers used for sample fabrication.
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(a)

x
y

z
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L

(b)L

Figure 4.1: (a) Illustration of the twist-to-push coupling in a square bar with
a single handedness. (b) Two chiral bars stacked on top of each other with
opposite handedness. Thereby, the interface between the two bars can twist
freely without the need to realize sliding boundary conditions. To facilitate the
measurement, a plate (red) with markers will be added for the experiments
in between the bars with different handedness, which will be tracked using
digital image cross-correlation. The plates at both ends (red) ensure a properly
defined contact of the sample with the substrate and the measurement setup,
respectively.

4.1 General Sample Design

As has been shown in previous chapters, upon pushing, a chiral rod twists
around the pushing direction as illustrated in Figure 4.1(a). To character-
ize the metamaterials, the magnitude of this twisting angle is going to be
extracted and will be the key measure for both the chirality and the char-
acteristic length scale. Therefore, it is crucial that the experimental setup
does neither alter nor disturb this twisting motion. Meaning, the x- and
y-components of the displacement need to move as freely as possible for a
prescribed strain along the z-direction. Yet, these so called sliding boundary
conditions, where only one component of the displacement vector is pre-
scribed, are notoriously difficult to realize experimentally. Some residual

54



4 .1 general sample design

friction between a sample and the stamp of the measurement setup will
always distort the twist angle, since it will act as a counter moment to the
sample movement. This becomes especially challenging when performing
experiments on the microscale as presented later, where adhesion forces to
surfaces can play a dominant role, compared to the relatively small forces of
the sample.

Nevertheless, the necessity of sliding boundary conditions can be circum-
vented by exploiting material symmetries. Namely, by stacking a right- and
left-handed version of the structure on top of each other. As has been shown
in subsection 2.3.9, by flipping the handedness only the direction of the
twisting changes, but not the magnitude of the twist angles. This means, by
stacking chiral bars of left- and right-handedness on top of each other, the
top bar would reverse the twisting of the bottom bar. Thereby, both ends
of the sample would not rotate and can be fixed, such that all components
of the displacement vector can be prescribed. A schematic arrangement is
depicted in Figure 4.1(b). Similar sample geometries have been used in [2].

To facilitate the extraction of displacement vectors using an image cross-
correlation method, a plate with markers is added between the two parts
of opposite handedness (plate thickness 10 µm). Additionally, to ensure
well-defined contact, another set of plates with 10 µm thickness are added to
the top and the bottom of the sample.

Despite these efforts to minimize the influence of the boundaries, for some
samples the results are still heavily influenced by the boundaries and the
finite size of the sample. Not least because the plates at the end prevents a
lateral expansion or contraction of the metamaterial caused by its nonzero
Poisson’s ratio. Furthermore, these plates enforce the same displacement
for all points at the boundary even within a unit cell. Unfortunately, these
imperfect boundaries are hard to bypass experimentally. An estimation of
the magnitude of their influence is given in [116]. This problem is somewhat
similar to the influence of sample geometry when determining material
moduli, like Young’s modulus or the Poisson’s ration, in classical tensile
test [117].

Such boundary effects tend to get smaller for elongated samples. Therefore,
a large sample aspect ratio H/L is desirable, assuming a sample height H
and a square footprint with side length L. On the other hand, large aspect
ratios increase the sample production time significantly. Hence, for each
handedness an aspect ratio of H/L = 2 has been chosen leading to an aspect
ratio of the total sample of 2H/L = 4.
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4 setups and fabrication methods

Figure 4.2: Photo of the self-made measurement setup. A detailed scheme is
given in Figure 4.3. The major components are two microscopes, an automated
stage with a force sensor attached, and the sample holder.

4.2 Measurement Setup

The sample design presented in the previous section and depicted in Fig-
ure 4.1(b) drastically simplifies the measurement setup, since sliding bound-
aries do not need to be realized. The remaining requirements are:

1) Prescribe a given displacement along one direction with micrometer
precision.

2) Record the azimuthal displacements occurring in the middle of the
sample with micrometer precision.

3) Record the forces to compute the effective Young’s modulus of the
material with micronewton precision.

The self-build setup depicted in Figure 4.2 fulfills exactly these demands.
It consists of four major components: two optical microscopes capable of
imaging the sample both from the bottom and from the side, a 3D automated
stage, a sample holder that is fixed to the optical table, and a force sensor
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Figure 4.3: Scheme of the self-made measurement setup. Quasi-static displace-
ments are prescribed using an automated z-stage, whilst measuring the axial
forces. The deformation of the samples is monitored by two microscopes.

attached to the automated stage. A scheme of the setup highlighting these
parts is given in Figure 4.3.

The setup’s operation principle is as follows. A metamaterial sample is
placed and tightly fixed on the sample holder directly underneath a stamp.
This stamp prescribes a displacement normal to the sample’s substrate by
moving the motorized stages along the z-direction. The stamp itself is fixed
to the force sensor to measure the force arising form the compression of
the sample between the sample holder and translation stage. Both compo-
nents, as well as the optical table and the force sensor, can be regarded as
incompressible compared to the soft metamaterial samples.

The camera looking from the side is used to ensure proper initial contact
between the sample and stamp and also for monitoring during the measure-
ment. The second microscope looking from the bottom through the sample’s
substrate focuses onto the marker plate between the right- and left-handed
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4 setups and fabrication methods

part of the metamaterial sample (also compare Figure 4.1). Thereby, the
twist-to-push coupling can directly be observed in the camera images as
a rotation of this plate. Using image cross-correlation, displacements of
individual points in the focal plane are measured.

The recorded forces as function of the prescribed displacement, as well as
the in plane displacements of the markers on the middle plate, are going to
be the basis of all further data analysis.

Details on the individual components are given below. This setup was
already used in [2, 118], and parts of it were used previously in [97, 100, 104,
119].

Translation Stages

Three motorized stages (Newport TRA-CC), mounted orthogonally with
respect to each other, are used to move around freely in three dimensions.
The lateral degrees of freedom are used to place the stamp above the sample.
The bi-directional repeatability of the stages is specified by the manufacturer
as ∆u = ±1.5 µm. The maximum stage velocities are vmax = 0.4 mm/s.
Every stage is addressed by a Newport SMC100CC motion controller. All
positioning commands are generated using MATLAB and sent to the motion
controller via a serial port.

Microscopes

Two simple microscopes were build, each consisting of a camera, an objective
lens and a f = 150 mm tube lens. One of these microscopes monitors the
sample from the side, the other one from the bottom through the glass
substrate. To end up with a compact setup, the beam path of the second
microscope includes a mirror tilted by 45◦. Illumination both from an
external light emitting diode and through the objective lens from the bottom
are available. Therefore, a glass wedge is introduced to the beam path of the
second microscope as a beam splitter.

The following cameras were used interchangeably: FLIR BFLY-PGE-50S5M-
C, FLIR BFLY-PGE-50H5C-C, FLIR GS3-U3-41C6M, FLIR BFLY-PGE-31S4M-C.
To record pictures of the measurement, all cameras were addressed using
the software FlyCapture by FLIR Systems.

Depending on the required magnification, one of the following objective
lenses was used: 2.5× NA = 0.075 Zeiss Epiplan-NEONFLUAR, 5× NA =
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4 .3 digital image cross-correlation

0.15 Zeiss EPIPlan, 5× NA = 0.13 Olympus MSPlan, 10× NA = 0.2 Zeiss
EPIPlan, or 20× NA = 0.4 Zeiss LD Achroplan. These objective lenses have
been chosen for their comparatively long working distances in air, which are
needed due to geometrical limitations.

Force Sensor

Although the used sensor (10N K3D60, ME-Messsysteme) is capable of
measuring three independent axes simultaneously, only the component
normal to the sensor’s surface is read out. The signal of the sensor is
amplified (GSV-1A4 SubD37/2, Me-Messsysteme) and read out using a
national instrument card at a frequency of f = 0.3 MHz. Electrical noise was
significantly reduced by immediately averaging over 1000 measurements. In
order to improve the sensitivity for the characterization of the metamaterials
with tetragonal symmetry, the force sensor was replaced by a 2N K3D40

sensor (ME-Messsysteme).

4.3 Digital Image Cross-Correlation

The setup introduced in the previous section basically produces a video of
the rotation of the middle plate, not only of the strained and unstrained
position, but also of the loading and unloading process. Yet, to quantify
the rotation angle, the displacements of the marker on this plate need to
be extracted. For tracking such features, digital image cross-correlation
has proven to be a useful tool in the past [120], especially in the context
of metamaterial characterization [2, 76, 97, 118, 121, 122]. In the scope of
this thesis, the freely available digital image cross-correlation library for
MATLAB implemented by Eberl [123] was used.

4.3.1 Basic Principle

The image cross-correlation analysis generally compares a feature, or region
of interest (ROI), in two different pictures I1(x, y) and I2(x, y). The coordi-
nates are discretized, x = nx p and y = ny p, due to pixelation, with pixel
size p and the pixel number nx and ny. Usually, the ROI is only a small area
compared to I1(x, y), reaching from x1 to x2 and from y1 to y2, and centered
at (x0, y0). In a first step, the two-dimensional cross-correlation function is

59



4 setups and fabrication methods

N
o

rm
al

iz
ed

 C
(Δ

x
,Δ
y)

-0.4

0

0.4

0.8

-0.2

0.2

0.6

Δx in pixel
0 200

Δ
y
 i

n
 p

ix
el

-400

200
(a) (b)

ROI

-200

-200

0

Figure 4.4: (a) Exemplary picture I1(x, y) with a region of interest (ROI) marked
by a red box. Adapted from [124] (CC BY 3.0) (b) The calculated cross-
correlation function C(∆x, ∆y) of the ROI with I1(x, y). C(∆x, ∆y) exhibits
a clear maximum, where the ROI and I1(x, y) are similar, or in this case, equal.

calculated as

C(∆x, ∆y) =
x2∫

x1

y2∫
y1

I1(x, y)I2(x + ∆x, y + ∆y)dxdy. (4.1)

C(∆x, ∆y) has a maximum, whenever the feature in I2 at the position (x0 +
∆x, y0 + ∆y) resembles the ROI. Figure 4.4 shows an example, where a ROI
in I1(x, y) has been correlated with the picture I1(x, y) itself. Therefore,
C(∆x, ∆y) exhibits a maximum at ∆x = ∆y = 0. Figure 4.4(b) exhibits
additional local maxima. For sufficiently good image quality, as in the
experiments presented later, selecting the global maximum of C(∆x, ∆y) is
adequate as the position of the ROI. Yet, unfavorably chosen ROI with low
contrast or pictures with identical features can lead to equally pronounced
side peaks. Selecting the right maximum has to be done with caution then.
In [125], some of these errors are illustrated nicely.

Obviously, when taking the maximum of C(∆x, ∆y) as the displacement of
the ROI, ∆x and ∆y are always integer multiples of the pixel size. Especially,
when the displacements are much smaller than the pixel size, the maximum
will not change at all and will stay at ∆x = 0, ∆y = 0. To further increase
the accuracy of the displacements towards subpixel precision (δx, δy), a two-
dimensional parabola is fitted to an area of 3× 3 values of the correlation
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Figure 4.5: (a) Scheme of the setup for displacement measurements with sub-
nanometer precision. (b) In the left panel, an exemplary measurement of a
gold coated marker array is shown. The ROI are marked by blue boxes. In
the middle panel, average localization errors as small as 〈σx〉 = 0.09 nm were
deduced in measurements (blue and red dots) with nominally zero prescribed
displacement. Thereby, these results even surpass the accuracy of the internal
capacitive sensor of the piezo stage (gray). In the right panel, prescribed steps
of 1 nm can clearly be identified. Taken from [120] with permission.

function with the maximum at its center. The vertex of the parabola defines
the displacement with subpixel precision (δx, δy). Depending on the image
quality, precisions down to 1/100 of a pixel can regularly be achieved for a
single region of interest [120, 125].

4.3.2 Subnanometer Precision from Digital Image Cross-Correlation

Julian Köpfler and the author of this thesis showed in their paper [120], that
by averaging over multiple regions of interest the mean localization error
can get as small as 〈σx〉 = 0.09 nm. Of course this assumes that all ROI
in a picture move in the same way. This is not true for the measurements
conducted in the elastostatic part of this thesis, but will be exploited for the
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elastodynamic measurements in the second part of this thesis.

In [120], the setup depicted in Figure 4.5(a) was used, which is comparable
to the microscopes presented in section 4.2 and in the setup that will be
introduced in section 9.2. Hence, the setups used in the scope of this thesis
are expected to perform comparably.

To demonstrate the subnanometer localization capability, a piezoelectric
stage prescribed both a constant displacement and a step functions with 1 nm
step size as a function of time. The best case of a gold-coated marker array
with 8× 8 regions of interest is depicted in Figure 4.5. The step function can
be clearly identified in the output of the image cross-correlations, meaning
that subnanometer precision has been achieved, indeed.

4.4 3D Laser Printing

Most metamaterials, and the ones that are presented later on in particular,
have very complex architectures, which makes them difficult and often even
impossible to manufacture using conventional techniques. Therefore, it is not
surprising that the development of new additive manufacturing techniques
and the progress in the field of metamaterials are linked closely [15]. It is
notoriously difficult to choose the fitting 3D printer from the wide range of
techniques on the market. A brief introduction and comparisons between
different techniques are given in [126, 127].

The defining challenge of the metamaterial samples presented here is
the relatively large ratio between the smallest features inside a unit cell
and the overall sample size. The smallest printable volume elements are
called voxels, in analogy to pixels, the smallest building blocks of a picture.
Having the large sample size to feature ratio requires that voxel need to be
printed at a hight rate to end up with reasonable short fabrication times.
[126, 127] suggest that there are only three viable option at the moment:
continuous liquid interphase printing, inkjet 3D printing, and 3D laser
printing. For the scope of this thesis, the latter was chosen. Originally
developed in the nanophotonics community [128–130], this technique is now
well established and has been studied in great detail already. It has enabled
various material applications, ranging from 3D photonic crystals [128, 129],
photonic metamaterials [4], and microscaffolds for cell examination [131,
132], just to mention a few.
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(a) (d)(c)(b)

substrate

photoresist

Figure 4.6: Illustration of a work flow typical for 3D direct laser printing:
(a) substrate with photoresist, (b) writing process, (c) exposed structure, (d)
structure after development. Adapted from [133].

4.4.1 Basic Principle

3D laser printing, 3D laser micro printing, two-photon printing, two-photon
lithography, direct laser writing, and combinations of these terms are differ-
ent names for essentially the same technique. It enables the printing of nearly
arbitrary 3D polymer structures by scanning a focused laser through a liquid
photoresist. Via two- or multi-photon absorption [134], a photochemical
reaction is triggered in the focus of the laser, leading to the formation of a
solid polymer network. After exposure, the remaining liquid photoresist is
washed away using solvents. A typical work flow is depicted in Figure 4.6.

The laser focus is scanned along precomputed lines and thereby the entire
volume of a desired 3D geometry gets exposed one line after the other. At
first, this sequential approach sounds very slow. Yet, a laser beam can be
moved very fast, especially compared to a clunky extrusion nozzle, making
this printing technique one of fastest in terms of voxels per second, despite its
serial character. In this work, the underlying geometry data for the printed
structures was created using the computer-aided design (CAD) module of
COMSOL Multiphysics, exported as an STL-file, and subsequently converted
into machine code using the software Describe (Nanoscribe GmbH).
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Figure 4.7: Scheme of the Nanoscribe system. Reproduced from [135]

4.4.2 Nanoscribe Setup

Most of the samples in the scope of this thesis have been fabricated using the
commercially available system Photonic Professional GT (Nanoscribe GmbH),
in combination with a 25×NA = 0.8 objective (LCI Plan-NEOFLUAR, Zeiss),
and the commercially available photoresist IP-S (Nanoscribe GmbH). A
schematic of this setup is depicted in Figure 4.7. The laser light is created by
a frequency doubled erbium fiber laser (wavelength 780 nm) and its power is
regulated by an acousto-optic modulator (AOM). During printing, the objec-
tive lens is dipped directly into the liquid photoresist. Thereby, the possible
printing height is only limited by the range of the microscope z-drive. Due
to the finite numerical aperture of the objective lens, the voxels are elongated
along the z-axis. Typical dimensions of the voxel for this configuration are
0.5− 1 µm laterally and 2− 3 µm in height. When writing structures bigger
than the field of view of the objective lens (approximately circular with a
diameter of 400 µm), the substrate is shifted using a mechanical stage. A pair
of galvo mirrors scans the laser beam with up to 0.2 m/s in the focal plane.

Substrate Preparation

Substrates with a thin layer of indium tin oxide on top are used to facilitate
the alignment by increasing the index contrast between the photoresist and
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the substrate. A silanization of the substrate’s surfaces enables the formation
of chemical bonds between the printed polymer [136]. Thereby, printed sam-
ples are fixed to the substrate and do not fall off easily. For the silanization,
the properly cleaned glass substrate is treated with air plasma for ∼ 30 min,
before being placed in a 1 mM solution of of 3-(trimethoxysilyl)propyl-
methacrylate in toluene for ∼ 60 min. Subsequently, the substrates are
cleaned in deionized water and dried.

Sample Development

The residual liquid photoresist is washed out of the printed structure in a
bath of mr-Dev 600 (Micro Resist Technology), where it rests for ∼ 10 min.
Afterwards, the samples are immersed in acetone for ∼ 20 min. It is impor-
tant to never let the samples fall dry, since capillary forces would destroy
the fragile polymer structures. Therefore, in a final step, the samples are su-
percritically dried in CO2 using the Leica EM CPD030 (Leica Microsystems).

4.4.3 Multifocus 3D Laser Printing Setup

Fabricating the largest samples characterized in this thesis was only possible
using an even faster 3D printer. This was developed and build by Vincent
Hahn over the course of his doctoral work. A scheme of the setup is shown
in Figure 4.8. The operation principle of the setup is discussed in great
detail in [118, 127]. Apart from the improved galvo mirrors and faster
electronics, the key difference compared to the Nanoscribe system is a
diffractive optical element (DOE), which splits the laser beam into nine equal
subbeams. Thereby, nine foci are printing simultaneously. Obviously, these
foci cannot be controlled individually, which is not a problem for periodic
structures. All in all, these improvements led to a 30-fold increase in printing
rate. For all samples produced with this setup, the commercial photoresist
IP-dip (Nanoscribe GmbH) and a 40×, NA = 1.4 objective (Plan-Apochroma,
Zeiss) was used.

Substrate Preparation

Printing large structures requires large volumes of photoresists. Since this
setup does not offer a resist dispenser, all the resist must be present on the
objective lens right from the start. Unfortunately, due to the geometry of the
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Figure 4.8: Scheme of the multifocus 3D laser printing system [127]. In contrast
to the Nanoscribe system, a diffractive optical element (DOE) splits the laser
beam into 9 equivalent foxi. These are scanned simultaneously using two galvo
mirrors (GX and GY).

objective lens, the volume between the objective and the substrate is very
narrow. Thus, samples were printed onto an additional glass pedestal. To
ensure proper bonds between the pedestal and the polymer structure, the
pedestal has been silanized.

Sample Development

In contrast to the samples printed with the Nanoscribe system, samples
from the multifocus system were only treated in acetone for ∼ 20 min and
subsequently supercritically dried in CO2 using a Leica EM CPD300 (Leica
Microsystems).
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Chapter 5

Push-to-Twist Coupling

in Cubic Metamaterials

Photograph of the setup during measurement

In this chapter, the unit cell Muamer Kadic and I designed will be revealed and its
basic working principle will be introduced. Furthermore, I will present my original
numerical characterization and optimization of the chiral samples. Subsequently, the
fabricated samples will be presented and fabricational challenges will be discussed
briefly. Afterwards, these samples will be characterized and the rotation angle result-
ing from the push-to-twist coupling will be calculated. Finally, I will introduce a set
of micropolar material parameters, which reproduces the metamaterial’s properties
nicely. The main findings of this chapter were published in [2].
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5 push-to-twist coupling in cubic metamaterials

Figure 5.1: (a) Chiral cube
subjected to an infinitesi-
mal axial force. The result-
ing infinitesimal twist de-
formation is equivalent to a
shear deformation of every
side of the cube (b).
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Although chirality leads to qualitatively new effects, like a push-to-twist
coupling in bars (see section 2.3), the concept played little to no role for a
long time. Mainly, since these new effects only arrise in the static regime,
when sample dimensions are in the same order of magnitude as the charac-
teristic length scales of the materials. For ordinary materials, these length
scales are usually related to the size of the molecules, grains, pores, or
other substructures of the materials. Hence, chiral effects tend to vanish
for macroscopic samples (also see Table 2.1). Metamaterials, on the other
hand, can extend the material properties far beyond the properties of its
constituents. Therefore, the aim is to design metamaterials, which show
pronounced push-to-twist coupling, preferably even for macroscopic sample
sizes.

5.1 Mechanisms of Push-to-Twist Coupling in Metama-
terials

In a straight forward design approach, unit cells, which individually twist
upon pushing, are stacked up into a crystal. In that, the twist-to-push cou-
pling hopefully persists in the crystal. Additionally, twists of the individual
unit cells around their own center of mass should somehow add up to a
macroscopic push-to-twist coupling of the sample. As will be shown later,
the inter-unit-cell-coupling, when stacking up the crystal, is as important for
the material properties of the metamaterial as the intra-unit-cell-coupling.
For a moment, only the mechanisms in the unit cell shall be relevant.

To begin with, a mechanism building block shall be identified, which
shows a push-to-twist coupling. In a second step, these building blocks
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Figure 5.2: Exemplary 2D motives that shear along x upon pushing along z-axis
with two-fold (a) and four-fold (b) rotational symmetry. These motives can be
arranged into the building blocks (c) and (d), which exhibit the desired twist
deformation upon axial deformation along the z-axis.

can be integrated into the unit cell design. Consider the block depicted in
Figure 5.1, which is fixed at the bottom. This block shall serve as a black box,
meaning it has some substructure that creates the wanted push-to-twist cou-
pling and therefore twists infinitesimally (red arrow) upon an infinitesimal
compression along the z-direction (blue arrow). When examining any side
plane of this block individually, it becomes clear that the infinitesimal twist
corresponds to an infinitesimal shearing of this plane (compare Figure 5.1(b)).
The magnitude of the shear is equal for all side planes, but opposite planes
move in opposite directions. Hence, the push-to-twist coupling in a 3D
building block can be realized by finding a 2D motive that shears upon
compression.

The most simplistic motive is filling the plane with a diagonal bar as
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depicted in Figure 5.2(a). Upon pushing from the top (1), the bar will
be bent (2) and thereby the effective plane will not only be compressed
along z, but also sheared. The corresponding building block is depicted
in Figure 5.2(b). Another possible motive, which is inspired by previous
work on 2D chiral lattices [100, 137–139] is depicted in Figure 5.2(c) and
(d). The mechanism at work is a bit more complex than the one of the first
motive. Upon pushing from the top (1), the upright bar induces a rotation
of the ring (2), which in turn pulls the horizontal bar inwards(3). Once
again, the effective boundaries of the side plane are compressed along z and
sheared. This motive has a higher symmetry (4-fold rotational symmetry)
than the first motive (2-fold rotational symmetry), which will facilitate the
construction of a highly symmetric unit cell in the next section. This motive
can be called chiral in 2D, since by only using in-plane rotations, the mirror
image cannot be superimposed on the original motive. Obviously, there is
an infinite number of possible motives that would have the desired push-
to-shear coupling. Also, there are other principles to create building blocks
with a push-to-twist coupling. Here, only those used later in this thesis are
presented.

5.2 Blueprints of Cubic Chiral Metamaterials

In a next step, the building blocks of the previous section will be spatially
arranged in crystal unit cells. In this chapter, the aim is to design a metama-
terial that behaves similar along any of the three principle directions x, y,
and z. Therefore, cubic unit cells are implemented. Ideally, the properties
of the metamaterial would be isotropic, meaning that independent of the
direction of compression, a twist would occur in the plane perpendicular
to the compression. Yet, achieving isotropic properties with a crystalline
structure is considerably difficult in elasticity. This is due to the fact that
the highest crystalline symmetry (cubic symmetry) has more independent
material parameters than the isotropic case (also see section 2.2 and sec-
tion 2.3). Therefore, crystalline structures are only isotropic, if an accidental
degeneration of the tensor elements can be achieved. This is in great contrast
to the electrodynamic case, where the electric permittivity and the mag-
netic susceptibility tensor of an isotropic and a cubic material are formally
equal [140].

A simple cubic unit cell can easily be realized using the building block of
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(a) (b)

(c) (d)

x

y

z

Figure 5.3: Gallery of 3D cubic unit cells, which were constructed on the basis
of the building blocks depicted in Figure 5.2. (a) and (b) are simple cubic unit
cells. (c) and (d) are body centered cubic unit cells. This figure is adapted
from [2].

Figure 5.2(d) by adding two additional motives of correct handedness at the
top and bottom of the cube, as depicted in Figure 5.3(a). This unit cell was
brought forward in [2]. Yet, exploiting these construction principles, even
more complex unit cell symmetries can be achieved. An example of a body-
centered cubic unit cell is depicted in Figure 5.3(c). There, chiral motives
with four- or six-fold rotational symmetry were added to the boundary
planes of the Wigner-Seitz cell.

Due to the lack of symmetry, creating a simple cubic unit cell from the
building block depicted in Figure 5.2(c) is more challenging. Nevertheless,
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Figure 5.4: Blueprint of the studied sim-
ple cubic unit cell with lattice constant a.
The parameters were optimized to yield
high twist angles per axial strain, whilst
taking fabricational restrictions into ac-
count. For the experiments, the following
set of parameters was used: d = 0.06a,
r2 = 0.4a, δ = δmax ≈ 35◦, b =

√
2d, and

r1 = 0.32a. Crucially, when setting δ = 0,
an achiral unit cell showing no push-to-
twist coupling is recovered. This figure is
adapted from [2].

δ

a

r₁
r₂

b
d

d
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it can be done by placing a cube in the middle of the unit cell and adding
the building block on each side of the cube. This unit cell depicted in
Figure 5.3(b) was brought forward by Lakes [141, 142]. Again, other unit cell
symmetries can be achieved by placing a shrinked version of the Wigner-Seitz
cell in the middle of the unit cell and adding the building blocks with the
correct rotational symmetry to each of the faces as depicted in Figure 5.3(d).

The unit cell depicted in Figure 5.3(a) was chosen for further character-
ization. Its crucial advantage is that the simple cubic unit cells generally
exhibited the largest rotation angles in preliminary numerical studies (not
depicted). Furthermore, first numerical studies suggested a slightly bigger
characteristic length scale of the unit cell depicted in (a), compared to the unit
cell (b). Still, the latter yielded generally larger rotation. Most importantly,
unit cell (a) is the easiest to fabricate and resulted in more stable samples,
since it does not rely on a large number of slender bars.

5.3 Numerical Characterization of Chiral Cubic Meta-
materials

In this section, the metamaterial is optimized to show a maximum twist angle
per percent strain and subsequently characterized numerically. Therefore,
finite element calculations were performed using the commercial software
COMSOL Multiphysics. For all simulations in this section, the metamate-
rial’s constituent material was modeled as a Cauchy material, as introduced
in section 2.2 and section 3.2. Unless explicitly stated otherwise, the kinemat-
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Figure 5.5: Calculated deformation of a single unit cell under an oblique view
(a), and viewing along the (b) y- and (c) z-direction. The intended mechanism
as already introduced in Figure 5.2 can be observed clearly: the vertical bar (1)
induces a rotation of the ring (2), which in turn pulls in the corner connected
to the horizontal bar (3). This figure is adapted from [2].

ically linearized equations were used, meaning, geometrical nonlinearities
were neglected.

5.3.1 Basic Mechanism

Using the construction principles of the previous sections, the unit cell
depicted in Figure 5.4 was derived. In a first step, the functional principle
predicted in the previous sections shall be verified. For this purpose, a single
unit cell was implemented with fixed boundaries at the bottom of the unit
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cell (Ñu = 0). A displacement uz along the z-direction was prescribed to the
top surface of the unit cell, whereas the remaining boundaries were left open.
The result is depicted in Figure 5.5. It proves nicely that the unit cells shows
the desired push-to-twist coupling. Especially the intended mechanism, with
the vertical bar (1) inducing a rotation of the ring (2), which in turn pulls the
corner connected to the horizontal bar inwards (3), is functioning as planned.

5.3.2 Maximization of the Twist Angle per Axial Strain

In the second step, the geometrical parameters d, δ, and r2 were varied
individually in order to find a parameter set that yields the largest rotation
angle ϕ per axial strain εzz. In other words, the contribution of the chiral mi-
cropolar effect should be maximized. This was done on structures containing
1× 1× 2 unit cells. The structure was fixed at the bottom (Ñu = 0) and a plate
out of the same constituent material as the unit cell was added at the top.
A displacement uz was prescribed along the z-direction to the top surface
of that plate. A comparable sample is depicted later in Figure 5.7(a). This
sample geometry was chosen to mimic the experimental boundaries that are
going to be introduced in more detail in section 5.4 (also see section 4.1 and
subsection 5.3.3).

Since the top plate is stiff compared to the filigree unit cell underneath,
it stays essentially undeformed. Hence, the average rotation angle of the
plate is equal to the rotation angle at any position of the plate. At the same
time, the plate averages over the different local rotations that might occur
in the structure below. Therefore, by probing the displacement vector of
one of the corners of the top plate, the average twist angle ϕ per axial strain
εzz = uz/H of the metamaterial can be calculated by

ϕ

εzz
= asin

(
ux sin

(
atan

(y
x

))
− uy cos

(
atan

(y
x

))) 180◦

π

H
uz

. (5.1)

First, the twist angle ϕ per axial strain εzz was calculated as a function of
the angle δ. As can be seen in Figure 5.6(b), ϕ/εzz increases monotonously,
meaning that the unit cell becomes more chiral with increasing δ. Due to
geometrical restrictions, δ has an upper bound given by

δmax = asin

(√
2 (r2 − d/2))

a− b

)
. (5.2)
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Figure 5.6: Calculated twist per axial strain of samples containing 1× 1× 2 unit
cells as a function of (a) the radius r2, (b) the angle δ, and (c) the bar thickness
d. The geometrical parameters are defined in Figure 5.4. This figure is adapted
from [2].

Notably, the structure does not twist at all for δ = 0. In this case, a
centrosymmetric, hence achiral unit cell is recovered. Therefore, all entries
of the elasticity tensor B are zero and in accordance with the findings of
Gauthier [54] and Lakes [33] no deviation from the classical Cauchy behavior
is expected. Hence, the twist has to vanish. The unit cell with δ = 0 will
serve as the achiral reference structure in the following.

At the same time, ϕ/εzz increases monotonously both as a function of d
and r2, for the parameter range depicted in Figure 5.6(a) and (c). For these
simulations, r1 was not kept constant, but rather r2 − r1 = const. ≈ 0.08a.
Both b and r1 show no significant influence on the twist per strain, when
varied within reasonable bounds (not depicted).

As a result, maximizing r2, δ, and d yields the highest rotations angles per
axial strain. On the other hand, geometrical restrictions prevent arbitrarily
high values for either of these parameters. At some point, parts of the
unit cell begin to overlap or get in contact during compression and thereby,
make the desired mechanism obsolete. Furthermore, extremely narrow gaps
between seperated parts, like the gap between neighboring rings in a unit
cell, cannot be fabricated. The so called proximity effect [126, 143] would
connect these rings during the 3D printing process, which would also alter
the functionality of the unit cell. In an effort to balance between the desirably
large twist angles and experimental feasibility, the parameters marked in red
in Figure 5.6 were selected for further characterization. These are: d = 0.06a,
r2 = 0.4a, δ = δmax ≈ 35◦, as well as b =

√
2d, and r1 = 0.32a.
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Figure 5.7: Gallery of calculated displacements for structures with scaling
factors of (a) N = 1, (b) N = 3, and (c) N = 5. The samples contain a total of
N × N × 2N unit cells. Each sample was fixed at the bottom and subjected to
a prescribed displacement corresponding to εzz = −1% at the top plate. For
clarity, the deformations are enhanced by a factor of 5.

5.3.3 Twist per Strain of the Metamaterial Samples

It has been shown in section 2.3 and [33] that cylindrical bars from a chiral
constituent material twist upon axial compression. Furthermore, this twist
angle does not only depend on the sample’s aspect ratio, but also on the
ratio between the characteristic length scale lt and the bar’s radius R. Hence,
examining the twist per axial strain as a function of R/lt, whilst keeping the
sample’s aspect ratio constant, is the crucial study to extract estimates for
the characteristic length. For crystal structures, the characteristic length scale
is necessarily proportional to the lattice constant a. Meaning, that by simply
doubling the size of the unit cell and hence doubling a, the characteristic
length scales will also double. In this context, changing the ratio R/lt is
equivalent to changing the ratio R/a between the cylinder radius and the
lattice constant.

Due to the cubic symmetry of the unit cell, samples with circular foot-
prints cannot be realized easily. Instead, square footprint and outer sample
dimensions of L × L × H were used, with the side length L and sample
height H. Yet, the reasoning above can be transferred, yielding that the twist
per strain has to be studied as a function of the ratio between sample side
length L and lattice constant a. In the following, this ratio is referred to as
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Figure 5.8: Calculated twist an-
gles per axial strain for differ-
ent scale factors N, both for
chiral and achiral (δ = 0) sam-
ples. Clearly, the chiral samples
twist, whereas no twist could
be observed for the achiral
structures within the margins
of numerical precision. This fig-
ure is adapted from [2].

the scale factor N = L/a. For crystalline structures, N is an integer.
There are two equivalent ways of conducting this study. Either by keeping

the lattice constant a constant and changing the sample’s side length L, or by
keeping L constant, whilst adjusting a. For the calculations performed here,
the latter option was chosen. Thereby, special care has to be taken concerning
the size of the mesh elements. When scaling the unit cell, the discretization
of the individual unit cells should not change. Yet, both approaches, scaling
the lattice constant and the sample size, yield identical results and will be
used at some point in the following.

As in the experiments, samples containing Nx × Ny × Nz = N × N ×
2N unit cells have been implemented, with N = 1, 2, 3, 4, 5. Therefore,
the absolute metamaterial size is given by Lx × Ly × H = Na× Na× 2Na.
Samples with N > 5 are out of reach, due to the high memory consumption
of the finite element method. For the calculations, each sample was fixed
(Ñu = 0) at the bottom and a plate with outer dimensions Na× Na× 0.17H
was added to the top of the metamaterial. At the top of this plate, a
displacement uz = −0.01H was prescribed along the z-direction, leading
to a compressional strain of εzz = uz/H = −1%. Exemplary raw data
for N = 1, 3, 5 are depicted in Figure 5.7(a)-(c). The magnitude of the
displacement vector is plotted in false colors and for better visibility, the
deformations are enhanced by a factor of 5.

Figure 5.7(a)-(c) clearly shows that all structures exhibit a pronounced
twist. The rotation angle ϕ of the metamaterial sample is calculated, as
introduced in subsection 5.3.2, from the displacement components of a
corners of the top plate according to Equation 5.1. The resulting twist angle
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Figure 5.9: Calculated effective
Young’s moduli of the meta-
material samples for different
scale factors N, both for chi-
ral and achiral (δ = 0) sam-
ples. For the chiral samples
the Young’s modulus depends
on the scale factor N, whereas
a constant Young’s modulus is
observed for the achiral struc-
tures. This figure is adapted
from [2].
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per axial strain ϕ/εzz is plotted as a function of N in Figure 5.8, both for the
chiral structures and the achiral control structure.

Clearly, only the chiral structures exhibit a twist, whereas all achiral
structures show zero twist within the margins of numerical precision. For
N = 1, a maximum twist angle of ϕ/εzz = 2.1◦/% was found. It then
decreases monotonously as a function of N. Interestingly, when going from
N = 1 to N = 5, the twist merely decreases by less than a factor of 2. Hence,
it can already be concluded that the characteristic scale factor Nc = lt/a is in
the same order or magnitude as the scaling factors investigated. Since for
N � Nc, a faster decay ∝ 1/N is expected (see section 2.3 and [33]).

5.3.4 Effective Young’s Modulus

The effective Young’s modulus was probed numerically by applying the same
boundary conditions as above. Yet, instead of a displacement, a boundary
force of −Fz was prescribed along the z-direction to the top plate. The
resulting displacement uz of the top plate was probed at a corner of the plate.
Using this, the effective Young’s modulus is calculated using

E =
FzH
L2uz

. (5.3)

The calculated effective Young’s moduli are plotted in Figure 5.9. The
effective Young’s moduli also show a pronounced N-dependency. It increases
monotonously by approximately a factor of 6 from N = 1 to N = 5 and
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Figure 5.10: Calculated twist angles per axial strain (a) and effective Young’s
modulus (b) as a function of the axial strain εzz. In contrast to the previous
calculations, geometrical nonlinearities were taken into account. This figure is
adapted from [2].

seems to converge towards an upper bound. Yet, larger values of N need to
be calculated to draw any definite conclusion on its numerical value.

5.3.5 Geometrical Nonlinearities

The micropolar theory predicts a linear relation between the twist angle ϕ and
the axial strain εzz. To check the range of validity of this linear assumption,
the simulations above were repeated, but this time, geometrical nonlinearities
where taken into account. The boundary conditions were equivalent to the
ones in subsection 5.3.4. Additionally, the boundary force was varied to
achieve axial strains between 0 and −4%. Due to the increased memory
consumption of the nonlinear approach, only structures with N = 1, 2, 3
were calculated. The results of these nonlinear calculations are depicted in
Figure 5.10. They predict only little influence of the strain for the case of
N = 1, both for the twist per strain as for the effective Young’s modulus. Yet,
with increasing N the nonlinearity increases as well. For N = 3 the twist
increases by approximately 12% for the depicted strain values. The effect on
the effective Young’s modulus is even larger. A decrease by more than 23%
can be observed.
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5.4 Experiments on Chiral Cubic Metamaterials

In this section, the fabricated samples and the results from the experimental
characterization are presented. At first, the challenges of the sample fabrica-
tion and strategies to solve these are presented. Afterwards, mathematical
details of the data evaluation are given. Finally, the measured sample twists
and Young’s moduli are shown and compared to the numerical predictions
of the previous section.

5.4.1 Printing Strategy

Although 3D printing is often sold as a quick and easy manufacturing tech-
nique, producing the desired structure accurately can cause major problems.
For example, many techniques have difficulties printing overhanging parts.
Often, special scaffoldings are added, which need to be removed later in
the development step. Using 3D laser printing, such scaffolds can often be
avoided by developing a dedicated printing sequence. Another challenge is
the asymmetry and finite size of the voxel, the smallest printable volume
element. For all samples produced in this chapter, the Nanoscribe system
was used. All numerical values given here are specifically adjusted to the
used instrumentation.

Voxel Correction

Before printing, the 3D geometry is split into lines, along which the laser
focus is scanned. In a very simplified picture, the 3D printer lines up
voxels along these paths. Yet, in case of 3D laser printing, these voxels
are asymmetric. For the components used here, the voxel’s height can
range from 2− 3 µm, and its width from 0.5− 1 µm. This finite size and
asymmetry distorts the printed structure decisively, especially when the
geometry’s features and the voxel size are comparable. This is illustrated
in Figure 5.11(a) and (b). The finite voxel size can be accounted for by
adjusting the geometrical parameters of the input geometry, as depicted in
Figure 5.11(c) and (d). Unfortunately, there is no straight forward correction
procedure. Instead, this needs to be done for each set of printing parameters,
each geometry, and each structure size individually in a trial and error
procedure. A complete list of the geometry corrections which compensate
the voxel size is given in subsection A.1.1.
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Figure 5.11: (a) Cut through the unit cell along the x-y-plane. The white lines
represent the laser trajectories when slicing the intended geometry. (b) Voxels of
finite size have been placed along the laser trajectories. Obviously, the resulting
structure is much larger than the intended structure (black dashed line). (c)
Programmed structures accounting for the finite size of the voxel and the
deduced laser trajectories. (d) The voxel lines along the shortened trajectories
reproduce the desired geometry (black line) more accurately compared to
(b). This scheme roughly resembles the case of N = 5 with lattice constant
a = 100 µm (compare Figure 5.13).

Splitting into Multiple Printing Fields

Due to the finite field of view of the objective lens, structures can only be
printed simultaneously in an area with a diameter of 400 µm. This is less
than the intended sample footprint of about 500 µm× 500 µm. In order to
still be able to print the whole sample, it was split in smaller blocks, which
were printed sequentially. The sizes of these blocks were adapted according
to the unit cell size.
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Figure 5.12: Printing strategy to avoid flying objects. (a) First, the outer bars of
the unit cells are printed along the +z-direction. The rings are intentionally
left out. (b) A slender support structure (red) is printed starting from the
previously written structure along the −z-direction. (c) Subsequently, the rings
are printed along +z-direction in contact to the support structure. Therefore,
the rings are immediately connected to the substrate and do not float away.

Avoiding Flying Objects

Overhanging and flying objects are notoriously difficult to print. The term
flying object usually refers to parts of the geometry that are not connected
to the substrate or any previously printed parts. Since these flying objects
float in the liquid photoresist, any small flow inside the resist will make
them float away. This is particularly problematic for the achiral control
structures. There, the bottom of the rings is initially not connected to any
previously written structure, when building up the structure in planes along
the z-direction. This was avoided by first writing only the bars that connect
the ring to the corners of the unit cell. Subsequently, a slender support
structure was printed from top to bottom, i.e. the printing direction was
inverted. This support, which is essentially the bottom edge of the ring, is
sufficient to hold the rest of the ring that is printed in a third step at its
desired position. This time again using the normal printing direction. The
whole procedure is sketched in Figure 5.12.

5.4.2 Fabricated Samples

As has been pointed out before, probing the characteristic length scale of
the metamaterial can either be done by keeping the lattice constant a fixed
and changing the sample’s side length L, or vice versa. As for the numerical
studies, the latter was also chosen for the experimental characterization.
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In doing so, the same optical setup can be used for the measurement of
samples having different scale factors N. At the same time, forces due to the
compression of the samples are increased for small scale factors N, hence
become easier to measure. In general, by using this approach, possible
systematic errors of the measurement setup do not depend as much on N,
since the prescribed displacements u are equal and the measured forces are
comparable for all samples.

Figure 5.13 gives an overview over the fabricated samples. As elaborated
in section 4.1, a right- and a left-handed metamaterial bar was printed on
top of each other with plates added at the bottom, middle, and top of the
sample. Markers that facilitate the image-cross-correlation are printed onto
the overhanging part of the middle plate. In order to achieve reasonably
short fabrication times, a side length of L = 500 µm was chosen. Samples
with scale factors reaching from N = 1 to N = 5 were realized, containing
up to 500 unit cells in total. Higher scale factors were out of reach, due to
excessively long printing times of these structures and the limited resolution
of the used setup.

As mentioned before, scaling the unit cell size reduces sources of sys-
tematical errors of the measurement setup. On the downside, scaling the
unit cell size makes the fabrication of the samples even more challenging.
Merely the size of the unit cell should be changed by up to factor of 5, yet
the geometrical proportions with respect to a must stay equal. Extensive
experimental optimization was needed to find suitable voxel corrections.
Close ups of single unit cells for different scale factors N are depicted in
Figure 5.14. It proves that the scaling was done with remarkable accuracy.

5.4.3 Extracting Rotation Angles from the Digital Image Cross-Correlation

For the experiments, the samples were compressed axially using the setup
introduced in section 4.2, whilst being monitored with two cameras. One
camera was focused to the side of the sample, the other observed the marker
plate in the middle from the bottom. Videos were recorded during the com-
pression. Using the image-cross-correlation method introduced in section 4.3,
the position Ñx i(t) of the i-th marker on the middle plate was calculated
as a function of time t. By subtracting the initial position Ñxi(t0 = 0), the
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Figure 5.13: Scanning electron micrographs of 3D printed samples using the
Nanoscribe instrumentation. (a)-(e) are chiral structures with scale factors of
N = 1, 2, 3, 4, 5. (f) is an achiral control structure with N = 5. Additionally,
raw measurement data are plotted in (c). For clarity, the displacements are
enhanced by a factor of 5 compared to the image scale bar. This figure is
adapted from [2].
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Figure 5.14: Gallery of unit cell close-ups of the samples depicted in Figure 5.13.
(a)-(e) are chiral structures with scale factors of N = 1, 2, 3, 4, 5. (f) is an achiral
control structure with N = 5. Note that from (a) to (e) the scale bar changes by
a factor of five. These close-ups were taken with a scanning electron microscope
and demonstrate the generally high printing quality. This figure is adapted
from [2].

displacement vectors Ñu i(t) were calculated as

Ñu i(t) =
Ñx i(t)−

Ñx i(t0). (5.4)

Note that these vectors refer to positions in a 2D image, hence they have only
two components. The x- and y-components of a single marker are plotted
as a function of time in Figure 5.15(b). (a) shows the displacement vectors
for all tracked markers of the chiral sample with N = 3 at a time t1, for
which the axial strain was εzz = −1.5%. From these data, the azimuthal
components uϕi of the displacement vectors, and hence the rotation angle ϕ,
shall be computed.

In the most general case, the tracked middle plate can be translated and
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Figure 5.15: (a) Optical micrograph of a sample wit N = 3 during measurement.
An axial strain of εzz = −1.5% was prescribed. The photo was taken through
the substrate and focuses on the marker plate in between the right- and left-
handed parts of the structure. The displacement vectors (blue) extracted by
digital image cross-correlation are depicted on the same scale. (b) x- and
y-component of the displacement vector Ñu i of a single marker as a function of
time. A whole loading and unloading cycle is depicted. Panel (a) is adapted
from [2].

rotated in the x-y plane. Yet, only the latter is of interest. Translation
can be caused by a misalignment of the optical system and the sample
axis or by sample imperfections. Hence, the azimuthal displacement was
calculated by subtracting the movement of the center of gravity 〈u(t)〉i =
〈xi(t)〉i − 〈xi(t0)〉i from the measured displacements

uϕi(t) = ui(t)− 〈u(t)〉i. (5.5)

In this context, 〈•〉i denotes the average over all markers at a given time t.
Later, 〈•〉t will be used as a time average of a single marker.

The rotation angle ϕi(t) was then calculated by

ϕi(t) =
uϕi(t)

ri
, (5.6)

with ri = |
Ñ
O− Ñx i(t0)| being the distance between the marker’s reference

position and the center of rotation
Ñ
O. In turn,

Ñ
O was calculated by first fitting

a linear function fi(x) to the corrected positions xcorr,i = xi(t)− 〈ui(t)〉i for
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Figure 5.16: The extracted marker positions xi(t) of the same measurement as
depicted in Figure 5.15 are plotted as blue dots. The black markers indicate the
positions of minimum and maximum strain. The movement of the geometrical
center of the marker array 〈xi(t)〉i is in the order of the marker size (red dots).
The linear fits fi(x) are depicted as red dashed lines. The center of rotation
(red circle) is calculated as the average position of the intersections of all gi(x)
within an area surrounding 〈xi(t)〉i.

every marker (red lines in Figure 5.16). The positions xcorr,i are plotted for
an exemplary measurement of a sample with N = 3 and εzz = −1.5% in
Figure 5.16 as blue dots. Secondly, a line gi(x) orthogonal to fi(x) through
the point 〈xcorr,i(t)〉t is calculated (gray lines in Figure 5.16). The center of
rotation

Ñ
O is then given as the mean value of all intersections (black crosses

in Figure 5.16) of the functions gi(x) within a predetermined range.

5.4.4 Twist per Strain of the Metamaterial Samples

Twist angles were measured for samples containing (N × N × 2N)× 2 unit
cells with N = 1, 2, 3, 4, 5, both for chiral and achiral structures. Therefore,
displacements corresponding to axial strains of εzz = −0.5%,−1.0%,−1.5%
have been prescribed. In each experimental cycle, the strain was ramped
up slowly to its maximum, kept at this state for approximately 2 s, and sub-
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5 push-to-twist coupling in cubic metamaterials

Figure 5.17: Summary of the
measured and calculated twist
angles per axial strain. Results
both for chiral (red) and achi-
ral samples (blue) are depicted.
Experimentally, strains of εzz =
−0.5%,−1%,−1.5% have been
probed. Additionally, the twist
angles deduced from structural
finite-element calculations and
from effective continuum mod-
els are plotted. Both were per-
formed in the linear regime.
This figure is adapted from [2].
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sequently released to its unstrained configuration again. Every experiment
was repeated six times, with pauses of at least 20 s in between consecutive
loading cycles. For each experiment, the twist angle per axial strain was
calculated as stated in the previous subsection. The mean rotation angle
for every strain is plotted as a function of N in Figure 5.17. The statistical
errors are within the size of the symbols, and therefore not depicted. For
comparison, the results from the finite element calculations described in the
previous section are also depicted.

For all chiral samples, a pronounced twist angle per axial strain was
measured. The qualitative trend also agrees well with the predictions from
finite-element calculations. For N = 1, 2, 3, an exceptionally good quantita-
tive agreement was found. Generally smaller twist angles were measured
for the cases of N = 4, 5. Furthermore, for all samples larger strains led to
higher twists per strain. In Figure 5.13(c), a scanning electron micrograph is
shown together with the measured displacement vectors for the axial (red
arrows) and azimuthal displacements (blue arrows). For better visibility, all
vectors have been scaled by a factor of 5. From this it becomes clear that the
axial and azimuthal displacements are comparable in magnitude. Hence, the
effects due to the new degrees of freedom are as large as the ordinary ones.
On the other hand, the achiral control structures show no twist within the
margins of error as expected.
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Figure 5.18: Exemplary force measurement of a chiral metamaterial sample
with N = 3 subjected to a maximal axial strain of εzz = −1.5%. The loading
(blue) and unloading curves are depicted both as a function of time (a) and
external strain (b). In (b), only small deviations from linearity are recognizable.
Additionally, a small hysteresis can be observed. This is most likely caused by
the viscoelastic properties of the used constituent polymer.

5.4.5 Effective Young’s Modulus

Simultaneously to the twist measurement, the counteracting force Fz of the
sample was recorded as a function of time, and hence as a function of the
external strain. Exemplary data of the force measurement of the sample
with N = 3 and a prescribed maximum strain of εzz = −1.5% is depicted in
Figure 5.18.

Using this data, the effective Young’s modulus was extracted using a
linear fit. To compare these values to the finite-element calculations of the
structures, a Young’s modulus of E = 2.6 GPa and a Poisson’s ration of
ν = 0.4 was assumed for the constituent material in the simulations.

As for the twist per strain, the qualitative trends of the numerical calcu-
lations are reproduced well by the experiments. Again, larger deviations
are present for the chiral samples with N = 4, 5. As expected from classical
Cauchy elasticity, the Young’s modulus of the achiral control sample does
not show a N dependency within the margins of error.
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5 push-to-twist coupling in cubic metamaterials

Figure 5.19: Summary of the
measured and calculated ef-
fective Young’s moduli. Re-
sults both for chiral (red) and
achiral samples (blue) are de-
picted. Experimentally, strains
of εzz = −0.5%,−1%,−1.5%
were probed. Additionally, the
effective Young’s moduli de-
duced from structural finite-
element calculations and from
effective continuum models are
plotted. Both were performed
in the linear regime. This figure
is adapted from [2].
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5.5 The Quest for Effective Material Parameters

The title of this section is based on the title of Gauthier’s and Jahsman’s
1975 article "A Quest for Micropolar Elastic Constants"[54], where they already
pointed out the difficulties of completely characterizing the micropolar
elasticity tensors for an achiral and isotropic cylinder. Surely, the additional
parameters for a chiral material do not facilitate the task. Furthermore, to the
best knowledge of the author, there is no closed analytical solution describing
the axial compression of a chiral bar with square footprint using micropolar
elasticity. Although Lakes derived equations for the axial compression
of a chiral cylinder [33], these solutions in their most general form can
barely be used as a fit function for a parameter retrieval. Furthermore, it is
questionable, whether the samples with square footprints discussed in this
thesis can be approximated by a round cylinder.

On the other hand, without a proper continuum description and the
corresponding effective material parameters, metamaterials are of little use
for real world applications (compare section 2.5 and [15]). Since a proper
parameter retrieval is out of reach, a set of material parameters was found
in [2] that mimics the scaling behavior of the metamaterial by a systematic
parameter variation. These parameters are also given in subsection B.1.1.
Unfortunately, these original parameters do not describe a passive material,
since not all eigenvalues of the elasticity tensor were positive, eventhough
all bounds on the material parameters derived in [33] are fulfilled.
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Figure 5.20: Calculated displacements for the chiral structure (a) and the cubic
micropolar continuum (b). Both correspond to a scale factor of N = 3 and a
prescribed axial strain of εzz = −1%. The general behavior of the structure is
nicely captured by the continuum model. This figure is adapted from [2].

Yet, Yi Chen showed in [60] that the metamaterial behavior can be repro-
duced using micropolar material parameters of a passive, cubic material. By
solving the micropolar wave equation analytically, he was able to retrieve
some of the micropolar parameters. The remaining ones were found by a
numerical optimization procedure. The derived set of material parameters
are given in subsection B.1.2 and [60].

The static push-to-twist coupling for both the isotropic and cubic microp-
oar continuum was derived numerically by prescribing a displacement to
the top surface of a cuboid with outer dimensions of L× L× H. A chiral
cubic micropolar material was assumed for the cuboid’s constituent material.
For a fixed set of material parameters, the effective Young’s modulus and
the resulting twist per strain were evaluated as a function of the sample side
length L, whilst keeping the cuboid’s aspect ratio constant. In this fashion,
only the ratio between characteristic length and sample dimension L/lt is
varied.

Figure 5.20 shows a comparison between the structural calculations of a
sample with N = 3 and a cuboid out of the cubic micropolar continuum
with L = 3a. It illustrates that the twist effect is indeed nicely captured
by the micropolar continuum. This becomes yet clearer, when extracting
the twist angle per strain and the effective Young’s modulus for different
scale factors N as depicted in Figure 5.17 and Figure 5.19. The results of the
isotropic medium are plotted as solid lines and those of the cubic as dashed
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5 push-to-twist coupling in cubic metamaterials

lines. Both, the qualitative trends and the absolute values for both quantities
are well reproduced. Obviously, the width of the cuboid L is not restricted
to integer multiples of the lattice constant a. Hence, values in between can
be calculated and actually have a physical meaning.

The characteristic length scales lt and l1 have previously been defined for
an isotropic medium (compare [33] and subsection 2.3.7). These can also be
expressed in terms of the entries of the elasticity tensor

lt =

√
A44 + A47

C44 + C47
, (5.7)

l1 =
B11

C44 + C47
. (5.8)

Using the isotropic material parameters given in [2] and subsection B.1.1, the
characteristic lengths scales are

lt = 177 µm, (5.9)
l1 = 188 µm. (5.10)

Assuming that Equation 5.7 and Equation 5.8 also define material moduli
for the cubic symmetry, the characteristic length scales for the cubic material
parameters (compare subsection B.1.2 and [60]) are given by

lt = 69 µm, (5.11)
l1 = 571 µm. (5.12)

Due to the ways the scaling was conducted in the micropolar calculations,
this has to be compared to a lattice constant of a = 500 µm in the experiments.
The lattice constant and the characteristic length scales are of similar order
of magnitude. This fits nicely to the finding, that the twist angle per axial
strain only decreases by a factor of 2 when going from N = 1 to N = 5.
Once again, these material parameters were not found in a proper parameter
retrieval, but rather found in a numerical optimization. This explains the big
difference in the characteristic length scales found for the cubic and isotropic
case. On top of that, it should be stressed once again that the isotropic
material parameters unfortunately do not describe a passive material.

Within the scope of this continuum calculations, large values for N can
be calculated with ease. Figure 5.17 shows the twist per strain of the cubic
micropolar continuum for scale factors as big as N = 110 (red curve) in a

92



5 .6 discussion

10⁰

10⁻¹

10⁻²
10⁰ 10¹ 10²

10³ 10⁴ 10⁵

T
w

is
t 

an
g

le
 p

er
 s

tr
ai

n
  i

n
 °

/%

Scale factor N = L /a

Sample size L in µm  

~L⁻¹

Figure 5.21: The calculated
twist per axial strain of the
cubic micropolar continuum
model (red) is depicted as a
function of the scale factor N.
With this continuum model,
scale factors N > 102 can eas-
ily be calculated. For compar-
ison, a curve ∝ L−1 is plotted
(blue). For large N, the twist
per axial strain approaches
this characteristic. This fig-
ure is adapted from [2].

double logarithmic plot. For these calculations, the cubic material parameters
were used. Additionally, the blue line is proportional to a 1/N-decay. For
N > 10, the twist per strain approaches the blue line, meaning that it scales
as ∝ 1/L, as has been predicted in subsection 2.3.9.

Note that [60] and the parameters given in subsection B.1.2, use a different
definition of the Voigt’s notation. Thus, results have to be compared with
caution. Furthermore, the parameters given there refer to a lattice constant
of only a = 250 µm and a constituent material of a = 4.18 GPa. To still be
able to compare the results from [60] and the results presented here and
in [2], the parameters have been scaled.

5.6 Discussion

First and foremost, a 3D chiral mechanical metamaterial was realized success-
fully, exhibiting degrees of freedom unprecedented in the classical Cauchy
continuum. This is demonstrated both by the pronounced push to twist
coupling and by the scale factor dependent Young’s modulus. The maximum
twist angles exceeded 2% per percent of axial strain. This also demonstrates
that the new degrees of freedom are not only small corrections to the classical
Cauchy continuum, but in fact, its related effects are as pronounced as the
classical ones. Strikingly, the twist angle and the length scale dependency
vanish when examining an achiral version of the metamaterial. Meaning, the
classical Cauchy limit is recovered.
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5 push-to-twist coupling in cubic metamaterials

Furthermore, the twist angle per axial strain only decreases by a factor of
2 for the chiral samples when going from N = 1 to N = 5, both for the FEM
calculations of the structures, the experiments, and the continuum model.
This suggests that characteristic length scales on the order of the size of the
unit cell are involved. The calculated numeric values of lt and l1 from the
micopolar tensor elements affirm this finding.

The FEM simulations of the structure and the experiments show con-
vincing agreements both qualitatively and quantitatively. Especially for the
samples with N = 1, 2, 3, both the twist per axial strain and the Young’s mod-
ulus match excellently. Most certainly, the deviations of the Young’s modulus
and the twist angle for N = 4 and N = 5 are related to residual sample
imperfections. For these samples, certain geometrical features become very
small and are already comparable to the voxel size of the 3D printing setup.
Thereby, the relative fabrication error becomes more prominent for larger
scaling factors N. For example for N = 5, the thickness of the lever arms is
d = 6 µm. Realistically, the fabrication tolerance of the used configuration
of the Nanoscribe system and the accompanied voxel corrections is about
500 nm. This translates to a relative error of about 10%. Yet, the flexural
rigidity of such a bar is proportional to the width of the bar and to the third
power of the height of the bar. Thereby, the relatively small fabrication errors
can already cause significant deviations. Thus, they can easily account for
the small differences between experiments and FEM simulations. Maybe, the
quantitative deviations concerning the nonlinearites of the samples can also
be attributed to these fabrication limits.

The mechanism driven design use to generate the unit cell blueprint by
no means guarantees to find an optimum design. Therefore, it is even
more surprising that an approach based on topology optimization yielded a
remarkably similar geometry with comparable twist per axial strain [81].

Finally, the FEM calculations of a micropolar elastic material illustrate
nicely that the metamaterial behavior can be captured by a continuum model.
Yet, the method used here is not suited to uniquely retrieve a set of material
parameters. Most certainly, the ones presented above will not be suitable
to represent the metamaterials behavior with sufficient accuracy for all
boundary conditions possible. Instead, they should only be understood as
an evidence that micropolar elasticity can mimic the specific effects studied
above.
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6
Chapter 6

Metamaterials with

Enhanced Characteristic

Length Scales

Scanning electron microscope image of a sample

In this chapter, we modify the metamaterial geometry of the previous chapter to
exhibit more extreme physical properties. We not only realize higher twist angles, but
also find characteristic lengths scales larger than the metamaterial’s lattice constant.
First, I will present a simple model that was developed by Martin Wegener and me.
Afterwards, the unit cell design Patrick Ziemke and I conceptualized is presented as
well as his finite element calculations based on beam theory. Finally, I will present
the experimental results generated by Vincent Hahn, Jonathan Schneider and me.
The major findings of this chapter have already been published in [118].
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scales

It has been shown in the previous chapter that effects beyond the limits of
classical Cauchy mechanics were achieved using a chiral metamaterial. This
was accompanied by a breakdown of scale invariance. Thereby, characteristic
lengths on the order of the unit cell size were found, which determined the
functional dependency between twist angle and scale factor N. So far, it is
unclear whether the twist angle always decays monotonously and whether
characteristic lengths scales are bound to be smaller or comparable to the
lattice constant. Hence, the guiding questions of this chapter is: Are there
unit cell designs with characteristic lengths scales much larger than the
lattice constant? And, how does this influence the relation between twist
and scale factor N?

6.1 Simple Model for Chiral Bars

In the considerations of the previous chapter, only little attention was paid
to the role of the interaction between the chiral unit cells. Instead, the focus
was on maximizing the internal push-to-twist coupling of a single unit cell.
Here, the attention is shifted towards the inter unit cell coupling and how
this contributes to the notion of a characteristic length scale. Therefore, a
drastically simplified model of a metamaterial bar is presented that was
originally brought forward by Martin Wegener and the author of this thesis.
Together with Patrick Ziemke, Peter Gumbsch, Yi Chen, and Vincent Hahn
this model was refined and published in [118]. Useful physical insights
can be drawn from this model that will be exploited later on to modify the
metamaterial’s unit cell.

For this model, metamaterial crystals containing Nx × Ny × Nz unit cells
are considered, with N = Nx = Ny and Nz = 3N as depicted on the
left of Figure 6.1. The bottom of the metamaterial should be fixed and a
displacement uz should be prescribed along the z-direction, yielding an
axial strain of εzz = uz/H, with sample height H. All other boundaries are
considered free. Edge effects are explicitly neglected for simplicity.

Suppose, a single chiral unit cell exhibits a twist angle of ϕ(Nx = 1, Nz = 1)
when subjected to an axial strain εzz. For simplicity, a linear behavior
ϕ(Nx = 1, Nz = 1) ∝ εzz is assumed. When stacking unit cells along the
z-direction (Nz > 1) as depicted in the middle of Figure 6.1, the twist angles
of the individual unit cells add up according to

φ = ϕ(1, Nz) = Nz ϕ(1, 1). (6.1)
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Figure 6.1: Illustration of a
metamaterial crystal con-
taining 5× 5× 15 unit cells
(left). Isolated bar of 1 ×
1 × 15 unit cells that twist
by φ = ϕ(1, 15) < 0 when
subjected to an axial com-
pression (middle). In con-
trast, the crystal on the right
twists by ϕ = ϕ(5, 15) when
compressed axially. In gen-
eral, φ and ϕ are distinct
from one another. This fig-
ure is adapted from [118].

In that, φ = ϕ(1, Nz) describe the twist angle of a column of unit cells
(compare Figure 6.1).

The same scaling behavior is assumed for the twist angles ϕ(Nx, 1) of a
whole plane of unit cells containing N2

x unit cells

ϕ(Nx, Nz) = Nz ϕ(Nx, 1). (6.2)

In this spirit, ϕ(Nx, Nz) denotes the twist angle of the whole metamaterial
sample as depicted on the right of Figure 6.1. The scope of the simple model
is finding an analytical expression for ϕ(Nx, Nz) as a function of N and a
couple of material parameters. To do so, an expression for the total elastic
energy U is defined. Three contributing terms U1, U2, and U3 were identified
yielding

U = U1 + U2 + U3. (6.3)

In the following, each term will be introduced separately.
The first term U1 is the usual energy related to the axial compression of

the bar
U1 =

1
2

c1N2
x Nzε2

zz. (6.4)

It is proportional to the sample’s volume, since every unit cell contributes
equally. At this point, it might seem that Poisson’s ratio ν and the other
Poisson’s ratio-like-quantities are explicitly zero, since only εzz appears in
the energy term. Yet, due to the linear constitutive relations, all other strain
tensor elements are proportional to εzz. Hence, their energy contribution is
implicitly included in c1. Therefore, c1 is related to the material’s effective
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scales

Young’s modulus. For the structures studied later in this chapter, the Pois-
son’s ratio is indeed close to zero and thus, the strain tensor components are
approximately decoupled.

The second term U2 results form the torsion of the metamaterial sample
by ϕ(Nx, Nz) and is related to the torsional stiffness defined in Equation 2.96

U2 =
1
2

c2
N4

x
Nz

ϕ(Nx, Nz)
2. (6.5)

Keep in mind that this torsion is not a result of some external momenta, but
is generated by the chiral unit cells. The N4

x dependency stems from the
area momentum of inertia. c2 is related to the effective shear modulus of the
metamaterial.

Generally, the twist angle of a plane of unit cells ϕ(Nx, 1) is distinct from
the rotation angle of a single unit cell ϕ(1, 1) 6= ϕ(Nx, 1). In an intuitive
picture, this can be explained as follows: Every unit cell wants to rotate
around its own center of gravity individually. Thereby, neighboring unit
cells partially counteract each other. Hence, a third energy contribution can
be formulated, resulting from a difference between the twist angle of a plane
ϕ(Nx, 1) and the twist of an isolated unit cell ϕ(1, 1)

U3 =
1
2

c3N2
x Nz(ϕ(Nx, 1)− ϕ(1, 1))2. (6.6)

Again, every unit cell in the volume contributes equally and therefore the
energy is proportional to the sample’s volume. Using Equation 6.2, the
energy U3 can be written as

U3 =
1
2

c3
N2

x
Nz

(ϕ(Nx, Nz)− ϕ(1, Nz))
2. (6.7)

Therefore, the total elastic energy is given by

U =
1
2

c1N2
x Nzε2

zz +
1
2

c2
N4

x
Nz

ϕ(Nx, Nz)
2 +

1
2

c3
N2

x
Nz

(ϕ(Nx, Nz)− ϕ(1, Nz))
2.

(6.8)
Furthermore, by assuming no external torques

∂U
∂ϕ(Nx, Nz)

= 0, (6.9)
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Figure 6.2: Solutions of the
analytical model for vari-
ous characteristic number
Nc. For Nc ≥ 2, the normal-
ized twist angles exhibit
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ized twist again decays ∝
N−1. This figure is adapted
from [118].

and a finite axial strain εzz, an expression for ϕ(Nx, Nz) is derived

ϕ(Nx, Nz) = ϕ(1, Nz)
c3N2

x
c2N4

x + c3N2
x

. (6.10)

In accordance with later experiments, the sample’s aspect ratio is kept
constant leading to Nz = 3Nx = 3N. By introducing Nc = c3/c2 and
ϕ(N) = ϕ(N, 3N), the twist angles is given by

ϕ(N > 1) = ϕ(1)
NN2

c
N2 + N2

c
. (6.11)

As a result, only two parameters ϕ(1) and Nc completely determine ϕ(N).
The first, ϕ(1) = 3ϕ(1, 1), is the twist angle per strain generated by a single,
isolated unit cell. It is merely a prefactor and does not influence the behavior
of ϕ(N). The characteristic number Nc is the ratio between the coupling
strength c3 and shear modulus c2. Nc is the only parameter influencing
the general shape of ϕ(N). Interestingly, the definition of Nc somewhat
resembles the definition of the material modulus l1 (see subsection 2.3.7
and [33]).

Figure 6.2 shows ϕ(N) for a fixed ϕ(1) and several characteristic numbers
Nc = 1, 2, . . . , 10. For N � Nc, ϕ(N) decays proportional to 1/N for all Nc
depicted. For the case Nc � 1, the twist ϕ(N) increases first linearly, reaches
a maximum at Nc, before decreasing ∝ 1/N. For Nc < 1, ϕ(N) does not
exhibit a maximum. The case of Nc ≈ 2 resembles the metamaterial of the
previous chapter.
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scales

This scaling behavior of ϕ(N) can be understood intuitively. Consider a
metamaterial beam with Nc � 1, meaning c3 � c2, and N < Nc. Here, the
energy U2 needed to twist the metamaterial bar by ϕ(N) are small compared
to U3. Hence, minimizing (ϕ(N) − ϕ(1, Nz))2 yields a minimum elastic
energy and the metamaterial’s twist angle is proportional to N

ϕ(N) ≈ ϕ(1, Nz) = 3Nϕ(1, 1). (6.12)

If N is now increased so that N � Nc, the situation is reversed due to the
N5 dependency of U2 and the N3 scaling of U3. This means that much more
energy is needed to twist the metamaterial bar by ϕ(N) than is stored in U3.
Thereby, minimizing ϕ(N) becomes more and more beneficial for increasing
N.

This simple model suggests that the behavior of the twist per axial strain
can be much richer than the previously discussed monotonous decrease as a
function of N. Instead, for sufficiently large characteristic numbers Nc, and
hence large characteristic length scales lc = aNc, a linear linear increase with
a pronounced maximum at N = Nc can be realized. It can be deduced that
large characteristic length scales are realized, if

• the unit cells are coupled strongly along the z-direction, so that the
twists of the individual unit cells add up according to ϕ(1, Nz) =
Nz ϕ(1, 1), and

• the shear modulus c2 is small compared to the coupling constant c3.

As a side note, the simple model does not yield reasonable results for
N ≤ 1, since in that context the macrorotation ϕ(Nx, Nz) is ill-defined.

6.2 Metamaterial Blueprints with Large Characteris-
tic Lengths

The simple model introduced in the previous section suggest that the cou-
pling of the microrotions ϕ(1, 1) in the xy-plane should be tuned indepen-
dently from the coupling in z-direction. Therefore, leaving aside cubic
symmetry and considering tetragonal materials is reasonable. As depicted
in Figure 2.5, these materials have three mutual orthogonal axes. Yet, only
two of them are equivalent.
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lengths

6.2.1 A Lattice Truss Metamaterial

In [116], Patrick Ziemke proposed a lattice truss based tetragonal metmaterial
exhibiting large characteristic lengths. Since the underlaying mechanism, that
will be used later to modify the cubic unit cells of the previous chapter, can
be understood more easily with this structure, his work will be summarized
quickly. More details are given in [116]. The unit cell he proposed is com-
posed of a chiral (blue), and achiral motive (gray), as depicted in Figure 6.3(a).
The different colorings are for illustration purposes only. Both motives are
made from the same constituent material and have a four-fold rotational
symmetry around the z-axis. All beams have a square cross section with
widths dC for the chiral, and dA for the achiral motives. A single plane of
the metamerial crystal is constructed by stacking these motives as illustrated
in Figure 6.3(e). The outlines of the crystal’s unit cell are depicted in black.
A 3D crystal is built by simply stapling these layers without intermediate
motives. Thereby, a single unit cell contains effectively one chiral and three
achiral motives (compare Figure 6.3(f)). As a consequence, the resulting unit
cell is tetragonal.

How this arrangement yields higher twist angles per axial strain is depicted
in Figure 6.3(c) and (d). First, consider a couple of isolated unit cells as
depicted in (c). When subjected to an axial elongation, every unit cell twist
around its own center of mass, as indicated by the red arrows. Next, these
cells are brought into contact to build up a plane of unit cells without
intermediate unit cells (b), as has been done before in chapter 5 and [2].
Still, every unit cell "wants" to rotate around its own center of mass, yet
the contact to their neighbors forces a mutual rotation around the common
center of mass. Thereby, the rotations of the single unit cells do not add up
constructively, but cancel each other instead. In this very simplified picture,
the only uncompensated rotation stems from the outer boundaries. In the
language of the simple model this means: The directly connected unit cells
have such a high shear and rotational stiffness c2 compared to c3, that the
energy contribution U3, due to the restricted rotation, is comparatively small.
Hence, this structure has a small characteristic length lc.

In contrast, when inserting the achiral motives (d), the rotations do not
directly cancel each other. Instead, they effectively shear the achiral motives
in between. Considering a low shear resistance of these achiral motives, the
chiral ones can rotate around their own center of mass nearly unconstrained.
Whereas for a high shear resistance, the case of directly coupled unit cells (c)
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Figure 6.3: Blueprints for a metamaterial with enhanced characteristic length. It
is comprised of a chiral (a) and an achiral motive (b). When elongated along the
z-direction, individual chiral motives (blue) will rotate around their geometrical
center individually (c). Upon constructing a crystal by bringing these chiral
motives (blue) in direct contact (d), the unit cells will counteract the motions of
their direct neighbors. (e) By inserting additional achiral motives (gray), the
cancellations of the rotations of individual unit cells are mitigated. Thereby, a
qualitatively different scaling of the twist angle per axial strain as a function of
N can be expected. From these considerations, the blueprint presented in (f)
can be derived. This figure is adapted from [116].
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Figure 6.4: Calculated twist per axial strain for the lattice truss metamaterial
normalized to the samples aspect ratio H/B. Using Timoshenko beams, crystals
containing only chiral (red) and both chiral and achiral motives (green and
blue) were simulated for samples containing N × N × 18N unit cells. The
coupling strength was varied by changing the thickness of the bars in the
achiral motives (compare green and blue). This is quantified by the ratio of
the bar thicknesses in the chiral and achiral motives η = dC/dA. Additionally,
the influence of having plates at the sample’s ends was studied. This figure is
adapted from [116].

is recovered. Hence, by adjusting the effective shear modulus of the achiral
unit cell with respect to the chiral ones, the coupling strength between
neighboring unit cells can be tuned. In terms of the simple model this
means that the achiral motives lower the twist energy U2 with respect to U3.
Thereby, the characteristic length lc is increased.

Using Timoshenko-beams as approximates for the bars within the unit cells,
Ziemke performed finite-element calculations of metamaterial samples for
different scaling factors N. This Timoshenko-beam model was implemented
in ABAQUS. The calculated twists per axial strain for structures containing
N × N × 18N unit cells are depicted in Figure 6.4. The samples solely
containing chiral motives (compare Figure 6.3(c)) are plotted in red. They
exhibit nearly the same monotonous decay of the axial twist per strain as
the metamaterial studied in chapter 5. Whereas for the samples containing
both chiral and achiral motives, the twists per strain increase first, reach a
maximum, and seem to decay ∝ 1/N for large N. This perfectly resembles
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Figure 6.5: Blueprint of a chiral tetragonal unit cell. The blue parts of the unit
cell are identical to the unit cell of the previous chapter. The red parts mitigate
the interaction between neighboring unit cells. Both parts are made from the
same constituent material, the colors are merely for illustration. (a) depicts an
oblique view, (b) is a view along the y-direction. The geometrical parameters
are given by az = 2/3 axy, d = 0.04 axy = dT, r2 = 0.27 axy, r1 = 0.21 axy,
δ = δmax ≈ 35◦, b = 0.14 axy, h = 0.14 axy, and c = 0.34 axy. This figure is
adapted from [118].

the behavior predicted in the simple model. Therefore, it can be concluded
that the proposed unit cell and the underlaying mechanism indeed result in
structures exhibiting an enhanced characteristic length scale.

Furthermore, the simulations show (not depicted) that the metamateri-
als with large characteristic lengths are more susceptible to boundary ef-
fects [116]. Especially the sample’s aspect ratio and its termination, whether
adding a plate at the ends or not, drastically influences the resulting twist.

6.2.2 Adapting the Cubic Unit Cell

Yet, the lattice truss based unit cell presented in Figure 6.3 and [116] causes
major experimental issues. On the one hand, having these slender bars,
whilst printing samples containing thousands of unit cells, drives the 3D
laser printing setup to its limits. Especially, the shrinkage during the devel-
opment process rendered fabricated structures unusable. Furthermore, this
lattice truss based approach was conceived for tensile test, not compressive
experiments. However, the setup introduced in section 4.2 is not capable of
performing such experiments.
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Therefore, a new metamaterial was designed exploiting the insights gained
on the lattice truss material and the simple analytical model, but based on
the cubic unit cell introduced in chapter 5. The new unit cell design, which
was conceived by Patrick Ziemke and the author, is depicted in Figure 6.5.
This tetragonal unit cell with ax = ay = axy and az = 2/3 axy is composed
of a single constituent material. The colors are merely for illustration. The
blue part is identical to the unit cell studied in chapter 5, allowing for direct
comparison with previous results. The red parts, on the other hand, are
the crucial novelties of this unit cell. These serve the same purpose as the
achiral motives of the lattice truss based approach, in that the chiral unit
cells are not in direct contact anymore. Instead, the unit cells can rotate
around the own center of mass more easily. Thereby, the red bars, especially
the one with length 2c, are deformed. This is comparable to the shearing of
the achiral motives in the lattice truss approach. Hence, a short c and thick
dT corresponds to a strong cancellation of the rotations of neighboring unit
cells, whereas a long c and thin dT corresponds to a relatively free rotation
of the blue unit cell parts. To end up with sufficiently small cancellation,
whilst maintaining a compact unit cell, the starting points of the elongated
bar with length 2c were retracted into the cubic parts (blue) of the unit cell.
To retain a simply connected unit cell, the red U-shaped parts are needed.

6.3 Calculated Enhanced Characteristic Length

Again, the metamaterial is first characterized numerically. Therefore, crys-
tals are constructed with outer dimensions of L× L× H, having the same
sample’s aspect ratios of H/L = 2 as in the previous chapter. Due to
the tetragonal symmetry with lattice constants axy and az = 2/3 axy, these
samples contain N × N × 3N = 3N3 unit cells.

6.3.1 Simulations Using Volume Elements

Using COMSOL, metamaterial samples out of the unit cell depicted in
Figure 6.5 were implemented for different scale factors of N = 1, 2, 3, 4, 5, 6.
A linear elastic Cauchy constituent material has been assumed. The same
boundary conditions as for the cubic unit cells have been implemented.
Hence, the metamaterial was fixed at the bottom (Ñu = 0), a plate was added
at the top, and a displacement of −uz was prescribed along the z-direction

105



6 metamaterials with enhanced characteristic length

scales

Figure 6.6: Calculated twist
per axial strain of the mi-
crostructure using standard
volume elements. Samples
containing N × N × 3N unit
cells (as depicted in Figure 6.5)
were studied. In contrast to
the results of the previous
chapter, the twist angle in-
creases as a function of the
scale factor N for 1 ≤ N ≤
6. This figure is adapted
from [118].
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to its top surface. The calculated twist angles per axial strain were extracted
as before. The resulting twists per strain are depicted in Figure 6.6.

These simulations unambiguously show that the scaling behavior of the
twist angles ϕ/εzz has been qualitatively changed, compared to the previous
cubic unit cell design. Instead of a monotonous decay, an increase as a
function of N is observed for the scaling factors depicted. Yet, alone from
these simulations, the characteristic length lc or the characteristic scale Nc
can not be determined, since the maximum of ϕ/εzz is outside the computed
values of N. Due to the high memory consumption of the volume elements,
large values of the scaling factor N could not be calculated using this method.

6.3.2 Simulations Using Beam Elements

To bypass the restriction imposed by the limited accessible memory, Patrick
Ziemke developed an approach based on Timoshenko beam elements [116,
118] using ABAQUS. Using these beam elements, the complex 3D geometry
is replaced by simple 1D elements. Thereby, the high number of degrees
of freedom needed for the volume elements is significantly reduced. This
drastically simplified geometry is depicted in Figure 6.7. For clarity, not only
the 1D beam elements, but the beam profile assumed in the Timoshenko
beam model are depicted. More details on these calculations are given
in [116, 118], and details about Timoshenko beam elements can be found
in [43, 144].

Using this method, Ziemke was able to simulate the twist per axial strain
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Figure 6.7: Discretization of
the tetragonal unit cell us-
ing 1D Timoshenko beam el-
ements. For illustration pur-
poses, the beam profiles are
depicted. The additional pa-
rameters are given by: d =
0.04 axy, dR = 0.05 axy, and
dT = 0.04 axy. This figure is
adapted from [118].

ϕ/εzz of structures containing up to 24,000 unit cells. This corresponds to a
scaling factor of N = 20. The extracted twist angles ϕ/εzz are depicted in
Figure 6.8 as a function of N. Since geometrical nonlinearities were consid-
ered, ϕ/εzz is given for various external strains of εzz = −0.1% (solid lines),
εzz = −0.5% (dashed lines), and εzz = −1.0% (dotted lines). Furthermore,
the thickness dT of the red parts in Figure 6.5 of the unit cell were varied. As
laid out before, this changes the coupling between neighboring unit cells.

The general behavior of the twist angle per axial strain ϕ/εzz is identical
for the different thicknesses dT and strains εzz considered. First, it increases
linearly, reaches a maximum, and finally decays again. Decreasing the bar
thickness dT generally shifts the maximum towards higher twist angles and
higher scale factors N. For the quasi linear case of εzz = −0.1%, the maxi-
mum twist angle changes from ϕ/εzz ≈ 8 to ϕ/εzz ≈ 13, whilst changing the
thickness dc by only ±10%. Obviously, dT influences ϕ/εzz quite sensitively.

Intuitively, increasing the bar thickness whilst keeping its length increases
the bending stiffness. Thereby, more energy is needed for the deformation
of the bar. In turn, this makes it harder for neighboring unit cells to twist
independently and finally results in a smaller characteristic length scale.

On the other hand, for a fixed thickness dT = 0.036 axy and external strains
of εzz = −0.1%, the maximum is around Nc ≈ 8, whereas it is shifted
towards larger N for higher strains. Also the maximum twist angle increases
from ϕ/εzz ≈ 8◦/% for εzz = −0.1%, to ϕ/εzz ≈ 11◦/% for εzz = −1%.
Hence, in the linear regime (εzz = −0.1%) a characteristic scale of Nc ≈ 8
can be deduced. Interestingly, for N smaller than this characteristic scale
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Figure 6.8: Calculated twist
per axial strain using Timo-
shenko beam elements for
different bar thicknesses dT.
Geometrical nonlinearities
have been taken into ac-
count for axial strains of
εzz = −0.1%,−0.5%,−1%.
Additional, the coupling of
neighboring unit cells was
studied by systematically
varying dT. This figure is
adapted from [118].
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Nc ≈ 8, geometrical nonlinearities seem to play little to no role. Only, when
N is about the size of Nc, nonlinear effects have a significant contribution
and tend to increase even further with increasing N.

Another way to affect the coupling between unit cells and thereby the
characteristic scale is to adjust the length c of the red bar depicted in Fig-
ure 6.5. Calculations using both Timoshenko beam and volume elements
for two different bar lengths c are shown in Figure 6.9. Illustrations of the
corresponding unit cell geometry are given on the right.

Obviously, a small c yields a small characteristic scale. The intuitive
reasoning is equivalent to the considerations for different bar thicknesses
dT. The bending stiffness of a bar is inversely proportional to its length.
Thereby, more energy is needed to bend short bars. Again, this makes it
harder for neighboring unit cells to twist independently and results in a
small characteristic length scale. Interestingly, nonlinearities seem to play
less of a role for the smaller bar lengths c.

As can be seen in Figure 6.9, the twists per strain ϕ/εzz calculated using
the Timoshenko beam model agree with to the twist angles calculated using
standard volume elements for both bar lengths c depicted.

In conclusion, the modified unit cell exhibits a distinctive twist per axial
strain indicating a significantly enhanced characteristic length scale with
respect to its cubic counterpart in the finite element calculations. At the
same time, the maximum twist angle is increased by nearly a factor of
5. Furthermore, by varying dT or c, the characteristic length scale of the
structure can be tuned.

Although general trends are reproduced nicely by this Timoshenko beam
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Figure 6.9: Calculated twist per axial strain using Timoshenko beam elements
for different bar lengths c. Geometrical nonlinearities have been taken into
account for axial strains of εzz = −0.1%,−0.5%,−1%. Additional, the coupling
of neighboring unit cells was studied by systematically varying the bar length c.
All other geometrical parameters were kept constant and are given in Figure 6.5.
This figure is adapted from [118].

model, the exact algebraic values should be taken with a grain of salt. For
example, the Timoshenko beams grossly underestimate the effective Young’s
modulus of the metamaterial compared to the volume elements (not shown).
This is most likely due to the fact that there is some ambiguity in converting
the original 3D geometry into Timoshenko beam elements. Thereby, the
lengths of bar may change or intersections of bars may not be taken into
account correctly. Yet, keeping the drastic simplification of the model in
mind, accompanied by the tremendous increase in accessible scaling factors
N, the predictions of the Timoshenko approach are surprisingly good.

6.4 Experiments on Samples with Enhanced Charac-
teristic Length

In this section, metamaterial samples out of the tetragonal unit cell depicted
in Figure 6.5 are fabricated and characterized. Thereby, samples produced
by two different 3D laser printing setups and hence made from different
constituent materials are compared. Most of the samples produced by the
Nanoscribe setup have been fabricated and characterized experimentally by
Jonathan Schneider in the scope of his Bachelor Thesis. The samples from
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Figure 6.10: Printing strategy to avoid large overhanging objects. In a first step
(a), the bottom half of the unit cell is printed, but the beams with length 2c are
intentionally left out. Secondly, (b) only the previously left out bars (red) are
printed. Thereby, both ends of the bar are connected to other parts of the unit
cell at all times. Finally, (c), the writing field is shifted to its original position
and the top half the unit cell is printed.

the multifocus 3D laser printer have been fabricated by Vincent Hahn and
the author. The experimental characterization was also done by the author.
The major findings of this section have also been published in [118].

6.4.1 Printing Strategy

Since the geometry of the unit cell changed compared to the one presented in
chapter 5, the printing strategy also needs to be adjusted. Additionally, using
the multifoucs 3D laser printer renders some of the problems and solutions
conceived for the Nanoscribe systems obsolete. Especially the lattice constant
can not be varied easily with this setup. Therefore, this time the experiments
are conducted such that the lattice constant axy is kept constant, and thereby
the sample side length L is varied accordingly.

Nanoscribe Setup

For the structures printed with the Nanoscribe setup (compare subsec-
tion 4.4.2), the lattice constant was set to axy = 150 µm. The commercial
photoresist IP-S and a 25× NA = 0.8 objective lens was used. Thereby, 2× 2
unit cells fit within a single writing field. Samples with foot prints larger
than 2× 2 were split along the borders of the unit cells into several writing
fields containing 2× 2 unit cells or less. Thus, the bar with length 2c is
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split in half with one end being free floating till the neighboring unit cell
is printed in consecutive steps. Unfortunately, this caused major structural
defects. Hence, the following printing strategy was conceived. First, only
the bottom halves of all unit cells in one layer was printed. The red bars
with length 2c were intentionally left out. Secondly, these bars were added
in a subsequent printing step. In doing so, the bars are supported on both
ends by the previously written parts of the unit cell. In a last step, the top
halves of the unit cell were printed. This strategy is illustrated in Figure 6.10.
Thereby, most of the defects were avoided. Yet, the problem persists for the
bars that are at the outer surface of the metamaterial sample. But since those
bars are not involved in any deformation, these errors do not influence the
measured results. A detailed list of the used writing parameters and voxel
corrections is given in subsection A.1.2.

Multifocus 3D Laser Printing Setup

Printing samples with N > 6 using the Nanonscribe system would lead
to infeasibly long writing times. Therefore, samples containing a large
number of unit cells were fabricated using the multifocus 3D laser printing
setup (compare subsection 4.4.3). For those, the lattice constant is actually
predetermined by the spacing between the foci. The commercial photoresist
IP-dip and a 40× NA = 1.4 objective lens was used. Thus, the lattice constant
was axy = 74 µm. This setup could be switched between a one focus writing
mode, or a mode with 3× 3 foci writing in parallel. To take full advantage
of the speed advantage of the multifoucs writing mode, only structures with
integer multiples of three of the scale factor N were fabricated, e.g. 3× 3× 9,
6× 6× 18, etc. The largest samples with N = 27 contained 118,098 unit cells
in total. The printing time for this structure was about 30 hours.

Again, the metamaterial was split up into multiple small writing fields
of 3× 3× 0.5 unit cells each. Thereby, the same connection problems of the
red bar with length 2c occur in between writing fields as for the Nanoscribe
system. Yet, similar measures to bypass this problem were not taken, since
it can not be transfered easily to the multifocus setup. The plates with
the markers to assist the image-cross correlation are fabricated using the
single focus writing mode of the setup. A detailed list of the used writing
parameters and voxel corrections is given in subsection A.1.2.
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6.4.2 Fabricated Samples

Two sets of samples were fabricated, the first using the Nanoscribe instru-
mentation. For those, a lattice constant of axy = 150 µm was chosen and
scaling factors of N = 1, 2, 3, 4, 5, 6 were realized. Exemplary optical micro-
graphs and scanning electron micrographs are depicted in Figure 6.11. As
for the structures of the previous chapter and as introduced in section 4.1,
a right-handed structure was printed on top of a left-handed one, each
containing N × N × 3N unit cells. Due to the tetragonal symmetry of the
unit cell with axy = 2/3az, this yields the same aspect ratio of the overall
sample as for the cubic unit cells in the previous chapter. Plates were added
both in the middle and the ends of the sample. Additionally, marker arrays
were attached to the middle plate to facilitate the image cross-correlation.
The samples were printed both by Jonathan Schneider in the scope of his
Bachelor thesis and by the author. The pictures give evidence of the generally
high printing quality.

The second set of samples was fabricated using the multifocus 3D laser
printer and are depicted in Figure 6.12. The lattice constant was set to
axy = 74 µm and different scaling factors of N = 3, 6, 9, 12, 15, 18, 21, 27 were
printed both by Vincent Hahn and the author. Both the optical and the
scanning electron micrographs demonstrate the high printing quality.

Notably, these samples are twisted right after fabrication. This can be
assigned to shrinkage during the development process. Isotropic shrinkage
would simply scale all dimension and hence would not lead to twisting,
apart from effects due to the confinement at the glass substrate. Instead,
some uniaxial stress or strain is required to induce the twist, hence the
shrinkage must be asymmetric. Obviously, the printing procedure itself is
highly asymmetric, since the voxel width and hight, as well as the slicing
and hatching distances are different. Due to the sequential nature of the
writing process, neighboring lines in a z-plane are written more or less si-
multaneously, whereas neighboring lines in different planes are written with
some delay. All in all, this could cause local anisotropies of the constituting
polymer network and thereby cause an asymmetric shrinkage. Remarkably,
small differences in relative shrinkage in the axial and lateral direction can
already cause large twist deformation. For example, for 10% axial and 9.9%
lateral shrinkage, the relative difference of 1% is equivalent to an axial strain
of the same order. Yet, as the simulation predicts, this already leads to twist
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Figure 6.11: Gallery of 3D printed samples using the Nanoscribe instrumen-
tation. Exemplary optical micrographs of samples for different scale factors
N = 1, 2, 3, 6 are depicted in (a)-(d). Note that the scale bars change by a factor
of 6. (e) shows a scanning electron micrograph of a single unit cell of the
structure depicted in (d). This figure is adapted from [118].
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Figure 6.12: Gallery of 3D printed samples using the multifocus 3D printer.
Exemplary optical micrographs of samples for different scale factors N =
6, 9, 18, 27 are depicted in (a)-(d). Note that the scale bars change by more than
a factor of 4. (e) shows a scanning electron micrograph of a single unit cell of
the structure depicted in (d). This figure is adapted from [118].
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angles of up to 10◦. Unfortunately, these small relative material asymmetries
are unavoidable.

When examining Figure 6.12 even closer, differences between the 3× 3 unit
cells within one printing field can be observed. Especially bar thicknesses
vary slightly and the shrinkage differs. This is caused by imperfections of the
optical setup, which lead to uneven distributions of the laser power among
the nine foci. Structures printed with a higher laser power appear thicker
and tend to shrink less compared to structures produced with slightly less
laser power. The relative power differences are on the order of 5% to 10%.
Particularly, the different shrinkage factors of neighboring unit cells cause
additional deformations. This also might contribute to the pretwist of the
structure and might influence the performance of the structures.

6.4.3 Twist per Strain of the Metamaterial Samples

The measurement and post-processing of the recorded data was carried out
the same way as introduced in the previous chapter. Most of the measure-
ments of the Nanoscribe samples were conducted by Jonathan Schneider,
whereas the measurements on the samples fabricated by the multifocus in-
strumentation were conducted by the author. The twist per axial strain ϕ/εzz
measured for the samples fabricated by the Nanoscribe system (blue markers)
and by multifocus 3D laser printer (red markers) are depicted in Figure 6.13.
Each sample was probed using various external strains. Additionally, each
measurement was repeated six times to examine repeatability and recover-
ability of the metamaterial samples. Furthermore, the reproducibility of the
3D printing precesses was checked, by carrying out experiments on multiple,
nominally identical samples (dark and light marker shades).

The general trends predicted from the numerical models can be redis-
covered in presented measurement data. Especially the linear increase of
ϕ/εzz for small scaling factors N is retrieved nicely. Moreover, the samples
fabricated using the Nanoscribe system and the multifocus 3D printing
instrumentation yield comparable results, although different constituent
materials and different lattice constants were used. For N = 3 and N = 6
the sample fabricated by the multifocus setup yield slightly smaller twist
angles than the samples fabricated using the Nanoscribe system.

Considering only the measurements for the smallest strains, the maximum
of ϕ/εzz is in the interval between N = 6 and N = 9. Hence, the experi-
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Figure 6.13: Summary of all experimental and numerical deduced twist angles
per axial strain. Experimental data for scale factors ranging from N = 1 to
N = 27 are depicted. Two 3D printing techniques, and thereby different
constituent materials and different lattice constants axy, can be compared (red
and blue marks). Experiments have been carried out for various external
strains between εzz = −0.1% and εzz = −1.5% (different marker shapes).
Furthermore, finite element calculations of the microstructure using standard
volume (orange triangles) and Tiemoshenko beams (black lines) are presented.
Additionally, the twist angles from the simple model (blue lines) for a range
of characteristic numbers between 7 ≤ Nc ≤ 10 is depicted, as well as the
micropolar continuum calculations (pink line). For comparison, the results
from the micropolar continuum of the previous chapter (dashed green line) are
also plotted, as well as the simple model fitted to this curve (blue dashed line).
Twist angles for scale factors N between 1 and 30 are shown in (a), whereas (b)
focuses on the range between 1 and 8. This figure is adapted from [118].
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mentally determined characteristic scale Nc is also in this range. Yet, the
structures fabricated by the Nanoscribe system seem to suggest a slightly
higher characteristic scale, but due to the limited accessible scaling factors it
is difficult to draw conclusions from these samples alone.

For scale factors N > 9, pronounced nonlinearities can be observed.
Generally, all samples show larger twist angles per axial strain for increasing
strains. This fits to the general trends of the numeric calculations. Yet, the
magnitude of this nonlinearity is much bigger in the experiments.

Repeating the same experiments on the same sample shows little to no
difference (comparing same symbols of equal color for given N). This
indicates that the samples are still functional after measurement, hence
no structural damage took place. Comparing measurements of nominally
equal samples (comparing different marker shades of the same color) yields
relatively small deviations. Therefore, the sample fabrications seems reliable.

6.5 Effective Micropolar Material Parameters

As has been pointed out before in previous chapters and [15], being able
to find effective material parameters is a key requirement to distinguish
between metamaterials and ordinary structures. Hence, a set of material
parameters of a micropolar tetragonal material shall be found. The corre-
sponding tensors and constitutive relations have already been introduced in
section 2.3. With the help of Yi Chen, Patrick Ziemke derived a first guess
for the tensor elements following the lines of [145]. In a trial-and-error post
optimization procedure, he derived the set of material parameters presented
in subsection B.1.3

These parameters are chosen to mimic the behavior of a material with
lattice constant axy = 150 µm, constituent material’s Young’s modulus of
E = 2.6 GPa and Poisson’s ratio of ν = 0.4. For clarification, this procedure
is not suitable to retrieve theses parameters uniquely. A complete parameter
retrieval would require a large number of simulations and therefore is well
beyond the scope of this thesis. As illustrated in Figure 6.14, the continuum
model nicely recreates the displacements field of the metamaterial calculated
using the Timoshenko beam approach. Bot the radial dependency and also
the magnitude of the displacements show good agreement. In Figure 6.13,
the calculated twist angle per axial strain ϕ/εzz of the micropolar continuum
is plotted as a function of N and compared to results of the Timoshenko
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6 metamaterials with enhanced characteristic length

scales

Figure 6.14: Calculated
displacements for samples
with N = 10 using Timo-
shenko beam elements (left)
and a micropolar contin-
uum (right) subjected to an
axial strain of εzz = −0.1%.
For clarity, the deformation
is enhanced by a factor of
15. The micropolar material
nicely mimics the deforma-
tions of the Timoshenko
beam approach. This figure
is adapted from [118]. y
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beam approach, the simple model, and the experiments. The qualitative
scaling behavior of the metamaterial is captured excellently by the micropolar
continuum theory. Only quantitatively, the maximum of ϕ/εzz is slightly
shifted towards smaller scaling factors N. Whereas lower rotation angles are
predicted for large N in the scope of the continuum model compared to the
Timoshenko-beam calculations.

6.6 Discussion

In Figure 6.13 the twist per axial strain ϕ/εzz for all methods discussed in
this chapter are summarized. These are: 1) the simple analytical model,
2) microstructure calculations using volume elements, 3) microstructure
calculations using Timoshenko beams, 4) micropolar continuum calculations,
and 5) experimental data. For clarity, the cases 1), 3) and 4) are depicted as
continuous curves. Although for 1) and 3), only the integer values of N have
physical meaning. For comparison, the results of the previous chapter are
also depicted.

All data 1)-5) consistently exhibit the same qualitative behavior of ϕ/εzz as
a function N. The twist angle increases linearly as a function of N, reaches a
maximum, and decreases again. For the simple analytical model, a range
for different values of Nc = 7− 10 is depicted, for a fixed unit cell twist of
ϕ(1)/εzz = 2.4◦/%. Thereby, the simple model yields maximum twist angles
of 8− 12◦/%, which is 4− 6 times larger, than the maximum of the cubic
unit cells of ϕ/εzz ≈ 2◦/%. Since ϕ/εzz scales ∝ N2

c in the large sample
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limite N → ∞, the twist is 17-35 fold increased. Thereby, even for samples as
large as N = 27, twist angles per axial strain exceeding 2◦/% are achieved.

The red and blue data points in Figure 6.13 not only refer to different 3D
printing setups, but also to different constituent materials and different lattice
constants. Yet, the measured data points for N = 3 and N = 6 show good
agreement. This confirms the theoretical findings that ϕ/εzz should neither
depend on the constituent’s Young’s modulus, nor on the absolute value
of axy. Instead, only the relative unit cell size N = L/axy is relevant. The
small differences most certainly trace back to imperfections of the samples
fabricated with the multifoucs setup.

The Timoshenko beam calculations and the experimental data show huge
nonlinearities for samples with N > 6, even for these generally small axial
strains of εzz ≤ −1%. Both show an increase of the ϕ/εzz for increasing
external strains. Yet, the nonlinearities found in the experiments are gener-
ally larger than their theoretic counterpart. This can have many reason. For
instance, only geometrical nonlinearities are taken into account, but not the
nonlinear response of the constituent material itself. Yet, these can become
prominent for polymers, especially at locations of high stress concentration.
Furthermore, it is unclear, whether the pretwist due to the shrinkage of the
structure influences the geometrical nonlinearities. In case the shrinkage
acts as an effective prestrain of the structure, this could also lead to an in-
creased geometrical nonlinearity. Both, the simple model and the micropolar
calculations neglect nonlinearities.

Surprisingly, the simple model with only two material parameters agrees
well with the Timoshenko beam calculations for εzz = −0.1% and the mi-
cropolar continuum model. Especially, since for the latter a large num-
ber of 29 non-zero parameters is needed. By fitting the simple model
to the Timoshenko beam calculations, effective values of Nc = 7.2 and
ϕ(1)/εzz = 2.4◦/% have been deduced. In contrast, for the cubic unit cell
of the previous sections the fitting yielded Nc = 1.7 and ϕ(1)/εzz = 2.0◦/%.
Obviously, the modifications of the unit cell led to an increase of the charac-
teristic scale, and hence of the characteristic length lc = axyNc, by more than
a factor of 4.

The micropolar model also describes the general behavior of the metamate-
rial well. Moreover, the extracted parameters are constant and do not depend
on N. Hence, they can be understood as effective material parameters and
the structure presented qualifies as metamaterial in the reasoning of [15].
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Chapter 7

Fundamentals of Elastic

Waves

Artistic illustration of a wave package

Previously, the notion of chirality was discussed only in the context of quasi-static
experiments. Meaning, velocities and accelerations were assumed to be zero. In this
chapter, I will discuss the propagation of elastic waves. We start by recapitulating
waves in classical Cauchy continuum. Afterwards, I will solve the wave equations for
a micropolar continuum and will find nondegenerate circular polarized eigenstates.
Finally, I will discuss acoustical activity, the elastic counterpart of optical activity,
as a consequence of these eigenstates.
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7 fundamentals of elastic waves

7.1 Elastic Plane Waves in Cauchy Continua

The solutions derived in the first part of this thesis all dealt with quasi
static problems. Hence, the equations of motion (Equation 2.39) were solved
assuming constant external forces fi = const and zero acceleration ai = 0.
Here, the equations of motion shall be solved for plane harmonic waves. The
following is only meant as a short introduction. More details can be found
in standard textbooks like in references [146, 147].

For simplicity, not the most general solution is derived. Instead, an
infinitely extended cubic material is assumed and the wave should propagate
along one of the principle axes, e.g. the z-axis. Therefore, the following
ansatz for the components of the displacement vector is chosen:

ui = Ui exp(i(k jxj −ωt)). (7.1)

Therein, ω denotes the angular frequency and is related to the ordinary
frequency f = ω/(2π). For propagation along the z-direction, the wave
vector

Ñ

k is given as

Ñ

k =

 0
0
kz

 , (7.2)

with wave number kz = 2π/λ and wavelength λ. Be aware, that λ is com-
monly used both to denote the wavelength and one of the Lamé parameters.

This ansatz, together with the definition of the cubic elasticity tensor (Equa-
tion 2.49), yields three solutions of the equations of motion (Equation 2.39).
The first solution with eigenvector

Ñp3 = (0, 0, 1), has a dispersion relation
ω3(kz) given by

ω3(kz)

kz
= v3 =

√
C1111

ρ
. (7.3)

v3 is the so-called phase velocity of the wave. The other two modes with
eigenvectors

Ñp1 = (1, 0, 0) and
Ñp2 = (0, 1, 0) exhibit the same dispersion

relation ω1,2(kz)

ω1,2(kz)

kz
= v1 = v2 =

√
C1212

ρ
. (7.4)

The mode ω3 refers to a longitudinal wave, since the eigenvector
Ñp3 and

the wave vector
Ñ

k are parallel. ω1 and ω2 are linearly polarized transverse
modes. Additionally, the latter modes are degenerate. For all modes, a linear
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7 .2 plane elastic waves in micropolar continua

dispersion relation is found. Hence, the phase velocity does not depend on
the wave number kz.

7.2 Plane Elastic Waves in Micropolar Continua

To assess whether any new effects can be expected for plane waves in a chiral
medium, the equations of motion (Equation 2.78 and Equation 2.78) need
to be solved. This was done by Yi Chen in [60], assuming a chiral, cubic
micropolar medium. There, the following ansatz for the displacement Ñu and
microdisplacement

Ñ
φ was chosen

ui = Ui exp(i(k jxj −ωt)), (7.5)

φi = Φi exp(i(k jxj −ωt)). (7.6)

Six eigensolutions can be found. Three of them represent displacement
dominated acoustic waves, the others are rather dominated by the microdis-
placements [60]. In the scope of this thesis, only the first are of relevance.
The general analytical solution is quite lengthy and only little physical in-
sights can be drawn from that. Yet, for wave propagation in z-direction and
assuming the long wavelength limit kz → 0, the following simple solutions
were derived [60]

ω1,2 =

√
C44

2ρ
kz ±

B44

2
√

2ρC44
k2

z for kz → 0, (7.7)

ω3 =

√
C11

ρ
kz −

√
1

ρC11

B2
11

4C47
k3

z for kz → 0. (7.8)

Again, a longitudinal mode with frequency ω3 and two transverse modes
with frequencies ω1,2 are found. In contrast to the Cauchy continuum, all
modes are dispersive for B 6= 0. More importantly, in this case even the
degeneracy between the two transversal modes is lifted. However, B44 is
only nonvanishinging for a chiral medium (see section 2.3). This means that
elastic waves in a micropolar medium are dispersive for chiral media even
in this long wavelength approximation, , i.e. the phase velocities vi = ωi/k
are k-dependent.

Yet, chirality not only influences the eigenvalues, but also the eigenvectors.
For B 6= 0, the transverse modes are no longer linearly polarized plane waves.
Instead, they are polarized circularly. Thereby, the displacement vector

125



7 fundamentals of elastic waves
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Figure 7.1: Snapshot of two circularly polarized eigenmodes. For these modes,
the displacement vector Ñu at a given position z0 rotates around its reference
point as a function of time. Since the degeneracy between the two modes is
lifted, the modes propagated with distinct wave vectors

Ñ

k 1 and
Ñ

k 2. The phase
kiz is indicated by the false colors.

Ñu1,2 rotates clockwise or counterclockwise around its reference position.
Consequently, the displacement vectors on a line in the propagation direction
form a helix for a fixed time t0. An illustration of two circularly polarized
plane waves is given in Figure 7.1.

For extremely long wavelengths (kz ≈ 0), the k2
z terms can also be ne-

glected. Therefore, the two transverse modes are again degenerate and their
eigenvectors can be represented as two linear transverse waves. This means
that for kz ≈ 0 the Cauchy limit is recovered (compare section 7.1). Together
with the findings of section 2.3, this can be summarized as follows: Cauchy
mechanics is only valid in the large sample limit, which can be defined as
λ/a → ∞ and L/a → ∞. Violating one of these assumptions can lead to
effects that go beyond the scope of Cauchy’s theory. As will be shown in
chapter 10, violating both assumptions at the same time will have the largest
effects.

It is worth noting that these circularly polarized modes are only guaranteed
to occur for selected propagation directions in a crystal. It can be shown
that at least threefold rotational symmetry along the propagation direction is
required [60, 148, 149]. Therefore, rather elliptical or even linear polarizations
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7 .3 acoustical activity

are observed for most directions in a crystal. For chiral cubic crystals, the
circular polarized eigenmodes are ensured to appear along the principle
cubic axes and the space diagonals [60]. Yet, isotropic properties can be
achieved by exploiting accidental degeneracies. Thereby, the structure is
systematically adjusted, such that the numerical values of the entries of an
arbitrary elasticity tensor become equal to those of an isotropic elasticity
tensor. In [150], nearly isotropic chiral properties were achieved by using
quasi crystals.

Circularly polarized eigenstates are not only predicted by the micropolar
elasticity. Similar results are derived in theories based on spatial disper-
sion [34, 36], as well as in Willis elasticity [67, 68].

7.3 Acoustical Activity

Acoustical activity is the elastic counterpart of the better known optical
activity [151]. In both effects, the polarization direction of a linearly polarized,
transverse wave rotates upon propagation around the propagation direction.
Thereby, the rotation angle is independent of the incident angle of the
linear polarization and proportional to the propagation distance. Both
effects are fundamentally linked to the notion of chirality and require two
nondegenerate transverse circular polarized eigenstates. How these lead to a
rotation of the polarization is derived in the following.

Mathematically, these circular polarized modes of the displacement vector
can be described by the polarization vectors

Ñp1,2 =
1√
2

 1
±i
0

 . (7.9)

Note that the sign of the second components of
Ñp1,2 also depends on the

sign of B44 and B47. The whole displacement field Ñu1,2 of a single mode is
then given by

Ñu1,2 = A1,2

 1
±i
0

 . exp(i(kzz−ω1,2t)), (7.10)

with the scalar amplitudes A1 and A2.
When exciting a wave with frequency ω0 that is linearly polarized along

the x-direction at z = 0 and propagating along z, a superposition of these
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7 fundamentals of elastic waves

eigenmodes is excitedux
0
0

 exp(−iω0t)) =
ux

2
√

2

1
i
0

+

 1
−i
0

 exp(−iω0t). (7.11)

Keep in mind that the two modes are degenerate. Hence, they propagate
with distinct wave vectors k1 and k2 for a given frequency of ω0. Therefore,
the wave at an arbitrary position z is given by

Ñu(z, t) =
ux

2
√

2

1
i
0

 exp(ik1z) +

 1
−i
0

 exp(ik2z)

 exp(−iω0t). (7.12)

Using ∆k = k2 − k1 and k0 = (k1 + k2)/2, this can be simplified

Ñu(z, t) =
ux

2
√

2

1
i
0

 exp(−i∆k z/2) +

 1
−i
0

 exp(i∆k z/2)

 exp(i(k0z−ω0t)),

(7.13)

⇐⇒ Ñu(z, t) = ux

cos(∆k z/2)
sin(∆k z/2)

0

 exp(i(k0z−ω0t)). (7.14)

As a result, the wave is always polarized in a plane perpendicular to the
propagation direction. Furthermore, the polarization is linear at any position
z. Yet, the direction of the polarization is rotated by an angle φ, given by

φ =
∆k
2

z. (7.15)

It can be shown that φ is independent of the incident polarization, indeed.
As a result, acoustical activity can be observed, when a material exhibits

two non-degenerate circular polarized eigenmodes. In the scope of the
second part of this thesis, acoustical activity is studied in mechanical meta-
materials in detail. Apart from the wave vector difference ∆k, the rotation
angle φ of the polarization will be the most important quantity.

The phenomenon of acoustical activity has already been verified experi-
mentally decades ago. Pine was able to observe it in a chiral atomic crystal
in 1970 [151]. Yet, the effect was comparatively small and frequencies in
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the gigahertz regime are required to achieve reasonable rotations of the
polarization. Using metamaterials, the frequency range can easily be tailored
by simply scaling the lattice constant [60]. Therefore, metamaterials could
smoothen the path towards real world applications and might exhibit rota-
tional powers, which is the rotation angle per centimeter, exceeding the ones
measured by Pine.

7.4 Waves in Periodic Structures

7.4.1 Bloch Waves

Bloch waves are a specific set of wave functions ψn
Ñ
k , which are solutions

of the Hamilton operator for periodic potentials. Originally, Bloch waves
emerged in solid-state physics to describe electrons in a crystal. Yet, their
implications can be generalized to any wave propagation in a periodic
potential. Their general form is given by [152, 153]

ψn
Ñ
k = exp(i

Ñ

k ·Ñx )un
Ñ
k (

Ñx ). (7.16)

In that,
Ñ

k denotes the wave vector, n describes the band index, and un
Ñ
k (

Ñx )
is a function with the same periodicity as the crystal lattice. If

Ñ
Rlnm is a

translation vector that connects a single lattice point to every other, then
un

Ñ
k (

Ñx ) obeys
un

Ñ
k (

Ñx ) = un
Ñ
k (

Ñx +
Ñ
Rlnm). (7.17)

Consequently, the eigenstate ψn
Ñ
k can be chosen as

ψn
Ñ
k (

Ñx +
Ñ
Rlnm) = exp(i

Ñ

k ·
Ñ
Rlnm)ψn

Ñ
k (

Ñx ). (7.18)

This means that the eigenstate of a periodic system at two equivalent lattice
sites Ñx and Ñx +

Ñ
Rlnm differs by a phase factor exp(i

Ñ

k ·
Ñ
Rlnm).

Specifically, for the displacement vector Ñu in a classical Cauchy continuum,
this translates to

ui(
Ñx ) = exp(i

Ñ

k ·
Ñ
Rlnm)ui(

Ñx +
Ñ
Rlnm). (7.19)

In a micropolar continuum the Bloch conditions read [154]

ui(
Ñx ) = exp(i

Ñ

k ·
Ñ
Rlnm)ui(

Ñx +
Ñ
Rlnm), (7.20)

φi(
Ñx ) = exp(i

Ñ

k ·
Ñ
Rlnm)φi(

Ñx +
Ñ
Rlnm). (7.21)

As a result, the problem of solving the wave equation for an infinite crystal
reduces to finding the periodic function un

Ñ
k (

Ñx ) for a given wave vector
Ñ

k .
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Figure 7.2: (a) Illustration of a 1D diatomic chain. (b) Bandstructure of 1D
diatomic chain.

7.4.2 1-Dimensional Diatomic Crystal

To get used to the particularities of periodically structured materials, the
simple case of a 1D diatomic crystal is discussed here. More details can
be found in [9]. This crystal should be built up of two atoms with mass
m1 and m2 in an alternating fashion. The interaction is modeled by Hooke
springs with spring constant D. An illustration of this model is depicted in
Figure 7.2(a). Atoms with odd numbers have the mass m1 and atoms with
even numbers have the mass m2. Furthermore, m1 > m2 is chosen and the
spacing between atoms is given by a. Hence, the crystal periodicity is 2a.

For this system, the equations of motion with respect to the adjacent atoms
are given by

m1ü = D(u2n+1 − u2n + u2n−1), (7.22)
m2ü = D(u2n+2 − u2n+1 + u2n), (7.23)

wherein un denotes the displacement of the n-th atom. In accordance with
the Bloch waves of the previous subsection, the following ansatz is applied

u2n = A exp(i(2kna− iωt)), (7.24)
u2n+1 = B exp(i(2k(n + 1)a− iωt)). (7.25)

Note that distinct complex amplitudes A and B were chosen for the odd and
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7 .4 waves in periodic structures

even atoms. Inserting these into the equations of motion yields

(2D−m1ω2)A− 2D cos(ka)B = 0, (7.26)

−2D cos(ka)A + (2D−m2ω2)B = 0. (7.27)

This eigenwert problem can be solved by demanding

det
((

2D−m1ω2 2D cos(ka)
−2D cos(ka) 2D−m2ω2

))
= 0. (7.28)

From that, the following solution is derived

ω2
1,2 = D

(
1

m1
+

1
m2

)
±

√
D2
(

1
m1

+
1

m2

)2

− 4D2

m1m2
sin2(ka). (7.29)

These are the dispersion relations for a longitudinal elastic wave in a 1D
diatomic crystal. They are plotted in the band structure depicted in Figure 7.2.
Obviously, the solution has periodicity of π/a. Therefore, the solutions are
represented in the interval [−k/(2a), k/(2a)], the so-called first Brillouin
zone.

Interestingly, two solutions ω1 and ω2, the so-called bands, are found for
every k. This is caused by the two atomic basis of the unit cell. Generally,
the number of bands is proportional to the number of atoms per unit cell,
as well as to the number of degrees of freedom per atom. Therefore, a 3D
crystal with a mono-atomic basis exhibits three bands, the same crystal with
a di-atomic base has 6 bands [155].
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Chapter 8

Numerical Methods for

Elastodynamic Problems

Artistic rendering of a chiral phonon mode

For the numerical calculations, I will again fall back on the finite element method,
which was already introduced in the first part of this thesis. Here, I zoom in on a cou-
ple of techniques, which are particularity helpful when considering wave propagation
in periodic structures. First, I will pick up on Bloch’s Theorem. Subsequently, this
theorem is exploited for the implementation of band structure calculations. Finally,
the so-called frequency domain is introduced.
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8.1 Finite Elements Band Structure Calculations

Eigenfrequency Analysis

As has been illustrated in the example for the 1D diatomic crystal in the
previous section, calculating band structures is equivalent to an eigenvalue
problem. Here, the derivation of the eigenvalue problem in finite elements
for a Cauchy continuum is sketched. As in section 3.2, the weak form of the
differential equations is calculated. Yet, this time the time derivatives are
considered nonvanishing. Using the same ansatz functions as in section 3.2,
this yields [111]

∫
Ω

ρ
∂2ui

∂t2 δvidV +
∫
Ω

Cijklui,jδvi,jdV −
∫
Ω

biδvidV −
∫

∂Ω

tiδvidA = 0. (8.1)

In analogy to section 3.2, this can be expressed as

Mab
∂2cbi
∂t2 + Kaibkcbk − Fai = 0, (8.2)

with the stiffness matrix Kaibk and the mass density matrix Mab. Assuming
plane harmonic waves and neglecting external forces Fai = 0, the following
eigenvalue problem is found [111]

(−Mabω2 + Kaibk)cbk = 0. (8.3)

In COMSOL, these equations are already implemented when using the
eigenfrequency analysis study in the solid mechanics module [113]. To solve
this eigenvalue problem, the direct solver MUMPS was used in the scope of
this thesis.

Bloch-Periodic Boundaries

In section 7.4, it has been shown that the eigensolution ψn
Ñ
k of an infinite

crystal is the product of a lattice-periodic term un
Ñ
k and a phase given by

exp(i
Ñ

k ·Ñx ). Since un
Ñ
k has the same periodicity as the crystal, the eigenso-

lutions ψn
Ñ
k are completely defined, when a solution for un

Ñ
k is found in

the domain of a single unit cell. In other words, the band structure can be
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8 .1 finite elements band structure calculations

x

y

z

Figure 8.1: Illustration of an exemplary cubic unit cell with Bloch periodic
boundaries. On the right hand side, the displacements on the outer surfaces
of the unit cell with equal colors (red, blue, and green) are linked via the
Bloch conditions. For example for the blue boundaries, they yield Ñu(x, y, z) =
exp(ikya)Ñu(x, y + a, z).

calculated by finding the eigenfunction un
Ñ
k and its eigenvalue for a single

unit cell for a given
Ñ

k .
Therefore, an eigenfrequency analysis as introduced before is conducted

with Bloch periodic boundary conditions assigned to equivalent points of
the unit cell’s outer surface. These boundary conditions simply state that the
displacement of these equivalent points are linked by

ui(
Ñx ) = exp(i

Ñ

k ·
Ñ
Rlnm)ui(

Ñx +
Ñ
Rlnm). (8.4)

An example for a simple unit cell is depicted in Figure 8.1. The planes of
equal color at the outer surfaces of the cubic unit cell (green, blue, red) are
connected via the Bloch periodic boundaries. For a point in the green plane
this means

Ñu(x, y, z) = exp(ikxa)Ñu(x + a, y, z), (8.5)

with a being the lattice constant.
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8.2 Finite Elements Frequency Domain Calculations

The frequency domain is another method to simplify the partial differential
equation. In that it is assumed that the motion of all nodes is time harmonic
and that all nodes oscillate with the same frequency ω [113]. Hence, fre-
quency domain calculations compute the stationary state of an oscillation for
a given frequency ω. The ansatz for the i-th component of the displacement
of a node is given by

ui(
Ñx , t) = Ui(

Ñx ) exp(−iωt). (8.6)

In that, every node has a different complex amplitude
Ñ
U(

Ñx ). Information
both about magnitude and phase of the oscillation is contained. Plugging
this ansatz into the equations of motions yields a problem comparable to the
one already discussed in section 3.2. Hence, it is solved in a similar fashion.

In COMSOL, the equations for frequency domain studies are already
implemented in the solid mechanics module [113]. Note, prescribing a
displacement in frequency domain implies a time harmonic excitation, not a
static displacement. The same holds true for boundary loads.
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Chapter 9

Dynamic Measurement

Setup and Fabrication

Methods

Rendering of tuning forks under stroboscopic illumination

In this chapter, I will present the self-build measurement setup to measure the rotation
of the polarization vector due to acoustical activity. Before that, I will discuss that a
standing wave pattern does not influence this rotation angle. Therefore, it will not
be necessary to observe transient waves. Finally, I will present a measurement of the
constituent material’s Young’s modulus, which is needed to compare the numerical
and experimental data.
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9 dynamic measurement setup and fabrication methods

9.1 Propagating versus Standing Waves

The optical rotation of an optically active medium is usually measured using
a polarimeter. In that, linear polarized light is sent through an optically
active media of finite length. The light leaves the sample and is analyzed by a
polarizer in air. By rotating the polarizer, the angle of maximum transmission
is deduced and thereby, the direction of the linear polarization.

Unfortunately, this measurement method is not easily transferable to
elasticity. Not least, because these transverse elastic waves do not propagate
in vacuum or air, in contrast to electromagnetic waves. Hence, to investigate
transient waves, a measurement would have to take place in the middle of
an elongated sample. It should be long enough, so the reflections at the end
do not reach the point of observation before the measurement is finished.
This would lead to unfeasibly large samples and long fabrication times.

Luckily, it can be shown that a standing wave in a sample with finite length
exhibits the same polarization rotation as the transient wave. Consider an
acoustically active material, infinitely extended along x- and y-direction,
but with finite length H along the z-direction. At one end (z = 0), a
wave polarized along x is launched into the +z-direction. According to
Equation 7.14, at the other end of the sample the polarization direction is
given by cos(∆k H/2)

sin(∆k H/2)
0

 . (9.1)

In that, the wave vector difference is defined as ∆k = k1 − k2. For simplicity,
it should be assumed that k1 > k2. Therefore, the phase velocity v1 of the
first band is smaller than the one of the second band v2. Additionally, k1
shall correspond to a right-handed circular polarized wave, and k2 to the
left-handed one.

At the other end, the wave is reflected back. Hence, the wave vector’s
z-component k′0 of the reflected wave is given by k′0 = −k0. Equivalently,
the wave vectors of the circularly polarized eigenstates revert their signs,
yielding k′1 = −k1 and k′2 = −k2. At the same time, the handedness of
the waves is reversed. Meaning, the right-handed wave is reflected as a
left-handed wave and vice versa. Thereby, the former fast traveling mode
with phase velocity v2 is reflected as a slow mode with v1. As a result, the
phase difference between the right- and left-handed mode reduces upon
further propagation. Therefore, the polarization direction of the backwards
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9 .2 measurement setup

propagating wave is given bycos(∆k(H − z)/2)
sin(∆k(H − z)/2)

0

 . (9.2)

Hence, the backward propagation wave exactly reverses the polarization
rotation (Note that the coordinate system’s z-component of the reflected
wave is chosen to point in the propagation direction. Thus, z goes from
z = 0 to z = H). As a consequence, incident and reflected wave have the
same polarization direction at z = 0. When considering multiple reflections
at both ends, the argument above still holds true.

In conclusion, the polarization rotation of a standing wave pattern after a
certain propagation distance is the same as for transient waves. Nevertheless,
due to interference, the amplitude of the oscillations might be amplified
or reduced. Consequently, the acoustical rotation can be measured by
comparing the polarization direction of a standing wave pattern at both ends
of a sample with finite length.

9.2 Measurement Setup

The acoustical activity of metamaterial samples, that were fabricated using
the same 3D printing technique as in the previous part, shall be measured.
Therefore, a measurement setup needs to satisfy the following requirements:

1) Excite standing waves at a defined frequency f in the metamaterial
sample within the frequency range of 20− 200 kHz.

2) Extract the polarization vector at both ends of the metamaterial sample
with nanometer precision.

Despite these demanding requirements, the realized setup is surprisingly sim-
ple. Its key components are depicted in Figure 9.1 and its basic working prin-
ciple is the following: A piezoelectric element is driven time-harmonically
and excites the metamaterial sample. Two near infrared light emitting diodes
(LED) illuminate the sample stroboscopically. The frequency of this illumi-
nation is slightly detuned with respect to the excitation of the piezoelectric
element. Thereby, the oscillations can be observed in slow motion without
the need of ultrafast cameras. In fact, the utilized microscope setup and
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Optical

microscope

Objective lens Piezoelectric elementLight emi�ing diodes

Figure 9.1: Depiction of the key components of the measurement setup. Two
optical microscopes were used to monitor the sample. Using a piezoelectric
element, harmonic waves were excited. Two infrared light emitting diodes
(LED) were used to stroboscopically illuminate the samples. Thereby, the
frequency of the illumination was detuned by 0.75 Hz with respect to the
frequency of the harmonic waves. In that fashion, slow motion films of the
oscillation were recorded, which were used to deduce the displacement vectors.

cameras are similar to the ones discussed in section 4.2. Using the same
image-cross correlation algorithms as introduced in section 4.3, the displace-
ment can be measured as a function of time. From that, the polarization
vectors are calculated. More details on the individual components are given
in the following.

Piezoelectric Transducer

Due to the small lattice constant of the metamaterial, relatively high fre-
quencies in the range of 20 to 200 kHz are needed for characterization. At
the same time, reasonably large displacements are desirable to facilitate the
measurement. Therefore, a piezoelectric element was the natural choice. A
multilayer piezoelectric transducer was used (Physik Instrumente, PICMA
Chip Actuator) with outer dimension of 3× 5× 2 mm3. When mounted,
resonances around 300 kHz and 500 kHz were deduced by impedance mea-
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Figure 9.2: Photograph of
the measurement setup.
The sample was monitored
both from the top and from
the side using two micro-
scopes. Two glass fibers
mounted on micrometer
stages were used to po-
sition the sample on the
piezoelectric transducer.

surements. By design, the dominant oscillation is a thickness mode in the
direction of the smallest dimension. To excite a transverse wave in the meta-
material sample, the piezoelectric element was mounted vertically and an
aluminum wedge was attached to it. This additional mass reduces the reso-
nance frequency significantly and was found experimentally to be around
120 kHz. The piezoelectric transducer was driven by a 4-quadrant voltage
amplifier (Hubert, A 1230-01).

Stroboscopic Illumination

For the stroboscopic illumination, two light-emitting diodes (Vishay, VSLY
3850) with a center wavelength of 850 nm were used. These are capable of
emitting light-pulses as short as FWHM = 70 ns. The current for the diodes
was supplied using a custom-built driver.

Electrical Layout

Both the signal for the piezoelectric element and the LED were sent by a
frequency generator. For the LED, a step function with a duty cycle 1.5%
and an amplitude of 2 V was generated. An amplifier provided the necessary
current to drive the LEDs. As depicted in Figure 9.3, the emitted light pattern
is slightly smeared out compared to the sharp step function received from
the frequency generator.
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Figure 9.3: Electrical layout of the self-built measurement setup. A frequency
generator was used to generate the signals both for stroboscopic illumination
and the piezoelectric transducer. The pulse shapes are schematically plotted
next to the different devices. The values for the pulse lengths refer to a
frequency of 200 kHz and a step function’s duty cycle of 1.5%.

A second, sinusoidal signal was created by the frequency generator in
parallel and sent to the voltage amplifier. This increased the voltage by a
factor of 10. For the experiments, the piezoelectric element was driven with
an amplitude of ±5 V. The frequency of the signal sent to the LED was
detuned by 0.75 Hz with respect to the frequency sent to the piezoelectric
element.

Additionally, the voltage drop U2 at the piezoelectric element was mea-
sured with an oscilloscope. Exploiting a resistor with R = 0.8 Ω, the current
through the piezoelectric element was deduced by measuring the voltage
drop U1. Thereby, the frequency-dependend impedance of the piezoelectric
element can be determined. The entire scheme of the electrical layout is
depicted in Figure 9.3. The frequency generator, the oscilloscope, and the
voltage amplifier are addressed by a personal computer using MATLAB.
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Piezo

Aluminum wedge

Alignment plate

Bo�om plate

Metamaterial
Top plate

Figure 9.4: Illustration of
the piezoelectric transducer
with the mounted sample.
To excite a transverse mode
in the metamaterial, an
aluminum wedge was at-
tached to the piezo’s sur-
face. To facilitate the align-
ment, a plate was printed
onto this wedge with edges
that guide the sample’s bot-
tom plate to the proper po-
sition.

Sample Holder

Putting large masses on the piezoelectric element, like the glass substrate
necessary for printing, would result in low amplitudes of the excited wave.
Hence, the samples were taken off the substrate after fabrication. Therefore,
unsilanized cover slips were used. To facilitate the handling, the samples
were printed onto a bottom plate with an arm attached to it, which can be
grabbed by a tweezer.

Afterwards, the sample is placed on the aluminum wedge attached to the
piezoelectric element. To facilitate the alignment and ensure proper contact
to the piezoelectric element, a plate was also printed on the aluminum wedge.
The whole arrangement is sketched in Figure 9.4. Two glass fibers were used
to move the sample and clamp it, before it was glued to the piezoelectric
element (Uhu plast special Modellbau-Kleber). Channels at the bottom of
the plate distributed the glue evenly. After the measurement, the samples
were removed using acetone.

9.3 Characterization of the Constituent Material

To compare the numerical and experimental data, the constituent material’s
Young’s modulus needs to be determined. Although the material is the same
one as in the previous chapter, the effective Young’s modulus for a given
frequency might differ from the static case due to its viscoelastic properties.
Therefore, an additional experiment was conceived to measure the Young’s
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(a)

500 µm

(b)

60 µm
x

z

Figure 9.5: Scanning electron micrographs of the fabricated tuning forks. (a)
Overview of a whole array of tuning forks, that were printed on a bottom plate.
The close up in (b) impressively illustrates the fabrication accuracy. These
tuning forks were fabricated from the same constituent material that was used
for the dynamic experiments on the metamaterial. By characterizing one of the
fundamental asymmetric modes, the complex constituent’s Young’s modulus
was determined. This figure is adapted from [122] (CC BY 4.0).

modulus for the relevant frequency range.
Conceptually, the eigenfrequency of an elastic eigenmode is proportional

to the square root of the real part of the constituent material’s Young’s
modulus. Furthermore, the ratio between the amplitude of the excitation
and the amplitude of the oscillation for a given frequency is determined by
the material’s damping. For harmonic waves, the damping is captured by
the imaginary part of the Young’s modulus. As a consequence, by studying
the resonance of a known elastic system, the real and imaginary part of the
Young’s modulus can be deduced.

In [122] and in the scope of Erik Jung’s bachelor thesis, Erik Jung and
Julian Köpfler studied one of the fundamental antisymmetric resonances
of tuning forks. Thereby, they 3D printed micro-tuning forks using the
Nanoscribe instrumentation and characterized them using the setup intro-
duced in section 9.2. In contrast to the experiment shown later, these tuning
forks were excited along the z-direction, whereas the arms of the tuning
forks oscillated along the x-direction. Scanning electron micrographs of the
fabricated samples are depicted in Figure 9.5. Using image-cross correlation,
both the enhancement of the amplitude and the phase shift with respect
to the excitation was determined as a function of frequency. The results
were compared to finite-element calculations of the tuning forks. Via a
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Figure 9.6: Characterization of a tuning fork’s antisymmetric resonance mode.
(a) the amplitude enhancement u2

0/u2 and (b) the phase difference between
excitation and response of the samples depicted in Figure 9.5 were measured as
a function of frequency. The experimental results and two nominally identical
tuning forks are depicted as blue and black points. These are compared to
finite element calculations of the tuning forks. Via a least-squares approach,
the best fitting complex Young’s modulus was deduced. This figure is adapted
from [122] (CC BY 4.0).

least-squares approach, the best fitting material parameters were deduced.
According to [122], the complex Young’s modulus E = E′ + iE′′ is given by

E′ ± ∆E′sys. ± ∆E′stat. = (4.18± 0.32± 0.07)GPa, (9.3)

E′′ ± ∆E′′sys. ± ∆E′′stat. = (0.21± 0.02± 0.01)GPa, (9.4)

whilst assuming a mass density of ρ0 = 1.15 g cm−3.
Interestingly, this is nearly twice as high as the static Young’s module

measured in [104]. On top of that, the ratio between real and imaginary part
is approximately 5%. This means that the damping is quite pronounced in
this polymer. Previous studies on cured epoxies, poly(methyl methacrylate),
poly(dimethyl siloxane), and SU8 yielded qualitatively similar results [156,
157].
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10
Chapter 10

Acoustical Activity in

Metamaterials

Rendering of the measurement setup

As has been shown in chapter 7, acoustical activity is a paradigm of chirality. More
precisely, for B44 6= 0, we expect a rotation of a linear polarization upon propagation.
In this chapter, I will go back to the cubic unit cell introduced in chapter 5 and will
find that the metamaterial exhibits pronounced acoustical activity in both numeric
calculations and in the experiments. Additionally, I put our results into perspective
by comparing them to micropolar continuum calculations by Yi Chen. In closing,
I will show results obtained from a different metamaterial design which have been
obtained by Janet Reinbold in the wake of her bachelor thesis.
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Figure 10.1: Blueprint of the
cubic unit cell with lattice con-
stant a = 250 µm. The unit
is equal to the one that was
studied in the first part of this
thesis. The geometrical param-
eters are given by d = 0.06a,
r2 = 0.4a, δ = δmax ≈ 35◦,
b =
√

2d, and r1 = 0.32a. Cru-
cially, when setting δ = 0, the
unit cell becomes achiral. This
figure is adapted from [122]
(CC BY 4.0).
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10.1 Calculated Acoustical Activity

The unit cell depicted in Figure 10.1, which was already introduced in
chapter 5, has proven to show a push-to-twist coupling. As discussed in
chapter 3, this coupling is a paradigm of chiral elastic materials. Here, an
other paradigm, namely acoustical activity, shall be studied in this metama-
terial.

10.1.1 Bandstructures of Infinite Crystals

As a start, the bulk properties of an infinite crystal was studied numerically.
Therefore, the bandstructure and the corresponding eigenmodes were cal-
culated using COMSOL Multiphysics. The unit cell was implemented with
periodic boundaries (compare section 7.4) at all outer surfaces, which would
be connected to neighboring unit cells. Bandstructures were calculated both
for the metamaterial depicted in Figure 10.1 and an achiral control structure
with δ = 0◦. The results for the propagation along the z-direction are de-
picted in Figure 10.2. The frequency scale on the left corresponds to a lattice
constant a = 250 µm, a constituent’s Young’s modulus of E = 4.18 GPa,
Poisson’s ratio of ν = 0.4, and mass density of ρ = 1.15 g cm−3. In contrast,
the normalized frequency a/λ0 on the right scale does not depend on both
the properties of the constituent material and the unit cell size. Hence, this
representation is suitable to compare different geometries. In that, λ0 denotes
the wavelength of the pressure wave in the bulk constituent, which is given
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Figure 10.2: Phonon bandstructures of an (a) achiral and (b) chiral cubic meta-
material crystal. The first two bands depicted in red are polarized transversely.
The third band colored in blue is of longitudinal character. The degeneracy
of transverse modes in the achiral case is lifted when introducing chirality. A
circular polarized eigenstate corresponding the wave number and frequency
indicated by the gray dot is depicted in Figure 10.3. This figure is adapted
from [122] (CC BY 4.0).

by λ0 = clong./ f , with the phase velocity of the longitudinal wave

clong. =

√
E(1− ν)

ρ(1− 2ν)(1 + ν)
. (10.1)

For both the chiral and achiral structure, three bands emerge from the
center of the Brillouin zone in Figure 10.2: one with longitudinal polarization
(blue), and two exhibiting a transverse polarization (red). In the achiral
case, the latter are degenerate. As predicted by the micropolar continuum
theory (see section 7.2), chirality lifts the degeneracy between the transverse
bands. The resulting splitting ∆k between these bands generally increases
with increasing kz. In the center of the Brillouin zone k→ 0, the bands are
dispersive (also compare Figure C.1). This is in contrast to achiral structures,
which show no dispersion near the center of the Brillouin zone.

Examining the shape of the eigenmodes of the chiral metamaterial shows
that indeed the transverse bands are circularly polarized. A snapshot of such
a mode is depicted in Figure 10.3(a). For illustration purposes, the infinite
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Figure 10.3: Phonon eigenmode of an infinitely extended chiral crystal. (a)
shows a snapshot of a circular polarized eigenmode with kz = π/(4a), corre-
sponding to a wavelength of λ = 8a. For clarity, the crystal was cut in half and
a single column was highlighted. The mean displacement vectors of a unit cell
are depicted in (b). The typical helical deformation can be seen nicely in both
cases. This figure is adapted from [122] (CC BY 4.0).

crystal is cut in half and one metamaterial beam is highlighted. The false
colors illustrate the phase of the wave. This eigenmode corresponds to the
wave number kz and frequency f marked by a gray point in Figure 10.2(b).
In Figure 10.3(b), only the displacement vectors Ñu of the center of mass
of the unit cells are depicted. When connecting them, they form a helix
for a fixed time t0. Hence, the center of mass of a unit cell rotates around
its rest position, when a circular polarized wave is excited. Additional
calculations showing higher bands and more propagations directions are
given in Appendix C. Alternative representations of the eigenmodes can be
found there as well.

As a result, the chiral metamaterial exhibits two non-degenerate circularly
polarized eigenmodes. Therefore, it is expected to be acoustically active (see
section 7.3). From these bandstructures, the splitting ∆k can be deduced
easily. Using Equation 7.15, the rotation angle of a linear polarization can be
calculated. Exemplary rotation angles for a given propagation distance of
z = Nza = 12a are plotted as a function of the frequency f in Figure 10.12(a)
and compared to experiments and calculations of finite samples.
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10.1.2 Bandstructures of Infinite Bars

Obviously, all real world samples are finite. Hence, it should be checked,
how the finite dimensions influence acoustical activity or whether the effect
persists at all. In a first step, bandstructure calculations for bars of finite
footprint, but with infinite length, were performed. Therefore, planes of
the metamaterial were implemented containing Nx × Ny × 1 unit cells, with
Nx = Ny = 1, 2, 3, 5. This time, periodic boundaries were only applied to
those surfaces of the metamaterial that are in the bottom and top boundary
of the unit cells (boundaries parallel to the x-y-plane). The boundaries to the
side were intentionally left open. In Figure 10.4, exemplary bandstructures
with Nx = 1, 3 are depicted for both a chiral and an achiral structure. As
before, the frequency scale on the left corresponds to a lattice constant
a = 250 µm, a constituent’s Young’s modulus of E = 4.18 GPa, Poisson’s
ratio of ν = 0.4, and mass density of ρ = 1.15 g cm−3.

Instead of the three bands in the case of the infinite crystal, four bands
emerge from the center of the Brillouin zone, both for the chiral and achiral
structure. In the achiral case, three of them are of similar nature as the
bands of the infinite crystal. Two transverse bands (red) and a longitudinal
band (blue) can be identified. The fourth band (black) has a twist character.
Thereby, the metamaterial’s cross section rotates around its center of mass
in the plane perpendicular to the propagation direction. In the presence of
chirality, the blue and black bands are of mixed character. The blue band
is predominantly longitudinally polarized, whereas the black band rather
twists. This character mixing is the dynamic counterpart of the push-to-twist
coupling discussed in the first part of this thesis. For Nx → ∞, the black band
vanishes, since the twisting motion is forbidden by the periodic boundary
conditions.

For all cases, the transverse bands (red) are dispersive in the center of
the Brillouin zone. They emerge quadratically, which is to be expected
for flexural waves. With increasing bar thickness, hence increasing Nx, the
quadratic onset gets smaller.

Again, by introducing chirality the degeneracy between the transverse
bands is lifted. Compared to the bandstructures of the infinite crystal, the
resulting splitting ∆k between these bands is much more pronounced. The
largest ∆k was observed for Nx = 1. For higher Nx, the splitting decreases
and the bands converge towards the bands of the infinite crystal. Again,
the splitting generally increases as a function of kz, before the splitting
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Figure 10.4: Phonon bandstructures for an infinitely extended bar with finite
footprint. In the left column, the bandstructures of the achiral control structures
are plotted. In the right column, results of the chiral structures are depicted.
Panels (a) and (b) show bandstructures for bars with Nx = Ny = 1. (c) and
(d) display the cases of Nx = Ny = 3. Again, the two transverse modes are
depicted in red and the longitudinal one in blue. Additionally, a fourth band
(black) with a twist character emerges from the center of the Brillouin zone.
Small depictions of the corresponding sample geometry are shown in the
bottom right corner of every panel. This figure is adapted from [122] (CC BY
4.0).

vanishes at the edge of the Brillouin zone (kz = π/a). This is due to the
four-fold rotational symmetry around the propagation axis. At the edge of
the Brillouin zone, kz is equal to −kz. Yet, by replacing kz with −kz turns
a left-handed into a right-handed mode and vice versa. As a consequence,
both modes have the same frequency at the edge of the Brillouin zone.

As a result of these bandstructure calculations, acoustical activity persists
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even in infinitely long bars. The splitting between the circular polarized
eigenmodes generally increases as a function of kz and decreases with Nx.
Hence, effects beyond Cauchy elasticity generally increase when either the
wavelength λ or the sample side length L = Nxa becomes comparable to the
material’s lattice constant a (i.e. Nx is of order 1).

10.1.3 Finite Sized Samples

Finally, the sample dimensions are also considered finite in z-direction. For a
harmonic excitation, these lead to the formation of standing waves. Therefore,
the following simulations were performed in the frequency domain. In that,
samples containing Nx × Nx × Nz unit cells were implemented with a lattice
constant of a = 250 µm. A linear elastic material with a complex Young’s
modulus of E = 4.18 + i0.21 GPa, a mass density of ρ = 1.15 g m−3, and
Poisson’s ratio of ν = 0.4 was assumed. As in the experiments, a plate was
added to the top with a thickness of 10 µm. At the bottom, a displacement
was prescribed along the y-direction. An illustration on the implemented
geometry is depicted in Figure 10.5.

The polarization direction at the top of the sample was calculated by
averaging the displacement vector components ux and uy over a square with
side length 3/4a. This averaging region is comparable to the area that was
observed in the experiments. Exemplary data of a sample with Nx = 3
and Nz = 12 for an excitation frequency of f = 160 kHz is depicted in
Figure 10.5. In that, the amplitude of the excitation was scaled to match the
excitation in the experiments. Obviously, the polarization direction at the
top of the sample is rotated with respect to the polarization of the excitation.
Hence, acoustical activity is preserved even in these finite samples, whilst
considering standing waves.

A systematical study of the rotation angle as a function of frequency
is depicted in Figure 10.6. Samples with Nx = 3 and Nz = 6, 12, 18 unit
cells were simulated for excitation frequencies between 100 and 190 kHz.
Additionally, the material damping was varied. Calculations assuming
no damping (E′′ = 0 GPa, solid line) and finite damping (E′′ = 0.21 GPa,
points) are depicted. The value of the finite damping is equal to the material
parameters deduced in section 9.3. For comparison, the rotation angles
calculated from the bandstructure of the infinite bar with Nx = 3 is also
depicted (dashed line).
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Figure 10.5: Illustration of a sample with Nx = Ny = 3 and Nz = 12 unit
cells. The displacements Ñu(t), deduced using frequency domain calculations,
for an excitations frequency of f = 160 kHz are plotted at the top and the
bottom of sample. For better visibility, the displacements were scaled. The blue
scale bar corresponds to the displacements at the bottom, the red one to the
displacements at the top. Due to acoustical activity, the direction of the linear
polarization is rotated by approximately 65◦. This figure is adapted from [122]
(CC BY 4.0).

The qualitative trends are comparable for all simulations depicted. The
rotation angle generally increases both as a function of the frequency and of
the propagation distance Nza. Yet, the frequency domain calculations show
features that are not present in the bandstructure calculations. These can be
traced back to a resonant excitation of a rotational mode of the top plate .
This mode is depicted in Figure 10.7 for a sample with Nx = 2 and Nz = 12
at a frequency of f = 166 kHz, which is close to the resonance frequency.
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Figure 10.6: Acoustical rotation from finite-element frequency domain calcu-
lation. Calculated rotation angles are plotted as a function of the excitation
frequency for Nx = Ny = 3 and different sample lengths. Both the cases of
finite damping (Young’s modulus E = E′ + E′′ = 4.18 GPa + i0.21 GPa) and
zero damping (E = 4.18 GPa) are depicted. Apart from the vicinity of the
resonances at the sample top, the damping has no influence on the rotation
angle. This figure is adapted from [122] (CC BY 4.0).

The z-component of the displacement vector uz is depicted in false colors.
For illustration purposes, the deformation has been exaggerated. Close to
this resonance, uz is drastically enhanced. In fact, is becomes much larger
than the transverse components ux and uy.

In an achiral bar, this oscillation would not influence the direction of
the polarization. The rotation axis would simply be perpendicular to the
polarization of the transverse modes. Yet, when introducing chirality, the
longitudinal and transverse degrees of freedom mix at the boundary. This
can be explained as follows. For such a rotational mode, one side of the
metamaterial bar is effectively compressed, whereas the other is elongated.
In the first part of this thesis it has been shown that an axial strain induces a
rotation. Loosely speaking, this means that the bottom half of the sample
depicted in Figure 10.7(b) wants to rotate clockwise, whereas the upper
parts wants to turn counterclockwise. This is illustrated by the red arrows.
Concerning symmetry, these rotations uc(t) add up to a displacement parallel
to the rotation axis. Therefore, this additional displacement is perpendicular
to the wave that drives the rotational mode in the first place. This leads to
an effective rotation of the measured polarization vector.
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Figure 10.7: Eigenmode of a sample with Nx = Ny = 2 and Nz = 12 at
f = 166 kHz. The excitation frequency is in close vicinity to one of the twisting
resonances of the sample’s top facet. The z-component of the displacement
uz is plotted in false colors. For clarity, the deformation is exaggerated. The
top plate exhibits a rotation oscillation around the indicated axis. Due to the
push-to-twist coupling, an additional transverse displacement component uc is
initiated.

This contribution to the polarization of the oscillations is relatively small
for frequencies that are far away from the resonance frequency. They can
become dominant close to the resonance frequency. In the case of a loss-
less material, the resonances even lead to divergence of the rotation angle.
Unfortunately, there is no simple way to circumvent this problem. Yet, the
unavoidable internal material damping eases the situation, in which the
displacement enhancement is finite and therefore no divergences occur in
Figure 10.6. Aside the resonance frequency, damping does not affect the de-
duced rotation angle, making acoustical activity a robust phenomenon [122].

Finally, it can be shown that even for the finite samples the rotation
angle of the polarization angle does not depend on the direction of the
incident polarization. Exemplary calculations for a structure with Nx = 3
and Nz = 6, 12, 18 at an excitation frequency of 120 kHz are plotted in
Figure 10.8. Within the margins of errors, the rotation angle is constant.
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Figure 10.8: Acoustical rota-
tion as a function of the in
plane incident angle. For a
fixed excitation frequency of
f = 120 kHz, the rotation an-
gle was calculated for sam-
ples with Nx = Ny = 3 and
various sample lengths H =
Nza. Obviously, the acousti-
cal rotation does not depend
on the direction of the inci-
dent polarization. This figure
is adapted from [122] (CC BY
4.0).

10.2 Experimental Results

Eventually, the rotation of the polarization, and hence the acoustical activity,
was measured experimentally on finite-sized 3D printed samples. In this
section, the fabricated samples are presented first. Afterwards, the method
of extracting the rotation angle from the raw measurement data is presented.
Finally, the measured rotation angles are shown as a function of frequency
for various sample heights and sample footprints.

10.2.1 Fabricated Samples

All samples in this section were printed using the Nanoscribe instrumenta-
tion, which was already introduced in section 4.4. To study the influence
of the sample’s side length, samples containing Nx = 1, 2, 3, 5 unit cells in
a side were fabricated. At the same time, several sample heights H = Nza
were realized with Nz = 6, 12, 18. The lattice constant of a = 250 µm was
chosen. All samples were printed on a thick bottom plate with a bar at-
tached. Both are needed to transfer the sample from the substrate to the
measurement setup without damage. Additionally, markers were printed
on both the bottom and top plate to assist the image cross-correlation. A
gallery of scanning electron micrographs of the printed exemplary samples
is presented in Figure 10.9. These images illustrate the generally high quality
of the fabricated structures nicely.
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Figure 10.9: Gallery of 3D printed samples with lattice constant a = 250 µm.
Scanning electron micrographs of selected for samples with various sample
footprints Nx × Ny and sample heights Nz are depicted. All pictures are shown
on the same scale. This figure is adapted from [122] (CC BY 4.0).
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Figure 10.10: Measured data for a sample with Nx = Ny = 3 and Nz = 12 for
an excitation frequency of f = 160 kHz. (a) and (b) show the displacement
components ux(t) and uy(t) measured at the sample’s top. In (c) and (d), the
displacement components of the excitation are depicted. To eliminate drifts, a
bandpass filter was applied to the data. From that, a rotation angle of 44◦ was
deduced. Five periods of the signal are depicted to demonstrate the generally
good data quality and reproducibility. This figure is adapted from [122] (CC
BY 4.0).

10.2.2 Extracting the Polarization Directions Using Image Cross-Correlation

Using the microscope that was aligned with the z-axis of the sample, two
films were recorded subsequently for a fixed excitation frequency. For
the first film, the microscope was focused on the markers at the bottom
plate. For the other one, the markers at the top of the sample were in
focus. Due to the stroboscopic near-IR illumination (compare section 9.2),
the high frequency oscillation of the sample can be seen in slow motion.
Therefore, regular cameras are sufficient to capture the movement. Using
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Figure 10.11: Overlay of measured data and scanning electron micrograph.
The same data as depicted in Figure 10.10 is shown at the position where
the underlaying film was shot. The data corresponds to a sample containing
3× 3× 12 unit cells and an excitation frequency of f = 120 kHz. This figure is
adapted from [122] (CC BY 4.0).

the previously introduced digital image cross-correlation section 4.3, the in-
plane displacement components were deduced. Between 10 and 20 ROI were
tracked for each measurement. It is fair to assume that the plates are stiff
compared to the sample and hence, do not deform. Therefore, all markers
exhibit the same movement. Following [120], the average displacement of
the markers is calculated to improve the precision. Subsequently, a band-
pass filter was applied, which attenuated all frequencies above 200 kHz and
below 15 kHz. Thereby, drifts and excitations of higher harmonics were
eliminated. In this fashion, the raw data plotted in Figure 10.10 was acquired.
The displacements depicted in the top row were measured at the samples’s
top, the bottom row at the bottom plate. This is once again illustrated
in Figure 10.11, where the measured data is superimposed on a scanning
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electron micrograph. The positions where the data is depicted corresponds to
the positions the films were shot. In both cases, five consecutive oscillations
are depicted illustrating the good reproducibility of the measurement.

To deduce the direction of the polarization, the sinusoidal functions

ux = Ux sin(ω0t + ∆x), (10.2)
uy = Uy sin(ω0t + ∆y), (10.3)

were fitted to the data. Due to imperfections, the polarizations are going to
be elliptical in general. Therefore, the direction of the semi-major axis was
taken as a measure for the polarization direction. This can be calculated by

φ =
1
2

atan

(
2 cos(∆x − ∆y)

Ux/Uy

1−U2
x/U2

y

)
. (10.4)

Consequently, the rotation angle of the polarization is then given by the
difference of the direction φ measured at the top and at the bottom of the
sample. For the exemplary data depicted in Figure 10.10, a rotation angle of
44◦ was deduced.

10.2.3 Measured Acoustical Activity

Experiments were performed to systematically study acoustical activity in
the metamaterial. Therefore, the rotation angle was studied: 1) as a function
of frequency, 2) as a function of the sample’s side length L = Nxa, and 3) as a
function of the sample height H = Nza. All measurement results are plotted
in Figure 10.12. Illustrations of the corresponding samples are shown next to
the data. The samples are dyed in the same color as the corresponding data
points. For comparison, both the results from bandstructure calculations and
finite structure calculations are depicted.

Generally, the measurement and the simulations show good agreement.
Especially, all trends are reproduced nicely. For all samples, the rotation
angle increases as a function of the excitation frequency. Figure 10.12 also
clearly indicates that the rotation angle is proportional to the propagation
distance and hence, proportional to Nz. Furthermore, the data shows that
the acoustical activity generally increases with decreasing Nx, i.e., decreasing
sample foot print. Most importantly, all chiral samples showed acoustic
activity. Whereas for the achiral structures, rotations angles below ±10◦
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Figure 10.12: Summary of all numerically and experimentally determined
rotation angles of a linearly polarized transverse wave as a function of the
excitation frequency f . The measurement data of the chiral (achiral) samples
are plotted as dots (circles). Additionally, the rotation angles deduced from
bandstructure calculations (dashed lines) and finite-structure calculations (solid
lines) are shown. For the latter, a complex Young’s modulus of E = 4.18 GPa +
i0.21 GPa was assumed. (a) Rotation angles for a fixed sample height of Nz = 12
and various footprints. (b) Rotation angles for fixed sample side length of
Nx = 3, but various sample heights Nz. (c) same as (b) but with Nx = 1.
Illustrations of the samples dyed in the corresponding color are depicted on
the right. This figure is adapted from [122] (CC BY 4.0).
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were measured. These residual rotation angles are most likely due to sample
imperfections and imperfect excitation. Yet, these errors can be considered
small, especially compared to the maximum rotations angles measured for
Nx = 1 and Nz = 18 that even exceeded 360◦.

This maximum rotation angle of more than 360◦ near the edge of the
Brillouin zone ( f ≈ 180 kHz) equals a rotation of more than 20◦ per unit
cell. For the same structure with Nx = 1, rotation angles of about 10◦ are
observed at the center of the Brillouin zone ( f ≈ 20 kHz).

10.3 Effective Micropolar Material Parameters

To be able to call the observed scaling behavior versus Nx a material property,
it is important to reproduce the previously discussed results using an effec-
tive medium description. It has been shown in section 7.2 that the notion of
acoustical activity itself is reproduced correctly by the micropolar theory of
elasticity. Whether the scaling versus Nx can be mimicked by the theory, is
yet to be shown

In [60], Yi Chen did exactly that by performing band structure calculations
for a micropolar medium. The effective material parameters he used are
given in section B.2 and [60]. These were partially deduced by comparison
to analytical solutions of the wave equation for directions of high symmetry
for a cubic material in the long wavelength limit. Parameters that could not
be determined analytically, were deduced in a numerical optimization. His
results for infinite extended bars and infinite extended crystals are plotted in
Figure 10.13. Additionally, the results are compared to the achiral Cauchy
theory.

The bandstructures of the micropolar continuum depicted in Figure 10.13

reproduce the qualitative trends of the bandstructures depicted in Figure 10.2
and Figure 10.4 astonishingly well. Most importantly, it predicts an increased
splitting for small Nx. Even quantitatively, the splittings predicted in the
center of the Brillouin zone agree reasonably well.

Chen also shows that the symmetries of the eigenmodes are reproduced
by the micropolar medium description [60]. More precisely, he showed that
both the effective medium and the metamaterial structure exhibit circular
polarizations along the principle axis and the volume diagonal. In contrast,
more or less linear polarizations occur for all other direction.

Obviously, this theory cannot be expected to yield reasonable results at
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Figure 10.13: Phonon dispersions calculated from continuum theories. Using
Bloch periodic boundary conditions, the dispersion relation of phonons in a
chiral micropolar medium were calculated for (a) Nx = 1, (b) N = 3, and
(c) infinite crystals. In (d)-(f), corresponding dispersions assuming a classical
Cauchy continuum are depicted. The material parameters used for the mi-
cropolar continuum are given in section B.2. Qualitatively, the splittings of the
transverse bands in the micropolar continuum resemble the results obtained
from bandstructure calculations of the metamaterial. This figure is adapted
from [60].

the edge of the Brillouin zone (kz = π/a). Due to symmetry, the bands
are degenerate in the structural calculations depicted in Figure 10.4. In
the effective medium description, the periodicity along the z-direction is
a numerical trick and not physical reality. In fact, the effective medium
description does not "know" about any periodicity at all. Therefore, the
bandstructures of the effective medium represent the metamaterial correctly
only for wavelengths much bigger than the lattice constant a.
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Note that the effective material parameters given in Figure 10.2 and Fig-
ure 10.4 not only grasp the dynamic behavior correctly, but also the static
push-to-twist coupling discussed in the first part of this thesis. In fact, the
parameters given in subsection B.1.2 and Figure 10.2 are equal. The first
parameter set was only scaled to match the respective constituent material’s
Young’s modulus and the metamaterial’s lattice constant.

10.4 Discussion

Acoustical activity was demonstrated both numerically and experimentally
in chiral mechanical metamaterials. Thereby, rotation angles of the linear
polarization as large as 22◦ per unit cell were observed. For the used
lattice constant of a = 250 µm, this corresponds to a rotational power of
approximately 15 rad cm−1. This is between three and five times larger than
the rotational power reported on α-quartz [151] for gigahertz frequencies.
For the bulk metamaterial, rotation angles as large as 2.6◦ per unit cell were
calculated.

Slender beams exhibit generally larger rotation angles. This agrees well
with the findings of the first part of this thesis, which observed that effects
generally become more prominent for small sample side lengths Nxa = L.
Yet, in contrast to the static push-to-twist coupling, acoustical activity does
not vanish for Nx → ∞. This is related to the fact that the lattice constant
a is still finite compared to the wavelength λ. The Cauchy limit of "point
mechanics" is only recovered when both a/L and a/λ tend to zero.

Generally, bandstructure calculations, finite structure calculations, and
experiments fit together nicely. The finite sample length led to resonances
at the end facet of the sample, which influenced the polarization direction
additionally. Away from these resonances, the finite length had only little
influence on the polarization direction. The same holds true for the damping
of the constituent material, making acoustical activity a robust phenomenon
in mechanical metamaterials.

For all chiral structures, noticeable rotation angles were measured, whereas
the rotation angles of the achiral structures scattered around zero. Hence,
they effectively showed no rotation, which is expected for achiral structures.
The measured rotation angles of the chiral structure scatter with a tolerable
spread around the simulated curves. These deviations are comparable for
the chiral and achrial samples. Most likely, these are caused by small sample
imperfections. These tend to increase for bigger structures. Due to the
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limited field of view of the objective lens in the Nanoscribe system, large
samples are split up into smaller blocks. This stitching procedure causes
defects at the interfaces between consecutively printed structures. This can
break symmetry or introduce local resonances, which are not taken into
account in the simulations.

Due to different resonance modes of the piezoelectric transducer, the
excitation varied slightly as a function of frequency. For some frequencies, the
excitation was rather elliptical. Furthermore, the amplitude of the excitation
varied by more than a factor of 10. In itself, neither the ellipticity nor the
amplitude should have an influence on the measured polarization rotation.
Yet, together with the sample’s imperfections, this could lead to the observed
small deviations of the measurement with respect to theoretical prediction.
Despite these deviations, acoustical activity was unambiguously verified in
the experiments, both qualitatively and quantitatively.

Furthermore, the scaling behavior of the rotation angle as a function of Nx
was qualitatively reproduced by a micropolar continuum theory. Therefore,
the observed effects can be considered material properties indeed, and not
just effects related to the finite sample sizes.

10.5 Towards Maximum Acoustical Activity

In this last section, fundamental bounds on the maximum achievable acous-
tical rotation in metamaterials are derived. Furthermore, yet another metam-
terial is studied showing even larger rotation angles than the design of the
previous chapter. The experimental and numerical results were obtained
by Janet Reinbold in the wake of her bachelor thesis, which was supervised
by the author. The same methods and instrumentations as in the previous
section were used. The results of this section were also published in [149].

10.5.1 Fundamental Bounds

The bandstructures of the metamaterial in the previous section (compare
Figure 10.4 and Figure 10.2) all exhibited a degeneracy of the the two
transverse modes both in the center of the Brillouin zone (kz = 0) and at the
edges (k = π/a). The latter is caused by the threefold or higher rotational
symmetry along the propagations direction. This can be understood as
follows. According to Bloch’s theorem, the wave numbers kz = π/a and
kz = −π/a are equivalent, hence the respective eigenmodes must have equal
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energies. Yet, replacing kz → −kz, turns a left-handed into a right-handed
mode and vice versa. Therefore, left- and right-handed modes have to exhibit
the same energy at the edge of the Brillouin zone.

Having these predetermined degeneracies in mind, the modulus of the
splitting ∆k is bounded by the size of the Brillouin zone [149]. Therefore, the
upper bound for the rotation angle φ is given as

|φ(ω)| ≤ π

2
Lz

a
, (10.5)

with propagation distance Lz and lattice constant a. This means that the
rotation angle per unit cell cannot exceed 90◦.

10.5.2 Unit Cell Design

The unit cell that is depicted in Figure 10.14 is inspired by [142] and was
already introduced in section 5.2. Yet, the cube in the middle was replaced by
a framework to reduce mass. Thereby, the frequency of the transverse modes
at the edge of the Brillouin zone is increased. This resulted in generally
higher rotation angles of the linear polarization. The other geometrical
parameters were systematically varied to show large acoustical rotation,
whilst maintaining a feasible geometry. More details are provided in [149].
In order to match the metamaterial to the frequency range that is accessible
with the measurement setup, the lattice constant was set to a = 250 µm. The
exact geometrical parameters are given in the caption of Figure 10.14.

10.5.3 Finite Element Simulations

The bandstructure calculations were carried out in the same fashion as
presented in the previous chapter. For the bandstructure of the infinite
crystal, Bloch periodic boundary conditions were prescribed to all outer
surfaces of a single unit cell. For the bandstructures of the infinite bars,
a plane of Nx × Ny unit cells was implemented with Nx = Ny. Periodic
boundaries were only applied to surfaces at the top and at the bottom
of this plane. All remaining boundaries were left open. The calculated
bandstructures for Nx = 2, 4, and the infinite crystal (Nx = ∞) are depicted
in Figure 10.15. The constituent material was modeled by an isotropic Cauchy
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Figure 10.14: Illustration of a cubic, chiral unit cell. The design was inspired
by [142]. An oblique view of the unit cell is depicted in (a) and a side view
in (b). The unit cell was optimized to exhibit large acoustical rotation. The
geometrical parameters are a = 250 µm, b = 0.04a, c = 0.2a, and d = 0.025a.
This figure is adapted from [149] (CC BY 4.0).

material with Young’s modulus E = 4.18 GPa, Poisson’s ration ν = 0.4, and
mass density ρ = 1.15 g cm−3.

Obviously, the splitting ∆k is drastically increased compared to splittings
in the previous bandstructures (compare Figure 10.2 and Figure 10.4). Even
for Nx = ∞, the maximum splitting covers more than 40% of the Brillouin
zone. The splitting is even larger for Nx = 2. Therefore, rotation angles as
large as 45◦ per unit cell can be expected.

As before, simulations of the finite sample containing Nx × Ny × Nz unit
cell were performed in the frequency domain. The extracted rotation angles
are plotted in Figure 10.17.

10.5.4 Samples

The printing of this metamaterial design is significantly more difficult than
the geometries presented previously. Due to the fragility of the unit cell,
only structures with Nx ≥ 2 could be fabricated. Various samples with
Nx = 2, 3, 5 and Nz = 6, 12, 18 were printed onto a bottom plate. Yet, no
plate was added to the top.

The bars sticking out to the sides of the unit cell impose the same problems
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Figure 10.15: Phonon bandstructure calculations of the metamaterial depicted
in Figure 10.14. Both calcuations assuming a finite cross section with side
lengths (a) Nx = Ny = 2 and (b) Nx = Ny = 4, as well as the bandstructure of
the infinite crystal (c) are depicted. The degeneracy of the two transverse bands
(red) is lifted in all cases. The longitudinal mode is plotted in blue. For the
bars with finite cross section, an additional fourth band with twist character
(black) emerges form the center of the Brillouin zone. For comparison, the
degenerate transverse bands of the achiral control structure (red dashed line)
are also depicted. This figure is adapted from [149] (CC BY 4.0).

as the long horizontal bars of the unit cell discussed in chapter 6. These
overhanging and even flying structures tend to drift away during the printing
process, leading to significant defects. This issue was addressed in the same
manner as before (compare chapter 6), in that the vertical bars as well as the
central cube were printed in a first step. In a subsequent step, the horizontal
bars were added in between. Special care had to be taken for the bars at
the outer surfaces of the sample. When considering only static experiments,
their contribution could be neglected. Yet, in the dynamic regime, their mass
and inertia influence the polarization significantly. Therefore, they were
added in a third printing step. Depending on their orientation, these bars
were printed either from top to bottom or vice versa.

Scanning electron micrographs of an exemplary structure with Nx = 5 and
Nz = 12 are depicted in Figure 10.16. Especially the close up (b) reveals the
high structural quality. It turned out that this geometry is very susceptible
for dirt. This might be related to the fact that parts of the structure easily fall
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50 µm400 µm

(a) (b)

Figure 10.16: Exemplary scanning electron micrograph of a sample containing
5 × 5 × 12 unit cells. An overview of the fabricated sample including the
bottom plate is depicted in (a). A close up of a single unit cell is shown (b). The
micrographs prove the generally high printing quality. This figure is adapted
from [149] (CC BY 4.0).

dry even during the printing process. Therefore, residue of the photoresist is
not as efficiently washed away in the development step, but rather sticks to
the sample.

10.5.5 Results and Discussion

The experiments and the evaluation of the experimental data was conducted
in the same way as in subsection 10.2.3. The measured rotation angles of
the linear polarization, as well as the results from bandstructure calculations
and finite structure calculations, are summed up in Figure 10.17.

Generally, the rotation angle increases with frequency, and decreases
as a function of Nx. Hence, the behavior of this metamaterial design is
quantitatively similar to the one discussed in the previous section. Yet, even
for the infinite crystal (Nx = ∞) rotation angles exceeding 20◦ per unit
cell are found. This is already comparable and even surpasses some of
the values extracted in subsection 10.2.3 for finite sample footprints. For

170

https://creativecommons.org/licenses/by/4.0/


10 .5 towards maximum acoustical activity

0

100

200

300

400

500

600

R
o

ta
ti

o
n

 a
n

g
le

 i
n

 °

Frequency f in kHz

Finite structure FEM MeasurementBand structure

0 10050 0 10050 0 10050

Frequency f in kHzFrequency f in kHz

N  = N  = 3� �
N = 18z

N = 12z

N = 6z

N  = N  = ∞� �

N  = N  = 5� �
N  = 12z

N = 12z

N  = N  = 2� �

(a) (b) (c)

Figure 10.17: Summary of the numerically and experimentally determined
rotation angles as a function of the excitation frequency. Samples with side
lengths of (a) Nx = Ny = 2, (b) Nx = Ny = 3, and (c) Nx = Ny = 5 are
depicted. Experimental data (circles), finite structure calculations (solid lines),
and rotations angles from bandstructure simulations (dashed line) are depicted.
Experimentally, rotation angles exceeding 500◦ were found. This figure is
adapted from [149] (CC BY 4.0).

Nx = 2, rotation angles approaching 30◦ per unit cell were determined
experimentally.

Frequency domain calculations and bandstructure calculations show good
agreement. Remarkably, the resonances on the top surface of the sample
do not seem to play as much of a role as in the previous experiments.
This might be attributed to the lacking top plate. Systematically, smaller
rotation angles were measured in the experiments than predicted numerically.
Most certainly, this is related to residual structural defects. Bandstructure
calculations showed that the results depend quite sensitively on both the bar
thickness d and the cube size c. Additionally, the Young’s modulus of the
constituent material might be slightly different for the samples fabricated
here. Although the same setup with the identical photoresist was used for
fabrication, the printing strategy itself differed vastly. Especially the scanning
speed of the laser beam and the laser intensity were chosen differently. As
has been shown previously [76], this influenced the crosslinking of the
polymer drastically. Hence, differences in the resulting Young’s modulus
seem feasible. Both structural defects and uncertainties in the constituent’s
Young’s modulus can easily account for the small deviations observed.

As a result, the metamaterial design presented here approaches the funda-
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mental limit of 90◦ rotation per unit cell. Especially for the case of the infinite
crystal, a vast increase of the rotation angle was observed. Furthermore,
the rotation angles of the linear polarization exceeding the results from the
previous section were also experimentally obtained.

In conclusion, chiral metamaterials are an unprecedented and tailorable
tool to manipulate the linear polarization direction of a transverse elastic
wave. By scaling the lattice constant, the operation frequency of a material
can easily be adjusted to the desired frequency range. The demonstrated
rotation angles exceeding 360◦ are more than sufficient for most engineering
applications. Thereby, these metamaterials pave the road towards completely
controlling the polarization of elastic waves.

172



11
Chapter 11

Conclusions and Outlook

In this thesis, I have successfully designed, fabricated, modeled, and charac-
terized chiral mechanical metamaterials. Due to their additional degrees of
freedom, these so called Cosserat or micopolar materials exhibit properties
that go well beyond the scope of the classical Cauchy theory. I demonstrated
the presence of these new degrees of freedom by characterizing a quasi-
static push-to-twist coupling and acoustical activity in these metamaterials.
Thereby, both effects have been examined experimentally and numerically
using finite element calculations. The push-to-twist coupling and acoustical
activity are paradigms of chirality in mechanics, hence cannot be modeled
using the classical theory.

In the following, I will briefly summarize the key findings and put them
into perspective. In doing so, I will touch upon publications and applications
that have been inspired by the work presented in this thesis. In closing, I
will also shine a light on open prospects and challenges.

In Part I, starting from classical Cauchy continuum theory, I argued that
chirality played only a minor role in mechanics for decades. In fact, it has
been neglected altogether in the classical theory. It turned out that this
is deeply rooted in the underlying continuum assumption, which imag-
ines materials to be build up out of infinitesimal points. Yet, points are
always centrosymmetric objects making the Cauchy continuum inherently
centrosymmetric, hence achiral. I showed in chapter 2 that a fundamental
generalization of the Cauchy continuum, the micropolar continuum theory, is
required to treat chirality in mechanics. In that, the infinitesimal points of the
Cauchy continuum are replaced by finite sized point particles. This leads to a
break down of scale invariance and to the occurrence of characteristic length
scales in these micropolar materials. I reiterated that significant deviations
from the Cauchy continuum are expected when these characteristic lengths
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become comparable to sample dimensions. Most importantly, I presented a
push-to-twist coupling as a qualitatively new deformation mode that only
occurs in chiral material. It predicts that a bar from a chiral constituent
material twists when being subjected to an axial compression. Thereby, the
rotation occurs in the plane orthogonal to the compression axis.

In chapter 3 and chapter 4, I established the numerical and experimental
methods needed to study these push-to-twist couplings in metamaterials. In
doing so, I presented a sample design that forgoes sliding boundaries in the
experiments. Furthermore, I introduced the 3D printing techniques used for
the fabrication of the metamaterial samples.

Subsequently, I laid down mechanisms and unit cell blueprints for meta-
materials exhibiting said push-to-twist coupling in chapter 5. From those
blueprints, I picked a feasible candidate for a cubic unit cell and optimized
the geometry numerically. An easily accessible measure for the strength of
this coupling is twist angle per axial strain. Therefore, I studied this angle
for metmaterial samples containing N × N × 2N unit cells both numerically
and experimentally. Thereby, I determined twist angles exceeding 2◦ per
percent axial strain. As predicted by the micropolar continuum theory, the
twist angle is not constant, but rather depends on the scaling factor N. When
increasing the scaling factor from 1 to 5, the twist angle only decreases by
a factor of 2. This indicates that the relevant characteristic length scale is
on the order of the unit cell size. For large N, i.e. for sample dimensions
much larger than the characteristic length scale, the twist angle per percent
axial strain decreases proportional to N−1. Additionally, I showed that the
observed deformation is indeed a material property by finding the same
behavior in simulations of a homogeneous bar made out of a micropolar
material.

Our mechanism driven design guarantees by no means to find an optimum
design. Therefore, it is even more surprising that an approach based on topol-
ogy optimization yielded a remarkably similar geometry with comparable
twist per axial strain [81].

In in 2016 and 2017, these push-to-twist mechanical metamaterials were
proposed more or less simultaneously by Lakes in [142] and by us [2]. Since
then, these publications triggered a multitude of new chiral unit cell designs
and structures [116, 158–166]. Some of them exhibit even larger characteristic
lengths and twist angles per axial strain. Even applications like a laser
beam scanner based on a topological protected edge state [106] or auxetic
actuators [167] have been proposed.
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In chapter 6, I presented our very own approach to systematically increase
and tailor the characteristic length of chiral metamaterials. Therefore, I
introduced a simple analytical model which is capable of describing the
scaling of the twist per axial strain. Exploiting the physical insights of this
model, we modified the cubic unit cell presented in chapter 5. We mitigated
the influence of neighboring unit cells in a plane by introducing coupling
elements. Thereby, the modified unit cell has tetragonal symmetry. As a
result, both the twist angles and the characteristic length were drastically
increased. The largest twist angles even exceeded 10◦ per percent axial strain.
Even for the largest samples with N = 27, we found twist angles of about
5◦ per percent axial strain. This surpasses all twist angles found on the
cubic structure before. Other approaches exploiting tetragonal unit cells have
also been reported and have shown comparable results [158–160]. Yet, the
unprecedented hight number of unit cells, both in the numerical calculations
and experiments, makes our work unique.

In Part II, I focused on studying wave propagation in chiral metamaterials.
As a consequence of chirality, the phonon eigenstates are circularly polarized
and propagate with different phase velocities. In chapter 7, I showed that
this leads to acoustical activity, the rotation of the polarization direction of a
linear transversed polarization elastic wave upon propagation. This can be
considered the elastic counterpart of the well know optical activity.

Subsequently, I introduced the experimental and numerical methods to
characterize acoustical activity in chapter 8 and chapter 9. In the latter, I laid
out an experimental setup to excite waves in 3D printed microstructures in
the ultrasound frequency range. Therein, the displacements are measured
as a function of time using a stroboscopic illumination, which is slightly
detuned with respect to the excitation. The data obtained was later used to
determine the polarization direction, both of the excitation oscillation and of
the wave after propagating through the sample.

In chapter 10, I first presented band structure calculations of the cubic
metamaterial that has already been characterized in the static regime in chap-
ter 5. These showed consistently two nondegenerate, circularly polarized
transverse eigenstates along the principle axis - the prerequisites for acousti-
cal activity. The splitting between these two eigenstates generally increased
with frequency and decreasing samples size. Therefore we concluded that
effects beyond Cauchy elasticity are most prominent when either the wave-
length or the sample size becomes comparable to the characteristic lengths.
Achieving both at the same time will yield the biggest effects. Furthermore, I
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showed both numerically and experimentally that the metamaterial is acous-
tically active, even for finite sample sizes. Thereby, rotation angles of the
linear polarization exceeding 360◦ have been determined. This is more than
sufficient for any desirable engineering applications. Hence, by choosing
the right lattice constant or sample heights, arbitrary directions of the linear
polarization in the plane orthogonal to the propagation direction can be
realized. Finally in this chapter, I addressed the issue of bounds on the maxi-
mum achievable rotation angle in crystalline structures. I argued that this is
bound to be smaller than 90◦ per unit cell by symmetry. Consequently, we
optimized a unit cell that has been proposed by Lakes in order to approach
this fundamental limit. Thereby, rotation angles of about 30◦ per unit cell
were found experimentally.

It should be noted that all results presented in this thesis relate to certain
directions in the metamaterial crystal. Small deviations from these directions
might already drastically change the response of the material. Whilst for
some applications this anisotropy might be useful, it also requires good
alignment. Therefore, isotropic material properties would be desirable and
could increase the metamaterial’s applicability. Yet, getting isotropic material
parameters is notoriously difficult in mechanics when using crystalline struc-
tures. This presents a sharp contrast to optics, where the isotropic case and
the cubic case are formally equal in the long wavelength limit. Theoretically,
it should be possible to tailor a cubic unit cell to exhibit isotropic properties.
Though, since the isotropy is not protected by symmetry, it will critically
depend on precisely controlling all geometry parameters. Especially in ex-
periments, implementing such effective isotropic crystals will be challenging.
Another approach to achieve isotropy has been publish recently [150]. There,
the authors propose to use chiral quasi crystals. Nevertheless, the proposed
geometry stretches todays 3D printing capabilities to its limits. It will be
interesting to see whether one could achieve a reasonable isotropy with
feasible geometries.

Characterizing large characteristic lengths scales as in chapter 6 numeri-
cally requires simulating a large number of unit cells. As we became painfully
aware, this goes along with long computation times and excessive memory
consumption. Whilst in the dynamic regime Bloch periodic boundaries ease
this problem, comparable boundaries are currently lacking for the static case.
Having these would be a major improvement for the study of these metama-
terials with internal degrees of freedom. Especially design approaches based
on topological optimization would profit from such boundary conditions.
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In chapter 2 I argued that metamaterials turn the traditional approach of
material science on its head, in the sense that they pose a creative challenge
to envision new structures having the desired material properties. Therefore,
finding routines to retrieve material parameters uniquely will be the major
challenge. Solving it could potentially speed up development cycles of meta-
materials and thereby bringing metamaterials closer to everyday applications.
Ideally, one would even find analytical expression linking certain geometry
parameters to the effective material properties. In that regard, two rather
recent publications [145, 168], which established analytical expression, could
serve as role models.
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Appendix A

Sample Directory

Here, all input parameters for the fabrication of the metamaterial samples
are given. This includes geometrical parameters of the unit cell design and
printing settings.

A.1 Elastostatic: Push-to-Twist Coupling

A.1.1 Cubic Metamaterial

All structures in chapter 5 were printed using the Nanoscribe instrument.
The printing parameters are given in Table A.1.

As has been discussed in chapter 5, the geometry data needs to be corrected
for the finite voxel size. Especially the relatively large height of the voxel

Parameter Value

Slicing mode Fixed
Slicing distance in µm 0.5
Contour count 0

Hatching distance in µm 0.2
Hatching angle in ◦ 90

Hatching angle offset ◦ 90

Laser power in % 45

Scan speed in m s−1
0.1

Table A.1: List of printing parameters used to print the cubic metamaterial
samples with the Nanoscribe instrument.
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a sample directory

Figure A.1: Illustration of the cubic meta-
material unit cell. To account for the finite
voxel size, the geometry parameters need
to be adapted. The individual geometry
parameters are defined as indicted. This
figure is adapted from [2].
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N d′ in µm d′′ in µm r′1 in µm r′′1 in µm r′2 in µm r′′2 in µm

1 28.5 29.5 162.0 160.0 198.0 200.0
2 13.5 14.5 82.0 80.0 98.0 100.0
3 5.5 9.0 55.3 53.3 64.7 66.7
4 2.2 6.7 42.0 40.0 48.0 50.0
5 1.2 5.3 34 32 38 40

Table A.2: List of geometry parameters used to correct the finite voxel size of
the Nanoscribe instrument. The parameters are defined in Figure A.1.

leads to considerable deviations, when not taken into account properly.
Therefore, the geometry parameters depicted in Figure A.1 were optimized
for every N to bring the fabricated dimensions close to the targeted geometry.
This was done for every scaling factor N individually. All parameters are
summarized in Table A.2.

A.1.2 Tetragonal Metamaterial

For the samples printed using the Nanoscribe system, the printing and
geometry parameters are given in Table A.3 and Table A.4. The different
parameters are defined in Figure A.1 and Figure A.2.
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Figure A.2: Illustration of the tetrago-
nal metamaterial unit cell. To account
for the finite voxel size, the geometry
parameters need to be adapted. The
individual geometry parameters are
defined as indicted. The parameters
of the blue parts are defined in Fig-
ure A.1. This figure is adapted from
[118].

d′ in µm d′′ in µm r′1 in µm r′′1 in µm r′2 in µm r′′2 in µm

3.5 6.5 34.0 32.0 41.0 41

d′T in µm d′′T in µm d′′′T in µm

1.8 2.9 6.0

Table A.3: List of geometry parameters of the tetragonal unit cell used to correct
for the finite voxel size of the Nanoscribe instrumentation. The parameters are
defined in Figure A.2.

Parameter Value

Slicing mode Fixed
Slicing distance in µm 0.7
Contour count 0

Hatching distance in µm 0.3
Hatching angle in ◦ 90

Hatching angle offset ◦ 90

Laser power in % 50

Scan speed in m s−1
0.1

Table A.4: List of printing parameters used to print the tetragonal metamaterial
samples using the Nanoscribe instrument.
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d′ in µm d′′ in µm r′1 in µm r′′1 in µm r′2 in µm r′′2 in µm

1.6 2.8 16.5 15.8 18.7 19.7

d′T in µm d′′T in µm d′′′T in µm

1.2 1.2 2.8

Table A.5: List of geometry parameters of the tetragonal unit cell used to
correct for the finite voxel size of the Nanoscribe instrument. The parameters
are defined in Figure A.2.

Parameter Value

Slicing distance in µm 0.3
Hatching distance in µm 0.2
Scan speed in m s−1

0.4

Table A.6: List of printing parameters used to print the tetragonal metamaterial
samples using the multifocus setup.

Both the voxel size and the lattice constant were different in the multifocus
setup. Therefore, other printing parameters and voxel corrections were used.
These are given in Table A.5 and Table A.6.

A.2 Elastodynamics: Acoustical Activity

Here, all parameters used for the fabrication of the samples presented in
the second, elastodynamic part of the thesis are presented. The additional
parameters of the tetragonal unit cell are defined in Figure A.1. The ones
used for the fabrication are equal to the parameters given in Table A.2 for
the case of N = 2.
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Effective Material

Parameters

B.1 Elastostatic: Push-to-Twist Coupling

The effective material parameters of a micropolar continuum used to charac-
terize the static push-to-twist coupling are given here.

B.1.1 Isotropic Micropolar Material Parameters

This parameter set was already published in [2]. As discussed in the chap-
ter 5, these material parameters do not satisfy the conditions for passive
materials. Data derived with these parameters are presented and discussed
in chapter 5.

For isotropic material, the elasticity tensors C, A, and B are given by

Cklmn = C1δklδmn + C2δkmδln + C3δknδlm,
Aklmn = A1δklδmn + A2δkmδln + A3δknδlm,
Bklmn = B1δklδmn + B2δkmδln + B3δknδlm.

In that, the material parameters are given as: C1 = −6.14 MPa, C2 =
97.41 GPa, C3 = −97.37 GPa, A1 = 0.42 N, A2 = −1.85 N, A3 = 3.11 N,
B3 = −7500 N/m, B1 = B2 = 0.

B.1.2 Cubic Micropolar Material Parameters

This parameter set was presented by Yi Chen in [60]. Yet, the parameters
were scaled to match the constituent’s Young’s modulus of E = 2.6 GPa and

183



b effective material parameters

a lattice constant of a = 500 µm. Note that the definition of Voigt’s notation
in the first part of the thesis differs from the one used in [60] and for the
parameters given here. Instead, the notation is defined by

ε̄1 = ε11, ε̄2 = ε22, ε̄3 = ε33, ε̄4 = ε23, ε̄5 = ε31,
ε̄6 = ε12, ε̄4 = ε32, ε̄8 = ε13, ε̄9 = ε21. (B.1)

C11 = 6.4× 107 Pa
C12 = 1.7× 107 Pa
C44 = 9.8× 106 Pa
C47 = −5.3× 104 Pa

A11 = 1.3 N
A12 = 1.2 N
A44 = 4.7×10−2 N
A47 = 3.0×10−2 N

B11 = −5.6×103 N/m
B12 = −4.6×103 N/m
B44 = 135 N/m
B47 = −169 N/m

Data derived with these parameters are presented and discussed in chap-
ter 5.

B.1.3 Tetragonal Metamaterial

This parameter set was deduced by Patrick Ziemke and is published in [118].
Note that the definition of Voigt’s notation in the first part of the thesis
differs from the one used in [118] and for the parameters given here. Instead,
the notation is defined by

ε̄1 = ε11, ε̄2 = ε22, ε̄3 = ε33, ε̄4 = ε23, ε̄5 = ε31,
ε̄6 = ε12, ε̄4 = ε32, ε̄8 = ε13, ε̄9 = ε21.
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C11 = 1.5× 105 Pa
C12 = 1.9× 104 Pa
C13 = −1.7× 104 Pa
C22 = C11

C23 = C13

C33 = −13.7× 105 Pa
C44 = 9.1× 106 Pa
C47 = −52 Pa
C55 = C44

C58 = C47

C66 = 6.2×103 Pa
C69 = −45 Pa
C77 = 5.7×103 Pa
C88 = C77

C99 = C66

A11 = 1.4×10−5 N
A12 = 1.1×10−8 N
A13 = 1.0×10−6 N
A22 = A11

A23 = A13

A33 = 2.7×10−3 N
A44 = 4.9×10−3 N
A47 = −9.8×10−7 N
A55 = A44

A58 = A47

A66 = 7.4×10−5 N
A69 = 1.4×10−7 N
A77 = 1.0 N
A88 = A77

A99 = A66

B11 = 3.7×10−2 N/m
B12 = 2.4×10−3 N/m
B13 = 0.9 N/m
B22 = B11

B23 = B13

B31 = −8.2×10−2 N/m
B32 = B31

B33 = 51 N/m
B44 = 7.8×10−3N/m

B47 = −1.5×10−2 N/m
B55 = B44

B58 = B47

B66 = −78 N/m
B69 = 7.9×10−5 N/m
B74 = 1.5×10−3N/m
B77 = 1.3 N/m
B88 = B66.

Data derived using these parameters are presented and discussed in
chapter 6.
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B.2 Elastodynamics: Acoustical Activity

The effective material parameters used to characterize the acoustical activity
are given here. Results derived from these parameters are presented and
discussed in chapter 10.

This parameter set was deduced by Yi Chen and is published in [60]. Note
that the definition of Voigt’s notation in the first part of the thesis differs
from the one used in [60] and for the parameters given here. Instead, the
notation is defined by

ε̄1 = ε11, ε̄2 = ε22, ε̄3 = ε33, ε̄4 = ε23, ε̄5 = ε31,
ε̄6 = ε12, ε̄4 = ε32, ε̄8 = ε13, ε̄9 = ε21.

The material parameters were found to be:

C11 = 6.4× 107 Pa
C12 = 1.7× 107 Pa
C44 = 9.8× 106 Pa
C47 = −5.3× 104 Pa

A11 = 0.50 N
A12 = 0.47 N
A44 = 1.9×10−2 N
A47 = 1.2×10−2 N

B11 = −4.5×103 N/m
B12 = −3.7×103 N/m
B44 = 108 N/m
B47 = −136 N/m
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Appendix C

Bandstructures of

Infinite Crystal

In the bandstructure calculation for the infinite crystall shown in section 10.1,
only propagations along the z-direction were considered. Calculations for a
path through the first Brillouin zone are depicted in Figure C.1. Clearly, the
degeneracy is lifted for the Γ-R direction. This is to be expected, since this
direction exhibits a three-fold rotational symmetry around the propagation
axis. Along the borders of the Brillouin zone, the transversal bands are
again degenerate. Both findings are in agreement with the reasoning in
section 10.1. In the lower panel, the ratio between the phase velocities of the
the two transverse bands v1 and v2 is given. It also shows that the bands are
degenerated in the center and at the edges of the Brillouin zone.

The corresponding eigenmodes for wave propagation along one of the
principle axes are depicted in Figure C.2. Additionally, the mean displace-
ment vector of a single unit cell

Ñ
ū is plotted. For both transverse modes, the

mean displacement vector is a complex quantity. The real and imaginary part
are of equal magnitude, yet they include an angle of 90◦. Both are in a plane
perpendicular to the wave vector

Ñ

k . An investigation of the eigenmodes
along the Γ-R direction would yield similar results.
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Figure C.1: Phonon bandstructure of the metamaterial crystal. The bandstruc-
ture is depicted not only for wave propagation along the z-axis, but also for
some selected high-symmetry directions. Additionally, the relative frequency
splitting along the z-direction and along the volume diagonal are plotted at the
bottom. The red dots correpsond to the modes depicted in Figure C.2. This
figure is adapted from [2].
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Figure C.2: Phonon eigenmodes. The three lowest phonon eigemodes corre-
sponding to the red points in Figure C.1 are depicted. Additionally, the real
(red) and imaginary part (blue) of the mean displacement vector

Ñ
ū is depicted.

For the circular polarized transversal modes (a), (b), (d), and (e), the real and
imaginary parts of the displacement vector is in a plane orthogonal to wave
vector

Ñ

k (black). Also, they include an angle of 90◦. Whereas the longitudinal
mode is linearly polarized. Hence, the imaginary part of the displacement
vector is zero. This figure is adapted from [2].
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