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To model the mechanical behavior of granular materials, a
reliable description of the material properties is indispens-
able. Individual grains are usually not perfectly spherical.
In batteries, for instance, lithium nickel manganese cobalt
oxide (NMC) is a frequently used material, consisting out
of particles with possibly ellipsoidal like shapes. As par-
ticles may plastically deform under increasing stresses, the
paper presents a theoretical model for the normal contact
of elastoplastic ellipsoidal bodies for the use in the context
of the discrete element method (DEM). The model can be
considered as extension of the elastic, elastic-plastic, fully
plastic Thornton model by using a more general description
to incorporate elliptical contact areas. Further, a formula-
tion for the unloading from elastoplastic loading is derived
in such a way, that the contact force is a continuous function
of time at the unloading point of the history. All underlying
formulae to describe the force-displacement relationship for
the static contact problem are derived, partly based on finite
element analysis (FEA). To verify the new model, FEAs are
performed and their results compared with the model predic-
tions.

Nomenclature
a,b,c semi-axis of ellipsoid
ac,bc semi-axis of contact ellipse
aY ,bY semi-axis of contact ellipse at elastic limit
ap,bp semi-axis of contact area with uniform pressure
cc equivalent contact radius
cY equivalent contact radius at elastic limit
cp equivalent contact radius of contact area with

uniform pressure
c∗ maximum equivalent contact radius in history
cmax equivalent contact radius at elastic-plastic limit
e eccentricity of contact ellipse
Ee,E (effective) Young’s modulus
FH elastic Hertzian normal force
Fn plastic normal force (loading)
Fn,UL plastic normal force (unloading)
FpY (Hertzian) normal force at elastic limit
f1, f2 correction factors
F0 intersection force with y-axis
F∗,H Hertzian force at point of maximum

displacement in history
F∗,pY plastic normal force at auxiliary point
F∗,pmax plastic normal force at point of maximum

displacement in history
K1,2 direction of principal curvature
n constant
m,o, p constants
s, t,u constants
p0 maximum pressure at contact centre
pY maximum pressure at elastic limit
pmax maximum pressure at elastic-plastic limit
p(x,y) pressure distribution across contact area
r̂ mean particle radius
Re effective contact radius
Re,p effective plastic contact radius
Re,pmax modified effective plastic contact radius
Y yield stress



α inclined angle
β constant
δn displacement in normal direction
δY displacement at elastic limit
δp permanent plastic displacement
δ∗ maximum displacement in history
εmax constant
κ1,2 principal curvature values
κn,pY plastic contact stiffness
κH,pY Hertzian contact stiffness
λmax constant
ν Poisson’s ratio
π pi
σv,M von Mises equivalent stress

1 Introduction
Granular materials are involved in many industrial or

agricultural processes and technical systems. Understand-
ing the motion and the impact of the individual grains is
of significant importance to optimize processes and to im-
prove efficiency and performance of systems. The discrete
element method (DEM) [1] is a well known and widespread
method to simulate large particle structures. In the DEM,
the interactions between particles are represented by a vir-
tual overlap (compression) or a gap between the surfaces of
particles (tension). The temporal evolution of the motion of
an individual particle is gained by numerical integration of
the particle’s acceleration, which is calculated based on the
acting contact forces. For those, an appropriate formulation
is necessary to realistically describe the mechanical interac-
tions. At best, the rules are based on the theory of contact
mechanics, which incorporates the material properties of the
solid particles. These can be determined experimentally, for
instance, by performing indentation tests [2]. In addition,
Finite-Element-Analyses (FEAs) are an option to provide de-
tailed contact information to develop suitable analytical for-
mulae for the use in the context of the DEM.

The individual contact between two solid bodies is of
complex nature. Locally, deformations occur which influ-
ence the formation of the contact area and the related con-
tact forces. Even if elastic material behavior is assumed
in the beginning, the relationship between force and dis-
placement is usually non-linear. With increasing compres-
sion, high stresses can be generated in the particles, which
may lead to plastic deformations. Lithium nickel manganese
cobalt oxide (NMC), for instance, is a material often used
in battery cathodes. Observations and experimental stud-
ies showed that NMC particles behave elastically under low
levels of compaction, only. Already around 0.1% reduction
of their radius, plastic deformations may occur [3]. During
the manufacturing of battery electrodes, an essential step is
the calendering, in which the electrode is mechanically com-
pressed. As this compression step changes the microstruc-
ture, it strongly influences the performance and lifetime of a

battery [4–9]. Consequently, the need to correctly describe
the mechanical contact in between different grains came up,
to be able to determine the overall microstructural properties
and to optimize the calendering step.

For the elastic contact, Hertzian theory [10] is well-
known. For the plastic contact behavior, various theories
exist. Simple models assume a linear relation between the
displacement and the resulting contact force [11–14]. How-
ever, in experiments, as well as in FEAs it was shown that
the real relationship directly after reaching the yield point is
still of non-linear nature [15–26] and cannot be sufficiently
described by a simple linear model [27].

Mesarovic and Fleck [18, 28] showed that an individ-
ual contact passes different regimes during loading. With
increasing contact size, the regimes are the elastic regime
described by Hertz, an elastic–plastic zone followed by the
fully plastic similarity regime and finally the finite deforma-
tion regime. The characteristics of the pressure distribution
change while passing the different phases, which will be dis-
cussed in full detail at the beginning of section 3.

More complex models, e.g. Thornton [29], Vu-Quoc
and Zhang [15] or Martin [30], maintain a non-linear force-
displacement relationship to better capture the plastic contact
evolution as will be discussed below.

A model for spherical particles differing between an
elastic and a plastic phase was developed by Thornton
[29, 31]. Thornton divides the evolution of the contact pres-
sure into two phases. At the beginning of the contact evolu-
tion, when the contact is still elastic, the parabolic Hertzian
contact pressure distribution is valid. This phase is followed
by a plastic phase, where the Hertzian pressure is truncated
according to a defined pressure limit to account for the ob-
served flattening of the contact pressure distribution [32].
Unloading is assumed to be elastic, including a reduced con-
tact curvature to incorporate the remaining plastic deforma-
tions. The model of Martin [30] is equal to the model of
Thornton [31], containing adhesion of particles. In [33], Li
et al. extend and adapt the theory of Thornton to include
the varying curvature during loading, as well as the elastic-
plastic transition zone. For the elastic-plastic regime, they
use a more detailed pressure distribution function based on
FEAs.

Vu-Quoc and Zhang [15] propose a model based on the
additive decomposition of the contact radius into an elastic
and a plastic part. To take care of the plastic deformations,
they correct the contact curvature using an adjustable coeffi-
cient. However, a linear relationship for the adjustable coeffi-
cient and for the plastic part of the contact radius is assumed,
which is not consistent with experiments and observations in
FEAs [33].

So far, the afore named analytical models are restricted
to spherical shapes only. For ellipsoidal shapes, only few
FEAs were performed, e.g. [34, 35]. Theoretical models for
the contact of two ellipsoidal bodies exist solely in the con-
text of rough surfaces [36–39]. In these models, an asperity
of a rough surface is assumed to consist out of ellipsoidal
spots to incorporate the effect of anisotropy. However, most
of the models are devoted to the loading situation, only. In



recent developments by Jamari and Schipper [37, 38], com-
plex relations and approximations for the elliptical integrals
[40, 41], which appear in the theory of the elliptical contact
according to Johnson [42, 43], are applied. The main aim of
the developed model is to describe the permanent change of
the surface topography as a result of the plastic deformation.
Nonetheless, several material parameters need to be identi-
fied from experiments to make use of their theory. Beyond
that, the focus is set to the loading and the complete unload-
ing stage itself, while the force-displacement relation, espe-
cially in the unloading regime is not reported. To know this,
is though essential to make use of a model in the context of
mechanical DEM. An extensive review concerning investi-
gations on the elastoplastic contact can be found in [44].

In this paper, a theoretical model for the normal contact
of two triaxial elastoplastic ellipsoidal bodies is developed
extending the theory of [31] with the help of FEAs. The for-
mulae to describe the force-displacement relationship in the
static contact problem are derived and presented. Lastly, the
theory is validated by comparing the model predictions with
the results of FEAs. Special attention is paid to a reliable de-
scription of the force-displacement connection to finally in-
corporate the new model in the context of mechanical DEM.

2 Hertz theory of elastic contact
Consider the contact interaction between two elastoplas-

tic ellipsoidal bodies I and J. Use of the von Mises stress
σv,M distinguishes two overall zones. If the equivalent stress
σv,M in the particle produced by the contact force FH stays
below the yield strength of the material in simple tension Y ,
the contact behavior is purely elastic. In this case the situa-
tion is describable with the established Hertz theory [10,42].
In Hertz theory, when loaded in normal direction, the two
solids will deform and touch each other at an elliptical re-
gion. Hertz links the real deformation of the contact zone to
the virtual overlap δn of the two bodies. The Hertzian pres-
sure distribution p(x,y) along the elliptical contact surface
has the parabolic profile

p(x,y) = p0

[
1−
(

x
ac

)2

−
(

y
bc

)2
]1/2

. (1)

The maximum contact pressure p0 occurs at the center of the
contact ellipse, which has the major and minor semi-axes ac
and bc, cf. Fig. 1. The variable c2

c = acbc is the so-called
equivalent contact radius, which would produce a circle of
the same size as the area of the contact ellipse. For the spe-
cial case of two spheres, the ellipse reduces to a circle with
ac = bc = cc. KI

1,K
I
2 and KJ

1,K
J
2 are the two systems of the

principal curvatures, which do not have to coincide with each
other. In general, they are twisted by the angle of inclination
α, cf. Fig. 1. Further, for any position at the surface of a par-
ticle, its two principal curvatures are perpendicular to each
other.

For the definition of the effective contact radius Re, it is

Fig. 1. Elliptical contact area of two ellipsoidal bodies with the semi-
axes ac,bc, the principal curvature directions KI,J

1,2 and the angle of
inclination α

Fig. 2. Contact geometry of two ellipsoidal bodies with the principal
curvatures κ

I,J
1,2

important to provide a detailed description of the geometry
in the contact point. Hertz theory applies only on condition
that the surfaces of the contacting solids are continuous and
the contact deformation induced is significantly smaller than
the size of each solid. The contact problem remains of local-
ized nature and the small deformed contact regions thus may
be approximated as quadric curved surfaces. To describe
the contact geometry, the two principal curvatures of each
solid, κI

1,κ
I
2,κ

J
1 and κJ

2, at the contact point are of interest,
cf. Fig. 2. They crucially influence the arising contact force
regardless of the overall shape of each solid. Considering
non-spherical particles, the calculation of the principal cur-
vature is not trivial. According to Appendix A and in detail
explained in [45], the principal curvature of an ellipsoid can
be determined. The maximum contact pressure p0 is defined
as

p0 =
2Eecc

πRe f 3
1

, (2)



where the effective Young’s modulus Ee

Ee =

(
1−νI2

EI +
1−νJ2

EJ

)−1

, (3)

depends on the Young’s modules Ek of the material of each
particle and their Poisson’s ratio νk, k = I,J. To capture the
ellipticity of the contact area, so-called correction factors f1
and f2 are introduced. They fit the elliptical integrals ap-
pearing in the expression for the eccentricity of the contact
ellipse [43]. Due to their simple formulation, f1 and f2 are
sufficient for typical geometries in terms of precision and
therefore more suitable for practical purposes. The correc-
tion factors gradually decrease from a value of one as the
contact becomes more elliptical. The approximated func-
tions according to [43] are

f1 ≈ 1−

[(
A
B

)0.0602
]1.456

,

f2 ≈ 1−

[(
A
B

)0.0684
]1.531

.

(4)

Given the principal curvatures and the inclination angle α,
cf. Appendix A, the variables A and B in Eqn. (4) can be
determined [42] as

A+B =
1
2
[
κ

I
1 +κ

I
2 +κ

J
1 +κ

J
2
]

,

B−A =
1
2

[(
κ

I
1−κ

I
2
)2

+
(
κ

J
1−κ

J
2
)2

+2
(
κ

I
1−κ

I
2
)(

κ
J
1−κ

J
2
)

cos(2α)
]1/2

.

(5)

With these values the effective contact radius

Re =
1
2

1√
AB

, (6)

the eccentricity

e2 = 1−
(

bc

ac

)2

≈ 1−
(

A
B

)4/3

(7)

and the major and minor semi-axes

ac = cc
(
1− e2)−1/4

, bc = cc
(
1− e2)1/4

(8)

are identified. The effective contact radius and the virtual

overlap δn are related by

δn =
acbc

Re

f2

f 2
1
=

c2
c

Re

f2

f 2
1

. (9)

Finally, the elastic contact force FH is obtained by the inte-
gration of the contact pressure p(x,y) over the contact area
Ac = πacbc as

FH =
4
3

Ee
√

Reδn
3/2 f

−3/2
2 . (10)

3 Theory of elastoplastic contact
Already since the early 1950’s, experiments on the nor-

mal indentation of an elastoplastic half-space by a rigid
sphere were performed [32]. The findings were later con-
firmed by FEAs, cf. [17–24]. All results, ours in section 4
included, show the same behavior.

Under normal compression until a maximum pressure
value of about p0 = pY = 1.6Y , the contact behaves purely
elastic and the pressure distribution is Hertzian [17, 42]. In
the subsequent elastic-plastic regime, small plastic deforma-
tions occur under the contact surface, which are captured by
an elastic deformation of the neighbouring solid material.
Once the threshold pY is exceeded, a localized plastic de-
formation zone spreads out and finally reaches the contact
surface [42]. This process is accompanied by a significant
change in the pressure distribution. The increase of the max-
imum contact pressure slows down until an almost constant
value of the contact pressure over an enlarging area around
the center of the contact ellipse is reached. We call this phase
elastic-plastic transition regime.

If the maximum pressure during the indentation of a
sphere reaches a value of about three times the yield stress
Y [17, 32, 42], the pressure distribution is completely flat-
tened and the so-called fully plastic similarity regime begins.
Further increase of the normal contact force leads to the en-
largement of the contact ellipse, only. The maximum pres-
sure does not rise further. For ellipsoidal particles, the limit-
ing value of the maximum pressure depends not only on the
material, but on the geometry of the particles as well, which
will be shown in section 4.

Finally, for large deformations, represented by huge vir-
tual overlaps, finite deformations will dominate the contact
behavior and plastic deformations extend beyond the contact
area [46]. The findings in [18] and [47] show that the finite
deformation regime is entered for a ratio of cc/r̂ = 0.16 ..0.4
for the equivalent contact radius cc and the mean particle ra-
dius r̂. Such large deformations are beyond the scope of the
here developed theory.

Thornton [29, 31] was the first, who suggested to split
the contact pressure distribution into an elastic and a plas-
tic part. In the elastic regime, the pressure distribution fol-
lows the Hertzian profile, while in the plastic phase, the
Hertzian pressure distribution is truncated to describe the
arising flattening of the pressure profile. Further in [33], the



Fig. 3. Geometry of an ellispoid with the semi-axes a,b and c

initially elastic-fully plastic model was extended to capture
the elastic-plastic transition regime.

In this work, we pursue the approach of Thornton with
a variation of the elastic-plastic phase and the unloading
regime to incorporate ellipsoidal geometries. Hertzian theory
is assumed to be valid until the elastic limit is reached. In the
elastic-plastic and fully plastic phase, a truncated Hertzian
pressure distribution is presumed. Consequently, the con-
tact curvature in the here developed theory does not change
during loading and is determined by Eqn. (6) from the un-
deformed particle geometries. During unloading, Hertzian
theory is assumed to be valid again, but a reduced plastic cur-
vature is taken into account, as well as a changed unloading
overlap to incorporate the changes in the contact curvature
due to permanent plastic deformations. Below, all necessary
formulae for the different regimes - elastic-plastic loading,
fully plastic loading, as well as the unloading stage - are de-
rived and discussed in detail.

3.1 Plastic contact for an ellipsoid

An ellispoid is described in local coordinates by the im-
plicit function

( x
a

)2
+
( y

b

)2
+
( z

c

)2
= 1 , (11)

where a,b and c are the three semi-axes, cf. Fig. 3. Once the
elastic limit p0 = pY is reached, the plastic contact force

Fn = FH −
bp∫

0

ap∫
0

[p(x,y)− pY ] dxdy (12)

is determined by the difference of the elastic contact force
FH , which would result in the same contact area Ac = πacbc,
less the elastic cap, which exceeds the yield criterion pY , cf.
Fig. 4. The variables ap and bp are the semi-axes of the cross
sectional area at the plastic plateau, over which a uniform
contact pressure is assumed. To formulate an appropriate
theory for ellipsoidal particles, we introduce the transforma-

Fig. 4. Plastic contact pressure distribution in normal direction with
the yield pressure pY , the semi-axes of the contact area ac,bc and
the semi-axes of the contact area at yield pressure ap,bp

tion of cartesian coordinates into polar coordinates first

φ(r,ϕ) =
[

apr cosϕ

bpr sinϕ

]
,

∂φ

∂(r,ϕ)
=

[
ap cosϕ −apr sinϕ

bp sinϕ bpr cosϕ

]
,

det
∣∣∣∣ ∂φ

∂(r,ϕ)

∣∣∣∣= apbpr ,

r ∈ [0,1] , ϕ ∈ [0,π/2] .

(13)

Application of the transformation in Eqn. (13) to Eqn. (12)
results in

Fn = FH −4
1∫

0

π/2∫
0

[p(r,ϕ)− pY ]apbpr dϕdr . (14)

With the relation in Eqn. (1), it follows

Fn = πapbp pY +FH −4p0

1∫
0

π/2∫
0

√
1−
(

apr cosϕ

ac

)2

−
(

bpr sinϕ

bc

)2

apbpr dϕdr .

(15)
Due to the flattening of the contact pressure in the plastic
regime in parallel to the contact area, we assume that the
ratio of the contact semi-axes ac/bc and the semi-axes at the
plateau ap/bp is the same, which gives

ap

ac
=

bp

bc
=

cp

cc
, (16)

where cp is the equivalent contact radius of the contact area
with uniform pressure. Insertion of Eqn. (16) into Eqn. (14)



leads to

Fn = πapbp pY +FH

−2πp0apbp

∫ 1

0

√
1−
(

cp

cc

)2

r2r dr .
(17)

Rewriting of Eqn. (17) as

Fn = πapbp pY +FH −2πp0apbp

1∫
0

√
1−
(

cp

cc

)2

r2 · 2
2
· (−1)2 ·

(
cpcc

cpcc

)2

r dr ,
(18)

and making use of the integration rule

∫
(u(x))n ·u′ (x) dx =

1
n+1

(u(x))n+1 , (19)

gives us in combination with Eqn. (2)

Fn = πapbp pY +FH

[
1−
(

cp

cc

)2
]3/2

. (20)

As a second condition, according to Fig. 4, the yield contact
pressure pY has to correspond to the elastic contact pressure
p(x,y), when x = ap cosϕ and y = bp sinϕ, which gives

pY =
3FH

2πacbc

[
1−
(

cp

cc

)2
]1/2

. (21)

With the use of Eqn. (9) this leads to the relation

c2
Y

c2
c
=

[
1−
(

cp

cc

)2
]

, (22)

which can be simplified to

c2
c = c2

Y + c2
p (23)

and where cY is the equivalent contact radius at the elastic
limit. Finally, insertion of Eqn. (23) into Eqn. (20) gives the
generalized Thornton type normal force formulation in the
plastic regime for the contact of ellipsoidal bodies:

Fn = πpY
(
c2

c− c2
Y
)
+FpY (24)

3.2 Elastic-plastic zone

In reality, the material behavior is not perfectly elastic
- fully plastic, but involves different phases. Thus, the con-
tact behavior is described by the Hertzian theory until the
elastic limit p0 = pY = 1.6Y is reached for the first time.
At that point, the contact enters the elastic-plastic regime.
During the elastic-plastic transformation phase, the maxi-
mum contact pressure increases further, but slower, up to a
second threshold p0 = pmax = λmaxY [42]. While the maxi-
mum contact pressure increases and the pressure profile flat-
tens, the equivalent contact radius grows from the value cY
at the elastic limit to a value cmax = εmaxcY , when the max-
imum contact pressure reaches pmax. The exact values for
both maximum ratios λmax and εmax are material and geom-
etry dependent. The current value of 1.6 ≤ λ ≤ λmax in the
elastic-plastic regime varies conditional on the changes of
the current overlap and must increase only. In our model, λ

depends on the curvature in the contact point to incorporate
the influence of the eccentricity of the contact ellipse and of
the non-sphericity of the particle shape. In the elastic-plastic
regime, the force-displacement curve we now employ fol-
lows the relation

Fn = πpλ

(
c2

c− c2
Y
)
+FpY , pY ≤ pλ ≤ pmax , (25)

but with

pλ = λY . (26)

Although it is indicated in [42], that the normal contact pres-
sure varies with the contact radius, there is no exact solution
reported. Thus, in the present model we refer to the relation
for spheres in [33]. Extending a relation given there with the
help of the equivalent contact radius at the elastic limit cY
and the equivalent contact radius cc to ellipsoidal shapes, we
assume the relationship

pλ = λmaxY − (λmax−1.6)Y
[

εmaxcY − cc

(εmax−1)cY

]n

. (27)

If Eqn. (27) is divided by Y , the formula for λ

λ = λmax− (λmax−1.6)
[

εmaxcY − cc

(εmax−1)cY

]n

(28)

results. Given the fit parameters λmax, εmax and n, as well as
the equivalent contact radius at the yield point cY , the current
value of λ is calculated from Eqn. (28) as a function of the
current equivalent contact radius cc, which is again a function
of the overlap through Eqn. (9). This relation remains valid
until cc reaches the maximum value defined by

cY ≤ cc ≤ cmax = εmaxcY . (29)



The maximum value cmax is exactly reached, when the max-
imum pressure reaches pmax = λmaxY for the first time. The
corresponding overlap at the elastic-plastic limit, when cc =
cmax and p0 = pmax, is

δmax =
c2

max

Re

f2

f 2
1

. (30)

The parameters λmax and εmax, as well as the exponent n are
chosen to match the exact profile of λ, obtained from FEAs,
cf. section 4. To take into account the particle shape and
thus the ellipticity of the contact area, λmax and εmax are as-
sumed to depend on the principal curvatures κI

1,κ
J
1,κ

I
2,κ

J
2 in

the contact point of both particles through the dependence on
the effective contact radius Re. Details on these fit functions
will be given in section 4.

3.3 Fully plastic zone
If the overlap is larger than δmax in Eqn. (30), the fully

plastic similarity zone is entered. The maximum contact
pressure p0 stays from now on at the maximum value of
pmax = λmaxY and does not increase further. The force-
displacement relation is then

Fn = πpmax
(
c2

c− c2
Y
)
+FpY , (31)

which results in a linear rising behavior.

3.4 Unloading
As mentioned before, we neglect possible changing of

the curvature during elastic-plastic and fully plastic loading,
meaning that the curvature stays equal to 1/Re as determined
by Eqn. (6) from the undeformed particle geometries. We
now assume, following [31], that unloading from any point
is purely elastic and thus follows Hertzian theory. However,
due to the remaining deformation, it is performed with some
yet to be determined reduced plastic contact curvature 1/Re,p,
which is smaller than the initial contact curvature 1/Re of the
particle in the contact point. As further quantities we intro-
duce the ever occurred maximum displacement δ∗ and the
corresponding ever occurred maximum equivalent contact
radius c∗.

As a first step in motivating our theory, we neglect the
elastic-plastic regime for the time being. This means that the
theory is considered to be elastic - fully plastic, only. This
situation is visualized in Fig. 5. Due to the occurring plas-
tic deformations during the fully plastic regime, a permanent
plastic overlap δp remains after complete unloading, which
can be seen in Fig. 5 at the end of the orange dashed un-
loading path at point E. Thus, as only the elastic part of the
deformation will recover, we consider during unloading the
overlap

δUL = δn−δp , (32)

Fig. 5. Elastic - fully plastic theory according to [29]: contact force
vs. displacement

which results as the difference between the current overlap
δn and the remaining plastic overlap δp. In the maximum
point at the end of fully plastic loading, the contact area πc2

∗,
which would be reached in the fully plastic contact, has to
be equal to the contact area at the beginning of unloading
A∗,UL, to ensure continuity of the contact area at this point of
the history. This gives the condition

πc2
∗ = A∗,UL . (33)

Rewriting and making use of the relation given in Eqn. (9),

c∗2 = Reδ
∗ f 2

1
f2

= Re,p (δ∗−δp)
f 2
1
f2︸ ︷︷ ︸

A∗,UL

π

→ δp = δ∗

(
1.0− Re

Re,p

)
,

(34)

results in the relationship between the maximum ever oc-
curred overlap δ∗ and the plastic overlap δp.

After reaching the yield point, point A in Fig. 5, the force
increases linearly in the fully plastic regime. For the max-
imum overlap δ∗, ever experienced in the contact history,
the corresponding contact force is, according to Eqn. (24),
F∗,pY = πpY

(
c2
∗− c2

Y
)
+FpY . We call this point first auxiliary

point, which is labeled as C in Fig. 5.
To determine Re,p, further conditions are necessary. Tak-

ing the derivative of the fully plastic contact force formula-
tion in Eqn. (24) with respect to the normal overlap δn, leads
to the plastic contact stiffness kn,pY . At the elastic limit, point
A in Fig. 5, where p0 = pY and δn = δY , the plastic contact
stiffness corresponds with the elastic stiffness kH,pY accord-
ing to the Hertzian theory giving

πRe
f 2
1
f2

pY︸ ︷︷ ︸
kn,pY

=
2Ee
√

Re
√

δY

f
3/2
2︸ ︷︷ ︸

kH,pY

.
(35)



Details concerning the calculation and derivation of
Eqn. (35) are given in Appendix B. In accordance with
[31], a linear tangential extension of the fully plastic force-
displacement curve from the elastic limit δY to a vanishing
overlap of δn = 0, gives the point of intersection with the y-
axis F0 < 0. This point is the second auxiliary point, which
is labeled as B in Fig. 5. Due to the linear extension, the dif-
ference quotient, build up with the information at the elastic
limit and the information at point B, has to correspond to the
contact stiffness in Eqn. (35)

kn,pY = kH,pY =
FpY −F0

δY −0
. (36)

The same operation is performed with the information at
point B and the information of the first auxiliary point C. It
follows

kH,pY = kn,pY =
F∗,pY −F0

δ∗−0
. (37)

Reformulation of Eqn. (36) together with Eqn. (35) gives the
condition

F0 =FpY −
3
2
· 2

3
·

kH,pY︷ ︸︸ ︷
2Ee
√

Re
√

δY

f
3/2
2

·δY︸ ︷︷ ︸
FpY

= − 1
2

FpY .

(38)

Solving Eqn. (37) with respect to δ∗ and making use of
Eqn. (38) and the relation in Eqn. (9) results in

δ∗ ·Re
f 2
1
f2︸ ︷︷ ︸

c2∗

πpY =F∗,pY +0.5FpY ,

c2
∗ =

F∗,pY +0.5FpY

πpY
.

(39)

At point C, the unloading force F∗,pY ,UL is equal to the force
F∗,pY at the end of fully plastic loading to ensure continuity
of the contact force, which leads to the condition

F∗,pY ,UL = F∗,pY . (40)

If the contact would have deformed purely elastic, the cor-
responding elastic force F∗,H at δ∗ would be calculated by
the Hertzian theory, see Fig. 5 and Eqn. (10). Assuming that
unloading is elastic, the contact force during unloading can
be calculated from Eqn. (10) based on δUL, cf. Eqn. (32).
Furthermore, the yet unknown reduced plastic contact cur-

vature 1/Re,p is presumed to incorporate the occurring perma-
nent plastic deformations. Based on these two assumptions
and Eqn. (10), the relationship for the unloading regime is
then

Fn,pY ,UL =
4
3

Ee
√

Re,p (δn−δp)
3/2 f

−3/2
2 , δn ≥ δp

Fn,pY ,UL = 0 , δn < δp .
(41)

Insertion of Eqn. (34) in Eqn. (41) leads to

Fn,pY ,UL =
4
3

Ee
√

Re,p

(
δn

Re

Re,p

)3/2

f
−3/2
2 . (42)

For the maximum point C, where δn = δ∗, reformulation of
Eqn. (42) gives with the help of Eqn. (9)

F∗,pY ,ULRe,p = F∗,HRe . (43)

Thus, rewriting of Eqn. (43) and making use of Eqn. (39), as
well as the relation in Eqn. (9), leads to the formula for the
reduced effective plastic contact radius

Re,p =
F∗,HRe

F∗,pY

=
1

F∗,pY

4
3

Ee
√

Reδ
3/2
∗ f

−3/2
2 ·Re︸ ︷︷ ︸

(c2∗/f 2
1 )

3/2

=
4Ee

3F∗,pY

(
F∗,pY +0.5FpY

πpY

)3/2 1
f 3
1

.

(44)

With the reduced curvature, the plastic part of the overlap
can be determined according to Eqn. (34). Subsequently,
the contact force F∗,pY ,UL during unloading can be calculated
from Eqn. (41).

So far, the afore derived relations do only describe un-
loading for an elastic - fully plastic theory, where the elastic-
plastic transition regime is neglected. To incorporate the
transition phase, attention has to be paid to the fact that
the maximum pressure after exceeding the elastic limit at
p0 = pY increases further, until reaching the elastic-plastic
limit, when p0 = pmax. In Fig. 6, a symbolic load displace-
ment trajectory of the elastic-plastic and fully plastic loading
of the theory to be developed within this work is shown as
bold blue line from point A to point D. Again the elastic -
fully plastic theory according to [29] from Fig. 5 is shown
as thin line with the fully plastic loading from point A to
point C and the unloading regime from point C to point E.
As can be seen by comparing the path from point A to D
with the path from point A to C, the force-displacement re-
lation in the elastic-plastic regime is still non-linear, because
of the stiffnes still increasing during this regime. This leads



Fig. 6. Elastic - elastic-plastic - fully plastic theory (bold lines) vs.
elastic - fully plastic theory [29] (thin lines): contact force vs. dis-
placement

to a higher maximum force F∗,pmax at a certain value of the
maximum ever occurred overlap δ∗, labeled as point D in
Fig. 6. At this point, it has to be emphasized that continu-
ity of the contact force as a function of time is an important
feature to ensure stability of DEM simulations. Thus, to en-
sure continuity of the contact force in point D at unloading,
the condition in Eqn. (40) has to be adjusted. To this end,
we reformulate Eqn. (40) with some factor beta such that it
reads

βF∗,pY ,UL = F∗,pmax . (45)

This factor has the effect to shift the force at point C in Fig. 6
to point D, without changing the permanent plastic displace-
ment δp at point E. Solving Eqn. (45) for β and making use
of Eqn. (31) and Eqn. (25), the value of β is obtained as

β =
πpλ

(
c2
∗− c2

Y
)
+FpY

4
3

Ee
√

Re,p (δ∗−δp)
3/2 f

−3/2
2

. (46)

By multiplying Eqn. (41) with β, as given in Eqn. (45), the
new unloading force relation reads

Fn,UL =
4
3

Ee β
√

Re,p︸ ︷︷ ︸√
Re,pmax

(δn−δp)
3/2 f

−3/2
2 , δn ≥ δp

Fn,UL = 0 , δn < δp .

(47)

To ensure complete unloading from point D to the same point
E, δp in Eqn. (47) must not change and is still defined by
Eqn. (34). Thus, the only variable quantity in Eqn. (47) is the
effective plastic contact radius Re,p. By defining the modified
effective plastic contact radius Re,pmax as

Re,pmax = β
2 Re,p , (48)

Fig. 7. Elastic - elastic-plastic - fully plastic theory including the un-
loading regime: contact force vs. displacement

we finally get the compact force formulation for the unload-
ing case as

Fn,UL =
4
3

Ee
√

Re,pmax (δn−δp)
3/2 f

−3/2
2 , δn ≥ δp

Fn,UL = 0 , δn ≥ δp

,

(49)
which is illustrated in Fig. 7.

To conclude, it has to be mentioned, that the demand of
continuity of the contact force in point D leads to a sudden
jump increase of the contact radius in this point. This fact
does neither influence the stability of the DEM solution nor
changes the mechanical response of the system and is thus
negligible at this point. How to deal with this fact will be
content of future work.

4 Finite-Element-Analysis
To validate the theoretical model and to estimate the nec-

essary parameters, FEAs are performed for the contact of
two elastic-ideal plastic ellipsoids using ABAQUS [48]. The
ABAQUS STANDARD/EXPLICIT finite-element-module uses
a solution technology which is suitable for static, low-speed
and brief transient dynamic events, which require high accu-
racy in the stress solutions.

In the mechanical model, shown in Fig. 8, two ini-
tially in a single point touching ellipsoids are compressed
in normal direction. The contact condition is set to HARD-
CONTACT and frictionless in tangential direction. The con-
tact property is chosen to be of type GENERAL CONTACT.
The elements are of type C3D10, i.e. ten node tetrahedral el-
ements with quadratic ansatz functions for three dimensional
stress states. With respect to the symmetry of the particles, it
is sufficient to consider one eighth of each body, only. In the
symmetry planes perpendicular to the y and z axes, symmet-
ric boundary conditions are set.

The mesh is refined in the contact zone to better resolve
the contact process. Thus, an element size of 10 % of the
maximum semi-axis is chosen for the edges in the symme-
try planes perpendicular to the x axis, which decreases to a
value of 0.5 percent of the smallest semi-axis, when reaching



Fig. 8. Sketch of FEM model geometry with semi-axes ak,bk,ck,
k = I,J and displacement δ

the contact point. The initially touching ellipsoids are com-
pressed in x-direction displacement driven up to a value of
15 % of the mean radius r̂I,J , which is defined as

r̂I,J = r̂I + r̂J

r̂k =
[
akbkck

]1/3
, k = I,J .

(50)

As material parameter set NMC properties are chosen ac-
cording to [3] and listed in Tab. 1. 25 different cases with

Table 1. Materialparameter for NMC

variable value unit

equivalent radius r̂k ∈ [1,10] [µm]

Young’s modulus E 142000 [MPa]

Poisson’s ratio ν 0.25 [−]

density ρ 4750 [kg/m3]

yield strength Y 7900 [MPa]

tangent modulus E/1000 [−]

varying aspect ratios of the semi-axes and varying particle
sizes are performed, cf. Tab. 2.

Table 2. Case variations of the FE models

ak : bk : ck , k ∈ [I,J] r̂k , k ∈ [I,J] [µm]

1 : [0.5..2.0] : [0.5..2.0] [1.0..10.0]

In Fig. 9, the evolution of the normal contact pres-

Fig. 9. Normalized contact pressure vs. normalized contact semi-
axis in x-direction

sure along the semi-axis ac of the contact ellipse is plot-
ted. The yellow and the orange line (two left lines) represent
the elastic regime, where the maximum contact pressure is
p0 ≤ 1.6Y or ac/aY ≤ 1.0, respectively. The analytical Hertz
solution is shown as isolated points, which follow the rela-
tion in Eqn. (1). As there is a good agreement, the pressure
distribution is well described by Hertz in the elastic regime.
Besides, it is obvious, that with further increase of the maxi-
mum contact pressure the profile becomes less rounded than
the Hertz solution, as can be seen by comparing the light
grey points with the light grey curve. Finally, there is a pro-
nounced flattening of the profile resulting in a large region
of uniform maximum contact pressure and a sharp pressure
drop to zero at the boundary of the contact area. Further nor-
mal compression leads to an enlargement of the contact area,
only.

As it has been developed in section 3.2, the maximum
contact pressure increases during the elastic-plastic regime
further, but slower from 1.6Y up to λmaxY . In the meantime,
the contact radius grows from cY up to εmaxcY . The values
λmax and εmax have to be determined according to the results
of the FEAs. To find the profile of λ and the related max-
imum value of λmax, the information of the contact force is
taken from the FEAs, plotted as dots in Fig. 10. The force, re-
ceived from the FEA FFEM has to match the force calculated
based on the developed theory in Eqn. (25), which yields to
the condition

FFEM
!
= πλFEMY

[
c2

c− c2
Y
]
+FpY . (51)

Solving this relation for λFEM, leads to the profile of λFEM as
shown in Fig. 11. The points represent the FEA result, which
is fitted according to Eqn. (28), shown as solid line. λmax is
the maximum value of λFEM, when the plateau in the profile
is reached. This belongs to the point, when the maximum
contact pressure reaches pmax = λmaxY and the fully plastic
similarity regime is entered. From now on, an increase in
compression just leads to an enlargement of the contact area,
while the maximum contact pressure p0 remains at the limit
value pmax. The variable n is set to 1.8 to best fit the profile



Fig. 10. Normalized contact force vs. normalized displacement, ak :
bk : ck = 1 : 0.66 : 0.66, r̂k = 10.0, k = I,J

Fig. 11. Evolution of λ vs. normalized displacement, ak : bk : ck =
1 : 0.66 : 0.66, r̂k = 10.0, k = I,J

Fig. 12. FEAs and fit for λmax (left) and εmax (right) vs. normalized
effective contact radius Re/r̂I,J

of λ. εmax follows as the ratio of the contact radius at λmax
to the contact radius at the elastic limit, when λY = 1.6, as
εmax = cmax/cY .

If λmax and εmax of all 25 different FEA cases are plot-
ted versus the dimensionless effective contact radius Re/r̂I,J ,
a dependency of both values on the dimensionless effective
contact radius is clearly visible.

We take λmax and εmax as fit-functions

λmax
(
Re, r̂I,J)= m · exp{o·[Re/r̂I,J]}+p ,

εmax
(
Re, r̂I,J)= s · exp{t·[Re/r̂I,J]}+u ,

(52)

dependent on the dimensionless effective contact radius
Re/r̂I,J . Furthermore, m,o, p and s, t,u are fit parameters for
which the values

m = 1.05 , o =−4.62 , p = 2.42 ,

s = 8.19 , t =−6.14 , u = 1.14 ,
(53)

are obtained. The fit-functions follow as

λmax
(
Re, r̂I,J)= 1.05exp{−4.62·[Re/r̂I,J]}+2.42 ,

εmax
(
Re, r̂I,J)= 8.19exp{−6.14·[Re/r̂I,J]}+1.14 .

(54)

5 Validation
In this section, we validate the present model by com-

paring the model predictions with the results of FEAs. Two
selected cases are presented, where the material parameters
of NMC are used, which are given in Tab. 1.

In the first selected case, both particles have a mean ra-
dius of r̂I = r̂J = 4.675µm. The aspect ratios of particle I
and J differ and are given in Tab. 3. In a first step, the

Table 3. Aspect ratios of the first selected FEA case

aI : bI : cI aJ : bJ : cJ r̂I,J [µm]

1 : 1.25 : 1.5 1 : 0.5 : 0.8 9.35

particles are compressed displacement driven up to 4.5 % of
the mean particle radius r̂I,J in x-direction. Further, the par-
ticles are completely unloaded and then again compressed
up to 10 % of the mean particle radius in x-direction. In a
last step, the two ellipsoids are unloaded again. In Fig. 13,
the normalized overlap is plotted versus the normalized con-
tact force. The normalization is performed with the values
at the yield point, which are the overlap δY and the corre-
sponding contact force FpY . Thus, if a normalized overlap
of δn/δY = 1.0 is exceeded, the elastic-plastic regime is en-
tered. The result of the FEA is plotted with light blue points,
while the here developed theory is shown as dark blue solid
line. The mean error between the theory prediction and the
FEA is low with err = 1.01%. The dashed green curve in
Fig. 13 represents the model calculation for the contact of
two elastoplastic spherical particles, which have the same
mean radius of rI = rJ = 4.675µm, as the two considered
ellipsoids. The spherical prediction overestimates the real
force-displacement relationship between the two ellipsoidal
bodies. Thus, for a realistic description of the acting contact



Fig. 13. Normalized contact force vs. normalized displacement: el-
lipsoids (blue line), spheres (green line), FEA (points)

force in dependency of the normal overlap, the theory has to
incorporate the shape of the contact zone, as has been done
for the present model development.

In Fig. 14, the normalized contact pressure of the first
loading and unloading cycle as obtained from FEA is plot-
ted versus the normalized semi-axes of the contact ellipse.
The graph is divided in a left and a right part, which share
the y-axis, but have different x-axes. In the left part, the x-
axis represents the direction of the larger normalized semi-
axis ac/cY of the contact ellipse. In the right part, the x-
axis coincides with the direction of the smaller normalized
semi-axis bc/cY . We normalize the semi-axes with the equiv-
alent contact radius at the yield point cY to emphasize the
eccentricity of the contact area. It is evident from compar-
ing the scales of both x-axes, that the contact area is ellip-
tical. In the contact configuration simulated here, there is
no relative sliding in the contact area. Therefore, the eccen-
tricity of the contact ellipse, which is governed by the prin-
ciple curvatures in the contact point, which in turn depend
on the semi-axes of the contacting ellipsoids and their mean
radius, stays constant during the whole contact history and
happens to be e = 0.65 in the current case. The blue curves
represent the loading stage, while the orange dashed curves
show the pressure distribution during unloading. Concern-
ing the blue curves, a subdivision in the elastic (Hertzian)
regime and the elastic-plastic regime can be done. The light
blue dashed-dotted curves represent the elastic regime. The
elastic-plastic regime is plotted as solid dark blue lines. It is
visible that with increasing maximum contact pressure, cor-
responding to an increasing displacement, the contact pres-
sure profile flattens more and more. In the point of return,
where the loading pressure distribution equals the unloading
pressure distribution, which means that the solid blue curve
and the dashed orange curve lie exactly over each other, al-
ready a large almost flat area has formed. During unloading
the pressure distribution recedes slowly, until it finally has
again a parabolic profile. At separation the contact area runs
to zero. These observations clearly confirm the assumptions
made for the derivation of the contact law with an elastic-
plastic and a fully plastic regime.

In the second case, both particles have the same mean

Fig. 14. Normalized contact semi-axes vs. normalized contact pres-
sure: elastic loading (blue dashed-dotted lines), elastic-plastic load-
ing (blue solid lines), unloading (orange dashed lines)

radius of r̂I = r̂J = 10.0µm, but different aspect ratios, given
in Tab. 4. Firstly, the particles are compressed displace-

Table 4. Aspect ratios of the second selected FEA case

aI : bI : cI aJ : bJ : cJ r̂I,J [µm]

1 : 1 : 0.8 1 : 1.25 : 1.25 20.0

ment driven up to 10 % of the mean particle radius r̂I,J in
x-direction. Subsequently, the particles are completely un-
loaded, before reloaded by applying a maximum displace-
ment of 13 % of the mean particle radius in x-direction.
Finally, the two ellipsoids are unloaded again. In Fig. 15,
the normalized overlap is plotted versus the normalized con-
tact force, by means of the same normalization ansatz as
in Fig. 13. For values of the normalized overlap larger
than δn/δY = 1.0, the contact behavior is in the elastic-plastic
regime. As a value of εmax = 2.94 can be obtained for the
current contact situation, the fully plastic similarity regime is
reached, when the normalized overlap is larger than δn/δY =
8.65. The theory prediction in Fig. 15 is shown as solid
dark blue line, while the FEA is plotted as isolated light blue
points. Both results agree very well. The mean error is with
err = 0.59% very low. As comparison, the prediction with
the elastic - fully plastic theory, shown as dashed yellow line,
is added. It is obvious, that the theory without incorporat-
ing the elastic-plastic transition regime, significantly under-
estimates the acting contact force. Thus, it is indispensable
to provide a theory formulation, which includes the elastic-
plastic transition regime.

The overall good agreement between FEAs and the pre-
dictions of the here developed model, for both, the loading
and the unloading case, confirm the present model.

6 Conclusions
In this paper, a theoretical model for the normal contact

force of two elastoplastic ellipsoidal bodies having aspect ra-



Fig. 15. Normalized contact force vs. normalized displacement:
elastic - plastic theory (yellow line), elastic - elastic-plastic - fully plas-
tic theory (blue line), FEA (points)

tios in the range of ak : bk : ck = 1 : [0.5..2.0] : [0.5..2.0],
k = I,J is presented. All necessary formulae to describe the
contact force-displacement relationship are derived. Finite-
Element-Analyses of the static compression between two
elastic-ideal plastic ellipsoidal bodies are performed, in order
to estimate all necessary parameters for the fit in the elastic-
plastic transition regime and to validate the present model.
It has to be mentioned that the relationships in the elastic
and in the fully plastic similarity regime are universally valid
for ellipsoidal bodies and independent of the present mate-
rial, while the fit in the elastic-plastic transition regime is de-
veloped for lithium nickel manganese cobalt oxide material
and may slightly change for other material properties. As a
good agreement is obtained comparing the FEA results and
the predictions of the present model for both loading and un-
loading, the validation of the present model is successfully
demonstrated.
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Appendix A: Calculation of the contact geometry of ellip-
soidal bodies

In this appendix, all necessary information to describe
the geometry of an ellipsoidal body in any point of its surface
is presented. The derivation follows the approach of Harris
[45], where a more detailed description can be found.

First of all, a transformation from the global coordinate
system into the local body system of each ellipsoid is useful,
where the origin of the body system is located in the center
of the ellipsoid with the three major axis along the semi-axis
a,b and c. Doing so simplifies the description of the ellip-
soidal surface and thus the derivation of the formulae to cal-
culate the maximum and the minimum curvature in any point
of the surface.

In the body system, the principal curvature and the be-
longing directions are searched. Starting with the implicit
equation

x2

a2 +
y2

b2 +
z2

c2 = 1 (55)

of an ellipsoid, one may solve the equation with respect to
x, y or z. Solving, for example, for x gives

x = a

√
1− y2

b2 −
z2

c2 , (56)

where due to symmetry only the positive part of the root of
x has to be considered. Any random point x at the surface of
the ellipsoid has the position vector

x =

a

√
1− y2

b2 −
z2

c2 ,y,z

T

. (57)

Equation (57) is a parametric representation of an ellipsoid.
The first and second spacial derivatives are

∂x
∂y

=

[
−a2y

b2x
,1,0

]T

,

∂x
∂z

=

[
−a2z

c2x
,0,1

]T

,

∂2x
∂y2 =

[
− a2

b2x

(
1+

a2y2

b2x2

)
,0,0

]T

,

∂2x
∂y∂z

=

[
− a4yz

b2c2x3 ,0,0
]T

,

∂2x
∂z2 =

[
−a2z

c2x

(
1+

a2z2

c2x2

)
,0,0

]
.

(58)

For the normal vector n, it follows

n =

[
1,

a2y
b2x

,
a2z
c2x

]T

, (59)

with its length n

n =

√
1+

a4y2

b4x2 +
a4z2

c4x2 . (60)

The so-called first fundamental form, representing the inner
geometry of a surface, is described by the coefficients E,F
and G, which can be calculated as

E =
a4y2

b4x2 +1 , F =
a4yz

b2c2x2 , G =
a4z2

c4x2 +1 . (61)

The inner geometry describes geometrical quantities, such as
the distance of two points at the surface or the computation
of a selected part of the surface area [49]. For the second
fundamental form, which gives the properties of the outer
geometry, the coefficients L,M and N are defined by

L =
a4
(
c2− z2

)
b2c2nx3 , M =

a4yz
b2c2nx3 , N =

a4
(
b2− y2

)
b2c2nx3 .

(62)
The outer geometry describes the position of the surface in
the surrounding space [49]. Finally, the principal curvature
values κ1,κ2 in point x are determined using the first and
second fundamental form according to [49] as

κ1,2 =
Lcos2 θ+2M cosθsinθ+N sin2

θ

E cos2 θ+2F cosθsinθ+Gsin2
θ

. (63)

In any point at the surface, the curvature usually depends on
the direction. The corresponding angles θ to the two princi-
pal curvatures κ are given by the solutions of

(EM−FL)cos2
θ+(EM−GL)

cosθsinθ+(FN−GM)sin2
θ = 0 .

(64)

If θ 6= 0, it follows

(EM−FL)
1

tan2 θ
+(EM−GL)

1
tanθ

+(FN−GM) = 0
(65)

and using the substitution
1

tanθ
= s,

(EM−FL)s2 +(EM−GL)s+(FN−GM) = 0 . (66)



There are two solutions for s

s1,2 =
−(EM−GL)±

√
(EM−GL)2−4(EM−FL)(FN−GM)

2(EM−FL)
,

(67)
which gives

θ1,2 = arctan
1

s1,2
. (68)

The principal curvature directions K1,K2 follow as

K1,2 = cosθ1,2

−a2y
b2x
1
0

+ sinθ1,2

−a2z
c2x
0
1

 . (69)

Finally, when all the above calculated information is known
in the contact point of two ellipsoidal bodies, the angle of
inclination α is computed by

cosα =
KI

1 ·KJ
1∣∣KI

1

∣∣ ∣∣KJ
1

∣∣ = KI
2 ·KJ

2∣∣KI
2

∣∣ ∣∣KJ
2

∣∣ . (70)

Appendix B: Calculation of the contact stiffness
In this appendix, the derivation of the plastic contact

stiffness, as well as the Hertzian contact stiffness is pre-
sented. The plastic contact stiffness is given as the deriva-
tion of the plastic contact force FN with respect to the normal
overlap δn as

∂Fn

∂δn
= kn,pY =

∂

πpY

δnRe
f 2
1
f2︸ ︷︷ ︸

c2
c

−c2
Y

+
4
3

Ee
√

Reδ
3/2
Y f

−3/2
2


∂δn

=πRe
f 2
1
f2

pY .

(71)
For the Hertzian contact stiffness, the elastic Hertzian force
FH is derived with respect to the normal overlap δn. It follows

∂FH

∂δn
= kH,δn =

∂

[
4
3

Ee
√

Reδ
3/2
n f

−3/2
2

]
∂δn

=
2Ee
√

Re
√

δn

f
3/2
2

.

(72)


