
Preserving Secrecy in Online Social

Networks: Data Outsourcing, Access

Control, and Secrecy Schemes

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der KIT-Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

Von

Gabriela Suntaxi

aus Quito

Tag der mündlichen Prüfung: 20. November 2020

Erster Gutachter: Prof. Dr.-Ing Klemens Böhm

Zweiter Gutachter: Prof. Dr. Jörn Müller-Quade

Acknowledgements

I want to express my gratitude to everyone who has helped through this journey.
First, thanks to God, without his blessings, this achievement would not have been
possible.

I also want to thank my supervisor Prof. Dr.-Ing. Klemens Böhm for giving me the
opportunity to be part of his research group. His time, advices, helpful comments,
and patience during these years have helped me to improve and finish this work.
This opportunity has opened my eyes to the world of academia. I sincerely thank
Prof. Dr. Jörn Müller-Quade, for being my second supervisor and for taking the
time to discuss my work with his research group.

I would also like to thank Dr. Achraf El Ghazi for his continuous support and
motivation. Thanks for the productive discussions, his motivation, and his pa-
tience. I would also extend my thanks to my colleagues. In particular, I would
like to thank Saeed Taghizadeh. His kindness, his warm hospitality, and exciting
discussions alleviate this hard journey. Thank you for being not only my colleague
but also my friend.

I would like to thank also to my family and friends. We did it. I am grateful to
my parents for their love, support, and motivation. I have climbed up one stair
more thanks to them. Thanks to my sister for hearing me and motivating me
to continue. I just wanted to set a good example for you. Finally, thanks to my
husband, who stayed with me always. Together we learn, and together, we achieve.
Thank you for standing by my side when times got hard and for making me laugh
when I even did not want to smile.

i

Abstract

In the last years, Online Social Networks (OSNs) like Facebook and Foursquare
have become a popular way to communicate and share information between users.
OSNs are virtual communities, which contain information about the users and the
relationships existing between them, e.g., friends. In addition to allowing inter-
action between users, OSNs usually offer different kinds of services to their users,
e.g., querying friends within a given distance. To be able to access these services,
users may be required to store in the OSN systems a variety of information such
as their physical positions. Since most of the information stored in OSNs about
their users is private, it is essential to protect the information from unauthorized
access to avoid secrecy issues. For this purpose, OSNs use access control systems.
These systems have three main components, namely, access control policies, access
control model, and authorization mechanism. The access policies allow users to
specify who can access their resources. The access control model provides the syn-
tax and semantics to formalize access control policies. The formal representation
of access control policies in an access control model are called authorizations. The
authorization mechanism, which is managed by the OSN providers, enforce the
authorizations.

Although different access control systems have been proposed in the literature,
there are two main open issues concerning these systems that can influence the
spread of OSNs. The first issue is related to the flexibility of access control mod-
els. One of the major challenges of OSNs is to promote information sharing among
their users. Users usually tend to share information only with users who fulfill cer-
tain conditions; otherwise, they do not. To this end, access control models should
provide flexibility to the policy specifiers by allowing them to express conditions
on access to their data. When users decide who may access their resources, the ac-
cess conditions depend on social factors and human behavior. Studies in fields like
psychology and sociology have revealed that, although humans are self-interested,
they often deviate from this attitude reciprocally. Reciprocity means that, in re-
sponse to friendly actions, people are more cooperative. Hence, reciprocity is a
powerful determinant of human behavior. However, existing access policies do not
capture this reciprocity phenomenon, which may restrain users from sharing infor-
mation. The second issue is that users have to trust the OSN providers to protect

iii

their data by enforcing the authorizations. However, recent privacy breaches have
put into question the trustworthiness of the service providers. The increasing eco-
nomic profit obtained from selling private data increases the temptation of the
providers to commit fraud.

In this thesis, we develop techniques and models to address these two issues. Our
work is divided into three parts.

Our first contribution deals with the flexibility issue of access control models. Here,
we propose and define the syntax and semantics of a new type of authorization,
called mutual, which allows to model reciprocal behavior. Reciprocity comes into
play with access control when persons grant access to their resources to users that
allow them the same. We use location-based services as an example to deploy mu-
tual authorizations. To this end, we propose two approaches to integrate mutual
authorizations into these services. Moreover, we prove the soundness of both ap-
proaches and determine, by means of complexity analyses, under which conditions
each approach performs better than the other.

Our second and third contributions address the distrust of users toward the service
providers from two different angles. Our second contribution considers the scenario
in which the user, i.e., the entity who wants to perform queries over the data, is
also the data owner. However, due to resource constraints, the user does not
want to maintain the data by himself. He wants to outsource it to a service
provider and to be able to retrieve, given a query, a portion of the data that
satisfies the query computation. In this case, since there is a single user, who
owns the data, there is no need of access policies. Therefore, in this scenario, the
problem of trust in service providers can be reduced to secretizing the outsourced
data. In addition, since the query is computed at the user-side, using the received
data portion, and because there is a negative correlation between secrecy and
performance, it is important for the user to be able to adjust between secrecy
and performance. This kind of scenario often applies to start-ups due to the
economic and organizational advantages of database-as-a-service. Especially in
this sector, many data exhibit a graph structure, e.g., protein networks, road
networks and power-grid networks. Here, we propose a bucketization approach for
secure outsourcing of graph-structured data that offer provable secrecy guarantees.
Our approach allows users to adjust between the levels of secrecy and performance.
In addition, to facilitate query planning, we develop a model that can predict the
behavior of our algorithm.

Our third contribution considers the case in which the user is not allowed to access
the data needed to compute queries. However, users are allowed to access query
results over the data. In this scenario, typically, there are multiple users, each

iv

user owns a different portion of the data, and every user can access to query
results over data owned by others based on the specified access policies. Then,
the OSN provider has to perform the core computation needed, and the user gets
access only to the result of the services provided by the OSN. For this scenario,
we develop two methods, which combine existing encryption schemes, to allow
users of OSNs to query friends within a given distance. Both approaches include
a revocation feature and provide secrecy guarantees under collusion assumption,
i.e., an adversary can collude with the service provider. Besides, to evaluate and
compare the performance of our approaches, we provide complexity analyses of
them. Our analyses tell us which approach performs better at each entity involved
in the system.

This dissertation includes an extensive experimental analysis of all our approaches
based on synthetic and real-world datasets, which confirm the effectiveness of our
methods.

v

Deutsche Zusammenfassung

In den vergangenen Jahren haben sich Online Social Networks (OSNs) wie Face-
book und Foursquare zu einer beliebten Möglichkeit der Kommunikation und des
Teilens von Informationen unter Nutzern entwickelt. OSNs sind virtuelle Com-
munitys, die Informationen über die Nutzer und die zwischen ihnen bestehenden
Beziehungen, wie z. B. Freundschaften, enthalten. Zusätzlich dazu, dass eine In-
teraktion der Nutzer untereinander ermöglicht wird, bieten OSNs ihren Nutzern
normalerweise verschiedene Arten von Dienstleistungen an, wie z. B. die Abfrage
nach Freunden innerhalb einer bestimmten Entfernung. Um auf diese Dienstleis-
tungen zugreifen zu können, kann es sein, dass Nutzer darum gebeten werden, in
den OSN-Systemen eine Reihe von Informationen, wie z. B. ihre physische Position,
zu speichern. Da die meisten der in OSNs gespeicherten Informationen zu deren
Nutzern privater Natur sind, ist es von wesentlicher Bedeutung, die Informationen
vor unbefugtem Zugriff zu schützen, um Geheimhaltungsprobleme zu vermeiden.
Zu diesem Zweck verwenden OSNs Zugriffskontrollsysteme. Diese Systeme haben
drei Hauptkomponenten, nämlich die Zugriffskontrollrichtlinien, das Zugriffskon-
trollmodell und den Autorisierungsmechanismus. Die Zugriffskontrollrichtlinien
ermöglichen es Nutzern zu spezifizieren, wer auf deren Ressourcen zugreifen darf.
Das Zugriffskontrollmodell bietet die Syntax und Semantik, um die Zugriffskon-
trollrichtlinien zu formalisieren. Die formale Repräsentation der Zugriffskontroll-
richtlinien in einem Zugriffskontrollmodell wird als Autorisierung bezeichnet. Der
Autorisierungsmechanismus, welcher von den OSN-Anbietern verwaltet wird, setzt
die Autorisierungen durch.

Obwohl in der Literatur verschiedene Zugriffskontrollsysteme vorgeschlagen wur-
den, gibt es zwei Hauptprobleme in Bezug auf diese Systeme, die sich auf die
Verbreitung von OSNs auswirken können. Das erste Problem bezieht sich auf
die Flexibilität von Zugriffskontrollmodellen. Eine der größten Herausforderun-
gen von OSNs besteht darin, das Teilen von Informationen unter ihren Nutzern
zu fördern. Nutzer neigen normalerweise dazu, Informationen nur mit Nutzern
zu teilen, die bestimmte Bedingungen erfüllen; andernfalls tun sie es nicht. Zu
diesem Zweck sollten Zugriffskontrollsysteme den Spezifizierern der Richtlinien
Flexibilität bieten, damit diese die Bedingungen bezüglich des Zugriffs auf ihre
Daten ausdrücken können. Wenn Nutzer entscheiden, wer auf ihre Ressourcen

vii

zugreifen darf, hängen die Zugriffsbedingungen von sozialen Faktoren und men-
schlichem Verhalten ab. Studien in Fachgebieten wie der Psychologie und der Sozi-
ologie haben nachgewiesen, dass Menschen zwar ein Selbstinteresse haben, oftmals
jedoch gegenseitig von dieser Haltung abweichen. Gegenseitigkeit bedeutet, dass
Menschen als Antwort auf freundliche Handlungen kooperativer werden. Daher
ist Gegenseitigkeit eine starke Determinante in Bezug auf menschliches Verhalten.
Bestehende Zugriffsrichtlinien erfassen dieses Phänomen der Gegenseitigkeit jedoch
nicht, was dazu führen kann, dass Nutzer davon abgehalten werden, Informationen
zu teilen. Das zweite Problem besteht darin, dass Nutzer OSN-Anbietern dahinge-
hend vertrauen müssen, dass sie ihre Daten schützen, wenn sie die Autorisierungen
durchsetzen. Aktuelle Datenschutzverletzungen haben die Vertrauenswürdigkeit
der Dienstleistungsanbieter in Frage gestellt. Scheinbar steigert der zunehmende
wirtschaftliche Gewinn, der aus dem Verkauf personenbezogener Daten erzielt
wird, die Versuchung der Anbieter, Betrug zu begehen.

In dieser Dissertation werden Techniken und Modelle entwickelt, um auf diese zwei
Probleme einzugehen. Die Arbeit ist in drei Abschnitte aufgeteilt.

Der erster Beitrag behandelt das Flexibilitätsproblem von Zugriffskontrollmod-
ellen. Hier schlagen wir die Syntax und Semantik einer neuen Art von Au-
torisierung vor, die als gegenseitig bezeichnet wird und es ermöglicht, wechsel-
seitiges Verhalten zu modellieren. Gegenseitigkeit kommt im Rahmen der Zugriff-
skontrolle zum Zuge, wenn Personen jenen Nutzern den Zugriff auf ihre Ressourcen
gewähren, die ihnen erlauben, das Gleiche zu tun. Wir verwenden standortbasierte
Dienstleistungen als Beispiel für den Einsatz gegenseitiger Autorisierungen. Zu
diesem Zweck schlagen wir zwei Ansätze vor, um gegenseitige Autorisierungen in
diese Dienstleistungen zu integrieren. Darüber hinaus weisen wir die Stimmigkeit
beider Ansätze nach und bestimmen auf dem Wege von Komplexitätsanalysen,
unter welchen Bedingungen jeder Ansatz jeweils leistungsfähiger ist als der an-
dere.

Unsere zweiten und dritten Beiträge gehen aus zwei verschiedenen Blickwinkeln
auf das Misstrauen von Nutzern bezüglich der Dienstleistungsanbieter ein. Unser
zweiter Beitrag erörtert das Szenario, in welchem der Nutzer, d. h. die Ein-
heit, welche Abfragen von Daten durchführen möchte, auch Eigentümer der Daten
ist. Aufgrund von Ressourcenbeschränkungen möchte der Nutzer die Daten je-
doch nicht allein verwalten. Er möchte dies an einen Dienstleistungsanbieter aus-
lagern, um bei einer Abfrage einen Teil der Daten abrufen zu können, welche
der Durchführung der Abfrage Genüge leisten. In diesem Fall besteht kein Be-
darf an Zugriffsrichtlinien, da es einen einzelnen Nutzer gibt, der Eigentümer der
Daten ist. Daher kann in diesem Szenario das Vertrauensproblem bezüglich Dien-
stleistungsanbietern auf die Geheimhaltung ausgelagerter Daten reduziert werden.

viii

Außerdem ist es für den Nutzer wichtig, in der Lage zu sein, eine Anpassung
zwischen Geheimhaltung und Leistung vorzunehmen, da die Abfrage nutzerseitig,
unter Verwendung des erhaltenen Datenabschnitts, berechnet wird und weil eine
negative Korrelation zwischen Geheimhaltung und Leistung besteht. Diese Art
von Szenario findet aufgrund der wirtschaftlichen und organisatorischen Vorteile
von

”
Database-as-a-Service“ oft bei Startup-Unternehmen Anwendung. Insbeson-

dere in diesem Bereich weisen viele Daten eine Graphstruktur auf, z. B. Protein-
Netzwerke, Straßen-Netzwerke und Stromnetz-Netzwerke. Hier schlagen wir einen
Gruppierungsansatz für die sichere Auslagerung von Daten mit Graphstrukturen
vor, wobei nachweisbare Geheimhaltungsgarantien geboten werden. Unser Ansatz
ermöglicht es Nutzern, Anpassungen zwischen Ebenen von Geheimhaltung und
Leistung vorzunehmen. Zusätzlich entwickeln wir zur Erleichterung der Planung
von Abfragen ein Modell, welches das Verhalten unseres Algorithmus vorhersagen
kann.

Unser dritter Beitrag berücksichtigt den Fall, in dem es einem Nutzer nicht ermöglicht
wird, auf Daten zuzugreifen, die zur Durchführung von Abfragen nötig sind. Die
Nutzer haben jedoch Zugriff auf die Ergebnisse der Abfrage bezüglich der Daten.
In diesem Szenario gibt es typischerweise mehrere Nutzer, wobei jeder einen an-
deren Teil der Daten besitzt, und jeder Nutzer auf Basis von spezifizierten Zu-
griffsrichtlinien auf Abfrageergebnisse bezüglich der Daten zugreifen kann, die
anderen gehören. Dann muss der OSN-Anbieter die erforderliche Kernberech-
nung durchführen, und der Nutzer kann nur auf das Ergebnis von Dienstleistun-
gen zugreifen, die vom OSN geboten werden. Für dieses Szenario entwickeln wir
zwei Methoden, welche bestehende Verschlüsselungsschemata kombinieren, um es
Nutzern von OSNs zu ermöglichen, Abfragen bezüglich Freunden in einer bes-
timmten Entfernung durchzuführen. Beide Ansätze beinhalten eine Aufhebungs-
funktion und bieten Geheimhaltungsgarantien unter der Annahme geheimer Ab-
sprachen, d. h. ein Gegenspieler kann mit dem Dienstleistungsanbieter zusam-
menspielen. Daneben bieten wir Komplexitätsanalysen unserer Ansätze, um diese
bewerten und vergleichen zu können. Unsere Analysen teilen uns mit, welcher
Ansatz in jeder Einheit, die in dem System involviert ist, leistungsfähiger ist.

Diese Dissertation beinhaltet eine umfassende experimentelle Analyse all unserer
Ansätze auf Basis von synthetischen und realen Datensätzen, welche die Wirk-
samkeit unserer Methoden bestätigen.

ix

Contents

Acknowledgements i

Abstract iii

Deutsche Zusammenfassung vii

1 Introduction 1
1.1 Challenges and Contributions . 3

1.1.1 Access Control Model - Flexibility Problem 3
1.1.2 Authorization Mechanism - Distrust Problem 5

1.2 Dissertation Outline . 8

2 Access Control Systems 11
2.1 Access Control Policies . 11
2.2 Access Control Models . 11

2.2.1 Authorization . 12
2.2.2 Quality Criteria for Access Control Models 13
2.2.3 Attribute-based Access Control 14

2.3 Authorization Mechanism . 16

3 Cryptography 19
3.1 Encryption Schemes . 19

3.1.1 Symmetric Encryption . 19
3.1.2 Asymmetric Encryption . 20
3.1.3 Homomorphic Encryption 22
3.1.4 Attribute-based Encryption 23

3.2 Secure Cryptographic Schemes . 26
3.2.1 Formal secrecy definitions 26
3.2.2 Secrecy Proofs . 28

3.3 Standard Secrecy Definitions for Encryption Schemes 28
3.3.1 Standard Secrecy Guarantees for Encryption Schemes 29
3.3.2 Standard Adversary Models for Encryption Schemes 29
3.3.3 Indistinguishability under chosen-plaintext attacks 31

xi

4 Integrating Reciprocity into Access Control Models 35
4.1 Mutual Authorizations: Syntax and Semantics 37

4.1.1 Syntax . 37
4.1.2 Semantics . 38
4.1.3 Authorization Conflicts Resolution 39
4.1.4 Authorized Access Request 42

4.2 Extending Mutual Authorizations 43
4.2.1 Revocation Fraud Problem 44
4.2.2 Sensitivity Problem . 45
4.2.3 Trust-based authorizations 47

4.3 Integrating Mutual Authorizations into LBS 51
4.3.1 Soundness Criteria . 52
4.3.2 Resolve Conflicts Algorithm 54
4.3.3 Primitives and Algorithms for Mutual Authorizations 56
4.3.4 System Architecture . 58
4.3.5 Design Alternatives for Integrating LBS with Mutual Au-

thorizations . 62
4.4 Experiments . 71

4.4.1 Impact of Mutual Authorizations 71
4.4.2 Experimental Validation of the Complexity Analysis of QF

and FQ . 76
4.5 Related Work . 77
4.6 Summary . 78

5 Secure Outsourcing of Graph-Structured Data 81
5.1 Our Secrecy Notion . 83

5.1.1 Notation . 84
5.1.2 Our Secrecy Notion for Graph-structured Data 84

5.2 Our Secrecy Approach . 89
5.2.1 System Architecture . 89
5.2.2 Bucketization Challenges . 92
5.2.3 The Optimal Bucketization Problem 94
5.2.4 Our Bucketization Approach 95
5.2.5 Query Transformation . 99
5.2.6 Secrecy Proofs . 99

5.3 Performance Model . 107
5.3.1 Scale-Free Networks . 108
5.3.2 The Number-of-Buckets Model 109
5.3.3 Query-Cost Model . 112

5.4 Experiments . 116
5.4.1 Experiment Setup . 116

xii

5.4.2 Results . 118
5.5 Related Work . 125

5.5.1 Secrecy Notions - Related Work 125
5.5.2 Bucketization on Relational Databases - Related Work . . . 126
5.5.3 Secure Storage for Grap-Structured Data - Related Work . . 128

5.6 Summary . 129

6 Providing Secure Services to Users of Online Social Networks 131
6.1 Problem Definition . 134

6.1.1 System Architecture . 134
6.1.2 Adversary Model . 136
6.1.3 Secrecy Guarantees . 139
6.1.4 Preliminaries and Notation 139

6.2 Our Approaches . 140
6.2.1 Basic Two-layer Symmetric Encryption (basic 2lSE) 142
6.2.2 Basic Two-layer Attribute-based Encryption (basic 2lABE) . 147
6.2.3 Extending the Basic Schemes 150
6.2.4 Secrecy Proofs . 153

6.3 Time Complexity Analysis . 161
6.3.1 2lSE - Time Complexity Analysis 161
6.3.2 2lABE - Time Complexity Analysis 164
6.3.3 Discussion . 165

6.4 Experiments . 166
6.4.1 Experiment Setup . 166
6.4.2 Results . 167

6.5 Related Work . 171
6.6 Summary . 173

7 Conclusion and Future Work 175
7.1 Summary . 175
7.2 Future Work . 176

Appendices 179

A Hardness Result 181

xiii

1 Introduction

With an estimation of 2.77 billion social media users around the globe 20191,
Online Social Networks (OSNs) have become an important platform for inter-
connecting users and sharing information [BF18]. Besides allowing interaction
between users, OSNs offer users different services such as location-based services
or dating services. To be able to access these services, users have to store per-
sonal information such as physical positions, age, and more, in the OSN system.
Consequently, OSNs store a vast amount of information about their users. This
amount of information and the widespread use of OSNs open up opportunities for
the development of new applications and services. However, they also increase the
secrecy and privacy issues associated with these networks. Therefore, it is essen-
tial to protect the information stored in OSNs from unauthorized access. We call
this kind of data protection data secrecy. Enforcing data secrecy is particularly
crucial in OSNs. The reason is that the unauthorized access to personal infor-
mation about the users can expose the information to a large number of users,
which may cause unpredictable damage. In this regard also, the current EU Data
Protection legal framework [fFRoE18] and the latest data secrecy debates of the
Federal Trade Commission [Com19] have shown a strong need for implementing
measures to guarantee the right to personal data protection.

Access control systems have become one of the central components of OSNs. They
are used to prevent unauthorized access to the information of OSNs users [HAJ12].
Access control systems have three main components, namely, access control poli-
cies, access control model, and authorization mechanism [Fer10]. In what follows,
we briefly introduce these components.

First, access control policies are high-level rules, i.e., plain-language rules, that
serve to regulate access control, e.g., “Medical records can be accessed only by
medical staff”. These policies depend on several factors such as legislation, e.g.,
EU data protection legislation, the domain in which the data will be managed, e.g.,
education or healthcare, or specific requirements of the resource owners. Second,
access control models are used to formalize access control policies. Access control
models provide the syntax and semantics needed for this formalization. The for-

1https://www.statista.com/

1

https://www.statista.com/

1 Introduction

mal representation of access control policies in an access control model is called
authorizations. Intuitively, authorizations state who can perform which actions,
e.g., write or read, on which resources under which conditions. We formalize this
notion in Section 2.2. This formal representation of access control policies allows
proving the security properties meet by access control systems [Fer10]. Third,
the authorization mechanism is the software module that enforces the authoriza-
tions. The enforcement is carried out by technical security mechanisms (software
and hardware), such as firewalls or cryptographic techniques like encryption and
digital signatures. The authorization mechanism implements the access controls
imposed by the access control policies and formally defined in the access control
model. Figure 1.1 illustrates the main components of an access control system.

Figure 1.1: Access Control System - Main Components

Although different access control systems exist in the literature, two main open
issues concerning these systems can influence the spread of OSNs. The first issue
involves the access control model, and the second one the authorization mechanism.
In what follows, we explain these two issues.

The first issue is related to the flexibility offered by existing access control models.
One of the major challenges of OSNs is to promote information sharing among their
users. Users usually tend to share information only with users who fulfill certain
conditions; otherwise, they do not. To this end, access control models should
provide flexibility to the policy specifiers by allowing them to express conditions on
access to their data. When users decide who may access their resources, the access
conditions depend on social factors and human behavior. Studies in fields like
psychology and sociology have revealed that, although humans are self-interested,
they often deviate from this attitude reciprocally. Reciprocity means that, in

2

1.1 Challenges and Contributions

response to friendly actions, people are more cooperative. Hence, reciprocity is a
powerful determinant of human behavior. However, existing access control models
do not capture this reciprocity phenomenon, which may restrain users from sharing
information.

As mentioned above, the second issue concerns the authorization mechanism. In
OSN systems, besides hosting the data of the users, the service providers host the
authorizations and run the authorization mechanism. That is, users have to trust
the OSN provider to control access to their data correctly. However, recent privacy
breaches have put into question the trustworthiness of the service providers. The
recent Facebook-Cambridge Analytica scandal [Com18, Con18] is one of the most
illustrative examples of such privacy breaches in which personal data of millions of
users of Facebook were harvested without their consent. Apparently, the increasing
economic profit obtained from selling private data increases the temptation of the
providers to commit fraud.

In the following, we give an overview of the challenges involved in this research
area and our contributions, Section 1.1, and present the structure of the thesis,
Section 1.2.

1.1 Challenges and Contributions

In this thesis, we focus on open issues concerning the components of access control
systems. Here, we propose solutions to tackle two critical issues: (1) the flexibility
problem of existing access control models, and (2) the distrust of users toward the
service providers, i.e., the entities responsible for hosting the data and running the
authorization mechanism. In the following subsections, we describe the challenges
and our major contributions to each of these two problems.

1.1.1 Access Control Model - Flexibility Problem

A large body of evidence in fields like psychology, economics, and sociology in-
dicates that reciprocity is a powerful determinant of human behavior. However,
existing access control models do not capture this reciprocity phenomenon. Reci-
procity comes into play with access control when persons grant access to their
resources to users that allow them the same. In other words, the basic idea is that
I let you profit from my resource if and only if I can benefit from yours, which
implies an exchange of resources between two parties. Such an exchange should
be fair. Fairness concretely implies two principles. First, users must have a guar-
anteed right to profit from users who have benefited from their resources. Second,

3

1 Introduction

the payoff that a pair of users receive from exchanging resources between them has
to be equal, to some adaptable extent.

All existing access control models, such as [SCFY96, OP03, TLT15], consider only
two kinds of grants, allow and deny. These two grants are not enough to model
the reciprocity principle. Therefore, a new type of grant is needed. We call this
new grant mutual and authorizations that make use of it mutual authorizations.
Integrating reciprocity into access control models is subject to several challenges.

First, access control models have to provide the syntax and semantics to capture
the reciprocity principle. For mutual authorizations, in particular, the semantics
are not trivial. Contrary to authorizations with only the grants allow and deny,
the semantics of mutual authorizations have to consider not only the authorization
that a user has received but also the ones that the user has assigned. Besides, the
semantics have to be suitable for integration in existing access control models.

Second, it is not obvious how to guarantee a fair exchange of resources when
using mutual authorizations. Such fairness is naturally guaranteed when resources
have the same degree of sensitivity, .e.g., physical positions. But it is not the
case for complex scenarios where resources have different degrees of sensitivity,
e.g., health records. One can guarantee such fairness by specifying that users can
exchange only resources with the same degree of sensitivity. The problem here
lies in defining the sensitivity of each resource. If we let the system or a trusted
authority assign the degree of sensitivity, the owners of the resources may not agree
with the assigned sensitivity. On the other hand, if the owners assign the degree
of sensitivity to their resources individually, the assignment will be subjective.
To illustrate this, consider two users Alice and Bob, who want to exchange their
health records. Whereas Alice has a sexual disease, Bob is in perfect health. If
both users assign the same degree of sensitivity to their resources, an exchange of
resources between them could happen. However, Alice may not find fair opening
her health record to Bob.

Another challenge is to incorporate this new kind of authorizations with existing
services, such as location-based services (LBS). This integration has to reuse exist-
ing implementations, be efficient, and guarantee data secrecy, i.e., only authorized
users can access the services. In the following, we discuss our contributions to
overcome these challenges.

Contributions: We introduce a new kind of grant, called mutual. It allows
to model reciprocal behavior. We extend Attribute-based access control model
(ABAC), with our mutual grant, and define the syntax and semantics of mutual
authorizations. We selected ABAC because it is one of the most general access

4

1.1 Challenges and Contributions

control models existing in the literature. To focus on the main idea of mutual
authorizations, we consider at first scenarios in which resources have the same
degree of sensitivity. Then, we extend our basic model, i.e., the syntax and se-
mantics of mutual authorizations, to support a general setting in which resources
have different degrees of sensitivity.

Our extension aims to guarantee a fair exchange of resources when dealing with
resources with different degrees of sensitivity. However, deciding whether two
resources have the same degree of sensitivity is a general problem, and it is far
from being solved in an automated manner. Therefore, our extended model of
mutual authorizations only alleviates this problem. It lets the owners assign the
degrees of sensitivity to their resources, and their peers can evaluate such an
assignment. We use these evaluations to compute a trust value for each user, and
we let users specify the minimum level of trust that their peers should have to
exchange resources with them. We call this extension, trust-based authorizations.

Next, we show how to integrate and evaluate mutual authorizations into existing
services; to this end, we use LBS. Specifically, we focus on k-nearest neighbor
queries and range queries. To this end, we propose two approaches, called filtering-
querying and querying-filtering. We prove the correctness and completeness of
both approaches. We also conduct complexity analyses of them and evaluate
both approaches experimentally. Besides, we conduct experiments to evaluate how
mutual authorizations affect the performance when deciding whether an access
request is allowed or denied.

1.1.2 Authorization Mechanism - Distrust Problem

Data secrecy can be addressed straightforwardly by trusting the entity that man-
ages the authorization mechanism—the service provider. That is, users have to
trust that the service provider will enforce access control on their data based on
their authorizations. However, as explained before, the increasing privacy breaches
in OSNs lead us to believe that fully trusting the service providers is not a realis-
tic assumption in OSN scenarios. We tackle the distrust of users towards service
providers from two different angles, as we explain in what follows.

Case 1 - Data outsourcing: Here, we consider the scenario in which the user,
i.e., the entity who wants to perform queries over the data, is also the data owner.
However, due to resource constraints, the user does not want to maintain the data
by himself. He wants to outsource it to a service provider and to be able to retrieve,
given a query, a portion of the data that satisfies the query computation. This
kind of scenario belongs to the Database as a Service (DBaaS) paradigm, which
is one of the emerging services of cloud computing. The DBaaS model has many

5

1 Introduction

benefits, including economic and organizational advantages. For these reasons, it
has attracted the interested of many enterprises, especially start-ups. Particularly
in this sector, many data exhibit a graph structure, e.g., protein networks, road
networks, and power-grid networks.

In the DBaaS model, data secrecy involves two aspects [CFB05]: data secrecy
with respect to the users and data secrecy with respect to the service providers.
These aspects aim to protect data against unauthorized access by end-users, and
by the service providers, respectively. Since in this scenario, we consider a single
user, who owns the data and wants to perform queries over it, data secrecy with
respect to the end-users is nonessential. That is, access control policies are not
needed. Therefore, in this scenario, the problem of trust in the service providers
can be reduced to secretizing the outsourced data and guaranteeing data secrecy
with respect to the service providers.

One of the most challenging issues in this scenario is how to trade-off between
the obtained data secrecy guarantees and the efficiency of the envisioned solution.
Since the query is computed at the user-side using the retrieved data portion from
the service provider, the accuracy of this portion affects the query performance.
Further, data secrecy correlates negatively with performance. Therefore, the diffi-
culty lies in retrieving an accurate data portion that satisfies the query conditions
while guaranteeing data secrecy.

Another challenge is related to the type of data structure considered in this sce-
nario, i.e., graphs. Graph-structured data store information about the nodes and
their relationships (edges). Especially in this kind of data, these relationships are
always present, which is not the case for other data structures. The information
stored in a node and its relationships both can be used to identify an individual
in a graph. Therefore, approaches for secretizing graph-structured data should
guarantee that they do not leak this kind of information.

Next, the data secrecy guarantees have to be provable, which requires a rigid
definition of secrecy, i.e., to define the type of adversaries one is dealing with, the
desired secrecy guarantees, and the information that one accepts to leak. In the
following, we describe our major contributions in this data outsourcing scenario.

Contributions: First, we define a secrecy notion for graph-structured data based
on the concepts of indistinguishability and searchable encryption. Next, we pro-
pose a bucketization approach for secure outsourcing of graph-structured data that
offers provable secrecy guarantees and allows users to adjust between the levels of
secrecy and performance. While our approach works for all types of graph queries
in principle, we focus on neighbor and adjacency queries. These queries are essen-

6

1.1 Challenges and Contributions

tial information needs regarding graphs [MP10]. We describe the specifics for these
queries, such as division of work between client and server. Besides, to facilitate
query planning, we develop a performance model that can predict the behavior
of our algorithm depending on its parameter values and properties of the input
graph. Finally, we demonstrate with a set of experiments the accuracy of our
performance model and the efficiency of our approach for query processing.

Case 2 - Enabling access to services: Here, we consider the scenario in which
the user is not allowed to access the data needed to compute queries. However,
users are allowed to access query results over the data. In this scenario, typically,
there are multiple users, each user owns a different portion of the data, and every
user can access to query results over data owned by others based on the specified
access policies. This kind of scenario is a typical one of the Web 2.0 social services
like OSNs. In the last years, LBS have become a popular feature of these networks
due to the increasing diffusion of mobile devices. OSNs that embraces LBS, such
as querying friends within a given distance, are known as mobile social networks
(MSNs). We focus on this kind of social network.

Similar to the previous case, Case 1, in this scenario, the data is outsourced to an
untrusted service provider, i.e., the social network provider. However, since this
scenario considers multiple users and each user owns a portion of the data, users
have to specify access control policies on their data. Therefore, data secrecy has to
be guaranteed with respect to both the users and the service provider. That is, the
service provider performs the core computation needed, the user gets access only
to the result of the services provided by the MSN, and the data is kept secret from
both unauthorized users and the service provider. In addition, because the service
provider is untrusted, an important problem in MSNs is to guarantee data secrecy
under the assumption of collusion attacks where adversaries, including malicious
users, collude with the service provider to gain unauthorized access to information.
Preserving secrecy in MSNs is challenging.

First, the limited computation power of mobile devices requires mobile users to
outsource any heavy computation task. This not only restricts the choice of en-
cryption schemes that can be used but also the design alternatives for a solution.

Second, although encryption guarantees that only holders of the right key can
decrypt a given ciphertext, because of our collusion assumption, this guarantee
does not hold anymore. To illustrate this, consider two entities A and B, a message
m, and its corresponding ciphertext c. Assume that A is not authorized to access
m, whereas B is authorized and has the key to decrypt c. If A colludes with
B, A can either get the key from B to decrypt c or send c to B to decrypt
it and get back m. To solve this problem, one can add further entities in the

7

1 Introduction

system architecture and use multi-layer encryption. Then, one needs to assign the
ciphertext and the keys of each encryption layer to the entities so that in case of
collusion, unauthorized entities cannot gain access to the information. That is, the
unauthorized entities cannot access either the ciphertext or all the keys needed to
decrypt all encryption layers because a non-colluding entity holds the ciphertext
or at least one of the keys.

Third, the envisioned solution has to consider that in a multi-user setting, such
as our MSN scenario, several owners want to share information with authorized
users. To this end, one can use different cryptographic techniques. However, by
comparing the known advantages and disadvantages of each cryptographic tech-
nique, it is not obvious which one performs better in our scenario. In what follows,
we discuss our major contributions to overcome these challenges.

Contributions: For this scenario, we develop two methods, which combine ex-
isting encryption schemes and use multi-layer encryption with an adequate key
distribution among the entities of the system, to allow users of MSNs to query
friends within a given distance. The main difference between the first and the
second approach is that they use, among other encryption schemes, symmetric
and attribute-based encryption, respectively. Both approaches include a revoca-
tion feature and provide secrecy guarantees under collusion assumption, i.e., an
adversary can collude with the service provider. Specifically, we guarantee that
any adversary, including the service provider, is not able to learn: the physical
position of the users, the distance between his position and that of the users, and
whether two users are allowed to learn the distance between them. Besides, to
evaluate and compare the performance of our approaches, we provide complexity
analyses of them. Our analyses tell us which approach is better at the user side
and the service provider side. We conduct experiments to validate the result of
our complexity analyses and finally determine which approach performs better in
practice.

1.2 Dissertation Outline

The remaining chapters of this dissertation are organized as follows:

Chapters 2 and 3 introduce access control systems and cryptography, respectively.
These two research areas are relevant to the work described in this dissertation.
We formally define the basic notions related to these areas that are needed to build
our approaches.

8

1.2 Dissertation Outline

Chapter 4 presents the first part of our contribution that focuses on the Access
Control Model and its flexibility problem to capture. We define the syntax and
semantics of a new type of authorization — called mutual authorizations. Mutual
authorizations allow us to model the reciprocity phenomenon, which is a fun-
damental aspect that shapes human behavior. Moreover, we use location-based
services to show how to integrate mutual authorizations with existing services. We
conduct experiments to evaluate our approaches.

Chapter 5 presents the second part of our contribution that focuses on the Access
Control Mechanism. In this chapter, we study the data outsourcing scenario and
tackle the distrust of users towards the service providers. Here, we consider a single
user who owns a graph-structured data and wants to perform queries over it while
keeping the information secret. We start by formally defining a secrecy notion
for graph-structured data. Next, we present our bucketization approach for secure
outsourcing of graph-structured data, which combine encryption and bucketization
techniques and offer provable secrecy guarantees. We show that finding an optimal
bucketization tailored to graph-structured data is NP-hard. We therefore come up
with a heuristic, which guarantees that the worst bucketization solution will be off
by a factor of 11

9
of the optimal one. We also introduce a performance model to

evaluate the behavior of our algorithm and facilitate query planning. Finally, we
run experiments to evaluate our approach and validate our performance model.

Chapter 6 also focuses on the Access Control Mechanism but from a different
perspective compared to Chapter 5. Here, we consider a mobile social network
scenario, where multiple users own a portion of the data and want to access loca-
tion-based services while keeping their information secret from the service provider
and unauthorized users. To solve this problem, we come up with two approaches,
which combine existing encryption schemes and use multilayer encryption and pro-
vide secrecy guarantees under collusion assumption, i.e., an adversary can collude
with the service provider. Next, we present complexity analyses of our approaches,
which allow us to compare them, and conduct experiments to validate such anal-
yses.

Lastly, Chapter 7 summarizes the major contributions of this dissertation and
gives an outlook of open research questions.

9

2 Access Control Systems

Two main research areas are relevant to the work presented in this dissertation:
Access Control Systems and Cryptography. This chapter gives an overview of the
first research area, and the next Chapter, Chapter 3, covers the second one.

Access control systems are one of the most relevant components not only of OSNs
but also of any data management system. The main goal of these systems is
to protect resources from unauthorized operations based on the access conditions
determined by the policy specifiers. Policy specifiers are the organizations or
individuals responsible for managing the resources—usually the resource owners.
As illustrated in Figure 1.1, access control systems have three components, namely,
access control policies, access control model and authorization mechanism. In what
follows, we describe these three components.

2.1 Access Control Policies

Access control policies are high-level rules according to which access control must
be enforced. These policies must capture all real-world access conditions that need
to be imposed in a system, such as the ones established by law, practices, orga-
nizational regulations, or specific requirements of the resource owners. Defining
access control policies is a challenging process because it requires to identify all
access conditions that apply to the specific scenario in which the access control
system will be implemented.

2.2 Access Control Models

Access control models provide the syntax and semantics to formalize access con-
trol policies into authorizations. These models have to be flexible and expressive
enough to capture and formalize all the access conditions expressed in the access
control policies.

In what follows, we introduce the elements of an authorization. We then provide
a set of quality criteria to evaluate the expressive power of access control models.

11

2 Access Control Systems

Finally, we give an overview of one of the most general access control models—
Attribute-based Access Control (ABAC).

2.2.1 Authorization

Authorizations are the basic building block of access control systems. They specify
the operations that a subject can perform an operation on a resource. An autho-
rization has four essential elements: subjects, resources, operations and grants.

• Subjects: Subjects specify the entities that can request to perform operations
on resources. Examples of subjects are: human-beings, system processes or
devices.

• Resources: Resources are the entities that require protection from unautho-
rized access. Example of resources are: files, applications or devices.

• Operations: Operations are the types of actions that subjects can request to
perform on resources. Examples of operations are: update, read or write.

• Grants: Grants are the rights to execute operations. Existing access control
models support two grants: allow and deny. That is, the set of grants is fixed,
which is not the case for the sets of subjects, resources, and operations; the
access control scenario defines these sets.

We call the authorizations that use the grants allow and deny, positive and
negative authorizations, respectively. Access control models can use positive
and negative authorizations in a mutually exclusive way or a combination.
In the first case, mutually exclusive way, the access control model specifies
explicitly one type of authorization, positive or negative, and implicitly the
other type. Specifying explicitly positive authorizations indicates that an
access request is granted if there is a positive authorization for it; otherwise,
it is denied. The opposite happens for negative authorizations specified ex-
plicitly and positive ones specified implicitly. In the second case, the access
control model combines positive and negative authorizations. Such a combi-
nation facilitates to capture access exceptions, see Example 2.1.

Example 2.1. Consider that we want to allow all members of a group
to read a file, except to one specific member Alice. If positive and
negative can be combined, we can specify this requirement by assigning
a positive authorization to the group and a negative authorization to
Alice. It is more difficult to capture this access requirement if one has
to specify explicitly positive authorizations. In that case, we would

12

2.2 Access Control Models

have to specify a positive authorization for each member of the group
except Alice.

Although specifying explicitly negative authorizations will solve the problem
of Example 2.1, the opposite example of denying all but one will arise the
same difficulty when using negative authorizations explicitly.

2.2.2 Quality Criteria for Access Control Models

Various access control models have been proposed in the literature [SCFY96, OP03,
TLT15, HFK+13]. All of them have different features and methods to provide
access control, and there is no model that suits all access control scenarios. In
the following, we present a set of quality criteria to evaluate the expressive power
of these models. While the criteria described below are not exhaustive, they do
provide the most important metrics to measure the quality of access control models.

• Access conditions flexibility: Access control policies can constraint access
depending on the characteristics of the subjects, the resources, and the envi-
ronment. Environment conditions are characteristics relevant to the access
requests that are independent of the subjects and resources such as current
time, day of the week, or temperature. For instance, a project manager may
want to allow his team members access to the project’s documents only on
working days. Access control models should provide the language to capture
different access conditions specified in terms of the subjects, the resources,
and the environment.

• Groups support: Access control models should support authorizations spec-
ified for groups of subjects, e.g., doctors, and resources, e.g., file directories.
Supporting groups simplifies the management of authorizations because an
authorization that specifies a group involves all the members of such a group.
Supporting groups is an essential feature in complex environments with a
large number of resources and subjects.

• Handling authorization conflicts: Authorization conflicts happen when a
subject receives more than one authorization with different grants for the
same operation on the same resource, see Example 2.1. Access control models
should support conflict resolution strategies, i.e., strategies to decide which
authorization prevails over the others when in conflict. Several conflict reso-
lution strategies have been proposed in the literature such as and deny-take
-precedence and recency-overrides. According to deny-take -precedence, neg-

13

2 Access Control Systems

ative authorizations take precedence over positive ones, whereas according
to recency-overrides, authorizations specified later cancel earlier ones.

• Administrative authorizations support: Administrative authorizations de-
fine the entities that can create, modify, or delete authorizations to control
access to the resources. Examples of these entities are central authorities
or resource owners. In the first case, only the central authority can specify
the authorizations. In the second one, each resource is associated with an
owner, and only the owner can specify the authorization for their resources.
Access control models should provide the language to define administrative
authorizations.

2.2.3 Attribute-based Access Control

One of the most general access control models is ABAC. In recent years, ABAC
has gained considerable attention from business, academia and standard bodies
[BSK16, HFK+13]. ABAC specifies the authorizations in terms of defined at-
tributes of the subjects, defined attributes of the resources and defined environment
conditions. Attributes are characteristics of the subjects, resources, and environ-
ment conditions, e.g., gender, name. They are not atomic, especially, their value
is a non-empty set of atomic values. The subject attributes, resource attributes,
and the environment conditions have to be: defined in the system, assigned a set
of allowable values, and managed under an authority. Such an authority has to
guarantee that unauthorized entities cannot tamper with the attributes to gain
access to the resources. Without this information, specifying authorizations in
ABAC will fail. Next, we describe how to specify the essential elements of an
authorization in ABAC.

• Subject specification: Attrsubject = {asubject1 , asubject2 , · · · , asubjectn} stands for
the set of n subject attributes. So-called subject constraints specify the
subjects of an authorization. A subject constraint Conssubject has the syntax:

Conssubject =Conssubject ∧ Conssubject |asubjecti = value |asubjecti ≥ value |
asubjecti ≤ value

where 1 ≤ i ≤ n and value refers to an atomic value. Since the attribute
asubjecti is not atomic, for a given subject s, the expression asubjecti(=|≥|≤
) value resolves to ∃x ∈ s.asubjecti , x (=|≥|≤) value, where s.asubjecti denotes
the set of atomic values of the attribute asubjecti for s. We use S to denote
the set of all subjects. Given a subject constraint ConsSubject, the set of
subjects induced by the constraint contains all subjects s ∈ S that fulfill

14

2.2 Access Control Models

Conssubject. Then, a subject specification is the set of all subjects that meet
a given subject constraint. For instance, the set of subjects induced by the
constraint gender = female ∧ income < 60k contains all subjects s ∈ S
whose gender is female and their income is less than 60k.

• Resource specification: Attrresource = {aresource1 , aresource2 , · · · , aresourcem}
stands for the set of m resource attributes. So-called resource constraints
specify the resources of an authorization. A resource constraint Consresource
has the syntax:

Consresource =Consresource ∧ Consresource |aresourcej = value |aresourcej≥value |
aresourcej≤value

where 1 ≤ j ≤ m and value refers to an atomic value. Since the attribute
aresourcej is not atomic, for a given resource res, the expression aresourcej (=|≥
|≤) value resolves to ∃x ∈ res.aresourcej , x (=|≥|≤) value, where res.aresourcej
denotes the set of atomic values of the attribute aresourcej for res. A resource
specification is the set of all resources that meet a given resource constraint.

• Operation specification: Contrary to subjects and resources, operations do
not have attributes. Operations are fixed set of values, e.g., read or write.
The scenario, where the access control system will be deployed, determines
the set of operations needed. Op denotes the set of all operations.

• Grant specification: Similar to operations, grants are fixed set of values.
Gr denotes the set of all grants. In ABAC, the set of grants contains two
elements, Gr = {allow, deny}.

Besides the four elements of an authorization specified above, which are supported
by any traditional access control model, ABAC allows specifying, if needed, the
environment conditions that need to be evaluated during an access request. For
instance, the environment constraint access-time = 8 : 00AM ∧ access-day =
Monday specifies that the time and day of access (8:00AM, Monday) have to be
evaluated during an access request.

Environment specification: Attrenvironment = {aenvironment1 , aenvironment2 , · · · ,
aenvironmentl} stands for the set of l environment attributes. So-called environment
constraints specify the environment conditions relevant to the access requests. An
environment constraint Consenvironment has the syntax:

Consenvironment =Consenvironment ∧ Consenvironment |aenvironmentk = value |
aenvironmentk≥value | aenvironmentk≤value

15

2 Access Control Systems

where 1 ≤ k ≤ l and value refers to an atomic value. Since the attribute
aenvironmentk is not atomic, for a given environment condition env, the expression
aenvironmentk (=|≥ |≤) value resolves to ∃x ∈ env.aenvironmentk , x (=|≥|≤) value,
where env.aenvironmentk denotes the set of atomic values of the attribute aenvironmentk

for env. An environment specification is the set of all environment conditions that
meet a given environment constraint. For instance, the environment constraint
access-time = 8 : 00AM ∧ access-day = Monday specifies that the time and day
of access (8:00AM, Monday) have to be evaluated during an access request.

Using the specifications of subjects, resources, operation, grants and environment
conditions in ABAC, we define an authorization as follows:

Definition 2.1: Authorization

Let a subject constraint Conssubject, a resource constraint Consresource,
an operation op ∈ Op, a grant gr ∈ Gr, and an environment con-
straint Consenvironment be given. An authorization A is a 5-element tuple
〈 Conssubject, Consresource, op, gr, Consenvironment 〉. The authorization A indi-
cates that the subjects specified by Conssubject has been assigned the grant
gr to invoke the operation op on the resources specified by Consresource under
the environment conditions specified by Consenvironment.

Example 2.2 illustrates how to express an authorization in ABAC, Definition 2.1.

Example 2.2. Consider a user Bob who wants to allow all persons with
the role of Cashier to read his file File1 on Mondays. Let us call this autho-
rization ABob. In ABAC, ABob can be expressed as follows: ABob = 〈 role =
Cashier, name = File1, read, allow, access-day = Monday 〉, where role is a
subject attribute in Attrsubject, name is a resource attribute in Attrresource,
read is an operation in Op, allow is a grant in Gr, and access-day is an
environment attribute in Attrenvironment.

2.3 Authorization Mechanism

The authorization mechanism, also known as the reference monitor, is the software
module that decides whether an access request is authorized or denied and enforces
the decision. To perform these tasks, the authorization mechanism should have
access to information about the resources being protected, the subjects who request
access, and the authorizations governing access to the resources. The authorization
mechanism can use different security techniques to enforce access control such as

16

2.3 Authorization Mechanism

physical security devices, firewalls or encryption techniques. Besides, it should
have two characteristics [SdV00]: It has to be tamper-proof, i.e., any modification
done by an unauthorized entity should be detectable, and non-bypassable, i.e.,
access requests cannot be circumvented.

17

3 Cryptography

Data secrecy refers to the protection of information from unauthorized access.
One way to ensure data secrecy is to apply encryption techniques on the data
before storing it on a storage server. This chapter provides an overview of existing
encryption schemes, Section 3.1. Next, it introduces notions that will help us to
determine whether a given cryptographic scheme is secure, Section 3.2. Finally, it
describes standard secrecy definitions for encryption schemes, Section 3.3.

3.1 Encryption Schemes

There are two main types of encryption techniques: symmetric encryption schemes
and asymmetric encryption schemes. Next, we present these encryption schemes.

3.1.1 Symmetric Encryption

Symmetric encryption schemes, also known as private-key encryption schemes, rely
on a secret key shared—in advance—by two parties who want to communicate with
each other secretly. Intuitively, symmetric encryption schemes work as follows:
First, two parties share in advance a key k. Second, to communicate with each
other, one party (the sender) encrypts a plaintext message m using the key k and
sends the resulting ciphertext c to the receiver. Finally, the receiver takes the
ciphertext c, decrypts it using the key k and obtains back the message m. The
encryption and decryption processes use the same key k. Therefore, the sender
must trust that the receiver (and vice versa) will not reveal their shared key to
any entity. Formally:

Definition 3.1: Symmetric Encryption Scheme

A symmetric encryption scheme SE = (KGen, Enc,Dec) consists of three
algorithms: (1) A key generation algorithm KGen that returns a key k. (2)
An encryption algorithm Enc that can be probabilistic or deterministic and
takes as input the key k and a message m to return a ciphertext c. (3) A

19

3 Cryptography

deterministic decryption algorithm Dec that takes as input the key k and a
ciphertext c to return a message m such that Dec(k,Enc(k,m)) = m.

We write Enc(k,m) and Dec(k, c) for the operations of encrypting m under key k
and decrypting c under key k, respectively.

The encryption algorithm Enc can be probabilistic or deterministic. A probabilis-
tic encryption algorithm involves randomness: Running the encryption algorithm
with the same inputs, i.e., a key k and a message m, several times outputs dif-
ferent ciphertexts. Contrary to probabilistic encryption algorithms, deterministic
ones involve no randomness: Running the encryption algorithm with the same
inputs several times outputs the same ciphertext. This property of deterministic
encryption algorithms allows searching on the encrypted data straightforwardly.
To illustrate, consider a relational table where each value of the table is encrypted
using a deterministic encryption algorithm and a key k. A user, who knows k,
can look-up a data m in the encrypted table by encrypting m under key k and
using the generated ciphertext to find a match in the encrypted table. Because of
the deterministic encryption property, the ciphertext generated during the search
process is the same as the one generated when the table was encrypted.

However, this property of the deterministic encryption algorithms allows adver-
saries to identify whether two or more ciphertexts encrypt the same message. If an
adversary finds that a ciphertext occurs more than once, the adversary knows that
the underlying encrypted message must also be the same. We give more details
about secrecy notions in the next Section, Section 3.2.

With probabilistic encryption algorithms, an adversary cannot identify whether
two or more ciphertexts encrypt the same message. The reason is that encrypting
the same message under the same key several times yields different ciphertexts.
However, the randomness of the encryption process has a disadvantage: searching
on the encrypted data requires additional techniques such as the use of indexes.
We will deepen these searching techniques in Chapters 5 and 6.

3.1.2 Asymmetric Encryption

Contrary to symmetric encryption schemes, where two parties share a key secretly,
using asymmetric encryption schemes, two parties, who want to communicate with
each other, do not need to share any key secretly, as we will explain. Asymmetric
encryption schemes, also known as public-key encryption, use a pair of keys—one
key to encrypt and the other one to decrypt. The encryption key is called the

20

3.1 Encryption Schemes

public key, and it is publicly available to all parties who want to send messages.
The decryption key is called the secret key, and only the receiver knows this key.

Intuitively, asymmetric encryption schemes work as follows: First, the receiver
generates a pair of keys (pk, sk), where pk is the public key and sk is the secret
key. Second, to communicate with the receiver, the sender encrypts a plaintext
message m using the public key pk and sends the resulting ciphertext c to the
receiver. Finally, the receiver takes the ciphertext c, decrypts it using the secret
key sk, and obtains back the message m. The receiver can make his public key
available by publishing it on his webpage, storing it in an open directory, or sending
it in the clear to the sender. The secrecy of these encryption schemes relies only
on the secret key sk, not in the public key pk. Therefore, the receiver is the only
entity responsible for keeping the key sk secret from any entity, including the
sender. Formally:

Definition 3.2: Asymmetric Encryption Scheme

An asymmetric encryption scheme AE = (KGen, Enc,Dec) consists of
three algorithms: (1) A key generation algorithm KGen that returns a pair
of public and secret keys (pk, sk). (2) A encryption algorithm Enc that
can be probabilistic or deterministic and takes as input the public key pk
and a message m to return a ciphertext c. (3) A deterministic decryption
algorithm Dec that takes as input the secret key sk and a ciphertext c to
return a message m, such that Dec(sk,Enc(pk,m)) = m.

Asymmetric encryption schemes have two main advantages compared to symmetric
encryption schemes. First, they address the key-distribution problem of symmetric
encryption schemes. That is, two parties who want to communicate with each other
do not need to share in advance a secret key. Second, using asymmetric encryption
schemes, a user who wants to receive messages from multiple senders needs to store
only one single secret key. When using symmetric encryption schemes, a user has
to store one shared key for each sender.

The main disadvantage of asymmetric encryption schemes compared to symmetric
ones is that they are less efficient—approximately 2 to 3 orders of magnitude slower
than symmetric encryption schemes[KL07].

Next, we will present two variants of asymmetric encryption schemes: homomor-
phic encryption schemes and attribute-based encryption schemes. We will use
these schemes later in Chapter 6 to build our proposed approaches for MSNs,
which offer secrecy guarantees to the users.

21

3 Cryptography

3.1.3 Homomorphic Encryption

Homomorphic encryption schemes are asymmetric encryption schemes that allow
performing specific types of operations on the encrypted data. Given an opera-
tion · and two ciphertexts, c1 and c2, generated using homomorphic encryption, a
homomorphic encryption scheme provides a homormorphic operation ⊗ such that
when applied ⊗ on c1 and c2, the result of such operation generates a new cipher-
text c′. The decryption of the ciphertext c′ results in a plaintext that matches the
output of applying the given operation · on the decrypted ciphertexts c1 and c2.

These schemes support various types of operations on the encrypted data such
as addition and multiplication. We can classify homomorphic encryption schemes
by the number and types of operations that they support. There are three main
groups: partially homomorphic encryption, somewhat homomorphic encryption,
and fully homomorphic encryption.

Partially homomorphic encryption schemes (PHE) support only one type of op-
eration that can be applied any number of times. That is, given as input two
ciphertexts, c1 and c2, a PHE scheme computes the supported operation on c1 and
c2, and outputs a ciphertext c3. One can use c3, together with another ciphertext,
as input to the PHE scheme to compute the supported operation again. One can
compute the supported operation any number of times.

Somewhat homomorphic encryption schemes support more than one operation
but a limited number of times. The reason is that the resulting ciphertext of a
homomorphic operation contains random noise. This noise grows with the number
of the subsequent homomorphic operations applied to the resulting ciphertext. One
can decrypt a ciphertext correctly only if its noise is lower than a threshold value
determined by the scheme used.

Fully homomorphic encryption schemes support any number of multiplication and
addition operations, and thus they can handle any function that can be represented
by addition and multiplication.

In this thesis, we will use somewhat homomorphic encryption schemes. As we will
explain in Chapter 6, in our scenario, we need to perform a limited number of
addition and multiplication operations on the encrypted data. Furthermore, these
schemes are more efficient than fully homomorphic schemes [AAUC18]. Formally:

Definition 3.3: Somewhat Homomorphic Encyption Scheme

A somewhat homomorphic encryption scheme SHE is an asymmetric
encryption scheme in which the message space is a ring (R,+, ·) and the ci-

22

3.1 Encryption Schemes

phertext space is also a ring (R,⊕,⊗) such that for all messages m1,m2 ∈ R,
and all pair of keys (pk, sk), m1+m2 = Dec (sk,Enc(pk,m1)⊕ Enc(pk,m2)),
and m1 · m2 = Dec (sk,Enc(pk,m1)⊗ Enc(pk,m2)). A SHE can compute
the supported operations a limited number of times.

3.1.4 Attribute-based Encryption

Attribute-based encryption schemes allow a user to encrypt data and generate a
single ciphertext that can be later decrypted by multiple receivers without needing
to share a secret key among them. That is, each receiver can decrypt a single ci-
phertext using his secret key. A key authority, which is a trusted entity, generates
the secret keys of the users. Traditional symmetric and asymmetric encryption
schemes do not support this feature of attribute-based encryption. With tradi-
tional symmetric encryption schemes, to be able to decrypt a given ciphertext,
the senders and each of the receivers have to share—in advance—the encryp-
tion/decryption key. With traditional asymmetric encryption schemes, each user
has a secret key; however, a user can decrypt only ciphertexts generated using
his public key. Then, if a user wants to send an encrypted message to multiple
receivers, the user has to generate multiple ciphertexts using for each ciphertext,
the public key of each receiver.

Attribute-based encryption is a type of asymmetric encryption in which the secret
key of a user and the ciphertext are generated based on a set of tuples of the form
(attribute = value), where attribute is a user attribute, e.g., role, and value refers
to a specific value of such an attribute, e.g., student. We call a tuple of the form
(attribute = value), attribute-value pair. A user can decrypt a ciphertext c only
if the set of attribute-value pairs used to generate his secret key matches the set
of attribute-value pairs used to generate c. In what follows, we explain in depth
the encryption/decryption process.

There are two types of attribute-based encryption schemes: ciphertext-policy at-
tribute-based encryption scheme (CP-ABE) and key-policy attribute-based en-
cryption scheme (KP-ABE). The encryption/decryption process is different for
both schemes.

Ciphertext-Policy Attribute-based Encryption

CP-ABE schemes use an access policy, which consists of constraints on attribute-
value pairs, to encrypt a given message. To generate the secret key of a user,
these schemes use a set of attribute-value pairs. A user can decrypt a ciphertext

23

3 Cryptography

c, if and only if the set of attribute-value pairs used to generate his secret key
satisfies the access policy used to generate c. Figure 3.1 illustrates a CP-ABE
scheme. The encrypted file is generated based on the access policy defined by the
file owner: (role=Student Council President)∨ (role=Undergraduate Student)∧
(major= Computer Science). The key authority generates the secret key of each
user based on a set of attribute-value pairs associated with the user. Only “User 1”
can decrypt the encrypted version of the file because the set of attribute-value pairs
{(role = Student Council President) , (major=Statistics)} used to generated his
secret key satisfies the access policy (role = Student Council President)∨ (role =
Undergraduate Student) ∧ (major = Computer Science).

Figure 3.1: Ciphertext-policy attribute-based encryption scheme (CP-ABE)

Key-Policy Attribute-based Encryption

KP-ABE is the counterpart of CP-ABE in the sense that: KP-ABE schemes use an
access policy to generate the secret key of a user, and a set of attribute-value pairs
to generate the ciphertext of a given message. A user can decrypt a ciphertext
c if the set of attribute-value pairs used to generate c satisfies the access policy
used to generated his secret key. Then, the main difference between KP-ABE and
CP-ABE is that using CP-ABE, a user who encrypts a message can specify who
can decrypt it through the access policy used to generate the ciphertext [BSW07].

24

3.1 Encryption Schemes

With KP-ABE, a user who encrypts a message does not have control to decide
who can decrypt it, except by using a set of attribute-value pairs to generate the
ciphertext. He has to trust the key authority to issue the secret keys to the users
based on their attributes adequately to allow or deny them access to the ciphertext.
Figure 3.2 illustrates a KP-ABE scheme. The secret key of the user is generated by
the key authority based on the access policy (role = Student Council President)∨
(role = Undergraduate Student) ∧ (major = Computer Science). Each cipher-
text is generated based on a set of attribute-value pairs defined by the owner
of the file. The user can decrypt the encrypted version of “File 1” because
the set of attribute-value pairs used to generated the corresponding ciphertext
{(role=Student Council President), (major=Statistics)} satisfies the access policy
(role=Student Council President) ∨ (role=Undergraduate Student) ∧ (major =
Computer Science). However, he cannot decrypt the encrypted “File 2” and “File
3”.

Figure 3.2: Key-policy attribute-based encryption scheme (KP-ABE)

In our thesis, we will use CP-ABE in Chapter 6. Next, we formalize this encryption
scheme. Let γ and cγ be an access policy and a ciphertext generated based on γ,
respectively. Further, let ωu and skωu be a set of attribute-value pairs associated
to a user u and the secret key of user u generated based on ωu, respectively. Next,
Enc(pk,mγ) denotes the operation of encrypting m under the access policy γ and

25

3 Cryptography

public key pk, and Dec((pk, skωu), cγ) denotes the operation of decrypting cγ under
the pair of public and secret keys (pk, skωu).

Definition 3.4: Ciphertext-Policy Attribute-Based Encryption
Scheme

A CP-ABE scheme consists of four algorithms (Setup,KGen, Enc,Dec):
(1) A setup algorithm, Setup, that selects two cyclic groups G and GT

and use them to generate a public key pk and a master key mk. The
setup algorithm outputs the pair of keys (pk, mk). (2) A key generation
algorithm KGen that takes as input a set of attribute-value pairs ωu asso-
ciated with a user u and the master key mk, to return a secret key skωu .
(3) A probabilistic encryption algorithm Enc that takes as input a mes-
sage m, an access policy γ and the public key pk to return a ciphertext
cγ. (4) A deterministic decryption algorithm Dec that takes as input the
pair of public and secret keys (pk, skωu) and a ciphertext cγ to return a
message m or an error message ⊥. If the set of attribute-value pairs ωu
satisfies the access policy γ, Dec((pk, skωu),Enc(pk,mγ)) = m; otherwise
Dec((pk, skωu),Enc(pk,mγ)) =⊥.

3.2 Secure Cryptographic Schemes

Several cryptographic schemes that aim to provide secrecy have been proposed
in the literature. In this Section, we address the question: “What is a secure
cryptographic scheme?” In this dissertation, we use the term “secure” to indicate
that a scheme fulfills a given secrecy definition, as we will explain in what follows.

Deeming a cryptographic scheme as secure requires a secrecy proof, which itself
requires a formal secrecy definition. Next, we explain what do these concepts,
secrecy proof and secrecy definition, mean.

3.2.1 Formal secrecy definitions

Formal secrecy definitions define what is meant with secrecy. If a cryptographic
scheme fulfills a given secrecy definition, one can say that the scheme is secure with
respect to the given definition. A formal secrecy definition has two components
[KL07]: secrecy guarantees and adversary model.

26

3.2 Secure Cryptographic Schemes

Secrecy Guarantees

The secrecy guarantees define the threats that a cryptographic scheme must pro-
tect against if it fulfills the given secrecy definition. That is, a secure cryptographic
scheme has to prevent adversaries from performing the actions established by the
secrecy guarantees. From the point of an adversary, the secrecy guarantees estab-
lish what a successful attack on the scheme is.

Adversary Model

The adversary model describes the abilities and limitations that an adversary is
assumed to have. The notion of a secure cryptographic scheme is meaningful only
with respect to a particular adversary model.

Typically an adversary model includes the following components:

• The adversarial behavior strategy: It defines the actions that the ad-
versary might take regarding the protocol specification. With protocol spec-
ification, we mean the process that describes how a given cryptographic
scheme should be used to try to achieve certain secrecy guarantees. There
are two main adversarial behavior strategies: semi-honest and malicious.
Adversaries that follows the first and the second strategy are known as
semi-honest adversaries (or honest-but-curious adversaries), and malicious
adversaries, respectively. Semi-honest adversaries follow the protocol speci-
fication, but they try to learn information from the messages (or ciphertexts)
that they receive during the execution of the protocol. Malicious adversaries
may deviate arbitrarily from the protocol specification.

• Computational strategy: It defines the computational complexity adver-
saries are assumed to have. In cryptography, adversaries commonly have
polynomial capabilities, i.e., they run probabilistic polynomial-time algo-
rithms, or unbound capabilities, i.e., they do not have computational limits.

• Protocol execution strategy: It specifies the number of times adversaries
are allowed to execute the protocol. Common protocol execution strategies
are [Can01]: stand-alone and concurrent-composition. In the stand-alone
strategy, the adversary is allowed to execute the protocol a single time. In
the concurrent-composition strategy, the adversary can execute the protocol
several times.

• Collusion strategy: The collusion strategy is relevant only in multiparty
protocols. It defines when or how the entities participating in a protocol
specification come under the control of the adversary. One has to specify

27

3 Cryptography

the entities that may behave adversarially and the entities that may collude
with each other during the attack. There exist two main collusion strategies:
static and adaptive [HL10]. In the static strategy, the adversary is given a
set of entities to collude with, and the honest entities remain honest during
the protocol execution. In the adaptive strategy, the adversary can collude
with any entity in the system during the protocol execution.

• Further assumptions: They state any other assumption, which has not
been covered by the above components. One can specify assumptions regard-
ing the environment and resources that adversaries might use. For instance,
one can assume that the secret keys are sent through a secure communica-
tion channel. One can also specify the assumed knowledge of the adversaries,
also known as accepted information leakage. For instance, a cryptographic
scheme may accept to leak certain information such as the number of tuples
of a relational table or the number of users registered in a system.

Note that an adversary model does not specify the strategies of an attack because
it is impossible, in real scenarios, to predict them.

3.2.2 Secrecy Proofs

To prove that a given cryptographic scheme is secure, one needs a formal secrecy
definition, which includes the secrecy guarantees and the ability that the adversary
is assumed to have. Cryptographic schemes are constructed based on a number
of well-known cryptographic problems, which themselves rely on open problems
in complexity theory like P 6= NP. A secrecy proof is a reduction that shows that
if an adversary, with the abilities established in the adversary model, breaks the
defined secrecy guarantees of a given scheme, which implies that the adversary can
solve the underlying complexity problem of the scheme.

In the next subsection, Subsection 3.3, we describe standard secrecy definitions for
encryption schemes. In Chapters 5 and 6, we will use these notions to build and
prove the secrecy of our proposed schemes.

3.3 Standard Secrecy Definitions for Encryption
Schemes

In this section, we give an overview of standard secrecy guarantees, Section 3.3.1,
and adversary models for encryption schemes, Section 3.3.2.

28

3.3 Standard Secrecy Definitions for Encryption Schemes

3.3.1 Standard Secrecy Guarantees for Encryption Schemes

The standard well-known secrecy guarantees for encryption schemes are semantic
secrecy, indistinguishability, and non-malleability. Next, we explain these notions.

• Semantic Secrecy (SS): Semantic secrecy states that given a ciphertext,
an adversary cannot learn any information about the underlying plaintext.

• Indistinguishability (IND): The indistinguishability notion states that
given a ciphertext c corresponding to one of two plaintexts known by an
adversary, the adversary cannot distinguish which of the plaintext was en-
crypted by observing c.

• Non-malleability (NM): The non-malleability notions states that given
a ciphertext c, an adversary is unable to output another ciphertext c′ such
that the underlying plaintext of c′ is meaningful related to the underlying
plaintext of c.

Note that in the three secrecy guarantees explained above, the adversary is given
a ciphertext c. We refer to c as the “challenge ciphertext”.

The next subsection presents standard adversary models of encryption schemes,
which specify the abilities of the adversaries.

3.3.2 Standard Adversary Models for Encryption Schemes

Standard adversary models, sorted by increasing power of the adversary, used to
prove that a given encryption scheme is secure are:

• Ciphertext-only attacks (COA): In this attack, the adversary can ob-
serve ciphertexts but does not know the associated plaintext.

• Known-plaintext attacks (KPA): In this attack, the adversary can ob-
serve pairs of plaintexts and their corresponding ciphertexts.

• Chosen-plaintext attacks (CPA): In this attack, the adversary has ac-
cess to an encryption oracle. The adversary can use the encryption oracle
as long as the adversary has not received the challenge ciphertext. That is,
the adversary can select some plaintexts and obtain their corresponding ci-
phertexts. Once the adversary receives the challenge ciphertext, she cannot
encrypt any other plaintext.

• Chosen-ciphertext attacks (CCA): In this attack, the adversary has
access to an encryption oracle and a decryption oracle. The adversary can

29

3 Cryptography

use both oracles as long as the adversary has not received the challenge
ciphertext. That is, the adversary can select some plaintexts and obtain
their corresponding ciphertexts, and some ciphertexts and obtain their cor-
responding plaintexts. Once the adversary receives the challenge ciphertext,
she cannot encrypt any other plaintext or decrypt any other ciphertext.

These standard adversary models consider adversaries who run probabilistic poly-
nomial-time (PPT) algorithms and who can break the secrecy guarantees of a
scheme with some negligible probability. Intuitively, adversaries are required to
run in a “reasonable” amount of time, and their probability of breaking the secrecy
guarantees of a scheme are “very small” as to be zero for all practical purposes.
We will formalize these two notions, probabilistic polynomial-time and negligible
probabilities, in the next subsection, Subsection 3.3.3. We use the term “suc-
cess probability” to refer to the probability that an adversary breaks the secrecy
guarantees of a scheme.

To construct a secrecy definition, one can combine one of the secrecy guarantees
presented in Subsection 3.3.1 with one of the adversary models. Such a combina-
tion allows building several secrecy definitions such as SS-CPA, which combines
semantic secrecy with chosen-plaintext attacks, or IND-CPA, which combines the
indistinguishability notion with chose-plaintext attacks. The authors in [BDPR98]
and [WSI03] have studied and proven the relationships existing between the dif-
ferent secrecy definitions. For instance, in the CPA model, semantic secrecy is
equivalent to the indistinguishability notion [BDPR98]. In this thesis, we will
adopt the indistinguishability notion.

As mentioned above, adversaries are assumed to run PPT algorithms and we allow
them for some small success probability. A secrecy definition that considers ad-
versaries with unbounded computational power and allow adversaries for a success
probability of zero is known as perfect secrecy. To achieve perfect secrecy, a given
encryption scheme has to use an encryption key as long as the plaintext, and each
encryption key can be used only once [KL07], which make perfect secrecy imprac-
tical. Therefore, relaxing the computational power of the adversaries and allowing
them for some small success probability allow building encryption schemes for all
practical purposes [KMVOV96].

Next, we select IND-CPA to showcase how these secrecy definitions look like. In
the next subsection, we formally define IND-CPA.

30

3.3 Standard Secrecy Definitions for Encryption Schemes

3.3.3 Indistinguishability under chosen-plaintext attacks

As mentioned in the previous subsection, we consider adversaries who run prob-
abilistic-polynomial time (PPT) algorithms and can break the secrecy guarantees
of a given encryption scheme with some negligible probability. We use the term
PPT adversaries to denote adversaries that run probabilistic polynomial-time algo-
rithms. Before defining the indistinguishability secrecy notion under chosen-plain-
text attacks, we formalize the notions of PPT algorithms and negligible probability.

Probabilistic-Polynomial Time Algorithms and Negligible Probabilities

We first introduce the notion of security parameter [Dam88]. Both the computa-
tional power of the adversaries and their success probability are expressed in terms
of the security parameter.

Definition 3.5: Security Parameter

Given an encryption scheme Π, the security parameter of Π, denoted as
n, is an integer variable that measures the input size of the computational
problem on which Π is based.

The security parameter allows honest parties to adjust the security level of a given
encryption scheme. Increasing the security parameter implies higher secrecy, but it
affects the efficiency of the scheme negatively. That is, there is a trade-off between
secrecy and performance.

Definition 3.6: Probabilistic Polynomial-Time Algorithm

A probabilistic polynomial-time algorithm, PPT algorithm, is an algo-
rithm running in polynomial time such that for some polynomial poly and
some input n ∈ {0, 1}∗, the algorithm always halts after |poly (n) | steps
independently of the outcome of its internal coin tosses.

Definition 3.7: Negligible Function

A function f of type N → R+
0 is negligible iff ∀c ∈ N : ∃n0 ∈ N such

that for all integers n ≥ n0, f(n) < n−c. We use negl to denote an arbitrary
negligible function.

31

3 Cryptography

Definition 3.8: Negligible Probability

Given a negligible function negl, a negligible probability is a probability
with density function behaving as negl.

IND-CPA Secrecy Notion

The concept of indistinguishability is defined based on an indistinguishability ex-
periment between a PPT adversary A and a challenger. The indistinguishability
experiment under chosen-plaintext attacks (IND-CPA) is the following: The chal-
lenger generates a random key k. The challenger gives access to A to an encryption
oracle. That is, the adversary can send plaintexts and obtain their corresponding
ciphertexts generated using the key k. At the end of the experiment, A sends to
the challenger two messages m0 and m1, where m0 and m1 are different to the
messages sent to the encryption oracle. The challenger selects uniformly at ran-
dom one of these two messages and encrypts it using the key k. The challenger
sends the encrypted message, the challenger ciphertext, to A. A outputs a guess
to indicate which of the two messages corresponds to the challenger ciphertext.
The indistinguishability concept states that an encryption scheme is secure if no
PPT adversary A can successfully guess which message was encrypted with a
probability significantly better than 1

2
, i.e., random guessing.

Next, we formalize the indistinguishability notion. Given a message m, let |m| be
the length of message m. We use ←$ to denote a randomize procedure.

Definition 3.9: The Adversarial Indistinguishability Experiment
IND-CPA

Given a symmetric encryption scheme Π = (KGen,Enc,Dec), an adversary
A and a security parameter n, the adversarial indistinguishability
experiment under chosen-plaintexts attacks IND-CPAA,Π(n) is:

32

3.3 Standard Secrecy Definitions for Encryption Schemes

IND-CPAA,Π(n)

1 : k← KGen(1n)

. Setup Completed.

2 : for i = 1, . . . , q

3 : mi ←A(1n)

4 : ci = Enc(k,mi)

5 : (m0,m1)←$A(1n)

6 : b←$ {0, 1}
7 : cb = Enc(k,mb)

8 : b←$A(1n, cb)

9 : return 1 if b = b else 0

Figure 3.3 illustrates the adversarial indistinguishability experiment IND-CPA.

A

Adversary

1n

b

mi

Enc(k,mi)q

m0,m1

|m0| = |m1|

Enc(k,mb)

k← KGen(1n)

b←$ {0, 1}

Challenger

Figure 3.3: Indistinguishability experiment IND-CPAA,Π(n)

Given a PPT adversary A and a symmetric encryption scheme Π, let AdvA,Π(n)
denote the advantage of the adversary, which measures the success probability of
the adversary.

Definition 3.10: An IND-CPA Secure Symmetric Encryption
Scheme

A symmetric encryption scheme Π = (KGen,Enc,Dec) is indistinguisha-
bility secure under chosen-plaintexts attacks, IND-CPA secure, if for all

33

3 Cryptography

PPT adversaries A:

AdvA,Π(n) = |Pr[IND-CPAA,Π(n) = 1]− Pr[IND-CPAA,Π(n) = 0]|

is negligible.

34

4 Integrating Reciprocity into
Access Control Models

A crucial requirement of information systems, including OSNs, is to guarantee data
secrecy by protecting the information stored in these systems from unauthorized
access. Access control systems play an important role to guarantee data secrecy. In
this chapter, we focus on access control models, which are one of the components
of access control systems.

Figure 4.1: Access Control Model - Flexibility Problem

Specifically, we increase the flexibility of existing access control models by defining
the syntax and semantics of a new type of authorization called mutual2. Mutual
authorizations allow modeling reciprocity. Studies in different areas, such as psy-
chology [HMS98], economics [FF06, SBC09], and sociology [FFG02], have revealed
that reciprocity is a fundamental aspect that shapes human behavior. Reciprocity
indicates that, people tend to be kind to someone that has been kind to them.
Integrating reciprocity into access control means letting persons grant access to
their resources to users that allow them the same.
2Parts of this chapter have been published in [SEGB19b] and in an extended version in
[SEGB19c]

35

4 Integrating Reciprocity into Access Control Models

Example 4.1. Think of a car sharing system. Alice, a user of the system, is
more like to allow others using her car if she gets something in return. That
is, Alice wants to allow a user Bob using her car, if Bob allows her using his.

Various access control models have been proposed [SCFY96, OP03, TLT15]. How-
ever, all existing models consider only two type of grants: allow and deny. These
two grants are not enough to support reciprocity explicitly. Consider Example 4.1,
to support such reciprocal sharing, with traditional access control models, Alice
can verify whether Bob has allowed her using his car and then set her access priv-
ileges for him accordingly. Such a solution, however has secrecy issues and it is
not scalable.

Example 4.2. Think again of a car sharing system and consider that 10000
car owners, including Alice, use the system. Alice would like to allow any
other user of the system to use her car if and only if the user allows her to use
his car. With traditional access control models, Alice would have to verify
for each user, whether the user has allowed her using his car and then set
her access privileges for him accordingly. That is, she needs to repeat this
process 9999 times. Moreover, this process requires privileges to be public,
which is unrealistic because they are sensitive information. Alice would also
have to beware of changes in the access policies of others continuously, e.g.,
Alice would have to revoke the access to any user u as soon as u revokes
Alice access to his car. With the reciprocity feature envisioned in turn, all
that Alice has to do is to specify one authorization.

To capture this reciprocity phenomenon, we need a new kind of grant. We call it
mutual and authorizations that make use of it mutual authorizations. Contrary
to positive authorizations, i.e., authorizations that use the grant allow, mutual
authorizations involve an exchange of resources between two users.

In this chapter, we define the syntax and semantics of mutual authorizations (Sec-
tion 4.1). One can add these new authorizations to any existing access control
model. To study and illustrate how this addition can look like conceptually, we
select ABAC, one of the most general access control models. To focus on the idea
of reciprocity itself, we first assume that all resources have the same sensitivity
degree, e.g., physical positions.

Next, in Section 4.2, we generalize our model to support settings where resources
have different sensitivity degrees, e.g., health records. A patient who has a stigma-
tizing disease may consider that his health record has a higher sensitivity degree
than the health record of a patient who is in perfect health. However, whether a

36

4.1 Mutual Authorizations: Syntax and Semantics

disease is stigmatizing or not is a subjective issue. It is not obvious how to guar-
antee a fair exchange of resources when using mutual authorizations, especially
in such general settings where resources have different sensitivity degrees. Our
general model deals with these problems.

As a use case for the deployment of mutual authorizations, we use location-based
services (LBS). This integration of mutual authorizations into existing services—
LBS in our example— has to reuse existing implementations, be efficient, and
guarantee that only authorized users can access the services. Section 4.3 presents
two approaches to show how one can achieve this integration.

We conduct experiments to evaluate the performance of an access decision when
mutual authorizations are involved and that of our proposed approaches, which
integrate mutual authorizations into LBS. Section 4.4 presents the results of such
experiments. Section 4.5 gives an overview of related work in the area.

4.1 Mutual Authorizations: Syntax and Semantics

In this section, we introduce first the syntax of mutual authorizations and then
their semantics. As mentioned in the introduction of this chapter, to focus on
the idea of reciprocity itself, in this section, we assume that all resources have the
same sensitivity degree.

4.1.1 Syntax

An authorization, as specified in Definition 2.1, consists of five elements: a set
of subjects, a set of resources, an operation, a grant, and a set of environment
conditions.

Given an authorization A, we use the following notation to refer to each of the
elements of an authorization: subject(A), res(A), op(A), and grant(A) denote,
respectively, the subjects induced by Conssubject of A, the resources induced by
Consresource of A, the operation op of A, and the grant gr of A. For simplicity, we
do not specify the environment constraints involved in an authorization. That is,
the set of environment attributes is an empty set denoted as ∅.

We assume that resources always have an attribute owner, i.e., owner ∈ ResAtt.
The resource owners are the responsible for creating authorizations to control the
operations that a set of subjects is allowed to perform over their resources. For
brevity, we omit the attribute owner from the set of resource attributes, and given
an authorization A assigned by a user u, we do not explicitly write the resource

37

4 Integrating Reciprocity into Access Control Models

constraint owner = u, but we assume it to be present. Next, we use user(A) and
U to denote the user who has specified A and the set of all users, respectively.

Note that from the point of view of an authorization, we differentiate two types of
persons in the system: users and subjects. Given an authorization A, we use the
terms user and subject to refer, respectively, to the person who has assigned A,
and the person who has received A.

Table 4.1 summarizes the notation used to refer to the elements of a given autho-
rization A.

Notation Description

user(A) The user who specified A

subject(A) The set of subjects that meet the subject constraint of A

res(A) The set of resources that meet the resource constraint of A

op(A) The operation op of A, where op ∈ Op
grant(A) The grant gr of A, where gr ∈ Gr

Table 4.1: Elements of an Authorization A

Existing access control models are based on the grants Gr = {deny, allow}. We
extend Gr with a new kind of grant, which we call mutual. Mutual grants cap-
ture the reciprocity phenomenon by means of mutual authorizations. Given an
authorization A, A is a mutual authorization if grant(A) = mutual.

4.1.2 Semantics

The semantics of all authorization can be reduced to questions of the form: “Can
a person s perform the operation op on the resource resu owned by u?”. We call
this an access request.

Definition 4.1: Access Request

An access request Req = 〈s, op, resu〉 is a tuple consisting of a person s,
an operation op ∈ Op and a resource owned by a person u, resu. An access
request indicates that s requests to perform the operation op on the resource
resu owned by u.

In the context of positive and negative authorizations, answering an access request
is straightforward. A positive authorization A uses the grant allow and states that

38

4.1 Mutual Authorizations: Syntax and Semantics

user(A) authorizes subjects(A) to invoke op(A) on res(A). A negative authoriza-
tion uses deny and states that user(A) forbids subjects(A) to invoke op(A) on
res(A). However, in the context of mutual authorizations, to answer an access
request, one must consider the authorizations that u has assigned to s and the
ones that u has received from s.

Given two authorizations A and B, we use res(A) = res(B) to indicate that the
resources in both authorizations are of the same type.

Definition 4.2: Mutual Authorizations: Semantics

Given a mutual authorizationA, A states that user(A) allows invoking op(A)
on res(A) to the subjects in subjects(A) who have issued an authorization B
to user(A), if the following boolean expression evaluates to true: (res(B) =
res(A)) ∧ ((grant(B) = allow) ∨ (grant(B) = mutual)) ∧ (op(B) = op(A)).

For simplicity and to ease the presentation, in the remainder of this chapter, we
restrict the elements of an authorization, Definition 2.1, as follows: (1) The set
of attribute for persons is AttrPerson = {role,name}. Given a subject s, r(s) is
the set of roles of s. The set of subjects that receive a given authorization A is
subjects(A) = {s ∈ S | name=s ∨ (∃r : role=r ∧ r ∈ r(s))}. (2) The set of oper-
ations is Op = {read}. (3) The set of grants is Gr = {allow,mutual, deny}. (4)
We do not specify the environment conditions when expressing an authorization,
i.e, we omit the environment specification from Definition 2.1. Furthermore, as
mentioned at the beginning of this section, we assume that all resources have the
same sensitivity degree, unless stated otherwise. Specifically, we consider a setting
with physical positions as the only type of resource. That is, the resources speci-
fied in the authorizations are the physical positions of the users. We assume that
each user u ∈ U has one physical position, pu.

So far our semantics of mutual authorizations, Definition 4.2, assumes that there
exists a single authorizations that involves a given user u and a given subject s.
However, in real scenarios, a subject could receive more than one authorization
from the same user over the same resource. In such cases, authorization conflicts
may arise. In the next subsection, Subsection 4.1.3, we formally define authoriza-
tion conflicts and explain our strategy to solve them.

4.1.3 Authorization Conflicts Resolution

Let A denote the set of all authorizations.

39

4 Integrating Reciprocity into Access Control Models

Definition 4.3: Authorization Conflicts

Given a set of authorizations AC ⊆ A, a subject s ∈ S and a user u ∈ U , an
authorization conflict exists with respect to u and s if s has received more
than one authorization on the same resource with different grants assigned
by u. Formally, an authorization conflict exists with respect to u and s if
∃A,B ∈ AC : (user(A) = user(B) = u)∧ (s ∈ subjects(A)∩ subjects(B))∧
(res(A) = res(B)) ∧ (grant(A) 6= grant(B)).

Example 4.3. Consider a user Alice who has two roles r(Alice) = {r1, r2}.
Assume now that a user Bob with physical position pBob has assigned the
following two authorizations: A = 〈role=r1, pBob, read,mutual〉 and B =
〈role = r2, pBob, read, deny〉. Authorizations A and B are in conflict with
respect to Alice and Bob. Namely, A assigns a mutual grant to Alice while
B assigns her a deny grant for reading the physical position of Bob, pBob.

Solving authorization conflicts requires deciding which authorization prevails over
the others when in conflict. There exists several conflict resolutions strategies
in the literature that consider positive and negative authorizations. For instance,
the recency-overrides strategy states that authorizations specified later take prece-
dence over earlier ones. We select a conflict resolution strategy in which autho-
rizations are assigned a precedence based on their grants. We call it deny-mutual
precedence strategy.

Definition 4.4: Deny-Mutual Precedence Strategy

A deny-mutual precedence strategy is a prioritization of the grants in Gr. It
states that an authorization with the grant deny precedes an authorization
with the grant mutual and an authorization with the grant mutual precedes
an authorization with the grant allow. We refer to this precedence as deny �
mutual� allow.

We select the precedence deny � mutual � allow because assigning a higher
precedence to a negative authorization eliminates the risk of possible leakage
[HA11]. Given two authorizations A and B, we write A � B to denote that
grant(A) � grant(B). Next, we interpret an operation not granted explicitly as
denied.

Given a set of authorizations B and a subject s, intuitively, our conflict resolution
process is as follows:

40

4.1 Mutual Authorizations: Syntax and Semantics

1. Select all authorizations A ∈ B where s ∈ subjects(A).

2. Group the authorizations selected in the previous step by the user who has
assigned them. Each group contains authorizations where the user who has
assigned them is the same. There are no two or more sets containing au-
thorizations assigned by the same user. We call the function that does this
grouping authorization-grouping function.

3. For each group of authorizations, select the authorization with the highest
precedence based on the deny-mutual precedence strategy.

Definitions 4.5 and 4.6 formalizes the conflict resolution process.

Definition 4.5: Authorization-Grouping Function

An authorization-grouping function group : P(A)×S → P(P(A)) takes
as input a set of authorizations B ⊆ A and a subject s ∈ S and outputs a
set C of sets of authorizations such that:

1.
⋃

D∈C D = {A ∈ B | s ∈ subjects(A)}.
2. ∀D1,D2 ∈ C : D1 6= D2 ⇒ D1 ∩D2 = ∅.
3. ∀D ∈ C,∀A,B ∈ D : user(A) = user(B) ∧ s ∈ subjects(A) ∩
subjects(B).

4. ∀D1,D2 ∈ C,∀A ∈ D1, ∀B ∈ D2 : D1 6= D2 ⇒ user(A) 6= user(B).

Example 4.4. Consider a user s with roles r(s) = {r1, r2} the following set
of authorizations:

B =



A = 〈role=r1, pBob, read,mutual〉
B = 〈role = r2, pBob, read, deny〉
C = 〈name = Alice, pCarol, read, allow〉
D = 〈name = Carol, pBob, read,mutual〉
E = 〈role = r1, pCarol, read,mutual〉


Given as input the set B and subject Alice, the output of the authoriza-
tion-grouping function group(B, Alice) is the set C = {{A,B}, {C,E}}. C

contains all authorizations with the subject Alice, and each subset in C

contains authorizations assigned by the same user.

Let a user-grant tuple be a tuple of the form 〈tuser, tgrant〉, where tuser is a user in
U and tgrant is a grant in Gr. We note that our resolve-conflicts function does not

41

4 Integrating Reciprocity into Access Control Models

consider the resources involved in the authorizations in conflict because we restrict
our study to a specific resource, the physical positions of users.

Definition 4.6: Resolve-Conflicts Function

A resolve-conflicts function — resC : P(A) × S → P(U × Gr) is a
function that takes as input a set of authorizations B ⊆ A and a subject
s ∈ S and outputs a set C of user-grant tuples. For each set of authoriza-
tions B1 ⊆ B with respect to subject s that are in conflict, C contains a
user-grant tuple 〈tuser, tgrant〉, where tuser is the user who has assigned the
authorizations in B1, and tgrant is the grant with the highest precedence in
B1 that tuser has given to s. Formally,

resC(B, s) =


{〈user(C), grant(C)〉 |
C ∈ B,∀A ∈ B : C � A}

if ∀A,B ∈ B :

(user(A) = user(B))∧
(s ∈ subject(A) ∩ subject(B))⋃

B1∈group(B,s) resC(B1, s) otherwise

Given a tuple t ∈ resC(B, s), we use tuser and tgrant to refer to the first and second
element of t, respectively.

Example 4.5. Consider the set of authorizations B from Example 4.3. The
resolve-conflicts function resC(B, Alice) works as follows: First, it groups
the authorizations that Alice has received by the user who has assigned them.
That is, it calls the authorization-grouping function group(B, Alice). This
function outputs the set C = {{A,B}, {C,E}}. Second, for each subset in C,
it applies the deny-mutual precedence strategy and outputs a user-grant tu-
ple, which contains the user and the grant corresponding to the authorization
with the highest precedence. Then, for the subset {A,B}, since B � A, the
output user-grant tuple is 〈Bob, deny〉. For the subset {C,E}, since E � C,
the output user-grant tuple is 〈Carol,mutual〉. Finally, the resolve-conflicts
function resC(B, Alice) outputs the set {〈Bob, deny〉 , 〈Carol,mutual〉}.

4.1.4 Authorized Access Request

Answering an access request, Definition 4.1, requires solving first any authorization
conflict. An access request 〈s, op, resu〉 is authorized if, after resolving conflicts
with respect to s, there exists (1) a tuple with the grant allow or (2) a tuple with

42

4.2 Extending Mutual Authorizations

the grant mutual, and after resolving conflicts with respect to u there is a tuple
either with the grant allow or mutual. Formally:

Definition 4.7: Authorized access request

Given the set of authorizations A, an access request 〈s, op, resu〉 is au-
thorized if one of the following conditions is met:

1. ∃t ∈ resC(A, s) : tuser = u ∧ tgrant = allow
2. ∃t ∈ resC(A, s),∃e ∈ resC(A, u) : tuser = u ∧ tgrant = mutual ∧ euser =
s ∧ (egrant = allow ∨ egrant = mutual).

We refer to the process of deciding whether an access request is authorized or not
as access decision process.

When using mutual authorizations, depending on the scenario, different issues can
arise. In the next section, we discuss issues that can influence the implementation
of mutual authorizations and present alternatives to solve them.

4.2 Extending Mutual Authorizations

The idea of mutual authorizations is that I let you profit from my resource if and
only if I can profit from yours. This implies that the exchange of resources must
be fair. The reference standard to determine what is a fair or unfair exchange is
an equitable share of payoffs.[FF06] In the mutual authorization context, fairness
implies two principles:

• Profit Guarantees: It means to guarantee the right of a user to profit
from an exchange.

• Equal Payoffs: It means to equal, to some extent, the payoffs that a pair
of users receive from exchanging resources with each other.

Two issues can affect these two fairness principles. The first problem, named revo-
cation fraud, is associated with authorizations updates, and it can affect the first
principle. The second problem, named sensitivity problem, is related to resources
with different sensitivity, and it can affect the second principle. Subsections 4.2.1
and 4.2.2 describe these problems and show how one can solve them. Based on
these solutions, we extend the semantics and syntax of mutual authorizations in
Subsection 4.2.3.

For the sake of simplicity, we assume that each user owns one resource. This
actually is the case with various real settings, such as health records or physical

43

4 Integrating Reciprocity into Access Control Models

positions of users. We expect the techniques used to solve the two problems
mentioned to be applicable in scenarios where users own more than one resource
as well.

4.2.1 Revocation Fraud Problem

Problem Description

Users may relax their authorizations for a moment, merely to spy out the oth-
ers, i.e., change a negative authorization to mutual, and right after accessing the
interesting resources return to negative. We call this problem revocation fraud.

Solution

Any solution to this problem has to guarantee that users will always profit from
mutual authorizations. That is, for instance, if Alice accesses a resource owned
by Bob using a mutual authorization, Bob should be able to access the resource
owned by Alice regardless of any future authorization updates.

To this end, we propose to add a mechanism to the access control model. We
call this mechanism, access control list. Intuitively, an access control list registers
information about the users who access resources using mutual authorizations. We
then integrate the registered information into the access decision process. Specifi-
cally, an access control list, dubbed acl, is a set of subjects authorized to perform
an operation on a specific resource. Next, we formalize the syntax and semantics
of an access control lists.

Definition 4.8: Access control entry

An access control entry is a tuple t of the form 〈s, op〉 where s ∈ S and
op ∈ Op. We use subject(t) and op(t) to denote, respectively, the subject
and operation of t.

Definition 4.9: Access control list

Given a resource res, the access control list of res, aclres, is a list of access
control entries.

44

4.2 Extending Mutual Authorizations

Definition 4.10: Access control list: Semantics

Given an access control list of a resource res, aclres, a tuple t ∈ aclres
indicates that the subject(t) is allowed to perform the operation op(t) on
the resource res.

To overcome the revocation fraud problem, we apply the following changes to the
access control model:

• Register: If Alice accesses the resource of Bob using a mutual authorization,
Bob is added to the access control list of the resource owned by Alice.

• Verify: When Bob wants to access to the resource of Alice, the access
decision process verifies first if Bob is in the access control list of such a
resource. If so, Bob is granted access to the resource of Alice regardless of
the authorizations in A.

• Delete: Bob is deleted from the access control list of the resource of Alice
after he has accessed her resource.

Users cannot modify the access control lists of their resources. The access control
authority has to guarantee the integrity of these lists.

4.2.2 Sensitivity Problem

Problem Description

To introduce the concept of mutual authorization, we have considered, so far, one
type of resource with the same degree of sensitivity – our example has been phys-
ical positions. In more complex scenarios, resources can have different degrees of
sensitivity, e.g., health records. In such scenarios, although mutual authorizations
state that only resources with the same sensitivity may be exchanged, if the users
assign a sensitivity level to their resources, unfair exchanges can happen. We call
this problem sensitivity problem.

Example 4.6. Think of a health record system. Consider two users Alice
and Bob, each one owning a health record, and assume that they have as-
signed the same sensitivity to their health records. Alice may not find it fair
to open her health record if she has a stigmatizing disease in exchange for
looking at the record of Bob, who is in perfect health. However, whether a
disease is stigmatizing or not is a subjective issue.

45

4 Integrating Reciprocity into Access Control Models

Solution

To deal with the sensitivity problem, at first sight, one might let the system or a
trusted authority assign the degree of sensitivity of all resources. Such a solution
could be easily implemented by extending the semantics of mutual authorizations
to specify that users can only exchange resources with the same sensitivity. How-
ever, the owners of the resources may not agree with the assigned sensitivity.

Example 4.7. Think of a library management system and of two users
Alice and Bob who want to exchange their thesis. Suppose that a system
determines the degree of sensitivity of all resources, e.g., books, theses, etc.
Since Alice and Bob have the same type of resource, i.e., thesis, the sys-
tem may assign the same degree of sensitivity to them. However, after the
exchange, Alice may find it unfair to have exchanged her thesis with Bob
because, from her point of view, the content of her thesis is more sensitive
than the one of Bob.

Our solution to alleviate the sensitivity problem consists of three parts:

1. The owners specify the degree of sensitivity of their resources subjectively.

2. When using mutual authorizations, users specify the minimum level of trust
that subjects involved in such authorizations must have to access their re-
sources.

3. The trust of a user u is computed using the ratings provided by the users
who have accessed the resource of u, resu. These ratings depend on how
users perceive the sensitivity of resu compared to the one assigned by u.

To implement the first part of our solution, one needs to define a sensitivity scale.
The second part requires to extend the syntax and semantics of mutual authoriza-
tion. The next subsection, Subsection 4.2.3, features this extension. Finally, the
third part can be implemented using a reputation system. In principle, one can
use any reputation system that fulfills the following requirements:

• Score: It has to provide a trust (reputation) score for each user, a real
number.

• Rating: It must support positive and negative ratings, within a numerical
scale. For example, if Alice accesses a resource owned by Bob, with sensitivity
10, Alice may rate the transaction as negative if she deems the sensitivity of
the resource accessed lower.

46

4.2 Extending Mutual Authorizations

• Scope: It must compute a global trust score for each user u, considering the
opinions of all the peers who have interacted with u.

• Integrity: The system has to guarantee that users will not be able to tamper
with their reputation.

Similarly to reputation systems, our solution, at first sight, is prone to whitewash-
ing attacks. In this attacks, users with poor reputation change their identities
to start over again. One can solve this problem by using existing solutions for
reputation systems. For instance, one can restrict the number of identifiers that
each user can obtain. Such a restriction can be done by binding user identifiers
with IP addresses or by requiring entry fees[SL12].

4.2.3 Trust-based authorizations

In this subsection, we extend the syntax and semantics of mutual authorizations,
Section 4.1, by incorporating our solutions to the revocation fraud and sensitivity
problems discussed in Subsections 4.2.1 and 4.2.2.

We extend the concept of mutual authorizations to allow users to specify the
minimum level of trust of subjects to perform an operation on their resources.
We call our extension trust-based authorizations. In the following, we define their
syntax and semantics.

Syntax

As explained in Subsection 4.2.2, we use a reputation system to determine the
trust level of each user. In such a system, each user has a trust value which is
computed based on the evaluation received by the other users. We use trustw to
denote the trust value of user w, i.e., the trust that the system places on w.

Definition 4.11: Trust-based authorization: Syntax

Let a person constraint ConsPerson, a resource constraint ConsResource,
an operation op ∈ Op, a grant gr ∈ Gr, and a trust value tr ∈
R>0 be given. A trust-based authorization At is a 5-element tuple
〈 ConsPerson, ConsResource, op, gr, tr 〉. We use trust(At) to denote the trust
value specified in At. AT denotes the set of all trust-based authorizations.

Definition 4.11 includes positive, mutual, and negative authorizations. Since the
sensitivity problem is only related to mutual authorizations, in the case of positive
and negative authorizations, the trust value has to be ignored.

47

4 Integrating Reciprocity into Access Control Models

Semantics

Next, we define the semantics of trust-based mutual authorizations. The semantics
of positive and negative authorizations remain as defined before while ignoring the
trust conditions. Given a resource res, let sensitivity(res) denote the degree of
sensitivity of res, i.e., the value of sensitivity corresponding to res.

Definition 4.12: Trust-based mutual authorization: Semantics

Let a trust-based mutual authorization At, where grant(At) = mutual, be
given. At states that user(At) allows invoking op(At) on res(At) to all
subjects s ∈ subjects(A) who have issued an authorization B to user(At)
if the following expression evaluates to true: (sensitivity(res(Bt)) =
sensitivity(res(At))) ∧(trusts ≥ trust(At)) ∧(trustuser(At) ≥ trust(Bt)) ∧
((grant(Bt) = allow) ∨ (grant(Bt) = mutual)) ∧ (op(Bt) = op(At)).

Similarly to authorizations without trust conditions, authorization conflicts may
arise when using trust-based authorizations. In the next subsection, we discuss
these conflicts and explain how to handle them.

Trust-based Conflict Resolution

Trust-based authorizations have two sources of conflicts. First, similarly to au-
thorizations without trust, a conflict exists when a subject receives from the same
user trust-based authorizations with different grants. Second, a conflict exists
when a subject receives from the same user trust-based authorizations with the
same grants but with different trust values.

Example 4.8. Let resBob be a resource owned by Bob. Con-
sider a user Alice with roles r(Alice) = {r1, r2} and the trust-
based authorizations At = 〈role=r1, resBob, read,mutual, 0.8〉 and Bt =
〈role=r2, resBob, read,mutual, 0.6〉. The trust-based authorizations At and
Bt are in conflict with respect to Bob and Alice. Namely, At and Bt assign a
mutual grant to s, but the trust values of both authorizations are different.

To solve the first source of conflict, we use the deny-mutual precedence strategy
(deny � mutual � allow). To solve the second source of conflict, we prioritize
trust-based authorizations with the highest trust values. We make this choice for
the same reasons that we assign the highest precedence to a negative authorization,
i.e., to eliminate the risk of possible leakages. For sake of simplicity, we split our
resolve conflicts function in two parts, Definitions 4.13 and 4.14. The first part

48

4.2 Extending Mutual Authorizations

and second part resolve conflicts by taking into account the grants and the trust
values, respectively.

Given two trust-based authorizations At and Bt, we write At �grant Bt and
At �trust Bt to denote, respectively, grant(At) � grant(Bt) and trust(At) ≥
trust(Bt).

Definition 4.13: Grant Resolve-Conflicts Function

A grant resolve-conflicts function — resCgr : P(AT)× S → P(AT) is a
function that takes as input a set of authorizations B ⊆ AT and a subject
s ∈ S and outputs a set C of trust-based authorizations. For each set of
authorizations B1 ⊆ B with respect to subject s that are in conflict, C

contains a trust-based authorization Ct such that Ct is the authorization
with highest grant precedence in B1. Formally,

resCgr(B, s) =


{Ct | Ct ∈ B,

∀At ∈ B : Ct �grant At}

if ∀At, Bt ∈ B :

user(At) = user(Bt)∧
s ∈ subjects(At)∩
subjects(Bt)⋃

B1∈group(B,s) resCgr(B1, s) otherwise

Definition 4.14: Grant-Trust Resolve-Conflicts Function

A grant-trust resolve-conflicts function — resCtr
gr : P(AT)×S → P(AT)

is a function that takes as input a set of authorizations B ⊆ AT and a subject
s ∈ S and outputs a set C of trust-based authorizations. For each set of
authorizations B1 ⊆ B with respect to subject s that are in conflict, C

contains a trust-based authorization Ct such that grant(Ct) is the grant
with the highest precedence in B1, and trust(Ct) is the highest trust value
in B1. Formally,

resCtr
gr(B, s) =


{Ct | Ct ∈ B,

∀At ∈ B : Ct �trust At}

if ∀At, Bt ∈ B :

user(At) = user(Bt)∧
s ∈ subjects(At)∩
subjects(Bt)∧
grant(At) = grant(Bt)⋃

B1∈group(resCgr(B,s),s)
resCtr

gr(B1, s) otherwise

49

4 Integrating Reciprocity into Access Control Models

Figure 4.2 illustrates the steps that the grant-trust resolve-conflict function takes
to solve authorization conflicts and Algorithm 1 implements the function.

Figure 4.2: Grant-trust Resolve-conflict Function resCtr
gr(B,Alice)

Algorithm 1: grantTrustResolveConflicts

Input : Authorization Set BT ⊆AT , subject s ∈ S
Output: Authorization Set CT ⊆ BT

1 Initialize: C ← ∅, D ← ∅ ;
/* Select the authorizations in BT assigned to s and group them

by the users who have assigned them. Output a set containing

these groups of authorizations */

2 DT ← group(B, s) ;
3 foreach set D1 in DT do
4 Create Bt ← 〈 〉 ; // Create an empty authorization

5 foreach authorization At in D1 do
6 if grant(At)� grant(Bt) then // Solve grants conflicts

7 Bt ← At ; // Replace Bt with At
8 if grant(At) == grant(Bt) then
9 if trust(At)� trust(Bt) then // Solve trust values

conflicts

10 Bt ← At ; // Replace Bt with At

11 Add Bt to CT ;

12 return CT

Trust-based Authorized Access Request

Next, we define how to evaluate whether an access request is authorized or not
when using trust-based authorizations. Such a definition has to include our solu-
tions to the revocation fraud and sensitivity problems.

Given a set of trust-based authorizations AT , Figure 4.3 illustrates the process to
decide whether an access request is authorized or not, i.e., the steps needed to

50

4.3 Integrating Mutual Authorizations into LBS

Figure 4.3: Trust-based authorizations Access Request Process

answer of a given access request. Definition 4.15 formalizes an authorized access
request.

Definition 4.15: Authorized access request with acl

Given the set of trust-based authorizations AT , an access request
〈s,op, resu〉 is authorized if one of the following conditions is met:

1. ∃tacl ∈ aclresu : subject(tacl) = s
2. ∃At ∈ resCtr

gr(AT , s) : (user(At) = u) ∧ (grant(At) = allow)
3. ∃At ∈ resCtr

gr(AT , s),∃Bt ∈ resCtr
gr(AT , u) : (user(At) = u) ∧

(grant(At) = mutual) ∧ (trust(At) ≤ trusts) ∧ (user(Bt) = s) ∧(
(grant(Bt) = allow) ∨ ((grant(Bt) = mutual) ∧

(trust(Bt) ≤ trustu))
)
∧ (sensitivity (res(At)) = sensitivity (res(Bt)))

4.3 Integrating Mutual Authorizations into LBS

In this section, we use location-based services to showcase how one can integrate
mutual authorizations into existing services. Such integration has to reuse existing
implementations and guarantee that only authorized users can access the services,
i.e., data confidentiality. To achieve data confidentiality, one has to verify the
authorizations and to determine whether a given user should get access to the
resources required for the service.

51

4 Integrating Reciprocity into Access Control Models

Example 4.9. Think of a LBS provider (LBSP). A user has issued a
location-dependent query that the LBSP now executes, knowing the po-
sition of the user. How can the LBSP take in authorizations to answer such
queries? The result of such a query is the set of persons who fulfill the
query constraint, and whose physical positions the querying user may see.
Different designs of this integration are conceivable. In particular, one may
(1) execute the query first and then filter the result based on the autho-
rizations, or (2) first compute the set of positions that the querying user
may see, called view of the user, and then execute the query on this view.
Deciding which alternative is better is not trivial.

In the remainder of this chapter, since the type of resources that users are willing
to exchange are the same, i.e., physical positions, we consider they have the same
sensitivity. Therefore, we do not specify the degree of sensitivity of the resources
and use the authorizations without trust conditions.

Before showing how to integrate LBS with mutual authorizations, it is important
to define the soundness principle that an algorithm in the context of LBS and
mutual authorizations should fulfill. In the next subsection, Subsection 4.3.1, we
define this principle.

4.3.1 Soundness Criteria

An algorithm is sound if it is both correct and complete [SZFJ09]. Intuitively,
in our integration of mutual authorization into LBS, an algorithm is complete if
all persons who satisfy the query constraints and whose information the querying
user may see are part of the result. It is correct if the users in the result satisfy
the query constraints, and the querying user is allowed to see their information.
Before formalizing the correctness and completeness properties in the context of
LBS and mutual authorizations, we introduce two constraints, namely location and
authorization constraints. We will use these constraints to define the properties
mentioned above.

Definition 4.16: Location Constraint

A location constraint, LCons, is a predicate on physical positions.

We use dist(pu, pv) to denote the distance between the physical positions of persons
u and v.

52

4.3 Integrating Mutual Authorizations into LBS

Example 4.10. Consider a distance d and the physical positions of two
persons u and v, pu and pv, respectively. The constraint dist(pu, ps) ≤ d is
a location constraint.

Definition 4.17: Authorization Constraint

Given two persons u and s, an authorization constraint ACons is a
predicate on a set of authorizations M that involve persons u and s.

Example 4.11. Let a set of authorizations M and two persons u and s
be given. The access request 〈s, read, pu〉 is an authorization constraint.
If 〈s, read, pu〉 is authorized, the predicate evaluates to true; otherwise it
evaluates to false.

Definition 4.18: Query

Given a set of persons P , a query Q(C) is a set of location and authorization
constraints C . Its output is the elements of P that fulfill C . AnsP (Q(C))
denotes the output of Q(C).

Given as input a set of constraints, a user algorithm is an algorithm that outputs
a set of users who fulfill the given set of constraints.

Definition 4.19: User algorithm

A user algorithm Π : P(U)×P(Cons)→ P(U) is an algorithm that takes
as input a set of users U1 ∈ P(U) and a set of constraints C , and outputs a
set of users U2.

In the context of LBS and mutual authorizations, a user algorithm Π computes
a location and an authorization constraint on the physical positions of a given
set of persons P . Based on these two constraints, we define the correctness and
completeness of algorithm Π.

Definition 4.20: Correctness in the context of LBS and mutual au-
thorizations

Let a user algorithm Π, a set U1 ∈ P(U) and a set of constraints C =
{LCons, ACons} be given. The user algorithm Π is correct with respect to

53

4 Integrating Reciprocity into Access Control Models

U1 and C if for all u ∈ Π(U1, {LCons, ACons}), u ∈ AnsU1(Q(LCons))∧u ∈
AnsAnsU1

(Q(LCons))(Q(ACons)).

In other words, a given algorithm Π is correct if for all users u in the output of Π
the following two conditions are met:

1. u is a person in U1 that fulfills LCons.

2. u is a person in AnsU1(Q(LCons)) that fulfills ACons.

Definition 4.21: Completeness in the context of LBSs and mutual
authorizations

Let a user algorithm Π, a set U1 ∈ P(U), and the set of constraints C =
{LCons,ACons} be given. Π is complete with respect to U1 and C if for all
persons u with u ∈ AnsU1(Q(LCons)) ∧ u ∈ AnsAnsU1

(Q(LCons))(Q(ACons)),
u ∈ Π(U1, {LCons,ACons}).

To illustrate the completeness property, think of a user algorithm Π that always
outputs an empty set. Then Π fulfills the correctness principle. However, Π is not
useful.

Definition 4.22: Soundness in the context of LBS and mutual au-
thorizations

Let a user algorithm Π, a set U1 ∈ P(U) and the set of constraints C =
{LCons,ACons} be given. Π is sound with respect to U1 and C if: Π is
correct with respect to U1 and C , and Π is complete with respect to U1 and
C .

Before proceeding to describe our set of primitives and algorithms for integrating
LBS with mutual authorizations, in the next subsection, we present our algorithm
that implements our resolve conflicts function, Definition 4.6.

4.3.2 Resolve Conflicts Algorithm

Authorization conflicts can be solved at design time, i.e., during the insertion of
authorizations in a system, or at query time, i.e., when access to a resource is
required. Solving authorization conflicts at design time could require to modify
the structure of an organization, see Example 4.12. For this reason, we solve
authorization conflicts at query time. Algorithm 2 implements our resolve conflicts
function, Definition 4.6. The algorithm outputs a map autMap, which stores pairs

54

4.3 Integrating Mutual Authorizations into LBS

of keys and values. The key is a pair consisting of a user u ∈ U and a subject
s ∈ S, and the value of the map is the grant of the authorization A ∈ B with the
lower precedence with respect to u and s. We use the left arrow “←” to indicate
that the value on the right-hand side is assigned to the term on the left-hand side.

Example 4.12. Let us consider Example 4.3. Assume now that the au-
thorization A has been inserted first in the system, and now Bob wants to
insert authorization B. Based on the deny-mutual precedence strategy, au-
thorization B has precedence over A. Then, during the insertion process,
with respect to Alice, authorization B should be inserted, and A should be
deleted. However, this change will affect all users who have either role1 or
role2. In this case, it may be necessary to modify the organizational struc-
ture of the business in such a way that this authorization update will not
affect other users.

Next, given as input to Algorithm 2 the set of authorizations B, the set of users U,
and the set of subjects S, we prove its correctness with respect to Definition 4.6.
That is, we show that Algorithm 2 solve all authorization conflicts in the set B

with respect to each subject s ∈ S and the set of users U.

Lemma 4.1. Given an authorization set B ⊆ A, a set of users U, a set of subjects
S, and the subset of authorizations N = {A ∈ B | user(A) ∈ U, subjects(A)∩S 6=
∅}, for each s ∈ S and for each tuple 〈tuser, tgrant〉 ∈ resC(N, s) exists an entry
e = ((tuser, s), tgrant) in resolveConflicts(B,U,S).

Proof. First, we show that each entry in the map autMap, output by Algo-
rithm 2, corresponds to one authorization in the set N = {A ∈ B | user(A) ∈
U, subjects(A) ∩ S 6= ∅}. Algorithm 2 considers all authorizations A ∈ B (Line
2), and for each authorization, the algorithm evaluates if A satisfies the constraint
user(A) ∈ U, subjects(A) ⊆ S (Line 3). The map output by the algorithm con-
tains only authorizations that satisfy such a constraint (Lines 7 and 9). Second, we
show that for each entry e = ((u, s), grant) in autMap, where u ∈ U and s ∈ S,
the grant authMap.get(u, s) is the one with the highest precedence with respect
to u and s in the set B. For each pair of elements (u, s), Algorithm 2 verifies if
there is an entry with key (u, s) in autMap (Line 5). If such an entry exists, the
algorithm updates the value of the entry, i.e., the grant, only if the grant has lower
precedence than the grant of the authorization that is being evaluated, grant(A)
(Lines 6-7). If an entry with key (u, s) does not exist in the map, Algorithm 2
inserts in the map the entry with key (u, s) and value grant(A) (Line 9). Once
Algorithm 2 has evaluated all authorizations in B, autMap will contain, for each
pair of elements (u, s), the grant with the highest precedence in the set B with

55

4 Integrating Reciprocity into Access Control Models

Algorithm 2: resolveConflicts

Input : Authorization Set B, user Set U, subject Set S

Output: Map autMap
/* Initialize an empty map autMap to store pairs of keys and

values. The key is a pair (u, s), where u is a user and s is a

subject, and the value is a grant of an authorization. */

1 Initialize: autMap〈(user, subject), grant〉 ← empty map;
2 foreach authorization A in B do

/* Verify if user(A) is inside the set U and one or more

subjects in subjects(A) are inside the set S */

3 if user(A) ∈ U ∧ subjects(A) ∩ S 6= ∅ then
4 foreach s ∈ subjects(A) ∩ S do

/* Verify if autMap contains an entry with key

(user(A), s) */

5 if autMap.containsKey((user(A), s)) then
/* Verify if the value of the entry with key

(user(A), s) has lower precedence than the grant

grant(A) */

6 if autMap.get((user(A), s))� grant(A) then
/* Replace the value of the entry with key

(user(A), s) with the grant grant(A). */

7 autMap.put((user(A), s), grant(A));

8 else
// Add the entry 〈(user(A), s), grant(A)〉 to AutMap.

9 autMap.put((user(A), s), grant(A));

10 return autMap;

respect to u and s. Then, each entry e = ((u, s), grant) corresponds to a tuple in
〈tuser = u, tgrant = grant〉 in resC(N, s).

4.3.3 Primitives and Algorithms for Mutual Authorizations

Depending on the services offered by a system, one may need different primitives.
A primitive is a basic unit that performs a specific functionality, and that can be
combined with other primitives. In the case of LBS, to answer queries, we need to
know which persons a given person has allowed reading his physical position. The
two primitives Primitive-Request and Primitive-View are sufficient to this end, as
we will show in Subsection 4.3.5.

56

4.3 Integrating Mutual Authorizations into LBS

• Primitive-Request: Given two persons u and s, may s read the physical
position of u?

• Primitive-View: Given a person s, whose physical positions is s allowed to
read? We call this set V iews, the view of s.

In the following, we present our algorithms, Pr-Request algorithm and Pr-View
algorithm to implement the primitives Primitive-Request and Primitive-View, re-
spectively. Since authorization conflicts can exist, both algorithms make use of
the resolveConflicts algorithm, Algorithm 2.

Given two persons u and s, the Pr-Request algorithm, Algorithm 3, determines if
person s can can read the physical position of person u. Given a person s, the
Pr-View algorithm, Algorithm 4, outputs the view of s.

Next, we prove that given the authorization set A and a person s, the output of
the Pr-View algorithm, Algorithm 4, contains all persons that s is allowed to read
their physical positions and not more. We only present the proof of Algorithm 4.
The proof of Algorithm 3 can be done similarly as the proof of Algorithm 4.

Lemma 4.2. Given an authorization set A and a person s,

1. For all persons u ∈ Pr-View(A, s), Algorithm 4, s is authorized to read the
physical position of u with respect to Definition 4.7.

2. If u /∈ Pr-View(A, s), then s is not authorized to read the physical position
of u with respect to Definition 4.7.

Proof. We will prove that for each user u ∈ Pr-View(A, s), 〈s, read, pu〉 is autho-
rized, Definition 4.7, if one of the following conditions is met:

(1) ∃t ∈ resC(A, s) : tuser = u ∧ tgrant = allow.

(2) ∃t ∈ resC(A, s),∃l ∈ resC(A, u) : tuser = u ∧ tgrant = mutual ∧ luser =
s ∧ (lgrant = allow ∨ lgrant = mutual)

Lemma 4.1 proves that for each tuple 〈 tuser, tgrant 〉 ∈ resC(A, s) exists an entry
e = ((tuser, s), tgrant) in the output resolveConflicts(A, {U}, {s}). We replace, in
conditions (1) and (2), a tuple t = 〈tuser, tgrant〉 ∈ resC(A, s) with an entry e =
((tuser, s), tgrant) ∈ resolveConflicts(A, {U}, {s}). Next, Algorithm 4 adds a person
u to its output set, if tuser = u ∧ tgrant = allow (Lines 3-4). That is, this step
evaluates condition (1). Next, if tgrant = mutual, Algorithm 4 adds u to the set
MutualRA (Lines 5-6). Then, for each u ∈MutualRA, the algorithm adds u to its
output set, if there exists an entry f in resolveConflicts(A, {s},MutualRA) such

57

4 Integrating Reciprocity into Access Control Models

Algorithm 3: Pr-Request

Input : Authorization Set A, Access request 〈s, read, pu〉
Output: Boolean resp
/* The set Setpp contains the person whose physical position is

requested. The set Setreq contains the person who request the

access. */

1 Initialize: Setpp ← {u}, Setreq ← {s},
ReceiveAuts〈(user, subject), grant〉 ← empty map,
ReceiveAutu〈(user, subject), grant〉 ← empty map;
/* Invoke the resolveConflicts Algorithm. ReceiveAuts contains

only one entry e with key (u, s) and the value corresponds to

the grant of the authorization with the highest precedence

that u has assigned to s. */

2 ReceiveAuts ← resolveConflicts(A, Setpp, Setreq);
3 foreach entry e in ReceiveAuts do
4 if e.getValue() = allow then

/* Output true if the grant is "allow". s can read pu */

5 return true;

6 if e.getValue() = mutual then
/* If the grant is "mutual", invoke the resolveConflicts

Algorithm. ReceiveAuts contains only one entry t with

key (s, u) and the value corresponds to the grant of the

authorization with the highest precedence that s has

assigned to u. */

7 ReceiveAutu ← resolveConflicts(A, Setreq, Setpp);
8 foreach entry t in ReceiveAutu do
9 if t.getValue() = allow ∨ t.getValue() = mutual then

10 return true ; // Output true if the grant is "allow"

11 return false ; // s cannot read pu.

that f = ((s, u), allow) or f = ((s, u),mutual) (Lines 9-10). That is, this step
evaluates condition (2).

4.3.4 System Architecture

Our system architecture consists of a location-based service provider, LBSP, and
users who want to access LBS. The LBSP has: (1) a user database DBU , which
stores the position of each user u, pu, and (2) an authorization database, DBA,
which stores the set of authorizations A. See Figure 4.4. We assume a database

58

4.3 Integrating Mutual Authorizations into LBS

Algorithm 4: Pr-View

Input : Authorization Set A, person s
Output: Set V iews
/* Initialize the set U, which contains all users U, the set S,

which contains the person given as input, s, the empty set

MutualRA, and the empty map AAs */

1 Initialize: U ← U,S ← {s}, V iews ← ∅,
AAs〈(user, subject), grant〉 ← empty map,MutualRA← ∅;
/* Invoke the resolveConflicts Algorithm. */

2 ReceiveAuts〈(user, subject), grant〉 ← resolveConflicts(A,U,S); foreach
entry e in ReceiveAuts do

3 if e.getV alue() = allow then
/* If the value of the entry einReceiveAuts is "allow", add

the user, which is part of the key of entry e, to the

set V iews */

4 add e.getKey.User() to V iews;

5 if e.getV alue() = mutual then
/* If the value of the entry einReceiveAuts is "mutual", add

the user, which is part of the key of entry e, to the

set MutualRA */

6 add e.getKey.User() to MutualRA;

7 if MutualRA.size() 6= 0 then
/* Invoke the resolveconflicts algorithm */

8 AuthMaps ← resolveConflicts(A,S,MutualRA);
9 foreach u in MutualRA do

/* Verify if the map AuthMaps has an entry with key

(s, u) and value "mutual" or "allow" */

10 if AuthMaps.get((s, u)) = mutual ∨AuthMaps.get((s, u)) = allow
then

11 add u to V iews;

12 return V iews;

management system featuring R-tree indexing for spatial query processing on DBU

and B-tree indexing for authorizations queries on DBA. In our prototype, we have
implemented the LBS ourselves in Java, as well as access control, in the form of the
primitives described in Subsection 4.3.3. Note that our focus is on the conceptual
level; studying design alternatives regarding the architecture is not part of this
dissertation.

59

4 Integrating Reciprocity into Access Control Models

Figure 4.4: System Architecture

The LBSP supports location-dependent queries. There are different types of such
queries [IMI10], and we focus on two of them here: k-nearest neighbor queries and
range queries.

Definition 4.23: Location-dependent Query

Given a set of persons P , a location-dependent query Q(LCons) takes a
location constraint LCons and outputs the persons who fulfill it.

Definition 4.24: k-Nearest Neighbor Query

Given an integer k and a person s, a k-nearest neighbor (kNN) query,
knn(k, s), is a location-dependent query where the location constraint
knnk,s(pu) is: ∀M ⊆ U,

(
∀x ∈ M,dis(px, ps) < dis(pu, ps)

)
⇒ |M | ≤ k,

where U is the set of all users. In words, if the previous predicate evaluates
to true for a physical position pu, then the corresponding person u is in the
result of the knn(k, s) query; otherwise not.

Definition 4.25: Range Query

Given a distance d and a person s, a range query range(d, s) is a
location-dependent query where the location constraint ranged,ps(px) is:
dist(px, ps) ≤ d.

Definition 4.24 is a higher order logic. However, to facilitate proofs that our
proposed approaches are sound, we will use the following recursive definition, Def-
inition 4.26.

60

4.3 Integrating Mutual Authorizations into LBS

Definition 4.26: k-Nearest Neighbor Query Recursive Definition

A k-nearest neighbor query kNN is a location- dependent query with
location constraint (k, s), where k is an integer number and s is the persons
who issues the query. The result Ans(knn) of such a query is the set of users
u ∈ U such that |Ans(knn)| = k ∧ ∀u ∈ Ans(knn),∀v ∈ U \ Ans(knn) :
dist(ps, pu) ≤ dist(ps, pv).

Definition 4.27: Bounded Result-Size Query

Given a location-dependent query Q(LCons), Q is a bounded result-size
query if the location constraint (LCons) contains an explicit restriction on
the number of elements of Ans(Q). Otherwise, Q is a unbounded result-size
query.

kNN and range queries are examples of bounded result-size and unbounded result-
size queries, respectively. If Q is a bounded result-size query, after executing Q
and filtering Ans(Q) with the users whose position s is authorized to see, the
filtered query result may not fulfill the original constraint LCons anymore. See
Examples 4.13 and 4.14.

Definition 4.28: Authorizations Received

Given the set of authorizations A, the authorizations that s has received
are all authorizations A ∈ A such that s ∈ subjects(A).

Example 4.13. Consider a kNN query with constraint knn = (2, Alice).
Suppose that (1) the neighbors of Alice are Bob, Carol, and Dan, and their
distances to Alice are 1, 2 and 3 km, respectively, and (2) Alice has re-
ceived two authorizations A,B where user(A) = Carol, grant(A) = allow,
user(B) = Dan and grant(B) = allow. The LBSP evaluates the kNN query
and outputs Ans(kNN) = {Bob, Carol}. After filtering Ans(kNN) based on
the authorizations that Alice has received, the result contains only {Carol}.
This result does not meet the constraint knn = (2, Alice). One needs to set
the value of the parameter k equal to 3 to obtain, after the filtering step,
{Carol,Dan}.

Example 4.14. Continuing with Example 4.13, suppose that Alice wants
to find all persons within 2 km, i.e., range(2km,Alice). The LBSP outputs

61

4 Integrating Reciprocity into Access Control Models

Ans(range) = {Bob, Carol}. After filtering Ans(range) with respect to the
authorizations that Alice has received, the filtered result is {Carol}, similar
to Example 4.13. This result fulfills the constraint range(2km, s).

4.3.5 Design Alternatives for Integrating LBS with Mutual
Authorizations

We see two design alternatives to integrate mutual authorizations in our system
architecture: Querying-Filtering (QF) and Filtering -Querying (FQ). The advan-
tage of QF is that it can leverage existing LBS implementations. However, it may
need to restart the query processing, which affects performance, as we will discuss.
FQ does not need to restart the query processing.

This subsection is organized as follows. First, we present our QF and FQ ap-
proaches for kNN queries and ranges queries. Then, we discuss their advantages
and disadvantages when comparing them to each other. Next, we prove that our
algorithms are sound. Finally, we analyze the complexity of our both approaches
and compare them to determine which one performs better than the other one.

Querying-Filtering Approach (QF)

Given a location-dependent query Q(LCons), the QF approach works as fol-
lows: First, the LBSP executes Q(LCons) on the user database DBU and returns
Ans(Q). Second, it filters Ans(Q) for the persons whose position the querying
user may read. For the filtering process, there are two options:

(a) Verify for each person u ∈ Ans(Q) if 〈s, read, pu〉 is authorized, i.e., execute
Primitive-Request, Algorithm 3. If so, then u is added to the final answer.

(b) Compute Primitive-View, V iews, Algorithm 4. The final answer is the in-
tersection of V iews and Ans(Q).

With Option (a), to solve authorization conflicts, one has to read all authorizations
in A for each person in Ans(Q). With Option (b), although it is still needed to
solve authorization conflicts, the elements of A will be read at most two times.
The first time, the algorithm obtains the authorizations assigned to the querying
person. The second one, it verifies, for each mutual authorization, whether the
access request is authorized. In the following, we focus on QF only in combination
with (b).

62

4.3 Integrating Mutual Authorizations into LBS

Algorithms 5 and 6 show the details for implementing QF for kNN and range
queries, respectively. Both algorithms assume that the LBSP uses index struc-
tures to answer location-dependent queries, like B-tree or R-tree. We call the
services used by LBSP to compute kNN and range queries, computeKNN(knn)
and computeRange(range), respectively, where knn and range are the location
constraints of the queries.

Algorithm 5: Querying-Filtering kNN

Input : Authorization Set A, int k, person s
Output: Set Ans

1 Initialize: V iews ← ∅, Ans← ∅, tempall ← [], tempvisible ← [],
notEnough← true, kall ← 0, kold ← 0;

2 V iews ← Pr-View(A, s) ; // Compute the view of s

3 while notEnough do
/* Estimate an integer value kall ≥ k ∧ kall ≥ kold such that after

computing the kall-nearest neighbors of s and filtering the

result based on V iews, the filtered result fulfills the

constraint (k, s) */

4 kall ← estimateK(k, kold, s);
/* Compute the kall-nearest neighbors of s ordered by distance

in ascending order */

5 tempall ← computeKNN(kall, s);
/* Select all users in tempall who are also in Views. Add such

users to tempvisible, while keeping the order by distance */

6 tempvisible ← filter(tempall, V iews);
7 if tempvisible.size() ≥ k then

/* If tempvisible contains at least k elements, output the

first k */

8 Ans← select topK(k, tempvisible);
9 notEnough← false;

10 else
11 kold ← kall;

/* Restart the process of querying and filtering */

12 return Ans;

Filtering-Querying Approach (FQ)

Given a location-dependent query Q(LCons), the FQ approach works as follows:
First, the LBSP invokes the Pr-View algorithm to determine the view of s, Algo-
rithm 4. Second, the LBSP executes Q(LCons) over the view of s and outputs a

63

4 Integrating Reciprocity into Access Control Models

Algorithm 6: Querying-Filtering Range

Input : Authorization Set A, double dist, person s
Output: Set Ans

1 Initialize: V iews ← ∅, Ans← ∅, tempall ← ∅;
2 V iews ← Pr-View(A, s) ; // Compute the view of s

/* Compute the users located within distance dist from s */

3 tempall ← computeRange(dist, s);
/* Select the users in tempall who are also in V iews */

4 Ans← tempall ∩ V iews return Ans;

final result. Contrary to QF, since the evaluation of the location-dependent queries
must take place on the filtered result, the LBSP cannot use the pre-computed ma-
terializations, i.e., computeKNN(knn) and computeRange(range). That is, the
LBSP needs new primitives to execute the supported queries. We have identified
two primitives:

• computeD(ps, pu): It computes the distance between the physical positions
of two given persons s and u.

• sortByD(M): It sorts the elements of the given list M in ascending order by
with respect to their distance value. M is a list of 2-element tuples, where
the elements of each tuple are a person u and a distance d.

We use the well-known Haversine distance [Rob57] to implement the first primitive,
and the merge sort algorithm to implement the second one. Algorithms 7 and 8
show the details for implementing FQ for kNN and range queries, respectively.

Algorithm 7: Filtering-Querying kNN

Input : Authorization Set A, int k, person s
Output: Set Ans

1 Initialize: V iews ← ∅, Dist← ∅, V ieworder ← [], Ans← ∅;
2 V iews ← Pr-View(A, s) ; // Compute the view of s

3 foreach person u in V iews do
4 double d← computeD(ps, pu) ; // Compute the distance between s

and u

5 add tuple 〈u, d〉 to Dist

6 V ieworder ← sortByD(Dist) ; // Order Dist in ascending order

7 Ans← select topK(k, V ieworder) ; // Select the first k elements

8 return Ans

64

4.3 Integrating Mutual Authorizations into LBS

Algorithm 8: Filtering-Querying Range

Input : Authorization Set A, double dist, person s
Output: Set Ans

1 Initialize: V iews ← ∅, Dist← ∅, neighbors, Ans← ∅;
2 V iews ← Pr-View(A, s) ; // Compute the view of s

3 foreach person u in V iews do
/* Compute the distance between s and u */

4 double d← computeD(ps, pu);
5 add tuple 〈u, d〉 to Dist

6 foreach tuple t in Dis do
7 if tdistance ≤ dist then

/* If the distance value stored in tuple t is greater or

equal than dist, add the person stored in t to Ans */

8 Ans← tpers;

9 return Ans

In the next subsection, we discuss the advantages and disadvantages of both ap-
proaches, QF and FQ.

Advantages and Disadvantages of QF and FQ

With QF, the LBSP can make use of the available index structures in the user
database. However, in the case of bounded result-size queries, the LBSP may need
to restart the query if the filtered result does not satisfy the initial constraints,
cf. Example 4.13. With FQ, bounded result-size queries do not require restarts,
Example 4.14. However, the evaluation of location-dependent queries must take
place on the filtered result. Therefore, the LBSP cannot use the indexes structures
of the user database to execute queries efficiently. Finally, with both approaches,
the costs of updates, i.e., positions of persons and authorizations updates, only
depend on the scalability and costs of updating the index structures used. The
analysis of the impact of updates is beyond the scope of this dissertation. We refer
the reader to [MS18] for information about the analysis and costs of updates.

QF and FQ are Sound

We assume that the algorithms used to evaluate a given location-dependent query
are correct and complete with respect to the location constraint LCons. It remains
to prove that the integration of these algorithms into the context of mutual autho-
rizations is correct and complete. We only present the proofs for the algorithms

65

4 Integrating Reciprocity into Access Control Models

that support kNN queries, Lemmas 4.3 and 4.4, because the proofs for range queries
can be done in the same manner following the proofs of Lemmas 4.3 and 4.4.

Lemma 4.3. Let a set of authorizations A and a location constraint (k, s) of a
kNN query be given, where k is an integer, and s is the query issuer. Algorithm 5,
QF for kNN queries, is sound.

Proof. If an algorithm is sound, it means that it is correct and complete, Defini-
tion 4.22. Let Ans be the result output by Algorithm 5. We first prove that the
algorithm is correct with respect to Definition 4.20. We assume that the service
used by Algorithm 5 to compute a given kNN query, computeKNN(kall, s), where
kall ≥ k (Line 4), is correct with respect to the location constraint (kall, s). If a
person u is in Ans, u is in tempvisible (Line 8). If u is in tempvisible, u is tempall
and u is in V iews (Line 6). V iews is the output of Pr-View(A, s), so s is autho-
rized to read the physical position of u, Lemma 4.2. Next, u ∈ rst(AConsA,s, U),
where AConsA,s is an authorization constraint. Since u is in tempall, u is in
computeKNN (kall, s). computeKNN(kall, s) is correct. Therefore, u satisfies the
location constraint (kall, s) with respect to U . The size of tempvisible is greater
or equal than k. The function topK selects the k first elements from tempvisible.
Then, u ∈ rst((k, s), rst(AConsA,s, U)). Consequently, Algorithm 5 is correct.
Now, we prove that Algorithm 5 is complete with respect to Definition 4.21. Con-
sider a person u with u ∈ rst(AConsA,s, U) ∧ u ∈ rst((k, s), rst(AConsA,s, U)).
Since u satisfies the authorization constraint with respect to U , u is in V iews.
V iews = rst(AConsA,s, U), Definition 4.17. Then u is in rest((k, s), V iews) and
rest((k, s), V iews) ⊆ rest((kall, s), U). Therefore, u is in rest((kall, s), U). Next,
we know that computeKNN(kall, s) is complete. Then u is in tempall and u is in
tempvisible. Because u ∈ rst ((k, s), V iews), u is in topK and u is Ans. That is,
Algorithm 5 is complete; consequently, it is sound.

Lemma 4.4. Let a set of authorizations A and a location constraint (k, s) of a
kNN query be given, where k is an integer, and s is the query issuer. Algorithm 7,
FQ for kNN queries, is sound.

Proof. If an algorithm is sound, it means that it is correct and complete, Defini-
tion 4.22. Let Ans be the output of Algorithm 7. We first prove that Algorithm 7
is correct with respect to Definition 4.20. If a person u is in Ans, u is in the list
V ieworder (Line 6). Then, there is a 2-element tuple 〈u, d〉 in Dist. That is, u
is in V iews. V iews is the output of Pr-View(A, s). So, s is authorized to read
the position of u, Lemma 4.2. Then, u ∈ rst(AConsA,s, U), where AConsA,s is
an authorization constraint. Algorithm 7 uses the primitives computeD, sortByD
and topK to compute the k-nearest neighbors of a given person s. We assume

66

4.3 Integrating Mutual Authorizations into LBS

that the combination of these primitives to compute a given kNN query is cor-
rect with respect to the location constraint (k, s). Since these primitives com-
pute the result using as input the set V iews (Line 3), u ∈ rst((k, s), V iews), and
V iews = rst(AConsA,s, U). That is, Algorithm 7 is correct. We now prove that
Algorithm 7 is complete with respect to Definition 4.21. Consider a person u
with u ∈ rst(AConsA,s, U) ∧ u ∈ rst((k, s), rst(AConsA,s, U)). Since u satisfies
the authorization constraint with respect to U , u ∈ V iews. Therefore, there is a
2-element tuple 〈u, d〉 in Dist. Then, u is in V ieworder, Line 7. Since u satisfies the
location constraint (k, s) with respect to the set V iews, u is in topK(k, V ieworder).
Then u is in Ans. That is, Algorithm 7 is complete; consequently, it is is sound.

Time Complexity analysis

A complexity analysis is helpful to predict the behavior of FQ and QF, and to
facilitate meaningful comparisons. An average complexity analysis depends on
the internal behavior of the database, which is specific to the product and is not
openly available. Furthermore, if there are changes in the system settings, the
average analysis is void. Therefore, our complexity analysis targets at the worst
case, which offers stronger guarantees.

In our time complexity analysis, we focus on our FQ and QF approaches for kNN
queries. The analysis of the approaches for range queries can be done in the same
way, as we will explain.

Recall that to fulfill a given location constraint (k, s) of a kNN query, Algorithm 5
uses an estimation function estimateK. This function estimates a value kall ≥ k for
a given k, such that after computing the kall-nearest neighbors of s and filtering
the result based on V iews, the filtered result satisfies the original constraint (k, s).
Let kreal be the value of kall used by Algorithm 5 to compute the final output,
i.e., kreal is equal to the value kall of the last run of Algorithm 5. Let further be
δ = kreal − k.

For the complexity analysis of Algorithm 5, we assume that estimateK computes
the value kreal in the first run, i.e., no restarts are needed. We discuss this as-
sumption in the next subsection, where we compare both approaches.

Lemma 4.5. Let the number of persons n, a kNN query knn=(k,s), the view size
of the query issuer, s, |Views|, and a set of authorizations A, be given. The time
complexity of QF with no restarts is

TC = O(n+ (k + δ) · |V iews|) + O(A) (4.1)

67

4 Integrating Reciprocity into Access Control Models

Proof. The following steps are required to compute a given kNN query with the
querying-filtering approach, with no restarts:

(1) Compute the view V iews of the query issuer s. We use O(A) to denote the
complexity of this step.

(2) Search the (k + δ)-nearest neighbors in the user database. The complexity
of a kNN query using R-tree indexes is O(n) [MC15]. We validated through
initial experiments that this complexity applies to the praxis.

(3) Filter the result by checking for each person returned in the second step
if the person is in the view of s, V iews. The complexity of this step is
O((k + δ) · |V iews|).

Consequently, the time complexity of executing a kNN query with the querying-
filtering approach is TC = O(n+ (k + δ) · |V iews|) + O(A).

Lemma 4.6. Let the number of persons n, a kNN query knn = (k, s), the size of
the view of the query issuer s, |V iews|, and the set of authorizations A be given.
The time complexity of FQ is

TC = O
(
|V iews| · log(n) + |V iews| + |V iews| · log(|V iews|) + k

)
+ O(A) (4.2)

Proof. The following steps are required to compute a given kNN query with the
filtering-querying approach:

(1) Compute the view of the query issuer s, V iews. O(A) denotes the complexity
of this step.

(2) Look up in the user database to obtain the physical position of each person
in the view V iews. This has a complexity of O(|V iews| · log(n)).

(3) Compute the distance between the querying user s and each of the persons
in the view V iews. The complexity of this step is O(|V iews|).

(4) Order the persons in the view V iews by distance to the querying user s in
ascending order. The order is done using the merge sort algorithm. The
complexity of this step is O(|V iews| · log(|V iews|)).

(5) Select the k first persons. This has a complexity of O(k).

Consequently, the time complexity of executing a kNN query with the filtering-
querying approach is TC=O(|V iews| · log(n) + |V iews| + |V iews| · log(|V iews|) +
k) + O(A).

68

4.3 Integrating Mutual Authorizations into LBS

We note that, since ∀x > 0, n > 0 : x > x · log(n), Equation 4.2 can be further
simplified to TC = O

(
|V iews| + k

)
+ O(A). However, to allow a more accurate

comparison of both approaches, in the next subsection, we do not simplify it.

Comparison of the QF and FQ Approaches

One needs to compare the complexity of QF and FQ approach, and find their
intersection points to decide which approach is better to answer a given kNN
query:

O(n+ (k + δ) · |V iews|) +�
��O(A) = O

(
|V iews| · log(n) + |V iews|+
|V iews| · log(|V iews|) + k

)
+�

��O(A) (4.3)

In order to solve Equation (4.3) for |V iews|, we first omit the big-O notation:

n + (k + δ) · |V iews| = |V iews| · log(n) + |V iews|+ |V iews| · log(|V iews|) + k
(4.4)

Solving Equation (4.4) for |V iews| yields Equation (4.5). For given values of n,
k and δ, Equation (4.5) is the size of the view so that the time complexity in
the worst case is equal. We refer to this size of the view as V iewequal. W in
Equation (4.5) is the Lambert-W function [SZFJ09].

Viewequal(n, k, δ) =
n · ln(2)− k · ln(2)

W(21−k−δ · n · (n− k) · ln(2))
(4.5)

We now analyze Equation (4.5) with the best case scenario for QF. The best
scenario is the one in which the nearest neighbors of s are the persons whose
positions s is allowed to read, i.e., δ=0. Equation 4.5 depends on the parameters:
n, k and δ. To further simplify it, similarly to other approaches [YPBV14, HAK00],
we set the parameters k of the kNN query to 20, and δ=0. Then Viewequal only
depends on the number of persons n.

Viewequal(n, 20, 0) =
n · ln(2)− k · ln(2)

W(2−19 · n · (n− 20) · ln(2))
(4.6)

Figure 4.5 plots the QF and FQ approaches, for k = 20 and δ = 0. The x-axis
is the number of persons n, the y-axis the size of the view |V iews| of the query

69

4 Integrating Reciprocity into Access Control Models

issuer s and the z-axis the time complexity TC . It shows the intersection points
of both approaches. Given an intersection point and its corresponding number of
persons n, Equation (4.6) yields the size of its view. We conclude that, for a given
n, if |V iews| < Viewequal, the time complexity of FQ is smaller than that of QF,
and vice versa. In Table 4.2, using Equation (4.6), we list the intersection points
of QF and FQ, for different numbers of persons n. For instance, if n = 2000,
Viewequal ≈ 1014.31. Then, for n = 2000, if the size of the view of the query issuer
is smaller than approximately 1014.31, FQ performs better than QF.

Figure 4.5: Complexity of the QF and FQ Approaches– knn Query (k = 20, δ = 0)

n V iewequal ≈

2000 1014.3096

4000 1231.4594

10000 1920.9585

20000 2935.2272

40000 4709.5727

100000 9267.9800

317080 23032.341

3000000 1520464307

Table 4.2: Intersection points of QF and FQ — knn Query (k = 20, δ = 0)

70

4.4 Experiments

Analysis of the Comparison of the QF and FQ Approaches in Real Scenarios

So far, the plot in Figure 4.5 and the values in Table 4.2 correspond to the best
case scenario for QF, i.e., δ = 0. We now explain why a focus on this case is
sufficient.

Let us consider real scenarios such as online social networks like Orkut and Live-
Journal. The number of connections that a person s has in these networks is the
number of persons that have declared to have a relationship with s, e.g., friends,
colleagues. This translates to our authorization model as the size of the view of s.
In [LS15], the authors found that considering about 3 million nodes, the average
number of connections of a person in Orkut and LiveJournal is 223.99 and 520.04,
respectively. In DBLP with 317080 nodes, the average number of connections is
64.98 [LS15]. This suggests that the size of the view of a given person increases
monotonically with the number of persons. Analogously, Table 4.2 reveals that
Viewequal grows monotonically with the number of persons n. We can also ob-
serve that, if n = 2000, Viewequal is already greater than the average number
of connections for 3 million persons in real scenarios. For n equal to 3 million,
Viewequal=152046. This indicates that the size of the view of a given person in real
scenarios is smaller than Viewequal for a given n. This implies that FQ performs
better than QF even in the best case scenario of QF. So we do not dwell into the
behavior of QF with restarts.

The analysis of the approaches for range queries can be done in the same way.
Range queries are unbounded result-size queries. QF for range queries does not
need any restart. In the analysis of QF for kNN queries, we did not consider restarts
because we assumed estimateK to compute kreal in the first run. Therefore, the
skeleton structure of the complexity analysis is the same for both type of queries.
For these reasons, we omit this part.

4.4 Experiments

This section presents an experimental analysis of the impact of mutual authoriza-
tions on the performance when answering an access request, and an experimental
validation of the complexity analysis of QF and FQ.

4.4.1 Impact of Mutual Authorizations

This subsection compares the performance of mutual authorizations with that of
positive and negative authorizations. Specifically, we study the performance when

71

4 Integrating Reciprocity into Access Control Models

answering an access request, i.e., deciding whether an access request is authorized
or not.

Evaluation Scenarios

In Sections 4.1 and 4.2, we have shown two different implementations of mutual
authorizations: (1) a basic implementation, which can be used in scenarios with
resources with the same sensitivity degree, e.g., location-based services, and (2)
an extended implementation, trust-based authorizations, which can be used in
scenarios with resources with different degrees of sensitivity, e.g., health records.
Both implementations behave differently regarding performance. The reason is
that the extended implementation has to evaluate the sensitivity of the resources
and the trust value of the users to answer a given access request. Hence, our
experiments consider both scenarios, i.e., scenarios with resources with the same
and with different sensitivity.

Next, given an access request Req = 〈s, op, resu〉, deciding whether Req is au-
thorized or not involves only the authorizations assigned by u to s and the ones
assigned by s to u. That is, this decision is independent of all other authorizations
in the system. Therefore, to evaluate the performance when deciding whether Req
is authorized or not, we alternate the grants of the authorizations assigned by u to
s, and the ones assigned by s to u. As a result of this alteration, and considering
the possible scenarios regarding resources, we identify and consider the following
cases in our experimental analysis:

• Scenario 1 - Resources with the same degree of sensitivity: Table 4.3 shows
all possible grants of the authorizations that two users u and s can assign
to each other. Based on the assigned authorizations, this scenario has two
cases: S1-Case 1 〈Allow/Deny, ∗〉 and S1-Case 2 〈Mutual, ∗〉. Each case
refers to answering the access request Req given the authorizations with the
grants indicated in the column headers and row headers of Table 4.3. For
instance, S1-Case 1 〈Allow/Deny, ∗〉 refers to answering the access request
Req given that u has assigned a positive or negative authorization to s. s
assigns an authorization with any grant to u.

• Scenario 2 - Resources with different sensitivity degree: Table 4.4 shows
all possible trust-based authorizations that two users u and s can assign
to each other. Based on the assigned trust-based authorizations, this sce-
nario considers three cases: S2-Case 1 〈 Trust Allow/Deny, ∗ 〉, S2-Case 2.1
〈Trust Mutual, Allow/Deny〉, and S2-Case 2.2 〈 Trust Mutual,Mutual 〉.
Similar to the previous scenario, each case refers to answering the access

72

4.4 Experiments

request Req given the trust-based authorizations indicated in the column
headers and row headers of Table 4.4.

s to u

u to s
Allow Deny Mutual

Allow
S1-Case 1

〈Allow/Deny, ∗〉
S2-Case 2

〈Mutual, ∗〉
Deny

Mutual

Table 4.3: Experiment Cases - Resources with the same Degree of Sensitivity

s to u

u to s
Trust Allow Trust Deny Trust Mutual

Trust Allow
S1-Case 1

〈Trust Allow/Deny, ∗〉

S2-Case 2.1

〈Trust Mutual, Allow/Deny〉Trust Deny

Trust Mutual
S2-Case 2.2

〈Trust Mutual,Mutual〉

Table 4.4: Experiment Cases – Resources with Different Degrees of Sensitivity

In scenarios where resources have different degrees of sensitivity (Scenario 2),
given an access request Req = 〈s, op, resu〉, if u has assigned a trust-based mu-
tual authorization to s, one has to differentiate between the cases S2-Case 2.1
〈Trust Mutual, Allow/Deny〉 and S2-Case 2.2 〈Trust Mutual,Mutual〉. The rea-
son is that in the scenario S2-Case 2.2 〈Trust Mutual,Mutual〉, answering the
access request Req also requires to evaluate the sensitivity of the resources and
the trust values of the users involved in the authorizations. This is not needed if s
has assigned a trust-based positive or negative authorization to u. Regarding mu-
tual authorizations in scenario 1, i.e., S1-Case 2 〈Mutual, ∗〉, this differentiation is
not needed either because scenario 1 considers resources with the same sensitivity.
Our implementation of mutual authorizations does not compute the sensitivity of
resources and the trust values of users.

Experiment Setup

We use the dataset Epinion, a network dataset of users connected with directed
edges. The network has 131828 users and 841372 edges. The network has 30.9%
reciprocal edges, i.e., the proportion of edges for which an edge in the opposite

73

4 Integrating Reciprocity into Access Control Models

direction exists. We use the network dataset to build a labeled directed graph G
as follows:

1. The users represent the vertices of G, and the edges of the network represent
the labeled directed edges of G. An edge (u, s) indicates that user u has
assigned an authorization to subject s.

2. We label the non-reciprocal edges with labels allow, deny , or mutual. The
labels are selected at random. The label of an edge (u, s) represents the
grant of the authorization that u has assigned to s.

3. For each pair of reciprocal edges of the form (u, s) and (s, u), we assign to
one of the edges a label mutual, and to the remaining one a label allow or
mutual, selected at random.

4. We assume that two vertices u, s that are not connected through an edge
(u, s) indicates that u has assigned a deny authorizations to s. This is
because we adhere to the default-deny principle, i.e., any access not explicitly
assigned a positive or mutual authorization is denied.

5. To evaluate scenario 2, i.e., resources with different sensitivity degree, we
assign at random to each labeled edge a trust value from the set T =
{0.1, 0.2, · · · 1}. We also assign at random to each of the 131828 users a
trust value from T . Additionally, we assume that each user owns a resource,
and we assign a sensitivity value (from 1 to 5) to each resource at random.

Query Sample

For each of the cases in scenarios 1 and 2, we select a sample of 1000 access requests
for the evaluation. This is, for S1-Case 1 〈Allow/Deny, ∗〉, we select 1000 allow
or deny edges. Then for each selected edge (u, s), we measure the time needed
to decide whether the access request 〈s, op, resu〉 is authorized or not. Next, for
S1-Case 2 〈Mutual, ∗ 〉, we select 1000 mutual edges and create and evaluate the
access request as in the previous case. We repeat the procedure for each case in
scenario 2. In total, we run our experiments for 5000 access requests.

Experimental Results

Figures 4.6(a) and (b) show the average time required to answer an access request,
for the cases in scenarios 1 and 2, respectively. The x-axis represents the different
cases in each scenario, and the y-axis indicates the average time to the decision.

74

4.4 Experiments

Discussion - Scenario 1: For scenario 1, we observe in Figure 4.6(a) that answering
an access request in S1-Case 1 〈Allow/Deny, ∗〉 is faster (on average 1.6 times
faster) than in S1-Case 2 〈Mutual, ∗〉. The reason is that in S1-Case 2, given
an access request 〈s, op, resu〉, one has to consider not only the authorizations
assigned by u to s but also the ones assigned by s to u.

Discussion - Scenario 2: Regarding scenario 2, we observe in Figure 4.6(b) that
answering an access request in scenario S2-Case 1 〈Trust Allow/Deny, ∗〉 is faster
than in scenarios S2-Case 2.1 〈Trust Mutual, Deny〉 and S2-Case 2.2 〈 Trust
Mutual, Allow/Mutual 〉. Since we omit the trust evaluation for trust-based posi-
tive and negative authorizations, scenario S2-Case 1 〈Trust Allow/Deny, ∗〉 is the
same as the first one of scenario 1, i.e., S1-Case 1 〈Allow/Deny, ∗〉. From the
mutual authorizations cases, i.e., S2-Case 2.1 and S2-Case 2.2, scenario S2-Case
2.1 requires less time to answer an access request (1.4 faster than in S2-Case 2.2).
The reason is that scenario S2-Case 2.1 considers that a positive and a negative
authorization has been assigned from s to u. That is, the trust and sensitivity
evaluations are not needed. Finally, comparing the performance of both scenarios,
we can observe that scenario 1 performs better than scenario 2. The difference in
the performance of both scenarios is expected since, with scenario 1, it is not nec-
essary to evaluate the sensitivity of the resources and the trust values of the users.
We conclude that the decrease in performance when using mutual authorizations
is within an acceptable range while offering users more flexibility when controlling
access to their resources.

Figure 4.6: Access Request Decision – Performance Evaluation

75

4 Integrating Reciprocity into Access Control Models

4.4.2 Experimental Validation of the Complexity Analysis of
QF and FQ

Our complexity analysis of our QF and FQ approaches, Subsection 4.3.5, already
allows us to compare both approaches. However, since that analysis covers the
worst case, experimental results are needed to validate and to determine how
far the worst case deviates from the concrete behavior of individual queries. To
implement the QF approach, we use the R-tree index structure from Oracle, and
the remaining implementation was done in Java.

Experiment Setup

In our complextiy analysis, we found that the parameters that affect the perfor-
mance of FQ and QF are: the number of persons n, the size of the view of a
given person s, i.e, |V iews|, the parameter k of the kNN query, and the value
δ = kreal − k. Similarly to the complexity analysis, for simplicity, we set δ to 0
and k to 20. We set the remaining parameters, n and |V iews|, as follows:

Number of persons n: We create a dataset with 317080 persons. This number is
the size of the DBLP dataset. To assign a position to each person, we choose a
random physical position from the Tokyo dataset [YZZY15], which contains 573703
real check-ins, i.e., positions.

Size of the view of a person s, |Views|, and query sample: We chose 1500 persons
at random from the 317080 persons. We assigned the authorizations so that we
have 15 classes of different sized views (from 50 to 40000). For each class, we have
100 persons with the respective view size, i.e., 1500 queries in 15 different classes
in total.

Experiment Results

Figure 4.7 shows a comparison of the query-processing times for kNN queries with
QF and FQ. We grouped the persons of our query sample by the size of their view
and plotted the query-processing time. We excluded the database connection time
and network communication time from the run time reported. The dotted line in
Figure 4.7(a) represents the average size of the view in DBLP with 317080 nodes,
i.e., 64.98 [LS15]. The dashed line in Figure 4.7(c) is the size of the view for which
the performance of both approaches is equal, i.e., V iewequal ≈ 23032, 3.

Discussion. For real scenarios, i.e., scenarios in which the size of the view is equal
to 64.98, FQ performs better than QF for all queries. These results are in line
with our complexity analysis, and one may interpret them as an indication that

76

4.5 Related Work

Figure 4.7: Comparison of the QF and FQ Approaches for kNN Queries

our analysis also holds for the average case. These findings remain correct for a
size of the view of up to 800, which is higher than the highest average size of the
view in real scenarios, i.e., 520. However, as Figure 4.7(b) shows, with a view size
between 1000 up to 20000, the processing times of most of the queries with QF are
lower than that of the ones with FQ, in contrast to our complexity analysis. This
can be expected since our analysis has focused on the worst case. In Figure 4.7(c),
we observe that the processing times of most of the queries with QF, or all the
queries in the case of the last two groups, i.e., 35000 and 40000, are lower than
that of the ones with FQ. These results indicate that for a view with size greater
than the value V iewequal (dashed line) our complexity analysis holds even for the
average case.

4.5 Related Work

A considerable amount of literature has been published on access control mod-
els and several models exist such as role-based access control model (RBAC)
[SCFY96], Task RBAC [OP03], ABAC [YT05], and Relation-based access control
model [GZC08]. The difference to ours is that they only consider the grants deny
and allow. These two grants are not enough to capture mutual authorizations.

The concept of reciprocity in general, however, is not new, and it has played an
important role in different fields like psychology, economics, sociology and game
theory [SBC09, FF06, FFG02, Rab93]. To the best of our knowledge, we are the
first to incorporate the reciprocity concept into access control models.

77

4 Integrating Reciprocity into Access Control Models

Besides access control models, encryption techniques have also been studied to
achieve data confidentiality[VFJ+10, BSW07]. The main idea is to encrypt the
resources and to enforce access control with the decryption keys assigned to the
users. The approach in [VFJ+10] encrypts the data with different keys, depend-
ing on the authorizations to be enforced. After encryption, the decryption keys
are given to users based on their access privileges. In the approach proposed in
[BSW07], the authors encrypt the data together with an access structure. The ac-
cess structure represents a set of attributes along with values that the users must
fulfill to access the data. The decryption key that the authorized users received is
generated based on their attribute values. Users can decrypt a ciphertext c if their
decryption key matches the attribute values of the access structure associated with
c. This work does not consider mutual access to resources because the decryption
keys are generated and distributed without considering reciprocity.

There is another set of works that focuses on formalizing and verifying the au-
thorization constraints in RBAC and its extensions. These proposals use Colored
Petri-Nets [SMJG05] or the Unified Modeling Language UML [RLFK04]. They
focus on (1) introducing formal techniques to verify the design and consistency
of authorizations on RBAC models, i.e., model checking, and on (2) providing a
graphical representation of the authorizations, as visualizations. These works are
confined to positive and negative authorizations as well. That is because these
works are based on access control models existing at that time.

4.6 Summary

Reciprocity is a powerful determinant of human behavior. However, none of the
existing access control models explicitly supports it. In this chapter, we have
proposed a new type of authorization, called mutual. Mutual authorizations allow
users to grant access to their resources to users that allow them the same. We have
extended the attribute-based access control model to incorporate mutual autho-
rizations and have formally defined their syntax and semantics. At first, to focus
on reciprocity, we have considered only resources with the same sensitivity. Next,
we have extended our model of mutual authorizations to support a more general
case, i.e., resources with different sensitivity values. Our generalization lets owners
assign the degree of sensitivity of their resources themselves, but their peers can
evaluate such an assignment a posteriori. Based on the evaluation by others, each
user receives a trust value. When using mutual authorizations, users can then
express the minimum level of trust their peers should have to exchange resources
with them. We call this extension trust-based authorizations. Next, since the
result of a given service in the presence of mutual authorizations is not obvious,

78

4.6 Summary

we have studied this as well. To this end, we have selected location-based services
as a use case for the deployment of mutual authorizations, and we have proposed
two approaches. A complexity analysis tells us when each approach is better. We
have conducted experiments to evaluate the impact of mutual authorizations on
the performance of answering an access request, and to validate our complexity
analysis.

79

5 Secure Outsourcing of
Graph-Structured Data

In this chapter and the next one (Chapter 6), we focus on the authorization
mechanism—one of the components of access control systems, which carries out
the enforcement of the authorizations. Specifically, in this chapter, we tackle the
distrust of users towards the service providers from a data outsourcing perspective.

Figure 5.1: Access Control Mechanism - Distrust Problem

Outsourcing databases to a third-party service provider has become ubiquitous.
While economic and organizational advantages are obvious, database outsourcing
is challenging concerning data secrecy. Databases contain sensitive information
that needs to be protected against adversaries, including the service provider. Even
if an adversary, including the service provider, accesses the data, the adversary
should not be able to learn any information from the accessed data. In this chapter,
we address this problem for graph-structured data3.

Another significant trend is that a broad range of real-world datasets exhibits a
graph structure. Furthermore, many real graphs, such as the email network or the

3An earlier version of this chapter was published in [SEGB20].

81

5 Secure Outsourcing of Graph-Structured Data

Web, follow a scale-free power-law distribution [BA99]. At the same time, these
graphs often contain sensitive information. In this chapter, we focus on graphs
with this characteristic.

Graph-structured data store information about the nodes and their relationships
(edges). Especially in this kind of data, these relationships are always present,
which is not the case for other data structures. An adversary can use the infor-
mation stored in a node and its relationships to identify an individual in a graph.
Therefore, approaches for secure storage of graph-structured data should protect
against leaking this kind of information. Next, there have to be provable secrecy
guarantees, which requires a rigid definition of secrecy, i.e., to define the type of
adversaries one is dealing with, the desired secrecy guarantees, and the informa-
tion that one accepts to leak. At the same time, the approaches should not do
away with the advantages of database outsourcing. In particular, query processing
should take place on the server as much as possible.

We are not aware of any previous work on secure storage featuring a cost model for
query processing. However, a cost model is needed to have a good understanding
of the expected performance of query processing, to facilitate comparisons between
alternatives, assuming that the alternatives also have a cost model, and to predict
the impact of parameter changes. Furthermore, any query optimizer, which is an
integral component of a modern database-management system, depends on cost
models to come up with good query-executions plans [MPS99, MVW98, GTK01].

To summarize, there are two requirements that a secure storage scheme for graph-
structured data should fulfill:

(R1) An adversary, including the service provider, must not be able to learn any
useful information from the outsourced graph database, except for some
predefined information. These secrecy guarantees offered by the scheme must
be provable (i.e., secrecy).

(R2) The scheme should support a broad range of queries. It should do so effi-
ciently, with controlled effort, and most of the work should be done at the
server side. To quantify this, a performance model is needed.

The first requirement calls for a rigid definition of secrecy. Here, we consider
adversaries who have access to the graph stored a the service provider and can
observe query executions over time, i.e., the encrypted queries issued and their
encrypted results. Our secrecy notion explicitly states all possible leakages which
could result from our specified adversary. Since existing secrecy notions consider
different secrecy guarantees, as we will discuss in Section 5.5, and deal with dif-

82

5.1 Our Secrecy Notion

ferent types of adversaries, we propose a new one, i.e., formalize the notion just
sketched. Section 5.1 formally introduces our secrecy notion.

We propose, in Section 5.2, a bucketization approach for secure storage of graph-
structured data that meets our requirements. It has turned out that subtle design
decisions have a significant impact. For example, it makes a big difference re-
garding secrecy, whether we partition nodes into buckets instead of edges. This is
because partitioning nodes could leak information on the graph structure, as we
will explain. Our approach works as follows: First, it encrypts the labels of the
nodes and edges to protect them against deterministic chosen-plaintext attacks,
i.e., an adversary cannot learn any useful information from the encrypted nodes
and edges. Second, it uses a bucketization technique to protect against frequency
attacks, i.e., an adversary cannot learn secret information based on the frequency
of the ciphertexts. In our scenario, the frequency represents the degree of a node.
While our approach works for all types of graph queries in principle, we focus
on neighbor and adjacency queries. These queries are essential information needs
regarding graphs [MP10]. We then describe the specifics for these queries, such as
division of work between client and server.

Section 5.3 presents a performance model for query processing on scale-free graphs.
The performance model consists of a number-of-buckets model, which estimates
the number of buckets obtained when applying our bucketization approach, and a
query-cost model.

In Section 5.4, we conduct systematic experiments both on synthetic and on real
datasets. Our experiments validate the accuracy of our estimation model and
demonstrate the efficiency of the proposed bucketization technique.

Secure database storage has been widely studied. However, existing techniques
[HMT04, ABG+05, HIM05] either cannot be applied to graph-structured data or
do not cover both requirements R1 and R2. Finally, in Section 5.5, we review
existing approaches in the area and explain more in-depth why one cannot apply
these approaches in our scenario.

5.1 Our Secrecy Notion

We start by introducing, in Subsection 5.1.1, the require notation for this Chapter.
Subsection 5.1.2 presents our secrecy notion for graph-structured data.

83

5 Secure Outsourcing of Graph-Structured Data

5.1.1 Notation

Let G = (V,E) be a graph, where V is a set of nodes and E ⊆ V × V is a relation
between nodes. |V | and |E| are the number of nodes and edges, respectively. G is
the set of all graphs. Without loss of generality, we assume that the relationships
between the nodes are directed. An undirected edge can be represented by two
directed edges. The size of a given graph G, dubbed size(G), is a tuple (|V |, |E|)
that contains the number of nodes and the number of edges of G. The degree of a
node u ∈ V , deg(u), is the number of outgoing edges of u. The multiset of degrees
of a given graph G, Deg(G), is the multiset that contains the degree of each node
u ∈ V . A neighbor query QNeighbor(G, u) takes as input a graph G and a node
u ∈ V , and returns the set of all nodes adjacent to u in G:

QNeigbhor(G, u) = {v ∈ V | (u, v) ∈ E}

An adjacency query QAdjacency(G, u, v) takes as input a graph G and a pair of
nodes u, v ∈ V , and verifies whether node u is adjacent to node v:

QAdjacency(G, u, v) = true iff (u, v) ∈ E

A query history of a graph G, qHG, is a list of n queries qHG = [q1,, qn] over G,
where q1 is the earliest query in the list, and q1,, qn either are either neighbor
or adjacency queries. Given a value x and a multiset of values V, the frequency of
x in V is the number of occurrences of x in V.

5.1.2 Our Secrecy Notion for Graph-structured Data

Here, we describe the secrecy notion we target. The goal is to build a secrecy
notion with the following characteristic: If an algorithm used to secure a given
graph fulfills this notion, it is guaranteed that it only leaks the information formally
stated, as we will explain. Allowing some leakage is standard with state-of-the-
art secrecy notions, especially in the area of searchable encryption [CGKO11,
LWW+10, BBHJ11, CYW+11, WRD+17, MKNK15].

Let a data structure, dubbed ds, be any structure that can be implemented in a
database. This definition – naturally – is somewhat vague. For instance, something
can be two separate data structures, or one could count them as one. However,
this definition is enough for our purposes; we just need it to bring some rigidity
to the explanations that follow. We will provide concrete instantiations, later on,
doing away with this vagueness.

84

5.1 Our Secrecy Notion

Definition 5.1: Graph-secretization Algorithm

Given a graph G, a graph-secretization algorithm τ is an algorithm that
takes as input G and transforms it to a list of d data structures, [ds1, ..., dsd],
so that some information from G is kept secret. We call the result of applying
τ to G, the transformed graph transformedG.

If an algorithm τ complies with a secrecy definition, such secrecy definition defines
which information τ must keep secret and how it should do so.

Definition 5.2: Adversary

An adversary A is a malicious user who has access to the transformed
graph transformedG and can observe query executions over it.

We now define the information leakage that we are willing to accept. We consider
four leakages. The first two, called access and search patterns, are related to the
execution of queries, Definitions 5.5 and 5.6 respectively, and the second two, called
the size of G and multiset of degrees (Subsection 5.1.1), are related to the graph
itself.

For a given graph G, and a query history qHG with n queries, the access pattern
is a list of n elements that contains information about G. In concrete, if the i-th
query is a neighbor query, the i-th element in the list is a lower, x, and upper
bound, y, on the degree of the queried node. If the i-th query is an adjacency
query, then the i-th element in the list is a Boolean, stating whether the queried
edge exists in G or not.

Definition 5.3: Neighbor-access Pattern

Given a graph G and a neighbor query QNeighbor(G, u), a neighbor-access
pattern α(QNeighbor(G, u)) of QNeighbor(G, u) is a tuple (x, y) such that x ≤
deg(u) ≤ y.

Definition 5.4: Adjacency-access Pattern

Given a graph G and an adjacency query QAdjacency(G, u, v), an adjacency-
access pattern α(QAdjacency(G, u, v)) of QAdjacency(G, u, v) is a Boolean
which takes the value true iff (u, v) ∈ E; otherwise it is false.

85

5 Secure Outsourcing of Graph-Structured Data

Definition 5.5: Access Pattern

Given a graph G and a query history qHG, the access pattern α(qHG)
induced by qHG is a list [α(q1), ..., α(qn)] such that for all i ∈ {1, ..., n}:
• if qi is a neighbor query, then α(qi) = α(QNeighbor(G, u))
• if qi is an adjacency query, then α(qi) = α(QAdjacency(G, u, v)).

Definition 5.6: Search Pattern

Given a graph G and a query history qHG, the search pattern σ(qHG)
induced by qHG is a n × n binary symmetric matrix with the following
entries: for 1 ≤ i, j ≤ n, σ[i][j] = 1 if query qi = qj, and 0 otherwise.

Since we want to prevent attackers from learning the exact degree of a queried
node, we limit the neighbor-access pattern that we are willing to leak. To this
end, we introduce the notions of degree uncertainty and z-access pattern.

Definition 5.7: Degree Uncertainty

Given a a graph G, its transformed graph transformedG, and (3) an access
pattern α(qHG), the degree uncertainty z of transformedG is an integer
so that for all neighbor-access patterns in α(qHG) it holds that |x− y| ≥ z.

Example 5.1. Think of a graph G, its corresponding transformedG, and
the degree uncertainty z = 5. In this case, one can be sure that indepen-
dent from the queries executed over transformedG, the absolute difference
between the lower and upper bounds of the neighbor-access pattern of any
node in G that an adversary can learn is always greater than or equal to 5.

Definition 5.8: Z-access Pattern

Given a degree uncertainty z ∈ Z, a z-access pattern αz(qHG) is an access
pattern in which all neighbor-access patterns fulfill z.

Definition 5.9: Accepted Information Leakage

Given a transformed graph transformedG and a degree uncertainty z ∈ Z
with z ≥ 1, the accepted information leakage, with the Ind-Graph se-
crecy notion to be defined, is:
(L1) The z-access pattern αz(qHG)

86

5.1 Our Secrecy Notion

(L2) The search pattern σ(qHG),
(L3) The size of the original graph size(G)
(L4) The multiset of degrees Deg(G)

Although leakage L1 could lead to attacks such as the ones featured in [KKNO16,
NKW15], L1 and L2 are in line with the work described in [CGKO11, BBHJ11].
L3 is similar to the leakage accepted by [WRD+17, MKNK15]. We use leakage L4
only to evaluate the trade-off between secrecy and performance, and for specific
graph-secretization algorithms that only leak part of the multiset of degrees. L4
can be relaxed further, as we will prove in Subsection 5.2.6. Proposing a graph-
secretization algorithm that guarantees secrecy against the information leakage
L1-L4 is out of the scope of this dissertation.

To evaluate the secrecy guarantees offered by a graph-secretization algorithm, one
needs a secrecy notion, i.e., given an adversary with certain knowledge, when does
a secrecy breach indeed occur.

We propose a secrecy notion for graph-structured data called Graph Indistinguisha-
bility, Ind-Graph. Our secrecy notion is based on the concepts of indistinguisha-
bility presented by [KL07] and the notion of searchable encryption presented by
[CGKO11]. We use indistinguishability as our secrecy notion for the same reason
as the one featured in [KL07]. That is, given an algorithm, it is easier to show that
it fulfills the indistinguishability concept than the one of semantic secrecy. How-
ever, the secrecy guarantees are the same. As explained in Subsection 3.3.3, the
concept of indistinguishability is defined based on an indistinguishability experi-
ment between an adversary and a challenger. Before describing such an experiment
in our graph setting, we define first the trapdoor term for a given query.

Definition 5.10: Query Trapdoor

Given a query q over graph G and a key K, the trapdoor of query q, tq,
is the output of a deterministic algorithm T (K, q) that allows to execute q
over the transformed graph transformedG.

Observing the execution of a list of queries is equivalent to having their trapdoors.
In Subsection 5.2.6, we specify the trapdoors for our graph-secretization algorithm.

In general, the idea behind the indistinguishability experiment is that an adversary
A is allowed to feed two inputs in the experiment. The challenger randomly
chooses one of the inputs and uses an algorithm to secure the selected input.
A receives the output of the experiment, but she does not know which one has
been the chosen input. The output of the experiment should represent all the

87

5 Secure Outsourcing of Graph-Structured Data

information that A can observe, and its inputs should represent all the information
needed to produce the output mentioned. The selection of the inputs can, however,
be restricted based on the accepted information leakage, Definition 5.9. At the
end of the experiment, A has to ”guess” the input chosen by the challenger. The
final output of the experiment is defined to be 1 if A ”guesses” correctly and 0
otherwise. If the final output is 1, we say that A has succeeded.

Definition 5.11: Graph-indistinguishability Experiment

Let A be an adversary, τ a graph-secretization algorithm and n a security
parameter. The graph-indistinguishability experiment Ind-Graph is
defined as follows:

Ind-GraphA,τ (n)

A chooses (G0, qHG0 , G1, qHG1)

b←$ {0, 1}
for 1 ≤ i ≤ n
tb,i ← tk(qi)

let Tb = [tb,1, ..., tb,n]

b←A(τ(Gb), Tb)

return 1 if b = b else 0

with the restrictions that αz(qHG0) = αz(qHG1), σ(qHG0) = σ(qHG1),
size(G0) = size(G1) and Deg(G0) = Deg(G1).

Definition 5.12: An Ind-Graph Secure Algorithm

Given an adversary A, a graph-secretization algorithm τ and a security
parameter n, a graph-secretization algorithm τ is called Ind-Graph secure
if the function

AdvA,τ (n) :=

∣∣∣∣Pr
[
Ind-GraphA,τ (n) = 1

]
− 1

2

∣∣∣∣
is negligible for any adversary A whose computational effort is bounded to
polynomial time.

88

5.2 Our Secrecy Approach

5.2 Our Secrecy Approach

We now describe our graph-secretization algorithm. We call it bucketization algo-
rithm. We first give an overview and describe the underlying system architecture.
Then we describe the challenges, formalize the problem, and present our approach.

5.2.1 System Architecture

We consider a database-as-a-service setting where a third-party service provider
stores data owned by the clients. For confidentiality reasons, i.e., data secrecy,
clients apply techniques to secure the data before passing it to the service provider.

We first introduce some bucketization notions, Subsection 5.2.1, and then we
present our system architecture model and query processing, Subsection 5.2.1.

Bucektization Notions

Definition 5.13: Bucket

Given a graph G, a bucket b is a finite set of edges of G. Each bucket has
an identifier denoted by bucketID(b). All buckets have the same capacity
denoted by maxEdges, i.e., a bucket can store at most maxEdges edges.
The frequency of bucket b, freq(b), is the number of edges that bucket b
stores. The set of buckets of G that stores all edges of G is denoted by BG

Definition 5.14: Index Information

Given a graph G and a corresponding set of buckets BG, the index infor-
mation, dubbed indexG, is a map indexG : V → BG such that for each
u ∈ V , indexG contains the set of identifiers of buckets that store at least
one outgoing edge of u.

Definition 5.15: Bucketizatization Structure

A bucketization structure of a given graph G, denoted BSG, is a repre-
sentation of G consisting of two parts: a set of buckets BG and the index
information indexG. We use BSG to denote the set of all possible bucketi-
zation structures of graph G.

89

5 Secure Outsourcing of Graph-Structured Data

From now on, given a graph G, we use the terms bucketization structure BSG

and transformed graph transformedG to refer to the output of our bucketization
scheme and the output of any graph-secretization algorithm, respectively.

Figure 5.2 illustrates a bucketization structure. We use parentheses to denote
tuples and curly brackets to denote sets. We write Encd(k,m) and Encp(k,m) to
denote the operations of encrypting m under key k using a deterministic encryption
algorithm and encryptingm under key k using a probabilistic encryption algorithm.

Figure 5.2: Bucketization and Encryption of Graph G

Definition 5.16: Bucketization Function

A bucketization function buck : G→ BSG is a function that generates a
bucketization structure BSG for a graph G ∈ G.

90

5.2 Our Secrecy Approach

Definition 5.17: Encryption Function

Given a bucketization structure of a graph G, BSG, an encryption func-
tion Enc : BSG → BSG performs an encryption of B as follows: First, in
the index information, each label of a node is encrypted deterministically,
and the bucket identifiers are encrypted probabilistically. Second, in the set
of buckets, each edge is encrypted deterministically.

We use encryption techniques, deterministic and probabilistic, to protect against
deterministic chosen-plaintext attacks, Definition 5.18. In addition to that, we use
bucketization techniques to protect against frequency attacks. Regarding bucke-
tization, we aim for an optimal bucketization concerning query performance. We
explain the specifics of our approach in Subsection 5.2.4.

Definition 5.18: Deterministic Chosen-plaintext Attack [BS08]

A deterministic chosen-plaintext attack is a relaxed notion of chosen-
plaintext attachs, Subsection 3.3.2, in which the adversary never sees the
same plaintexts encrypted with the same key more than once. The adversary
can choose several plaintexts to be encrypted and obtain their corresponding
ciphertexts. The adversary sends two different plaintexts m0 and m1 to the
challenger, with the restriction that the plaintexts are distinct from the
messages sent previously. The adversary receives the ciphertext of one of
them. The goal of the adversary is to distinguish if she has received the
ciphertext of m0 or m1.

A deterministic encryption scheme is not secure against chosen-plaintext attacks
(CPA). The encryption scheme must be probabilistic to offer secrecy guarantees
against CPA [KL07]. However, if a deterministic encryption scheme does not
encrypt the same plaintext more than once, i.e., the plaintext messages to be en-
crypted are unique, the scheme is secure against deterministic chosen-plaintext
attacks [BS08, BBO07]. A probabilistic encryption scheme offers secrecy guaran-
tees against both types of attacks. Secrecy proofs are in Subsection 5.2.6.

System Architecture Model and Query Processing

To achieve data secrecy, before outsourcing a graph G, the client applies a bucketi-
zation function on G, and after encryption, the client outsources the bucketization
structure to the service provider. Figure 5.3 illustrates the system architecture
model of the database outsourcing scenario. It consists of a trusted client and
an untrusted server. Since the server that stores the data is untrusted, the client

91

5 Secure Outsourcing of Graph-Structured Data

should have some computational capabilities to process queries and results be-
tween the users and the server. We assume that the client has two components
for query processing, namely the query translator and the query post-processor.
Query processing is as follows:

1. A user sends a query to the client.

2. The query translator translates the query into a list of queries, called server-
query list. This list contains one or several server-side queries and one filter-
ing client-side query. The server-side queries in the server-query list, apart
from the first one, are in general not concrete queries, i.e., they require ad-
ditional information to be executed.

3. The query translator sends the server-query list to the query post-processor.

4. The query post-processor sends to the server the next server-side query in
the server-query list.

5. The server executes the server-side query.

6. The server sends the encrypted results to the client.

7. The query post-processor decrypts the results. If there are more server-side
queries in the server-query list, the query post-processor uses the decrypted
results to instantiate the next server-side query. Steps 4, 5, 6 and 7 start
again until the server has processed all server-side queries.

8. Finally, the query post-processor gets the final encrypted results, decrypts
them, executes the filtering client-side query and sends the result to the user.

5.2.2 Bucketization Challenges

The encryption function encrypts the label of the nodes with deterministic en-
cryption. Deterministic encryption is secure under deterministic chosen-plaintext
attacks [BS08, BBO07]. However, frequency attacks are still feasible. To secure
against frequency attacks, we use a bucketization technique tailored to graph-
structured data. Finding a bucketization that guarantees both secrecy as well as
good query performance is challenging. The reason is that it is not obvious how
to assign edges to buckets, see Examples 5.2 and 5.3. The bucketization structure
may expose the frequency of buckets.

Example 5.2. Think of an email network with nodes V =
{ Alice, Bob, Carol, Dan, Eva } and edges E = { (Alice, Bob), (Alice, Dan),

92

5.2 Our Secrecy Approach

Figure 5.3: System Architecture and Query Processing

(Alice, Carol), (Alice, Eva), (Bob, Dan), (Carol, Eva), (Carol, Alice), (Dan,
Carol), (Eva,Bob) }. Assume that we apply a bucketization algorithm
that assigns edges randomly and stores two edges per bucket. In the worst
case, the algorithm assigns the four edges of Alice to four different buckets.
That is, during query processing, it is necessary to access four buckets to
retrieve the edges of Alice. Then the overall query processing effort, i.e.,
client and server workload, is rather large, because the server has to access
more buckets, and the client has to filter more data.

Example 5.3. Consider Example 5.2. If each bucket stores all the edges
belonging to only one node and no other edges, the frequency of each bucket
reveals the node degree. An adversary who knows the degree of each node in
the network, i.e., the number of emails that each user has sent, can conclude
that the bucket with four edges corresponds to Alice and the one with two
edges to Carol.

Definition 5.19: Link between Bucket and Degree

Given a graph G, a set of buckets of G, BG, a node u ∈ V , and a bucket
b ∈ BG, a link between bucket b and the degree of node u exists if

93

5 Secure Outsourcing of Graph-Structured Data

∀b′ ∈ BG \ {b},∀v ∈ V \ {u} : freq(b) 6= freq(b′)∧ deg(u) 6= deg(v)∧ freq(b) =
deg(u).

Assigning edges to buckets at random will likely bog down query performance,
cf. Example 5.2. Then, one should store the edges of a node in as few buckets
as possible. However, storing all edges of a node in one bucket creates a link
between the degree of nodes and their corresponding buckets, which might affect
secrecy. To avoid information leakage, one should create indistinguishable buckets.
Specifically, we aim for an equal frequency of buckets, i.e., all buckets should reach
the maximal capacity of maxEdges. Since an assignment may not always yield
full buckets, it is promising to merge them a posteriori, add dummy edges or both;
our approach will feature both. Preliminary experiments of ours have shown that
dummy edges do increase the overall query-processing time significantly both at
the client and the server. Therefore, the total number of dummy edges should be
as small as possible.

5.2.3 The Optimal Bucketization Problem

The optimal bucketization problem is as follows: Given a graph G = (V,E) as
input, we search for a bucketization structure of graph G, BSG, that meets the
constraints c1 − c4.

(c1) Each edge (u, v) ∈ E is assigned to one bucket.

(c2) Each bucket stores at most maxEdges edges, where maxEdges is a given
parameter.

(c3) Edges adjacent to the same node are placed in as few buckets as possible.
Formally, let the function ind : V × BSG → N be as follows: ind(u, S) :=
|{b ∈ BSG | ∃x ∈ V : (u, x) ∈ b}|. Given a node u and a bucketization
structure of a graph G, BSG, the function ind returns the number of buckets
that store the edges of node u. Then ∀BS ′G ∈ BSG,∀u ∈ V : ind(u,BSG) ≤
ind(u,BS ′G).

(c4) The total number of buckets should be as small as possible, while prioritizing
Constraint c3.

We prioritize Constraint c3 over c4 so that query performance is not affected, see
Example 5.2. We call a bucketization that meets Constraints c1 to c4, an optimal
bucketization.

94

5.2 Our Secrecy Approach

Our optimal bucketization problem is NP-hard. To prove this, we reduce the Bin-
packing problem (BP problem) [Joh73] to our problem. The authors in [Joh73]
and [GJ78] have proven that the BP problem is NP-complete and strongly NP-
complete, respectively. The hardness result, together with the proofs, are in Ap-
pendix A.

5.2.4 Our Bucketization Approach

Finding an optimal bucketization is NP-hard. Therefore, we propose a heuristic
that aims to meet the constraints established in the previous subsection, Subec-
tion 5.2.3. Our algorithm has two phases: an initialization phase and a merging
phase. See Figure . Due to the complexity of the optimal bucketization problem,
we use heuristics in the merging phase.

Definition 5.20: Initial Bucketization Structure

Given a graph G, the initial bucketization structure of graph G, BS0
G is

the result of the initialization phase of the bucketization algorithm applied
to graph G.

Definition 5.21: Final Bucketization Structure

Given a graph G, a final bucketization structure of graph G, BSfG, is
a bucketization resulting from the initialization and bucket merging phases
applied to G.

Figure 5.4: Phases of our Bucketization Approach

The Initialization Phase

Algorithm 9 describes the initialization phase of our bucketization approach for a
graph G. Since the length of the ciphertext could reveal the length of the plaintext,
we pad the label of the nodes to avoid this leakage (Line 1). Formal secrecy proofs
are presented in Section 5.2.6.

95

5 Secure Outsourcing of Graph-Structured Data

Algorithm 9: Initialization

Input : Graph: G = (V,E), int: maxEdges
Output: initial bucketization: BSiG

1 labelOfNodes.pad(V); ; // Pad the label of the nodes

2 foreach v in V do
3 create (ceil(1, v.numberOfEdges()/maxEdges)) buckets;
4 assign randomly up to maxEdges edges of v to each bucket;
5 generate the corresponding index information;

Example 5.4 and Example 5.5 illustrate how the assignment of edges works, and
explain the need for randomness with this assignment, respectively.

Example 5.4. Let us set maxEdges = 10. Given a node v that has 27
edges, the initialization algorithm creates three buckets. Then, it chooses 10
random edges from the 27 edges and assigns them to the first bucket. Next,
it chooses another 10 random edges from the remaining ones for the second
bucket, and the 7 remaining edges go to the third bucket.

Example 5.5. For the sake of an easy example, consider a setting where
emails can be revoked without difficulty. For this example, we consider the
buckets in Fig.5.5. Assume that the bucketization algorithm does not assign
edges randomly; instead, it assigns them alphabetically. Assume further that
Alice has one email to each of the following persons: Bob, Carol, Dan and
Eve. If an adversary knows who has received emails from Alice, although the
edges are encrypted, the adversary will learn that the bucket b2 stores the
last edge, i.e., the email sent to Eve. Gaining this knowledge is information
leakage. This leakage can lead to an attack with an extended adversary
model where the adversary has access to the log history. In the case where
the bucket b2 disappears, the adversary knows that one email was revoked,
and she will learn that the revoked email was the last one, i.e., the email
sent to Eve. A random assignment of edges reduces the chance that the
adversary learns extra information.

After the initialization phase of the bucketization process, the initialization algo-
rithm has placed all edges into their corresponding buckets. At this point, some
buckets may not have reached the maximal capacity, maxEdges. Even if we en-
crypt the buckets at this stage, the initial bucketization is not secure. If the degree
of a node is less than or equal to maxEdges, its edges have been placed in one

96

5.2 Our Secrecy Approach

Figure 5.5: Illustration of Example 5.5

bucket exclusively. That is, nodes with degree less than or equal to maxEdges
have a link between their degree and the frequency of their corresponding buckets.
By using such a link, an adversary will be able to identify the buckets of these
nodes, see Example 5.3.

One could consider inserting dummy edges at this stage to avoid leaking informa-
tion. Although adding dummy edges solves secrecy problems, the query perfor-
mance of this solution is affected. The overall query processing time without the
merging phase increases because the number of buckets at the initialization phase
is higher than the number of buckets after the merging phase, and this slows down
the server.

The Merging Phase

Definition 5.22: Bucket Merging

Bucket merging is an operation that puts the content of two buckets in a
new one and then deletes the two emptied ones.

In the merging phase, the algorithm merges buckets to fulfill Constraint c4. Al-
gorithm 10 identifies pairs of buckets that can be merged to obtain buckets with
the same frequency. Different heuristics are conceivable at this stage. We choose
a First Fit Decreasing approach (FFD) proposed in [GJ79]. We will justify this
decision after having explained the algorithm.

Notice that two nodes could have the same set of bucket identifiers. Encrypting
the set of bucket identifiers with deterministic encryption could lead to frequency
attacks. The use of probabilistic encryption prevents these attacks. Formal secrecy
proofs are in Section 5.2.6.

Lemma 5.1. The worst case solution of our bucketization algorithm with the FFD
approach is off by a factor of 11

9
from the optimal one.

97

5 Secure Outsourcing of Graph-Structured Data

Algorithm 10: Merge Buckets

Input : initial bucketization BSiG, int: maxEdges
Output: final bucketization: BSfG
/* Set B′ store buckets with frequency less than maxEdges. Set

SBf
G store full buckets. Set Bm store the buckets resulting

from a merge. */

1 Initialize: B′ := {b ∈ BSiG|b.numberOfEdges() < maxEdges};BSfG :=
BSiG \B′;Bm := {}

2 Order B′ by number of edges in decreasing order;
3 foreach bi ∈ B′ do
4 foreach bj ∈ Bm do

/* Search for the first bucket in B′ such that

|bi|+ |bj | ≤ maxEdges */

5 if bi fits in bj then
/* Put the content of buckets bi, bj into bucket b */

6 b← merge(bi, bj);
7 delete bi, bj;
8 if b.numberOfEdges() = maxEdges then

/* If b is full, add b to set of full buckets */

9 add b to BSfG
/* If bucket b is not full, add b to the set Bm */

10 else
11 add b to Bm

12 break;

/* If a merge was not possible, place bi in Bm. */

13 if (bi ∈ B′) then move bi to Bm;

14 foreach b ∈ Bm do
15 b.addDummyEdges() ; // Add dummy edges to non-full buckets

16 add b to BSfG
/* Encrypt the edges of each bucket individually using

deterministic encryption. In the index information, encrypt

the labels of the nodes using deterministic encryption, and

the set of bucket identifiers using probabilistic encryption.

Before encryption, pad the set of bucket identifiers such that

all sets have the same length. */

17 Encrypt BSfG;

18 return BSfG;

98

5.2 Our Secrecy Approach

Proof. Garey and Johnson [GJ79] have proven that the worst case solution for
the bin packing problem with the FFD approach is off by a factor of 11

9
from the

optimal one. Our algorithm uses the FFD approach in the merging phase.

Other heuristics for the merging phase, such as Best Fit and Next Fit, have a
worse approximation ratio, 17

10
and 2, respectively, [GJ79].

5.2.5 Query Transformation

Unlike other approaches such as the one presented in [HVS+10], our bucketiza-
tion approach does not lose any information regarding the original graph. Con-
sequently, there is no limitation regarding the kind of query one can process in
principle. However, query processing can affect the computation at the client-side
because the client might have to do most or all of the query processing work. Our
focus has been on reducing the client workload for neighbor and adjacency queries.
For neighbor queries, the client workload, with our approach, consists of a query
transformation process and a decryption and filtering process; the server performs
the rest of the query execution. For adjacency queries, the client workload, with
our approach, consists only of a query transformation process; the server performs
the rest of the query execution. In the following, we describe the processing of
neighbor and adjacency queries.

Client-side queries are transformed into server-side queries. We use the conventions
server.m and client.m to indicate that method m runs at the server-side and
the client-side, respectively. Algorithm 11 shows the transformation process for
neighbor queries. Algorithm 12 shows the procedure for adjacency queries.

5.2.6 Secrecy Proofs

In this subsection, we first prove that our bucketization approach fulfills the secrecy
notion Ind-Graph defined in Section 5.1. Then, we prove that our algorithm fulfills
our secrecy notion even with a more relaxed Leakage L4, Definition 5.9.

Our Bucketization Approach is Ind-Graph Secure

In our algorithm, the parameter maxEdges can be set freely. In Definition 5.5,
we have defined the z-access pattern based on a degree uncertainty z. Then, for a
given z, to guarantee that our bucketization algorithm fulfills our secrecy notion,
the parameter maxEdges must be set accordingly, i.e., maxEdges > z. We set
maxEdges = z + 1.

99

5 Secure Outsourcing of Graph-Structured Data

Algorithm 11: Neighbor Query Processing over the Bucketization Struc-
ture of Graph G, BSG.

Input : QNeighbor(G, u), key k, Bucketization Structure BSG
Output: Edges := {}

1 Initialize: EncBucketIDs:={}, BucketIDs:={}, EncEdges:={},
EdgesTemp :={};
/* The client encrypts node u and generates the server-side

query. */

2 encNode ← client.encd(k, u);
3 if server.indexInformation.contain(encNode) then

/* Retrieve from the index information the set of bucket

identifiers of the encrypted node encNode */

4 EncBucketIDs ← indexInformation(encNode);
/* Decrypt the set EncBucketIDs */

5 BucketIDs ← client.Decp(k,EncBucketIDs) foreach b in BucketIDs
do
/* Retrieve the edges stored in bucket b */

6 e← server.SetOfBuckets.ValueOf(b);
7 add e to EncEdges;

8 foreach e in EncEdges do
9 EdgesTemp ← client.add.decd(k, e); ; // Decrypt the edges

10 foreach e in EdgesTemp do
/* Filter false positives and dummy edges */

11 if !e.isFalsePositive ∨ !e.isDummy then
12 add e to Edges

13 return Edges;

Figure 5.6 shows the setup of the indistinguishability experiment from Defini-
tion 5.12.

Figure 5.7 illustrates an abstract output of the bucketization algorithm, where
|C(node)| is the length of the ciphertext representing an encrypted node, |N(enc)|
is the number of encrypted nodes, |C(bucketIDs)| is the length of the ciphertext
representing the set of bucket identifiers, |C(edge)| is the length of the ciphertext
representing an encrypted edge, bucketID are random identifiers of the buckets,
and |BG| is the number of buckets. We use these notations in our secrecy proofs.

Lemmas 5.2-5.4 tell us that our bucketization algorithm guarantees that: Given as
input two graphs G0 and G1, and two query histories qHG0 , qHG1 , which comply
with the restrictions of the experiment, an adversary A, who has access to the

100

5.2 Our Secrecy Approach

Algorithm 12: Adjacency Query Processing over the Bucketization
Structure of graph G, BSG.

Input : QAdjacency(G, u, v), key k, Bucketization Structure BSG
Output: Boolean isEdge

1 Initialize: isEdge =false;
/* Encrypt using deterministic encryption the two nodes given as

input as part of the query and generatethe server-side query.

*/

2 encEdge ← client.encKd (u, v)
/* Search in the set of buckets for the encrypted edge encEdge */

3 foreach bucket in server.SetOfBuckets() do
4 if server.setOfBuckets.ValueOf(bucket) contains encEdge then
5 isEdge=true ; // The nodes are adjacent

6 return isEdge;

A

Adversary

b

b←$ {0, 1}

Challenger

G0, qHG0 , G1, qHG1 :

αz(qHG0) = αz(qHG1),

σ(qHG0) = σ(qHG1),

size(G0) = size(G1),

Deg(G0) = Deg(G1)

Bucketization Structure BSGb , τb

Figure 5.6: Indistinguishability experiment Ind-Graph

bucketization structure of one the graphs and the corresponding trapdoors, cannot
say which graph the indistinguishability experiment selected as input. We organize
the proofs of Lemmas 5.2-5.4 as follows: We demonstrate that for both inputs given
by the adversary A, the properties of the index information, the set of buckets and
the trapdoors either are the same, or their differences do not allow the adversary
A to decide which graph has been selected as input.

To facilitate the proof, we first prove that our bucketization algorithm is Ind-Graph
with respect to the set of buckets output, Lemma 5.2, with respect to the index
information output, Lemma 5.3, and with respect to the trapdoors, Lemma 5.4.

Lemma 5.2. Let the following be given:

101

5 Secure Outsourcing of Graph-Structured Data

Figure 5.7: Abstract output of the bucketization algorithm

1. An adversary A who chooses two graphs G0, G1 and two query histories
qHG0, qHG1 in line with Definition 5.12.

2. The set of buckets the bucketization algorithm has generated by selecting ran-
domly G0, qHG0 or G1, qHG1.

The adversary A cannot decide which tuple, (G0, qHG0) or (G1, qHG1), has been
the input of the bucketization algorithm for maxEdges values equal to or greater
than the degree uncertainty z of the z-access pattern.

Proof. The properties of the set of buckets that do not change for both inputs given
by the adversary A are the size of the buckets and the number of buckets |BG|. The
properties that differ are the bucket identifiers and the encrypted edges. First, all
buckets have the same size equal to maxEdges. Since the bucketization algorithm
uses the same value for the parameter maxEdges, the size of all buckets for either
G0 or G1 is the same. Second, |BG| depends on the number of edges of the nodes.
After the initialization phase, our bucketization algorithm uses the FFD approach
to merge the buckets. Since Deg(G0) = Deg(G1), |BG| is the same for both graphs.
Third, the bucketization algorithm generates the bucket identifiers, bucketIDs,
randomly. The bucketization algorithm will generate random bucket identifiers
for both graphs. So, A cannot identify whether the bucketIDs correspond to
Graph G0 or G1. Fourth, the edges in a graph are unique, and they are encrypted
deterministically. So the edges are secure against deterministic chosen-plaintext
attacks, i.e., an adversary cannot learn any useful information about the original
edges, including their frequencies. Therefore, A cannot recognize whether the
encrypted edges in the set of buckets correspond to G0 or G1. Consequently,
the adversary A cannot distinguish whether the tuple (G0, qHG0) or the tuple
(G1, qHG1) has been the input of the bucketization algorithm.

Lemma 5.3. Let the following be given:

102

5.2 Our Secrecy Approach

1. An adversary A who chooses two graphs G0 and G1 and two query histories
qHG0 and qHG1 in line with Definition 5.12.

2. The index information the bucketization algorithm has generated by selecting
randomly G0, qHG0 or G1, qHG1.

The adversary A cannot distinguish whether the tuple (G0, qHG0) or the tuple
(G1, qHG1) has been the input of the bucketization algorithm for maxEdges values
equal to or greater than the degree uncertainty z of the z-access pattern.

Proof. The properties of the index information that do not change for both inputs
given by the adversary A are: the number of encrypted nodes |N(enc)|, the length
of the ciphertext representing an encrypted edge |C(node)|, and the length of the
ciphertext representing the set of bucket identifiers |C(bucketIDs)|. The properties
that can be different are the encrypted nodes and the encrypted sets of bucket
identifiers. First, |N(enc)| is the same for both graphs because |V0| = |V1|. Second,
the bucketization algorithm pads the labels of the nodes before encryption. Then,
|C(node)| is the same for all the nodes in both graphs. Third, the sets of bucket iden-
tifiers are padded and then encrypted. Then, |C(bucketIDs)| is the same for all sets of
bucket identifiers in both graphs. Fourth, the nodes are unique. The bucketization
algorithm encrypts them deterministically, so they are secure against deterministic
chosen-plaintext attacks. Therefore, the adversary A cannot distinguish whether
the encrypted nodes correspond to G0 or G1. Fifth, the bucketization algorithm
uses probabilistic encryption to encrypt the set bucket identifiers. So, they are
secure against chosen-plaintext attacks, i.e., an adversary cannot learn any useful
information from the set of bucket identifiers, including their frequencies. That is,
A cannot recognize whether the encrypted sets of bucket identifiers correspond
to G0 or G1. Consequently, the adversary A cannot distinguish whether the tu-
ple (G0, qHG0) or the tuple (G1, qHG1) has been the input of the bucketization
algorithm.

Lemma 5.4. Let the following be given:

1. An adversary A who chooses two graphs G0, G1 and two query histories
qHG0, qHG1 in line with Definition 5.12.

2. The list of trapdoors the bucketization algorithm has generated by selecting
randomly G0, qHG0 or G1, qHG1.

The adversary A cannot distinguish whether the tuple (G0, qHG0) or the tuple
(G1, qHG1) has been the input of the bucketization algorithm for maxEdges values
equal to or greater than the degree uncertainty z of the z-access pattern.

103

5 Secure Outsourcing of Graph-Structured Data

Proof. In our setting, a query in a query history qHG can be either a neighbor or an
adjacency query. Given a query history qHG with n queries, the list of trapdoors
T of qHG consists of n items— one for each query. The content of the trapdoors
depends on the type of query. If the i-th query qi ∈ qHG is a neighbor query,
the i-th trapdoor ti consists of an encrypted node, which corresponds to the query
qi, and a set of bucket identifiers, which correspond to the buckets that store the
encrypted edges of that node. If the i-th query qi ∈ qHG is an adjacency query,
the i-th trapdoor ti consists of an encrypted edge, which corresponds to the query
qi. Let T0 and T1 be the lists of trapdoors of qHG0 and qHG1 , respectively. First,
because αz(qHG0) = αz(qHG1) and σ(qHG0) = σ(qHG1) for all i ∈ {1, ..., n}, the
following holds:

• If the i-th query qi is a neighbor query, the i-th trapdoor ti in T0 has
one encrypted node with the same length |C(node)| and the same number
of bucketIDs as the i-th trapdoor ti in T1.

• If the i-th query qi is an adjacency query, the i-th trapdoor ti in T0 has one
encrypted edge, and the i-th trapdoor ti in T1 has one encrypted edge as
well.

Then, T0 and T1 have the same structure in both cases. Second, T0 and T1 could
have different content, i.e., the encrypted nodes and the bucket identifiers for
neighbor queries, and the encrypted edges for adjacency queries in T0 can be
different from the ones in T1. However, as demonstrated in Lemmas 5.2 and 5.3,
the nodes, and edges are secure against deterministic chosen-plaintext attacks,
and the bucket identifiers are generated randomly. Then, based on the content
of the trapdoors, A cannot distinguish whether the list of trapdoors corresponds
to qHG0 or qHG1 . Consequently, an adversary A cannot distinguish whether the
tuple (G0, qHG0) or the tuple (G1, qHG1) has been the input of the bucketization
algorithm.

We have proven in Lemmas 5.2 - 5.4 that the index information, the set of buckets
and the list of trapdoors, generated by our algorithm, do not leak any information
that can help an adversary to distinguish the input selected by the indistinguisha-
bility experiment – when looked at in isolation. It remains to demonstrate that
the entire output does not leak such information. If there is not a link between the
data structures of the output, it is enough to show that each data structure, when
looked at in isolation, does not leak information. However, if there are links be-
tween them, it is necessary to show that A cannot use this information to discern
the input selected by the indistinguishability experiment.

104

5.2 Our Secrecy Approach

Example 5.6 shows that the output data structures together could leak information
even though each data structure separately does not.

Example 5.6. Consider the graphs G0 and G1 of Figure 5.8, and two query
histories qHG0 = [QAdjacency (G0, A, C)] and qHG1 = [QAdjacency (G1, A, C)].
Each data structure in the bucketization structure BSG0 of graph G0 has
the same structure as its corresponding data structure in the bucketization
structure BSG1 of graph G1. Next, the lists of trapdoors TG0 and TG1 of
the bucketization structures BSG0 and BSG1 , respectively, have the same
structure. Additionally, because of the encryption used and the uniqueness
of the encrypted values, the content of each data structure cannot be used
to distinguish the input given to the algorithm. That is, they are indistin-
guishable from each other. However, one can use patterns, which can only
be recognized in the entire structure of the output, to distinguish the input
given to the algorithm. In this current example, the trapdoor in TG0 occurs
in the set of buckets, contrary to the trapdoor in TG1 . Using this information,
an adversary can recognize the input, given the output of the algorithm, by
checking if the ciphertext of the trapdoor occurs in the set of buckets, i.e,
in the encrypted edges. If this occurs, the input is G0; otherwise, the input
is G1.

Figure 5.8: Graphs G0, G1 - Example 5.6

Lemma 5.5. Let the following be given:

1. An adversary A who chooses two graphs G0, G1 and two query histories
qHG0, qHG1 in line with Definition 5.12.

2. The index information, the set of buckets and the list of trapdoors the bucketi-
zation algorithm has generated by selecting G0, qHG0 or G1, qHG1 randomly.

An adversary A cannot distinguish based on links between the output structures
whether the tuple (G0, qHG0) or the tuple (G1, qHG1) has been the input of the

105

5 Secure Outsourcing of Graph-Structured Data

bucketization algorithm for maxEdges values equal to or greater than the degree
uncertainty z of the z-access pattern.

Proof. The possible links between the output structures are a link between the
trapdoor of a neighbor query and the index information and a link between
the trapdoor of an adjacency query and the set of buckets. However, because
αz(qHG0) = αz(qHG1) and σ(qHG0) = σ(qHG1), these links are the same in both
inputs. Consequently, an adversary A cannot distinguish based on the links be-
tween the output structures whether the tuple (G0, qHG0) or the tuple (G1, qHG1)
has been the input of the bucketization algorithm.

Theorem 5.6. Our bucketization algorithm fulfills the secrecy notion Ind-Graph,
Definition 5.12, for maxEdges values equal to or greater than the degree uncer-
tainty z of the z-access pattern.

Proof. With Lemmas 5.2 - 5.5, we have shown that the index information, the
set of buckets, the list of trapdoors or a combination of them do not violate Def-
inition 5.12. It remains to prove that the access pattern of our bucketization
algorithm does not leak more than the degree uncertainty z. With our bucketi-
zation approach, the neighbor access pattern for any neighbor query is the tuple
((#Buckets− 1) ·maxEdges+ 1,#Buckets ·maxEdges), where #Buckets is the
number of buckets retrieve during the execution of a given neighbor query, i.e.,
#Buckets = d deg(u)

maxEdges
e. Then, the degree uncertainty is | − maxEdges + 1|.

Since we set maxEdges = z+ 1, the access pattern of our bucketization algorithm
does not leak more than the degree uncertainty of the z-access pattern. Thus, our
algorithm is Ind-Graph secure.

A Relaxed Leakage L4

In this subsection, we show that our algorithm fulfills our secrecy notion even
with a more relaxed Leakage L4, Definition 5.9. We proceed to define the notion
needed, Definition 5.23, to relax L4.

Definition 5.23: Size of the Transformed Graph

Given a transformed graph transformedG, the size of the transformed
graph is a list sizeTG = [|ds1|, ..., |dsd|] which contains the size of all data
structures in transformedG.

Given a graph G, the size of its corresponding transformed graph sizeTG is the
size of the bucketization structure BSG. Our bucketization structure has two data

106

5.3 Performance Model

structures: the index information and the set of buckets. The size of the index
information is the number of nodes, and the size of the set of buckets are the
number of buckets. Then, sizeBSG = [|V |, |BG|], where sizeBSG denotes the size
of the bucketization structure BSG.

Example 5.7 shows two graphsG0 andG1 that do not fulfill the restriction Deg(G0) =
Deg(G1). But the size of their bucketization structures is the same, i.e., sizeBSG0 =
sizeBSG1 .

Example 5.7. Let us consider two graphs G0 and G1, each graph has 4
nodes and 8 edges, and their multisets of degrees are Deg(G0) = {2, 2, 2, 2}
and Deg(G1) = {3, 2, 2, 1}, respectively. Assume that maxEdge = 4. Even
thoughDeg(G0) 6= Deg(G1), the bucketization algorithm will output 2 buck-
ets for both graphs. Then the size of the bucketization structure for both
graphs is the same, i.e., sizeBSG0 = sizeBSG1 = [4, 2].

Theorem 5.7. Our bucketization algorithm fulfills the secrecy notion Ind-Graph,
Definition 5.12, even by replacing leakage L4 with the more relaxed leakage of the
size of the transformed graph sizeTG, Definition 5.23, for maxEdges values equal
to or greater than the degree uncertainty z of the z-access pattern.

Proof. With Lemmas 5.2 - 5.5, we have proven that our bucketization algorithm
is Ind-Graph secure. We have used the restriction imposed by Leakage L4, i.e.,
Deg(G0) = Deg(G1), only in the proof of Lemma 5.2. We used it to demonstrate
that given two graphs, which are input by the adversary, the number of buckets
|BG| is the same for both graphs. The same is also guaranteed with the restriction
sizeTG0 = sizeTG1 , which in our bucketization means that sizeBSG0 = sizeBSG1 .
Then, our bucketization algorithm fulfills the secrecy notion Ind-Graph even when
replacing Leakage L4 with the more relaxed leakage regarding the size of the trans-
formed graph sizeTG.

5.3 Performance Model

A performance model allows predicting the behavior of an algorithm and facilitates
meaningful comparisons or evaluations of algorithms. Query optimizers, which
are essential features of any modern database system, require such performance
models to estimate the costs of various execution plans accurately and to find the
most efficient one [MPS99, MVW98, GTK01]. If such performance models are not
available, query optimizers will resort to coarse estimates, which may be grossly
off, with disastrous consequences when it comes to system performance. The

107

5 Secure Outsourcing of Graph-Structured Data

difference between the cost of the best execution plan and a random choice could
be in orders of magnitude [RH05]. With our bucketization algorithm, the number
of buckets output by the algorithm is a crucial parameter for query performance,
as explained in Section 5.2.2. Estimating the number of buckets is cumbersome,
and we estimate a range. But even to determine this range, it is necessary to
have a model that describes relevant properties of the given graph. Due to the
importance of scale-free networks, we review some of their properties and use them
to derive the so-called number-of-buckets model and query-cost model.

5.3.1 Scale-Free Networks

Real-world networks have two essential features:

• Growth: Real-world networks often are the result of a continuous growth
process.

• Preferential Attachment : Nodes with a higher degree will have a higher
probability to be connected to a new node. This property causes that most
nodes in the network will have only a few edges, and a few nodes gradually
turn into hubs, i.e., their degree greatly exceeds the average.

These two features are responsible for the power-law distribution of scale-free net-
works. Many real-world networks, such as genetic networks or the actor network,
follow a power-law distribution [BA99].

Barabasi and Albert [BA99] introduced a model capturing the properties of scale-
free networks— the Barabasi-Albert Model (BA). The properties of the BA model
that we use to build our performance model are:

• Degree Exponent, γ: It is the exponent of the power-law distribution of scale-
free networks. It plays an essential role in predicting many properties of these
networks, e.g., the highest node degree. The degree exponent of many real
networks is between 2 and 3 [BA99]

• Growth Parameter, m: At each time step, a new node joins the network with
m edges that connect it to m existing nodes.

• Probability of a Node with Degree k, ρk: Given the growth parameter m, the
probability that a randomly chosen node has degree of k is given by:

ρk =
2m(m+ 1)

k(k + 1)(k + 2)

108

5.3 Performance Model

• Number of Edges, |E|: In the BA model |E| is given by:

|E| = m · |V |

• Largest Node Degree, kmax: The expected value of the largest node degree in
the BA is:

kmax ∼ |V |
1

γ−1

• Lowest Node Degree, kmin: It is the minimum degree in the network. For kmin
there is no characterization, each graph can have different values of kmin.

5.3.2 The Number-of-Buckets Model

Table 5.1 summarizes the notation that we will use to introduce our number-of
-buckets model.

Notation Description

BucketiniFull
Number of full buckets, i.e., bucket with maxEdges

edges, after the initialization phase

BucketiniFullu
Number of full buckets generated for a given node

u after the initialization phase

EdgesNFB
Number of edges placed in non-full buckets after

the initialization phase

BucketsExp Expected number of buckets

DummyExp Expected number of dummy edges

ρk Probability of a node with degree k

kmin Value of the smallest node degree of a given graph G

kmax Value of the largest node degree of a given graph G

deg(u) Degree of a given node u

Table 5.1: Number-of-Buckets Model - Notation

Recall that after the initialization phase of the bucketization algorithm, some
buckets are full, and some are not. Lemma 5.8 captures the number of buckets that
have reached their maximal capacity after the initialization phase of the algorithm.

109

5 Secure Outsourcing of Graph-Structured Data

Lemma 5.8. The number of full buckets after the initialization phase of the algo-
rithm is:

BucketiniFull =
kmax∑
k=kmin

(
|V | · ρk ·

⌊
k

maxEdges

⌋)

Proof. Given a graph G = (V,E) and a node u ∈ V with degree deg(u), the num-
ber of full buckets generated for u after the initialization phase is BucketiniFullu =⌊

deg(u)
maxEdges

⌋
. BucketiniFullu is calculated regardless of the other nodes in G. Next, it is

required to calculate BucketiniFullu for all nodes u ∈ V . According to the properties
of the BA model, the probability that a randomly chosen node has a degree of k is
given by ρk. Then, the total number of nodes with degree k is |V | · ρk. For all the

nodes with degree k, the total number of buckets is |V | · ρk ·
⌊

deg(u)
maxEdges

⌋
. Finally,

to estimate the total number of buckets after the initialization phase, we have to
consider the degree of all the nodes. The degree value of the nodes is between kmin
and kmax.

If we know the number of full buckets, we know the number of edges that the
bucketization algorithm has stored in full buckets. Then we can calculate the
number of edges stored in non-full buckets, see Lemma 5.9.

Lemma 5.9. The number of edges that have been assigned to buckets that are not
full is:

EdgesNFB = |E| −BucketiniFull ·maxEdges

Proof. The number of edges already stored in full buckets after the initialization
phase is BucketiniFull ·maxEdges. We subtract this number from the total number
of edges |E| to obtain EdgesNFB.

Using the previous two lemmas, Lemmas 5.8 and 5.9, we introduce the range of
the number-of-buckets Model, see Theorem 5.10.

Theorem 5.10. Given a graph G = (V,E) that follows the BA Model, the expected
number of buckets BucketExp is in the range:

BucketiniFull +

⌈
EdgesNFB
maxEdges

⌉
≤ BucketExp

≤ BucketiniFull +
11

9
·
⌈
EdgesNFB
maxEdges

⌉ (5.1)

110

5.3 Performance Model

Proof. The lowest value of the range is the number of buckets obtained with the
optimal bucketization. With an optimal bucketization, the non-full buckets are

merged so that their edges, EdgesNFB, fill exactly
⌈
EdgesNFB
maxEdges

⌉
buckets. For the

upper bound of the model, the worst performance ratio of the FFD approach used
in our algorithm is 11

9
of the optimal solution. Consequently, the upper bound is

the sum of the number of full buckets after the initialization phase, BucketiniFull, and

the number of buckets after the merging in the worst case, i.e., 11
9
·
⌈
EdgesNFB
maxEdges

⌉
.

Corollary 5.11 provides a range of the expected number of dummy edges.

Corollary 5.11. Given a graph G = (V,E) that follows the BA Model, the expected
number of dummy edges, DummyExp, is in the range

(
BucketiniFull +

⌈
EdgesNFB
maxEdges

⌉)
·maxEdges− |E| ≤ DummyExp ≤(

BucketiniFull +
11

9
·
⌈
EdgesNFB
maxEdges

⌉)
·maxEdges− |E|

(5.2)

Proof. The lower bound of the expected number of buckets from Theorem 5.10
multiplied with maxEdges yields the total number of edges stored in the buckets.
Subtracting from this number the real number of edges yields the lower bound of
expected dummy edges. The analogous argument applies to the upper bound.

Discussion: The number-of-buckets model helps us to predict query performance.
Depending on the type of queries, our bucketization algorithm distributes the query
workload between the client and the server, e.g., with neighbor queries, the client
has to filter possible false positives. Lemma 5.8 gives the number of buckets that
do not generate false positives because they are full and store edges belonging to
the same node. This number depends not only on the characteristics of the given
graph, e.g., distribution of the number of edges per node, but also on the param-
eter maxEdges. We obtain the percentage of buckets that have false positives
by comparing BucketiniFull to the expected number of buckets from Theorem 5.10.
Buckets that contain false positives result in more work at the client. That is, a
low percentage of full buckets increases the average query processing effort at the
client. Concerning adjacency queries, the server performs all the query processing.
The number of dummy edges affects query performance at the server. Preliminary
experiments of ours show that more dummy edges increase the query execution
time at the server proportionally. Another parameter that affects query perfor-
mance at the server is the number of buckets. The reason is that the server has to

111

5 Secure Outsourcing of Graph-Structured Data

perform a lookup in the set of buckets to answer queries. Then a large number of
buckets also affects the query performance at the server.

All the properties about our bucketization algorithm that affect query performance,
like the ones discussed in the previous paragraph, are summarized in our query-cost
model, Subsection 5.3.3.

5.3.3 Query-Cost Model

In our query-cost model, we assume that queries are executed without using index
structures on both a given graph and its corresponding bucketization structure.

Let a graph G, its corresponding bucketization structure BSG and a query Q be
given. We use RTserverGQ, RTclientGQ, RTserverBSGQ and RTclientBSGQ to denote
the runtime complexity of executing query Q over graph G at the server, the
runtime complexity of executing query Q over graph G at the client, the runtime
complexity of executing query Q over the bucketization structure BSG at the
server, and the runtime complexity of executing query Q over the bucketization
structure BSG at the client, respectively.

Definition 5.24: Query Performance Ratio

The query performance ratio of executing a given query Q over a given
graph G and its corresponding bucketization structure BSG at the server
side is

RserverQ =
RTserverBSGQ

RTserverGQ

and the query performance ratio at the client side is

RclientQ =
RTclientBSGQ

RTclientGQ

We start by analyzing the processing of neighbor queries, followed by adjacency
queries. We assume that a given graph and its corresponding bucketization struc-
ture do no use index structures. Then a single lookup of an edge in a given graph
G has a complexity of O(|E|). In the bucketization structure, a single lookup of a
node in the index information has complexity of O(|V |), and a single lookup of a
bucket in the set of buckets has a complexity of O(BucketsExp), where BucketsExp
is the expected number of buckets, Theorem 5.10.

112

5.3 Performance Model

The encryption and decryption complexity depends on the security parameter,
Definition 3.5 of the underlying encryption scheme [PU09]. For instance, in the
case of AES, the encryption and decryption complexity depends on the length
of the message m to be encrypted, |m|, [OEHB11]. Then, the complexity of
the encryption/decryption process is O(|m|). In our approach, we use two types
of encryption schemes, deterministic and probabilistic. Each encryption scheme
has a secret key with a constant size. Then we consider two different security
parameters— one for each type of encryption. We use ds and ps to denote the se-
curity parameter of the deterministic encryption and the probabilistic encryption,
respectively. The complexity of deterministic encryption and decryption is O(ds),
and the complexity of the probabilistic one is O(ps).

Table 5.2 summarizes the notation that we will use to introduce our query-cost
model.

Notation Description

RserverQ
Query performance ratio of executing at the server a

given query Q

RclientQ
Query performance ratio of executing at the client a

given query Q

RTserverGQ Runtime of executing a given query Q over graph G at the server

RTserverBSGQ

Runtime of executing a given query Q over the bucketization

structure BSG at the server

RTclientGQ Runtime of executing a given query Q over graph G at the client

RTclientBSGQ

Runtime of executing a given query Q over the bucketization

structure BSG at the client

|BGu| Number of buckets that store the edges of a given node u

|BG| Number of buckets

|Dummy| Number of dummy edges

O(ds) Time complexity of deterministic encryption and decryption

O(ps) Time complexity of probabilistic encryption and decryption

Table 5.2: Query-Cost Model - Notation

113

5 Secure Outsourcing of Graph-Structured Data

Query-Cost Model for Neighbor Queries

Lemma 5.12. Let a Graph G = (V,E), its bucketization structure BSG and
a neighbor query QNeigbhor (G, u) be given. The server-side and the client-side
performance ratio of executing the given query are:

RserverQNeighbor(G,u) =
O
(⌈

deg(u)
maxEdges

⌉
· |BG|

)
O(|E|)

RclientQNeigbhor(G,u) = O

(⌈
deg(u)

maxEdges

⌉
·maxEdges

)

Proof. In the given graph G, we need to access the edges E stored at the server to
retrieve all edges that belong to node u. Then, the effort of executing a neighbor
query on the server side is RTGQNeighbor(G,u) = O(|E|). At the client, no work is
necessary. With our bucketization in turn, the following steps are required:

1. Encrypt Node u for querying. The effort is O(ds).

2. Retrieve the set of bucket identifiers of node u from the index information.
This step has a complexity of O(|V |).

3. Decrypt the set of bucket identifiers. The effort is O(ps).

4. For each bucket identifier, one lookup in the set of buckets BG is required.

The number of buckets that store the edges of node u is |BGu| =
⌈

deg(u)
maxEdges

⌉
.

The complexity of this step is O
(⌈

deg(u)
maxEdges

⌉
· (|BG|)

)
.

5. Decrypt and filter the
⌈

deg(u)
maxEdges

⌉
· maxEdges edges. The decryption and

filtering has a complexity of O
(⌈

deg(u)
maxEdges

⌉
·maxEdges

)
.

The server performs Steps 2 and 4, the client Steps 1, 3 and 5. The step with
the highest complexity at the client is Step 5, and at the server it is Step 4.
Consequently, the effort for executing a neighbor query at the server and at the
client is:

RTBSGQNeighbor(G,u) = O

(⌈
deg(u)

maxEdges

⌉
· (|BG|)

)
RTBSGQNeighbor(G,u) = O

(⌈
deg(u)

maxEdges

⌉
·maxEdges

)

114

5.3 Performance Model

Finally,

RserverQNeighbor(G,u) =
O
(⌈

deg(u)
maxEdges

⌉
· (|BG|)

)
O (|E|)

RclientQNeighbor(G,u) = O

(⌈
deg(u)

maxEdges

⌉
·maxEdges

)

Query-Cost Model for Adjacency Queries

Lemma 5.13. Let a Graph G = (V,E), its bucketization structure BSG and
an adjacency query QAdjacency(G, u, v) be given. The server-side and client-side
performance ratio of executing the given query are:

RserverQAdjacency(G,u,v) =
O (|E|+ |Dummy|)

O (|E|)

RclientQAdjacency(G,u,v) == O(ds)

Proof. In the given graph G, in order to check whether a queried edge (u, v)
exists in E, one needs to execute one lookup on the edges E. Then, the effort of
executing an adjacency query at the server is RTserverGQAdjacency(G,u,v) = O(|E|).
At the client, no work is necessary. With our bucketization in turn, the following
steps are required:

1. Encrypt the queried edge (u, v) for querying. The effort is O(ds).

2. Execute one lookup in the encrypted edges that are stored in the set of
buckets BG. The complexity of this step is O(|E|+ |Dummy|).

Step 1 takes place at the client, it is an encryption operation with complexity
O(ds). So the ratio of executing the given query at the client is RclientQAdjacency(G,u,v) =
O(ds).

At the server, the effort of executing the given query over the bucketization struc-
ture BSG is RTBSGQAdjacency(G,u,v) = O (|E|+ |Dummy|). Then, the effort of executing

the given query at the server is RserverQAdjacency(G,u,v) = O(|E|+|Dummy|)
O(|E|) .

115

5 Secure Outsourcing of Graph-Structured Data

Discussion Query-Cost Model

From the Query-Cost Model, we can learn that for adjacency and neighbor queries
the parameter maxEdges plays an important role regarding the query-execution
effort at client and server. If the parameter maxEdges increases, the number of
dummy edges increases, and the server must take more effort to answer queries.
At the client, to answer neighbor queries, if the parameter maxEdges increases,
the workload at the client increases as well. That is because the client has to
filter more false positives. Therefore, we suggest for scale-free networks that the
parameter maxEdges should take smaller values, exactly m. In the next section,
we demonstrate through experiments how this parameter affects the performance
of our bucketization algorithm.

5.4 Experiments

In this section, we present experiments to evaluate the accuracy of our number-
of-buckets model and the performance of our bucketization approach. Notice that
the query-cost model is derived from the number-of-buckets model. Consequently,
its accuracy mainly depends on the accuracy of the number-of-buckets model.

5.4.1 Experiment Setup

Input Datasets

In our experiments, we use synthetic and real datasets.

Synthetic Datasets: We used Networkx [SS08] to generate eight different undi-
rected graphs that follow the BA Model. Table 5.4 shows the characteristics of
these graphs, where |V | is the number of nodes, m the growth parameter, and |E|
the number of edges. Related experimental studies on secrecy preserving on graph-
structured data, [YFY14, ZP08], have considered synthetic graphs with nodes be-
tween 3000 and 25000. We vary the number of nodes from 5000 to 150000. For
graphs with 5000 and 10000 nodes, we set the growth parameter m equal to 6 and
8. For graphs with 40000 and 150000 nodes, we set the growth parameter m equal
to 8 and 10. The number of edges of each graph depends on the number of nodes
and the growth parameter m.

Real Datasets: Our bucketization approach can work with any graph. Table 5.3
the real datasets that we used in our experiments. Barabasi and Albert in [BA99]
proved that the Actor and the Web-network are scale-free. In the Actor-network,
the nodes represent actors and movies. An edge connects a movie with an actor

116

5.4 Experiments

Synthetic Data |V | m |E|
G1 5000 6 29964

G2 5000 8 39936

G3 10000 6 59964

G4 10000 8 79936

G5 40000 8 319936

G6 40000 10 399900

G7 150000 8 1199936

G8 150000 10 1499900

Table 5.3: Synthetic Graph-structured Datasets

Datasest |V | |E| Type of Network m

Actor-network [Kun13] 1048575 1137725 Scale free Network 4

Web-network [LLDM09] 2381903 2312497 Scale-free Network 5

Citation-network [LK14] 27770 352807 Non-scale-free Network NA

Table 5.4: Real Graph-structured Datasets

who has played in it. The Actor-network exhibits the preferential attachment
feature. Namely, if an actor has played in more movies, a casting director is more
familiar with his or her skills. The nodes in the Web network are web pages, and
the edges represent hyperlinks between them. The nodes in the Citation network
are articles, an edge is created between articles a and b if article a cites b.

Queries

Based on initial experiments and the Query-Cost Model, Section 5.3.3, we ob-
serve that node degree plays an essential role in the query performance evaluation.
Therefore, one has to select carefully the object that will be part of an experi-
ment sample, i.e., the queries, to have a representative sample. In all experiments
that follow, the experiment sample consists of actual nodes from the graph that is
being queried. In the following, we present the experiment results for these type
of queries. In the context of neighbor queries, there are two kinds of nodes with
very different query performance: hubs, and non-hubs. To have equally repre-
sented hubs and non-hubs in our query sample, we divide neighbor queries into
two groups: RandomQNeighbor(G, u) and HubQNeighbor(G, u). For the group of
queries RandomQNeighbor(G, u), we select the input node u randomly from the set

117

5 Secure Outsourcing of Graph-Structured Data

of nodes V without considering the hubs in the graph. For HubQNeighbor(G, u),
we identify the hubs in the graph and use them as input. For adjacency queries,
QAdjacency(G, u, v), we select at random the nodes u, v from the set of nodes V .
The execution time of adjacency queries depends on the total number of edges,
including dummy edges (Section 5.3.3). Then, a distinct consideration of hubs is
not necessary in this case.

Evaluation Measures

We use seven metrics which let us evaluate the accuracy of the number-of-buckets
model (NBM) and the performance of the bucketization approach.

The NBM metrics are:

• |BucketG|: This metric quantifies the number of buckets obtained when
applying our bucketization algorithm to a given graph G.

• DummyG: This metric quantifies the percentage of dummy edges when ap-
plying our bucketization algorithm to Graph G.

• BucketiniFull: This metric quantifies the percentage of buckets that are full
after the initialization of the bucketization algorithm on the given graph G.

The bucketization performance metrics are:

• RTserverBSGQ : This metric quantifies the server query-processing time when
using our bucketization structure of graph G, i.e., the time required by the
server in order to answer a query sent by the client.

• RTclientBSGQ : This metric quantifies the client query processing time when
using our bucketization structure of graph G, i.e., the time required by the
client to decrypt the results returned from the server and filter false positives.

• TotalRTBSGQ : This metric quantifies the total query processing time using
our bucketization structure, i.e., it adds up the processing time at the client
and at the server.

• TotalRQ: This is the ratio of the total query processing time using our
bucketization structure to that using the given graph G.

5.4.2 Results

We now present the results of the experiments. We start by discussing the evalua-
tion of the number-of-buckets model, and then the performance. Our experiments

118

5.4 Experiments

evaluate the trade-off between secrecy and performance and study the effect of
each of the metrics defined in the previous subsection. We develop our number-
of-buckets model based on the characteristics of scale-free networks. Therefore,
for the evaluation of this model, we use only the scale-free datasets, namely all
synthetic datasets, G1, . . . , G8, and the two scale-free real datasets, the Actor and
Web networks. For the performance evaluation, we use all the real datasets. In
the experiments, we have varied the parameter maxEdges.

Number-of-Buckets Model Evaluation

|BucketG|: Figure 5.9 shows the numbers of buckets obtained with the synthetic
and real datasets. For both types of datasets, we have used different values for the
parameter maxEdge. The markers on each plot are the lower and upper bounds
calculated with our number-of-buckets model. In all our experiments, the num-
ber of buckets obtained is always inside the range calculated with Theorem 5.10.
Moreover, if the parameter maxEdges is lower than the growth parameter m,
the number of buckets obtained is between the lower bound and the middle of
the range given by the number-of-buckets model. Contrary, if maxEdges > m,
the number of buckets gets closer to the upper bound of the number-of-buckets
model. We explain this effect as follows: In scale-free networks, most of the nodes
in the graph have degree equal to m. If we set the parameter maxEdge equal to
m, most buckets will reach their maximal capacity after the initialization phase,
and fewer buckets will remain for the merging phase. Then the total number of
buckets gets closer to the optimal solution of our algorithm, which is the lower
bound of our estimation. If we set the parameter maxEdges with values greater
than m, after the initialization phase, most of the buckets will not have reached
their maximal capacity, and our bucketization algorithm will consider them for
the merging phase. In the merging phase, because of the heuristic used, it is not
always possible to reach an optimal solution. Therefore, the number of buckets
obtained gets closer to the upper bound of the number-of-buckets model.

DummyG : We calculate the percentage of dummy edges in comparison with the
size of the given graph for the synthetic data and the real datasets. Table 5.5
shows the average percentage of dummy edges for the synthetic datasets. Ta-
ble 5.6 shows the exact percentage of dummy edges for the real datasets. We can
observe in both tables that the number of dummy edges needed increases as the
parameter maxEdges takes values greater than m. More dummy edges mean a
larger database, which is likely to affect the efficiency of the querying process on
the server-side. We will examine the query performance in the next subsection.

119

5 Secure Outsourcing of Graph-Structured Data

(a) Synthetic Datasets

(b) Real Datasets

Figure 5.9: |BucketG| obtained for the synthetic and real datasets

BucketiniFull: Table 5.7 shows the average percentage of full buckets after the initial-
ization phase of our bucketization algorithm for the synthetic datasets. Table 5.8
shows the exact percentage of full buckets after the initialization phase. The num-
ber of full buckets decreases as the parameter maxEdges takes values higher than
m. If a bucket stores edges that belong to different nodes, dummy edges or both,
the client will require more query processing effort. Full buckets after the ini-
tialization phase contain edges that belong to a single node. More full buckets
right after initialization let our algorithm to come closer to the optimal solution.

120

5.4 Experiments

maxEdges DummyG

1 < maxEdges < m 1.217%

maxEdges = m 0.889%

maxEdges > m 26.513%

Table 5.5: Percentage of Dummy Edges for the Synthetic Datasets

Dataset maxEdges DummyG

Actor Network

2 0.428%

4 0.748%

16 7.629%

Web Network

3 0.223%

5 1.112%

10 6.349%

Table 5.6: Percentage of Dummy Edges for the Real Datasets

An optimal solution implies fewer buckets for the merging process, fewer dummy
edges, and fewer false positives when querying.

maxEdges BucketiniFull
1 < maxEdges < m 88.79%

maxEdges = m 86.81%

maxEdges > m 46.65%

Table 5.7: Average percentage of Full Buckets after the initialization phase - Syn-
thetic Datasets

Performance Evaluation

As in the previous section, we conducted our experiments with both synthetic and
real datasets, and their results are very much the same. In what follows, due to its
applicability to real-world scenarios, we present the results on the real datasets.

RTserverBSGQ : Figure 5.10(a) shows the average query-processing time of the
server for random neighbor queries, hub neighbor queries, and adjacency queries.
For random and hub neighbor queries, RandomQNeighbor(G, u) andHubQNeighbor(G, u),

121

5 Secure Outsourcing of Graph-Structured Data

Dataset maxEdges BucketiniFull

Actor Network

2 59.15%

4 55.78%

16 14.49%

Web Network

3 81.38%

5 80.18%

10 47.96%

Table 5.8: Percentage of Full Buckets after the initialization phase - Real Datasets

the query-processing time of the server increases as the parameter maxEdges de-
creases. The reason is that when the parameter maxEdge decreases, the number
of buckets increases, which means that during query execution, the server has to
retrieve more buckets. In contrast, the query-processing time of the server for
adjacency queries, QAdjacency(G, u, v), increases as the parametermaxEdges takes
higher values. The increase, in this case, is due to the number of dummy edges
inserted. Our experiments in the previous subsection showed that the number of
dummy edges needed grows, as the parameter maxEdges increases.

RTclientBSGQ : For this part of the evaluation, we only consider two random and
hub neighbor queries, RandomQNeighbor(G, u) and HubQNeighbor(G, u). We omit
adjacency queries because they do not require any post-processing on the client.
Figure 5.10(b) shows the average query-processing time of the client. In the scale-
free networks, i.e., the Actor and Web networks, the query-processing time at the
client increases as the parameter maxEdges takes larger values. In the Citation-
network, with maxEdges = 12, i.e., the average degree of the network, the client
query-processing time decreases compared to the time obtained with different val-
ues of the parameter maxEdges.

TotalRTBSGQ : Figure 5.11 shows the total average query-processing time for ran-
dom and hub neighbor queries and adjacency queries with the real datasets. For
the queries RandomQNeighbor(G, u) and HubQNeighbor(G, u), the total execution
time increases as the parameter maxEdges decreases. This increment is related to
the increase of the query-processing time of the server, which we have explained
with the metric PSQprocessing. For adjacency queries, the query-processing time of
the server and the total query-processing time are the same. The reason is that
adjacency queries do not require any post-processing on the client, i.e., the server
performs all the query-processing work.

122

5.4 Experiments

Figure 5.10: Server Query-processing Time, RTserverBSGQ , and Client Query-pro-

cessing Time, RTclientBSGQ -Real Datasets

We can see from the analysis of the query-processing time at the server, at the
client, and the total query-processing that the best value to set the parameter
maxEdges in scale-free networks is the growth parameter m. In this kind of
networks, most nodes have a degree equal to m so that most buckets will be full
after the initialization phase. For non-scale-free networks, we observe that the best
value to set maxEdges is the average degree of the network. To evaluate the last
metric, TotalRQ, we set maxEdges to the best option, i.e., maxEdges = m for
the scale-free networks and maxEdges = 12, average degree, for the non-scale-free
network.

TotalRQ: Figure 5.12 shows a comparison of the total query processing time
for random and hub neighbor queries and adjacency queries using our bucketi-
zation structures and the original graphs of the three real datasets. For each
diagram in Figure 5.12, each pair of points on the x-axis, i.e., 1 and 2, 3 and 4,
5 and 6, corresponds to one type of query. The first pair corresponds to random
neighbor queries, RandomQNeighbor(G, u), the second one to hub neighbor queries,
HubQNeighbor(G, u), and the third one to adjacency queries, QAdjacency(G, u, v). In
each pair, the first point represents the total query-processing time using our buck-
etization structure, and the second one is the total time using the original graph.

123

5 Secure Outsourcing of Graph-Structured Data

Figure 5.11: Total Average Query-processing Time - Real Datasets

We deem the total execution time on the original graph the optimum. So we eval-
uate our approach depending on how much the query-processing time increases in
comparison with the original graph. In the Actor-network, the execution of random
neighbor queries, RandomQNeighbor(G, u), with our bucketization approach is on
average 3.44 times slower than with the original graph, the execution of hub neigh-
bor queries, HubQNeighbor(G, u), is 5.12 times slower and the execution of adjacency
queries, QAdjacency(G, u, v), is 2.88 times slower. In the Web-network, the execu-
tion of random neighbor queries, RandomQNeighbor(G, u), with our bucketization
approach is on average 2.90 times slower than with the original graph, the exe-
cution of hub neighbor queries, HubQNeighbor(G, u), is 10.15 times slower, and the
execution of adjacency queries, QAdjacency(G, u, v), is 4.76 times slower. In the Cita-
tion-network, the execution of random neighbor queries, RandomQNeighbor(G, u),
with our bucketization approach is on average 4.51 times slower than with the
original graph, the execution of hub neighbor queries, HubQNeighbor(G, u), is 4.78
times slower, and the execution of adjacency queries, QAdjacency(G, u, v), is 4.93
times slower.

To summarize, in the scale-free networks, i.e., the Actor and Web-networks, ex-
cept for hub neighbor queries, HubQNeighbor(G, u), with our approach, the query
execution time is 3.5 times slower than with the original graph. In the non-scale-
free network, i.e., the Citation-network, with our approach, the query execution
time is approximately 5 times slower than with the original graph. In our opinion,
these are reasonable prices for secrecy guarantees. So our bucketization approach
is practical and feasible for secrecy for graph-structured data.

124

5.5 Related Work

Figure 5.12: Total query processing time - Real datasets

5.5 Related Work

In this section, we first review existing secrecy notions. Then we analyze work on
bucketization for relational databases and on secure storage of graph-structured
data.

5.5.1 Secrecy Notions - Related Work

Different secrecy notions have been proposed in the literature. Each secrecy no-
tion considers different secrecy guarantees and deals with different adversary mod-
els. Notions such as the ones presented by Fan et al. [FCC+15] and Zhang et
al. [ZSW+14] offer guarantees against chosen-plaintext attacks and known-plain-
text attacks, respectively. In our graph setting scenario, these guarantees are not
enough because the edges of the graph can also reveal information. Wang et al.
[WL06] define a secrecy notion for XML documents, which is based on the def-
inition of perfect secrecy. Their secrecy notion considers adversaries who have
access to the secretized XML documents and some metadata needed to perform
queries. We additionally assume that the adversary can observe query executions
over time. Goh et al. introduce a secrecy notion known as searchable encryption,
which was later extended in [CGKO11, VLSD+10, KPR12]. Searchable encryption
is a technique that allows performing keyword searches in encrypted documents.
An index is generated based on the plaintext data to increase the performance of
the search process. The index consists of two data structures: an array that stores,
for each keyword w, the encrypted set of identifiers of all documents containing

125

5 Secure Outsourcing of Graph-Structured Data

w, and a look-up table which includes, for each w, information that allows to
locate and decrypt the elements from the array. A trapdoor, which is a determin-
istic algorithm run by the client, allows testing for the occurrence of a keyword
in a document. Their secrecy notion considers two adversarial models, namely
nonadaptive chosen keyword attacks (IND-CKA1) and adaptive chosen keyword
attacks (IND-CKA2). These secrecy notions define secrecy for indexes to ensure
that an adversary will not be able to learn the content of an encrypted document
from its index. Formally, the secrecy notions IND-CKA1/2 comprise secrecy for
trapdoors and guarantee that the trapdoors do not leak information about the
keywords apart from the outcome and access pattern of a query. Similarly to the
secrecy notion proposed in this chapter, IND-CKA1/2 use the concept of indistin-
guishability. However, our secrecy notion is applied to graphs, i.e., the challenger
takes as input two graphs given by the adversary.

5.5.2 Bucketization on Relational Databases - Related Work

Secure database storage has been widely studied. However, existing techniques
such as the ones presented in [HMT04, ABG+05] either cannot be applied to graph-
structured data, or they do not cover our requirements R1 and R2. Approaches for
graph-structured data, [SNS10] do not keep the information of the entire graph.
Next, they cannot answer certain queries, such as neighbor and adjacency queries,
which are essential needs when working with graphs [MP10]. Other approaches
like the ones presented in [HMT04, ABG+05, HIM05] could exhibit unwanted
behavior when being adapted to graph-structured data, e.g., leak information.
Several approaches are based on bucketization. In this context, bucketization
encrypts each tuple in an original relation as one string and assigns an index to
each encrypted tuple. The approach generates indexes in such a way that more
than one encrypted tuple could have the same index value. Encrypted tuples
with the same index value are called partitions. Each index value is related to a
partition of the domain of an original attribute. The server stores the secretized
relation and index information. In what follows, we sketch two adaptations of
these approaches to graphs and show that these alternatives are not appropriate
to solve our problem.

With both adaptations, we represent the edges in a two-attribute relation, TEdges,
where each attribute stores one node of the edge. Borrowing from bucketization
schemes for relational databases, two alternatives come to mind: one-dimensional
bucketization and multidimensional bucketization.

One dimensional bucketization. Here, the domains of the two-attributes in TEdges
are considered as one domain and then divided into partitions. This solution

126

5.5 Related Work

cannot be considered secure because it could exhibit some of the original graph
structure.

Example 5.8. Consider the graph from Figure 5.13. If the bucketization
algorithm assigns nodes A, B and C to different buckets, the connections
between the buckets will share the same structure as the original graph.
Table 5.9 shows the secretized relation. This solution represents a parti-
tion of nodes into buckets. The partitions are [b1, {A}], [b2, {B}], [b3, {C}],
[b4, {D,E}]. The relationships between the index values (b1, b2), (b2, b3) and
(b3, b1) share the same structure as the original edges E.

Figure 5.13: Graph - Example 5.8

e-tuple Node 1 Node 2

enc(A,B) b1 b2

enc(A,D) b1 b4

enc(B,C) b2 b3

enc(B,D) b2 b4

enc(C,A) b3 b1

enc(D,E) b4 b4

Table 5.9: Secretized Relation of Example 5.8

Multidimensional bucketization. With this option, the domain of each attribute
is partitioned individually. Given an optimal multidimensional bucketization, this
bucketization can be secure. However, finding an optimal multidimensional bucke-
tization concerning query performance is NP-hard [LDR06]. This NP--hard prob-
lem can be solved with heuristics such as in [LDR06] and [WD08]. But these
solutions do not consider certain graphs characteristics such as grouping edges

127

5 Secure Outsourcing of Graph-Structured Data

of a node in the same partition to answer relevant graph queries, e.g., neighbor
queries, efficiently. So these approaches do not solve our problem.

5.5.3 Secure Storage for Grap-Structured Data - Related Work

Secure storage for graph-structured data: Syalim et al. [SNS10] have proposed
an approach that guarantees secrecy for the labels of nodes of a graph. They
design their secrecy model to protect provenance metadata. Provenance meta-
data is information that allows tracing who has contributed to the creation of a
document. The authors represent the provenance metadata as a directed acyclic
graph. The labels of nodes store the provenance metadata of a specific document
version, and the edges represent the relationships between a version of a document
and its successors. Their approach use multiple layer encryption to guarantee that
only authorized users, who have the corresponding decryption keys, can access the
provenance metadata. Since the labels of the nodes are encrypted, an adversary,
who does not possess the encryption keys, is unable to learn the original plaintexts.
However, in general, an adversary can identify a node by its degree and determine
the relationships between nodes without knowing the content of the labels, i.e.,
edge leakage. Our approach guarantees that neither nodes nor edges leak informa-
tion. Regarding query processing, the authors consider two types of queries: access
to the label of a node and access to the label of the parent nodes of a node. These
two types of queries may be enough for provenance metadata. In general, how-
ever, different graph--specific types of queries should be supported. The authors in
[HVS+10] present an approach for finding the shortest path between two nodes in
a directed graph. The approach perturbs the edges to guarantee edge privacy. The
perturbation modifies the structure of the graph to some extent. Therefore, query
results only are approximate. As XML documents are a specific kind of graphs, we
briefly turn to this research direction as well. Want et al. [WL06] proposed an en-
cryption scheme for XML documents which considers different levels of granularity
for encryption. Their approach divides the XML document into blocks of different
sizes and encrypts each block as a whole. A block can contain subtrees of the
XML document at any depth, e.g., parent and child elements, or just the content
of chosen elements. The authors in [CRK+13] proposed a solution for evaluation
of tree pattern queries in encrypted XML documents. The authors take as starting
point that XML documents have a domain hierarchy, i.e., parent and child hierar-
chy. Each element of the XML document is given a position based on the domain
hierarchy. The authors use the position of the elements to create a vector for each
XML document. They encrypt the vectors to ensure secrecy. Similarly, a tree
pattern query is transformed into a vector. The evaluation of a tree pattern query
requires measuring the distance between the encrypted vector that represents the

128

5.6 Summary

XML document and the encrypted vector that represents the query. These two
approaches [CRK+13, WL06] require the existence of a domain hierarchy such as
parent-child, to create blocks or vectors, respectively. In graph-structured data,
such a hierarchy typically does not exist.

To summarize, none of the related approaches we are aware of does address Re-
quirements R1 and R2 nor features a model of the costs of query processing that
considers relevant characteristics of the graph.

5.6 Summary

A core challenge when outsourcing a database is to preserve data confidential-
ity. In this chapter, we have studied this problem for graph-structured data,
and we have proposed a secrecy model for this kind of data based on the con-
cept of indistinguishability. Existing proposals, such as the ones presented in
[FCC+15, ZSW+14, WL06], deal with different types of adversaries and differ-
ent secrecy guarantees. Our secrecy definition guarantees that, given a secretized
graph, an adversary cannot learn any information about the original graph beyond
the information leakage specified. While a bucketization of the edges gives way
to the secrecy envisioned here, as we have shown, finding an optimal bucketiza-
tion is NP-hard. We have proposed a heuristic that guarantees that the worst
bucketization solution will be off by a factor of 11

9
of the optimal one. Next, to

facilitate query planning, we predict the behavior of our algorithm, taking into
account its parameters and properties of the input graph. That is, we propose a
performance model that allows estimating the number of buckets and the query-
processing complexity. Our experiments with both real and synthetic datasets
confirm the accuracy of our model and the effectiveness of our approach.

129

6 Providing Secure Services to
Users of Online Social Networks

In this chapter, we focus on the authorization mechanism. Here, we tackle the
distrust of users towards the service providers to enable access to services to users
of online social networks while keeping their information secret from unauthorized
access. Specifically, we consider the scenario in which each user of the online social
network system owns a portion of the data, and they are not allowed to access the
data of others. However, they are allowed to access the result of a given query
over the data owned by others based on the access policies specified in the OSN
system. OSNs offer users different kinds of services. Here, we focus on location-
based services (LBS) due to their increasing demand. OSNs that embraces LBS
are known as mobile social networks (MSNs)4.

Figure 6.1: Access Control Mechanism - Distrust Problem

Mobile Social Networks have become popular in the last years. In these kinds
of networks, each user specifies who is authorized to learn information about his

4An earlier version of this chapter was published in [SEGB] and in an extended version in
[SEGB19a]

131

6 Providing Secure Services to Users of Online Social Networks

physical position, i.e., users establish authorization relationships with others. Due
to the dynamic relationships between users that are inherent to human behavior,
revocation of such privileges is a fundamental feature of this kind of network.

A typical architecture of MSNs consists of three major components [Fal11]: service
providers, mobile users, and network infrastructure. Depending on the features
supported by MSNs, the service providers can be dedicated servers, e.g., location
server or access control server, that give services to the users through the network
infrastructure [Fal11]. Mobile users, e.g., mobile phones or wearable devices, re-
ceive data or service results from the service providers. The network infrastructure
transfers data from a source, e.g., service providers, to a destination, e.g., mobile
users. A typical MSN architecture, which is enough to provide standard LBS and
has been considered by existing work in the area [LLC+14, SYY+16, LYL+17],
consists of users and two service providers: the LBS provider and the access con-
trol server (ACS). The LBS provider stores the positions of the users, and the ACS
stores the authorization relationships.

The information stored in MSNs, i.e., physical positions of the users and autho-
rization relationships, are sensitive information that should be kept secret from
any adversary, including the service providers. This information is particularly
sensitive because one can use it to infer further personal information. For in-
stance, one can use the position of users to infer their state of health or personal
preferences [ASV08]. The number of users of these services may indicate a lack of
secrecy concerns. However, studies [SMSB14, MTR+09] have shown that mobile
users are not aware of various important characteristics of these systems: the data
they collect, who is using the data, and how they use it. That is, issues regarding
mobile secrecy remain poorly understood by end-users.

Moreover, many users use these services without explicitly criticizing secrecy not
because they are careless about their secrecy, but because they do not have a choice.
Once the secrecy problems with LBS are solved, users may then switch to more
secure systems when they become available. Consequently, the information stored
by these systems has to be kept secret from unauthorized users, i.e., confidentiality.

One can achieve confidentiality by trusting the entity in the system that manages
the access policies, i.e., the ACS. However, recent privacy breaches on existing so-
cial networks, such as the Facebook-Cambridge Analytica scandal [Com18, Con18],
have put this into question. In such attacks, the ACS has allowed unauthorized
entities, intentionally or unintentionally, to access private information. Collu-
sion attacks where adversaries, including malicious users, collude with the service
provider to gain unauthorized access to information, are an important problem in
MSNs.

132

In this chapter, we study how to facilitate LBS in MSNs while providing secrecy
guarantees to the users under collusion assumption. We focus on one specific
service — querying friends within a given distance. As motivated earlier, we also
cover revocation. Regarding collusion, we study the case of pairwise collusion in
which a user tries to access unauthorized information by colluding with either
the LBS provider or the ACS. We define our adversary model in Section 6.1.2.
Regarding secrecy guarantees, we provide users with the following guarantees:

• Gposition: Given a user u, only authorized entities can learn the physical
position of u.

• Gdistance: Given a user u, only authorized entities can learn the distance
between their physical position and the one of u.

• Gauthorization: Given two users u and v, an adversary will not be able to learn
whether u or v are allowed to learn the distance between them.

Existing works in the area [LLC+14, LYL+17, WXL12], either does not consider
collusion attacks or their system architectures assume trusted entities, which shifts
the problem to the trusted entity. Besides, these approaches do not provide a
rigorous specification of the collusion strategy as part of their adversary model,
and they consider weaker adversaries, see Section 6.1.2. Next, none of the existing
work we are aware of does protect Gauthorization against both the LBS provider and
ACS. Section 6.5 contains a more detailed description of related works in the area.

Here, we propose two approaches, which combine existing encryption schemes, to
allow users of MSNs to query friends within a given distance. Both approaches
include a revocation feature and provide users with the secrecy guarantees Gposition,
Gdistance and Gauthorization under the collusion assumption. Section 6.1 describes our
problem and defines our adversary model rigorously.

Section 6.2 presents our approaches to allow MSNs users to query friends within
a given distance while keeping their information secret from unauthorized users.
We name our approaches two-layer symmetric encryption (2lSE) and two-layer
attribute-based encryption (2lABE). The main difference between them is that
they use, among other encryption schemes, symmetric encryption and attribute-
based encryption, respectively. We prove that both approaches fulfill our secrecy
guarantees and analyze their time complexity to evaluate their performance. Our
analyses tell us which approach is better at each entity involved in the system.

Finally, we conduct experiments to validate the results of our complexity analyses
and to determine which approach performs better in practice. Section 6.4 presents
the results of such experiments. Next to other insights, despite the advantages of
the 2lABE approach compared to the 2lSE—a more straightforward key-manage-

133

6 Providing Secure Services to Users of Online Social Networks

ment and the storage of a single encrypted copy of each message at the service
provider—, we found that the 2lSE approach is on average twice as efficient in our
scenario. Therefore, we propose to consider the 2lSE approach, which not only
solves the secrecy problem existing in MSNs but also is more performant than the
2lABE approach.

6.1 Problem Definition

6.1.1 System Architecture

To provide LBS, MSNs require for each user u registered in the system the following
information:

• The physical position of u denoted by pu = (xu, yu).

• The set of users who have allowed u to learn the distance between their
position and the one of u. We call this set, the set of grantors of u, Grantoru.

• The set of users to whom u has allowed to learn the distance between his
position, pu, and their positions. We call this set, the set of grantees of u,
Granteeu.

We assume that an off-the-shelf positioning technology, e.g., GPS, GSM, or BLE,
inputs the physical position of each user in the system, and we consider a periodic
positioning update policy [TSBV05]. Our system takes the physical positions as
delivered by the positioning technology used. We assume further that the physical
positions input to the system are real, i.e., users have honestly disclosed their
location and have not manipulated it. We deem this assumption realistic – one
can facilitate it by using technology such as hardware trusted sensors [SW10],
which provide a signature to verify the validity of the position, or deep learning
techniques, which detect abnormal traffic patterns to some extent [OKM19].

Regarding the system architecture, similarly to existing approaches such as the
ones presented in [LLC+14, SYY+16], we consider a MSN system consisting of
users and two service providers: the LBS provider and the ACS. The LBS stores
the physical position of each user. The ACS stores the sets of grantors and grantees
of each user. In addition to these entities, we consider a key-authority, which is
only responsible for key issuing. Figure 6.2 illustrates our system architecture. We
have omitted from the architecture illustration components related to the physical
and network layers, such as physical transmission medium and routers, to focus
on the essence of our work.

134

6.1 Problem Definition

One can integrate our system into other kinds of architectures like IoT by placing
the physical devices of our system (positioning and smart devices) at the perception
layer, the network technology at the communication layer, the cloud platform at
the middleware layer, and the LBS application at the application layer.

Figure 6.2: MSN System Architecture

Users can update their position and allow or revoke access from users at any time.
Similarly as in Chapter 4, users send access requests, Definition 4.1. Since users
want to establish who can learn the distance between their physical positions,
the operation of an access request is ”read,” and the resources involved in the
access request are the physical position of the users. For instance, the access
request 〈s, read, pu〉 indicates that user s request to read the physical position
of user u. We write 〈s, read, pu〉 = true to indicate that the access request is
authorized. Otherwise, 〈s, read, pu〉 = false. We call a user who authorizes an
access request and a user who receives an authorized access request, grantor and
grantee, respectively.

Users must encrypt their information before outsourcing to the service providers
to avoid them from learning information from the outsourced data. Users send
their queries to the ACS to obtain LBS. The ACS and the LBS provider interact
with each other to compute the query result, which the ACS sends to the user.
Section 6.2 contains the details of our approaches. LBS support different types
of queries. Here, we focus on range queries, one of the most important queries in
MSNs [XZTS08].

Definition 6.1: Range Query in MSNs

Given a user u and a distance d, a range query, Range(u, d), is a query that
returns the users who are located within a distance d from u and who have
authorized u to learn the distance between their physical positions and the

135

6 Providing Secure Services to Users of Online Social Networks

one of u. Formally, Range(u, d) = {v ∈ U | v ∈ Grantoru∧dist(pu, pv) ≤ d},
where U denotes the set of all users.

6.1.2 Adversary Model

To formally define an adversary model, as mentioned in Subsection 3.2.1, one needs
to specify the following components: the collusion strategy, the computational
strategy, the adversarial behavior strategy, the protocol execution strategy, and
any further assumption regarding the adversary, which has not been covered by
the previous components.

Next, we describe the leading alternatives for each of these components briefly
and specify ours. We define our model based on a just-strong-enough principle,
in which the selected alternatives for each of the mentioned components are just
strong enough to model real-world adversaries under a collusion assumption with
revocation capability, as we explain in the remaining of this subsection.

Collusion Strategy

The main collusion strategies are static and adaptive [HL10]. In the static strat-
egy, the adversary receives a set of entities to collude with, and the honest entities
remain honest during the protocol execution. In the adaptive strategy, the ad-
versary can collude with any entity in the system during the protocol execution.
Here, we consider the static strategy. Although the static strategy is weaker than
the adaptive one, developing highly efficient schemes that are secure under the
static strategy serves as an important step for constructing secure systems under
the adaptive one [HL10]. We refer to any entity that participates in a collusion as
an adversary.

Computational Strategy

The main computational strategies are polynomial and unbound. In the polyno-
mial strategy, adversaries run in polynomial time, while in the unbound strategy,
they do not have computational limits. Similar to existing works [HL10, LLC+14],
we consider the polynomial strategy.

136

6.1 Problem Definition

Adversarial Behavior Strategy

The main adversarial behavior strategies are semi-honest, covert, and malicious
strategy [HL10]. In the semi-honest strategy, every colluding entity follows the
protocol specification. That is, each entity performs the tasks assigned to it cor-
rectly. Adversaries can access to the state of all colluding parties to try learning
information from it. In the covert strategy, adversaries may deviate from the pro-
tocol specification if honest entities fail to detect them. This strategy represents
many real-world scenarios like financial or political settings, where the involved
entities, i.e., companies or individuals, cannot afford the embarrassment, loss of
reputation, and law punishment associated with being caught cheating. In the
malicious strategy, the colluding entities can deviate arbitrarily from the protocol
specification, according to the instructions of the adversary.

Since the security guarantees provided by schemes in the semi-honest strategy are
weak, and approaches that offer security guarantees under the malicious strategy
are inefficient to be implemented and used in practice [HL10], we opt for the
covert strategy, which represents real-world adversaries. However, we restrain the
covert strategy further to cover realistic scenarios where unauthorized entities try
to gain access to the information. Here, we limit adversaries to deviate from the
protocol only to advantage themselves, but they will not disadvantage any entity
in the system. Advantaging and disadvantaging an entity means to give the entity
unauthorized access to the information and to prevent the entity from accessing
authorized information, respectively.

Protocol Execution Strategy

The main protocol execution strategies are stand-alone and concurrent-composi-
tion [Can01]. In the stand-alone strategy, the adversary can execute the protocol
a single time, while in the concurrent-composition one, he can run the protocol
several times. Considering adversaries in the concurrent-composition strategy is a
harder problem to solve. However, having a scheme for the stand-alone strategy
can be used to design approaches for the concurrent-composition one [HL10].

Following our just-strong-enough principle for specifying the adversary model, we
consider the stand-alone strategy, and we extend it to fulfill our needs. Here,
we allow the execution of the protocol twice, which lets us evaluate the secrecy
guarantees met after a revocation takes place. Before describing the extension, we
explain the need for it.

In a single protocol execution, the adversary can collude with the entities of the
system based on the defined collusion strategy, send a set of queries, and get

137

6 Providing Secure Services to Users of Online Social Networks

their answers based on the information stored at each entity of the system at the
moment of the protocol execution. In our scenario, the entities of the system
store, among other information, the encrypted sets of grantors and grantees of
the users. This information stays unmodified during the protocol execution. To
evaluate the secrecy guarantees of a scheme under revocation, one needs to change
the authorizations, i.e., adjust the set of grantors and grantees of the users involved
in the revocation. Therefore, after updating the information, we need to allow the
adversary to execute the protocol a second time. In the second protocol execution,
the adversary can send queries and get their answers, but it is forbidden to collude
with any entity. The purpose of the second execution is to evaluate whether a
revoked user can gain unauthorized access to information that he could access on
the first execution. We call this extension, the twofold-composition strategy.

In the remaining of this chapter, when we refer to adversaries, we imply adversaries
with the power specified in our adversary model. Note that neither a user is an
adversary of himself nor are the entities that a user has allowed them to access his
data. Having specified our adversary model, it only remains to define the setting
of the static strategy, i.e., determine the possible collusion scenarios.

Static Strategy Setting

Each execution of the protocol with our approaches involves four entities: the
key-authority, a user, the ACS, and the LBS provider. First, the key-authority
is an honest entity. It is only responsible for issuing keys during the registration
of users in the system; it does not participate in any other phase of the protocol
specification; it does not store any information. Details of our protocol are in
Section 6.2. Thus, considering the key-authority as an honest entity does not shift
the collusion problem to it. Second, the LBS provider, ACS, and the user can be
adversaries. However, we limit ourselves to the case of pairwise collusion, which
is in line with the selected adversary behavior strategy, i.e., the covert strategy.
Since three entities participate in the critical phases of the protocol execution, i.e.,
access request, query, and revocation phases, at least one honest entity is needed
to detect the deviation from the protocol of the adversaries.

Further Assumptions

In line with existing approaches [LYL+17, YPBV14, WXL12], we assume: the LBS
provider and ACS do not collude with each other and they cannot identify users by
observing their IP addresses in the connections. Regarding the first assumption,
we find it reasonable because we assume that different companies run the ACS, the
LBS provider, and the internet provider. Regarding our second assumption, one

138

6.1 Problem Definition

can solve it by using hidden IP techniques that guarantee network intractability
such as Virtual Private Network services [LK+07], TOR encryption (The Onion
Router) [DMS04] or proxy servers [WWY+12].

Figure 6.3 summarizes the main strategies of each component of our adversary
model. The strategies highlighted in dark color are the ones that we selected to
define our adversary model, as explained in this subsection.

Figure 6.3: Adversary Model Strategies

6.1.3 Secrecy Guarantees

Based on our adversary model, we aim to offer the secrecy guarantees Gposition,
Gdistance and Gauthorization stated in the introduction of this chapter.

We note that given a resource r, an adversary is any entity that is not authorized
to access r. Given a user u, authorized users, i.e., the grantors of u, can learn the
distance between their position and the one of u, and the physical position of u.

6.1.4 Preliminaries and Notation

Before presenting our approaches, in the next section, Section 6.2, we introduce
some notions and notation that we will use in this chapter.

Our approaches use different cryptographic techniques for encryption and key dis-
tribution. Regarding encryption, as we will explain in this section, our approaches

139

6 Providing Secure Services to Users of Online Social Networks

use symmetric encryption, asymmetric encryption, somewhat homomorphic en-
cryption, and ciphertext-policy attribute-based encryption. See Section 3.1 for
formal definitions of the previous mentioned encryption schemes.

We note that general CP-ABE schemes do not guarantee the security of the access
policy used to encrypt a given ciphertext c, i.e., an entity who has access to c
can learn who is authorized to decrypt c. Learning this information is against the
secrecy guarantee Gauthorization that we aim to offer. However, we consider stronger
CP-ABE schemes with hidden policy as proposed in [LGR+12].

Regarding key distribution, we use, in Section 6.2.1, the Diffie-Hellman key ex-
change protocol [DH76].

Definition 6.2: Diffie-Hellman key exchange

The Diffie-Hellman key exchange (DH) is a protocol that allows two
parties, A and B, that have no prior knowledge of each other to establish a
shared secret key jointly. The protocol is as follows:

1. A trusted party chooses and publishes two integers p and g, where p
is large, e.g., 512 bits, and g is a primitive root modulo p.4A primitive
root modulo p is an integer g such that g (mod p) has multiplicative
order p− 1 [Rib12].

2. The parties A and B choose the secret integers, a and b, respectively.
3. A computes ZA ≡ ga (mod p) and sends ZA to B. B computes ZB ≡
gb (mod p) and sends ZB to A.

4. A computes the shared key kba ≡ ZB
a (mod p). B computes the shared

key kab ≡ ZA
b (mod p). The shared key value is:

kba ≡ ZB
a (mod p) ≡ (gb)a (mod p) ≡ gab (mod p)

≡ (ga)b (mod p) ≡ ZA
b (mod p) ≡ kab

Table 6.1 summarizes the encryption schemes and the encryption/decryption keys
that we use to build our approaches.

6.2 Our Approaches

Users have to encrypt the information before outsourcing it to the ACS and the
LBS provider to keep their information secret. There are different possibilities
to encrypt the information. Due to the decryption and revocation overhead at
the users-side, we disregard naive solutions such as the one of Example 6.1. The
illustrated solution has the following shortcomings: it affects the storage capacity

140

6.2 Our Approaches

Encryption scheme Enc/Dec Keys Description

Symmetric encryption (SE)
ku
kuv

Key of user u

Shared key between users u and v

Asymmetric encryption (AE)
pkACS, skACS
pkLBS, skLBS

Public and secret keys of the ACS

Public and secret keys of the

LBS provider

Somewhat homomorphic

encryption (SHE)
pkH , skH Public and secret keys for SHE

Ciphertext-policy attribute-

based encryption (CP-ABE)

mkABE, pkABE
skωu

Master and public keys for

CP-ABE

Secret key for CP-ABE of user

u, where ωu is the set of

attributes of u,

Table 6.1: Summary of Encryption Schemes and the Corresponding Keys Used

and limited processing resources of mobile devices, and revocation is not only
inefficient for data owners, but it also requires authorized users to be online. Given
a set S, let |S| denote the cardinality of S.

Example 6.1. Assume that each user u encrypts his name with a key ku,
stores his encrypted name at the LBS provider, and distributes ku to all
authorized users. Such a solution has several problems. First, u has to store
as many keys as grantors. Second, during query processing, u receives, as a
result, a set of encrypted names corresponding to users who fulfill the query
condition. Since u stores one key for each of his grantors and u ignores
which key to use to decrypt each ciphertext, the decryption process has a
worst-case complexity of O(|Grantoru|2). Third, if u wants to revoke access
from a user, u has to generate a new key ku′ , encrypt his name with ku′ ,
replace his encrypted name at the LBS provider with the new ciphertext
and distribute ku′ to all still authorized users.

In the following, we show how to use and combine existing cryptographic tech-
niques to implement a scheme under our secrecy guarantees. We come up with
two approaches. To ease the explanation of them, we first start by describing two

141

6 Providing Secure Services to Users of Online Social Networks

basic schemes, called basic two-layer symmetric encryption, basic 2lSE, and ba-
sic two-layer attribute-based encryption, basic 2lABE. Our basic approaches meet
our secrecy guarantees under a weaker adversary model than the one defined in
Section 6.1.2. With it, we weaken the protocol execution strategy by consider-
ing the stand-alone strategy instead of the twofold-composition strategy, i.e., the
adversary executes the protocol only once. We then show how to extend the ba-
sic schemes to meet our secrecy guarantees under our actual adversary model, as
defined in Section 6.1.2.

The main difference between our basic schemes lies in the cryptographic techniques
used to encrypt the names which are sent as query answers. The basic schemes
consist of four phases:

• Initialization Phase: In this phase, the key-authority generates and dis-
tributes keys. The initialization of the system happens once.

• Registration Phase: In this phase, new users register in the system.

• Access Request Phase: In this phase, a user u sends the access request
〈u, read, pv〉 to user v.

• Query Phase: In this phase, users send range queries and get back query
answers.

In Sections 6.2.1 and 6.2.2, we explain these phases for the basic 2lSE and the
basic 2lABE schemes, respectively.

6.2.1 Basic Two-layer Symmetric Encryption (basic 2lSE)

Initialization Phase

The entities involved in this phase are the key-authority, the ACS, and the LBS
provider. The key-authority generates three pairs of keys (pkLBS, skLBS), (pkACS,
skACS), and (pkH , skH). The users and the service providers, ACS and LBS
provider, use these keys during the registration, access request, and query phases.
The key-authority sends the secret keys skH and skACS to the ACS and the secret
key skLBS to the LBS provider. It also chooses the integers p and g of the DH
protocol, Definition 6.2, which our approach use to generate and share secret keys
between a pair of users in the access request phase.

142

6.2 Our Approaches

Registration phase

This phase involves four entities: the key-authority, the ACS, the LBS provider,
and a user u. Figure 6.4 shows the steps of this phase.

First, the key-authority sends to u the following information: two identifiers, idACSu

and idLBSu , a secret key ku, the public keys pkLBS and pkACS, and the integers p and
g. Second, u selects an integer number ηu and compute the value Zu ≡ gηu (mod p).
We call ηu and Zu the secret and public numbers of u, respectively. These two
numbers are used as part of the DH protocol in the access request and query phases,
as we will explain in the next two subsections. Next, u stores at the LBS provider
his identifier idLBSu , his encrypted position Enc(pkH , pu),

5 and his encrypted public
number Enc(pkACS, Zu). The use of SHE allows the LBS provider to compute the
encrypted square distance between the encrypted positions of two users. The LBS
provider cannot decrypt any of the ciphertexts because it does not have the secret
keys. Finally, u stores at the ACS his identifier idACSu and two empty sets Grantoru
and Granteeu. Information is added to these two sets in the access request phase.
We note that neither the LBS provider nor the ACS knows the link between users
and their identifiers.

Key
Authority

User
u

LBS
provider ACS

idACSu ,idLBSu ku, pkLBS,
pkACS, pkH , p, g Select integer ηu

Zu ← gηu (mod p)

idLBSu ,Enc(pkH , pu),Enc(pkACS, Zu)

idACSu , Grantoru = {}, Granteeu = {}

Figure 6.4: Registration Phase - basic 2lSE

Access Request Phase

In this phase, a user u sends the access request 〈u, read, pv〉 to user v. If user
v authorizes the access request, i.e., accessReq(u, v) = true, v stores encrypted
information at the ACS and the LBS provider, as we will explain in this subsection.

5In reality, we encrypt a given position pu as Enc(pkH , xu) and Enc(pkH , yu).

143

6 Providing Secure Services to Users of Online Social Networks

The providers use this information to process queries sent by u. Before explaining
the steps of this phase, let us analyze how query processing works to understand
the information that v has to store. Example 6.2 illustrates two design alternatives,
querying-filtering and filtering-querying, to answer a given range query.

Example 6.2. Think of an LBS provider and an ACS. Assume that for
each user u, the LBS provider stores his physical position after encrypting
it with somewhat homomorphic encryption, and the ACS stores the set of
grantors Grantoru. Different design alternatives are conceivable to answer
a given range query. In particular, one can consider the two designs alterna-
tives discussed in Subsection 4.3.5: querying-filtering and filtering-querying.
With the first alternative, the LBS provider executes, first, the query and
then sends the result to the ACS to filter it based on the set Grantoru.
With the second alternative, the ACS sends, first, the set Grantoru to the
LBS provider, and then the LBS provider executes the query using only
the physical positions of users in Grantoru. With both alternatives, since
the LBS provider stores encrypted positions, it cannot use indexing, like B-
tree or R-tree, for spatial query processing. Then in terms of performance,
the querying-filtering alternative is not a suitable option because the LBS
provider would need to compute the encrypted square distances between the
encrypted position of u and the ones of all the users in the system.

Due to performance reasons, as explained in Example 6.2, we opt for the filter-
ing-querying approach. Then the set of grantors of each user u has to contain
information that allows the LBS provider to reduce the computation cost during
query execution. Specifically, if v authorizes the access request, v has to add,
among other information, his encrypted identifier idLBSv in the set Grantoru, and
to store his encrypted name at the LBS provider. The encrypted names of the
users are sent as query answers, as we will explain in the query phase.

The access request phase involves the following entities: the users that are part of
the access request, u and v, the LBS provider, and the ACS. Figure 6.5 illustrates
the steps of this phase. We denote the concatenation of strings a and b by a‖b.

First, user u sends the 〈u, read, pv〉 to user v together with his identifier idACSu and
his public number Zu. If v authorizes the access request, v computes the shared
key kuv ≡ Zu

ηv (mod p) and selects two random numbers rACSuv , rLBSuv ∈ Z. Next, v
encrypts his name using two layers of encryption. v uses the shared key kuv for the
inner layer of encryption and the public key pkACS for the outer layer of encryp-
tion. v stores at the LBS provider the resulting ciphertext, Enc(pkACS,Enc(kuv, v)),
together with the random number rLBSuv . The LBS provider cannot decrypt the

144

6.2 Our Approaches

ciphertext, even if it colludes with any of the users, because none of them has the
key to decrypt the outer layer of encryption. Secrecy proofs are in Section 6.2.4.

Next, v sends to the ACS the identifier of u, idACSu , together with a tuple t
which consists of two elements: the random number rACSuv and the ciphertext
Enc(pkLBS, id

LBS
v ‖rLBSuv) The ACS adds t to the set Grantoru. The ACS uses the

ciphertext that is part of tuple t during query processing, as we will explain in
the query phase. Note that only v knows his identifier idLBSv , then he is the only
one who can add his encrypted id to the set of grantors of other users. Finally, to
revoke access, v stores in his set of grantees, Granteev, at the ACS, the ciphertext
c = Enc(kv, u‖idACSu ‖rACSuv ‖r

LBS
uv). c contains the name of u and index information

that allows v to revoke access from u, i.e., v can delete both the tuple t added
in the set Grantoru and the encrypted name stored at the LBS provider. Only v
knows the key to decrypt c.

User
u

User
v

LBS
provider ACS

idACSu , ZuReq =
〈u, read, pv〉

if Req =true
kuv ← Zu

ηv (mod p)
Select random numbers:
rACSuv , rLBSuv ∈ Z

rLBSuv ,Enc(pkACS,Enc(kuv, v))

idACSu , t =
〈
rACSuv ,Enc(pkLBS, id

LBS
v ‖rLBSuv)

〉
Add t to
Grantoru

idACSv , c = Enc(kv, u‖idACSu ‖rACSuv ‖r
LBS
uv)

Add c to
Granteev

Figure 6.5: Access Request Phase - basic 2lSE

Query Phase

This phase involves three entities: the querying user u, the ACS, and the LBS
provider. We use the following notation: Given n strings, st1, · · · , stn, and the
string st = st1‖st2‖ · · · ‖stn, the function get(st, i), where 1 ≤ i ≤ n, returns the
i-th string in st. Given a tuple t which consist of n elements, we use ti, where
1 ≤ i ≤ n, to denote the i-th element of tuple t. Figure 6.6 illustrates the steps of
this phase.

145

6 Providing Secure Services to Users of Online Social Networks

First, the querying user u sends his identifier idACSu , the constraint d of the range
query and his encrypted position Enc(pkLBS, (Enc(pkH , pu)). u encrypts his posi-
tion using two layers of encryption because the encrypted position is sent thought
the ACS to the LBS provider, and the ACS knows the decryption key skH . The
outer layer of encryption prevents the ACS from learning the position of u.

Second, using the id idACSu , the ACS retrieves the set of grantors of u, Grantoru.
Recall that each tuple t in Grantoru consists of two elements, a random number,
and a ciphertext. The ACS constructs a set C that contains the ciphertext of each
tuple t in Grantoru, i.e., t2, and sends C and the encrypted position of u to the
LBS provider.

Third, the LBS provider decrypts each ciphertext c in C and obtains the plaintext
st, which consists of an identifier id concatenated with a random number rand.
The LBS provider searches and retrieves the encrypted position and the encrypted
public number corresponding to the identifier id. We use pid and Zid to denote the
retrieved encrypted position and the encrypted public number, respectively. Us-
ing pid and the encrypted position of u, the LBS provider computes the encrypted
square distance between them, Enc(pkH , dist(pid, pu)

2). It also searches and re-
trieves the encrypted name, corresponding to the number rand. We denote this
ciphertext by namerand. Then, it creates a tuple e that contains three elements:
namerand, Zid, and Enc(pkH , dist(pid, pu)

2). It adds e to the result set Res and
sends Res to the ACS.

Next, for each tuple e ∈ Res, the ACS decrypts the element e3, i.e., the encrypted
square distance. If the decrypted distance is less or equal than d2, the ACS (1)
decrypts e1 and e2, i.e., the outer layer of the encrypted name and the encrypted
public number, (2) creates a tuple l containing the decrypted information, and (3)
adds l to the set of answers Ans. The ACS sends Ans to u.

Finally, for each tuple l in Ans, u uses l2, i.e., the public number, and his secret
number ηu to compute the shared key kshared ≡ l2

ηu (mod p), and decrypts l1, i.e.,
the usernames , using kshared. The decrypted names correspond to users that fulfill
the query condition.

Next, we provide a working example to show how our basic 2lSE approach works
step by step.

Example 6.3. Consider two users Alice and Bob. Suppose that Alice wants
to query the set of users within a distance d. Assume further that Bob
has allowed Alice to query the distance between their physical positions.
Figure 6.7 illustrates the query processing steps (numbers within circles). It

146

6.2 Our Approaches

User
u ACS

LBS
provider

idACSu , d,Enc(pkLBS ,

(Enc(pkH , pu))
Range(u, d)

C = {};
foreach t in
Grantoru
Add t2 to C

C,Enc
(
pkLBS ,

Enc(pkH , pu)
)
Res = {}
foreach c in C
st←Dec(skLBS , c);

id←get(st, 1);
rand←get(st, 2);
e= 〈namerand,
Zid;Enc(pkH ,

dist(pid, pu)
2) 〉 ;

Add e to Res;
Res

Ans = {};
foreach e in Res

if Dec(skH , e3) ≤ d2

Add l= 〈 Dec(skACS , e1),

Dec(skACS , e2) 〉 to Ans;

Ans
foreach l in Ans

kshared←(l2)
ηu (mod p);

name←Dec(kshared, l1);

Figure 6.6: Query Phase - basic 2lSE

also contains the information which each entity in the system stores. The
data stored in the tables at the LBS provider and ACS is information about
Alice and Bob.

6.2.2 Basic Two-layer Attribute-based Encryption (basic
2lABE)

before describing the basic 2lABE approach, we specify the differences between
our two approaches to facilitate the understanding. With the basic 2lSE, the
LBS provider stores, for each user u, |Granteeu| copies of the encrypted name
of u. Each ciphertext is generated using a shared key between u and each v in
Granteeu. Users use the DH protocol to generate shared keys between them. In
contrast, with the basic 2lABE there is no need to store multiple copies of the
encrypted name or to share keys. Instead, each user encrypts his name using CP-
ABE, Definition 3.4. Because of the properties of CP-ABE, each user receives a
secret key based on his set of attributes, and only users who fulfill the access policy

147

6 Providing Secure Services to Users of Online Social Networks

Figure 6.7: 2lSE Approach - Example

can decrypt a given ciphertext. In Sections 6.2.2 and 6.2.2, we specify the access
policy and the set of attributes used for the encryption and decryption process.

Next, we describe the initialization, registration, access request, and query phases
of the basic 2lABE. For brevity, we only describe the differences between the basic
2lABE and basic 2lSE schemes.

Initialization Phase

This phase differs from that of the basic 2lSE, Section 6.2.1, only in the selection
of the parameters p and g of the DH protocol. Since the basic 2lABE uses CP-
ABE, it does not need the DH protocol for generating and sharing keys. The

148

6.2 Our Approaches

key-authority generates a public key pkABE and a master key mkABE. It uses these
keys during the registration phase (Section 6.2.2). The key-authority keeps mkABE
secret from all entities.

Registration Phase

Before explaining the steps of this phase, let us analyze how CP-ABE works in
our scenario. The key-authority has to generate a secret key for each user u using
attributes associated with u. Since the access policy used in this work considers
the names of the users to establish who can decrypt a given ciphertext, the set of
attributes associated with the users is Attr = {name}. If one needs to use other
attributes, one has to include them in the set of attributes associated with the
users. Given a user u, the access policy defined by u, γu, is a disjunction of terms
of the form (name=value), where name is a user attribute, and value refers to an
atomic value.

Example 6.4. Consider a user u, the set Granteeu = {v, w}, and a mes-
sage m. User u wants to encrypt m and allow the users in Granteeu to
decrypt it. u can use the usernames to identify the users in Granteeu, and
to generate the access policy γu needed to encrypt m. u can specify the
access policy γu = (name = v) ∨ (name = w) and generate the ciphertext
c = Enc(pkABE,mγu). γu indicates that c can be decrypted by users with
name v or w. The secret keys of users v and w are generated based on their
attributes, e.g., the secret key of v, skωv , is generated based on the set of
attributes ωv = {name = v}. Only users whose secret key fulfill the access
policy γu can decrypt c.

This phase differs from that of the basic 2lSE, Section 6.2.1, in the following:
First, the key-authority uses the master key mkABE and the set of attributes of the
registering user u, ωu = {name = u} to generate the secret key skωu . Second, the
key-authority, instead of sending to u the parameters p and g, sends the keys pkABE
and skωu . Third, u does not follow the DH protocol. Instead, u stores at the LBS
provider, apart from his identifier idLBSu and his encrypted position, his encrypted
name Enc(pkACS,Enc(pkABE, uγu)), with access policy γu =

(
(name = u)

)
. Note

that, since u has not authorized any access request, yet, γu specifies that only u
can decrypt his encrypted name.

149

6 Providing Secure Services to Users of Online Social Networks

Access Request Phase

This phase differs from that of the basic 2lSE, Section 6.2.1, in the following:
First, since the basic 2lABE does not use the DH protocol, users u and v do not
compute the shared key kuv. Instead, v has to update his access policy γv by
adding to the disjunction the term “(name = u)”. Second, v does not generate
the random number rLBSuv . That is because, the LBS provider stores, together with
the identifier idLBSv , a single ciphertext containing the encrypted name of v, which
can be decrypted by all his grantors. Then, v selects only one random number,
rACSuv ∈ Z, instead of two. As a consequence, the tuple t added to the set Grantoru
is t =

〈
rACSuv ,Enc(pkLBS, id

LBS
v)

〉
, instead of t =

〈
rACSuv ,Enc(pkLBS, id

LBS
v ‖rLBSuv)

〉
,

and the ciphertext added to the setGranteev is c = Enc(kv, u‖idACSu ‖rACSuv), instead
of c = Enc(kv, u‖idACSu ‖rACSuv ‖r

LBS
uv). Third, v encrypts and updates at the LBS

provider his name using, for the inner layer of encryption, the public key pkABE,
and the access policy γv, instead of using the shared key kuv.

Query Phase

This phase differs from that of the basic 2lSE, Section 6.2.1, in the following: First,
the set of ciphertexts C that the LBS provider receives from the ACS contains only
encrypted identifiers, instead of encrypted identifiers concatenated with random
numbers. Second, the LBS provider neither retrieves public numbers nor uses the
decrypted random numbers to retrieve encrypted names. Instead, it only uses
the decrypted identifiers to retrieve the encrypted positions and encrypted names.
Third, the set of tuples that the ACS receives from the LBS provider does not
contain encrypted public numbers. Fourth, the querying user u does not need to
compute shared keys to decrypt the ciphertexts received as query answer. Instead,
u uses his secret key skωu .

6.2.3 Extending the Basic Schemes

Having the basic schemes, basic 2lSE and basic 2lABE, we now show how to
extend them to meet our secrecy guarantees Gposition, Gdistance and Gauthorization

under our adversary model defined in Section 6.1.2. That is, we consider the
twofold-composition strategy in which the protocol is executed twice. The only
problem of the basic schemes under this strategy relies on the revocation process.
With both approaches, a revoked user, in case of collusion with the LBS provider,
could gain access to unauthorized information, as explained in Example 6.5. In
the case of collusion with the ACS, there is no information leakage, as we prove in
Section 6.2.4.

150

6.2 Our Approaches

Example 6.5. Consider Example 6.3. Assume that Alice colludes with the
LBS provider and sends a range query. The ACS sends to the LBS provider,
during query processing, a message containing, among others, the identi-
fier idLBSBob . If the system does not receive other queries while it computes
the query of Alice, the LBS provider and Alice can learn that idLBSBob is the
identifier of Bob. Assume now that Bob revokes access to Alice. Alice can
regain this access by following herself the steps of the access request phase.
Specifically, with the basic 2lSE, Alice can follow all the steps of the access
request phase that Bob, i.e., the grantor, should execute. With the basic
2lABE, Alice can follow the steps of the access request phase and store in-
formation at the ACS. But she cannot update the ciphertext c containing
the name of Bob, stored at the LBS provider, because she does not know
the access policy γBob that Bob used to generate c. Nevertheless, during
querying processing, with the information added at the ACS, Alice will re-
ceive the encrypted name of Bob, which she cannot decrypt, but she knows
it corresponds to Bob.

Extended Two-layer Symmetric Encryption (2lSE)

If a revoked user colludes with the LBS provider, we need the ACS to detect the
attack and raise an alarm. To do so, we extend the basic 2lSE as follows: First,
in the initialization phase, in addition to the steps of the basic 2lSE, the key-
authority generates a pair of keys (pkACS′ , skACS′), and sends skACS′ to the ACS.
The key-authority keeps for itself the key pkACS′ . Second, in the registration phase,
the key-authority sends to each registering user v, in addition to the information
sent with the basic 2lSE, a ciphertext containing his identifier encrypted using two
layers of encryption. The key for the inner layer is pkLBS and the one for the
outer layer is pkACS′ . That is, each user v receives, additionally, the ciphertext
Enc(pkACS′ ,Enc(pkLBS, id

LBS
v)).

Third, in the access request phase, the tuple t that the grantor v sends to the
ACS changes from t =

〈
rACSuv ,Enc(pkLBS, id

LBS
v ‖rLBSuv)

〉
to t = 〈 rACSuv ,Enc(pkACS′ ,

Enc(pkLBS, id
LBS
v)),Enc(pkLBS, r

LBS
uv) 〉. Next, the ACS uses the key skACS′ to de-

crypt the element t2, replaces t2 with the decrypted information and adds t to
the set Grantoru. Since v is the only user who knows the ciphertext Enc(pkACS′ ,
Enc(pkLBS, id

LBS
v)), the ACS knows that the access request has been registered

by the actual grantor and not by a revoked user who has colluded with the LBS
provider. In other words, even if a user u learns the identifier of one of his grantors
v, in case of revocation, u cannot regain access because only v knows his cipher-

151

6 Providing Secure Services to Users of Online Social Networks

text c = Enc(pkACS′ ,Enc(pkLBS, id
LBS
v)) and only the key-authority knows the key

pkACS′ to generate c.

We assume that the ACS uses a decryption algorithm Dec that indicates successful
decryption. That is, the decryption Dec(skACS′ ,Enc(k

′, c)), where c is a ciphertext,
is called successful if skACS′ = k′. One can implement a successful decryption
algorithm by concatenating the hash value H(c) to the encryption Enc(k′, c‖H(c))
and checking this relation in the decryption algorithm [HLK19].

Fourth, in the query phase, the set of ciphertexts C that the ACS sends to the
LBS provider is different from that of the basic 2lSE. Here, C is a set of tuples,
where each tuple contains two ciphertexts. Specifically, for each tuple t in the set
Grantoru, the ACS adds to C a tuple consisting of the elements t2 and t3, i.e.,
the encrypted identifier and the encrypted random number. The LBS provider
decrypts both ciphertexts and processes the query as with the basic 2lSE.

Figures 6.8, 6.9, and 6.10 illustrate the steps of the registration, access request
and query phases, respectively. The changes compared to the basic scheme are
highlighted in red.

Key
Authority

User
u

LBS
provider ACS

idACSu ,idLBSu ku, pkLBS,
pkACS, pkH , p, g,

Enc(pkACS′ ,Enc(pkLBS, id
LBS
v))Select integer ηu

Zu ← gηu (mod p)

idLBSu ,Enc(pkH , pu),Enc(pkACS, Zu)

idACSu , Grantoru = {}, Granteeu = {}

Figure 6.8: Registration Phase - basic 2lSE

Extended Two-layer Attribute-based Encryption (2lABE)

To solve the existing problems when a revoked user colludes with the LBS provider,
we use the same technique as that of the 2lSE, presented in the previous subsection.
That is, the ACS, during the access request phase, receives the following ciphertext:
Enc(pkACS′ ,Enc(pkLBS, id

LBS
v)), and verifies that the actual grantor has sent the

152

6.2 Our Approaches

User
u

User
v

LBS
provider ACS

idACSu , ZuReq =
〈u, read, pv〉

if Req=true

kuv ← Zu
ηv (mod p)

Select random numbers:
rACSuv , rLBSuv ∈ Z

rLBSuv ,Enc(pkACS ,Enc(kuv, v))

idACSu , t= 〈 rACSuv ,Enc
(
pkACS′ ,

Enc(pkLBS , id
LBS
v)

)
,

Enc(pkLBS , r
LBS
uv) 〉

t′ = 〈 rACSuv ,

Enc(pkLBS , id
LBS
v),

Enc(pkLBS , r
LBS
uv) 〉

Add t′ to
Grantoru

idACSv ,

c=Enc(kv, u‖idACSu ‖rACSuv ‖r
LBS
uv)

Add c to
Granteev

Figure 6.9: Access Request Phase - basic 2lSE

received ciphertext. The query processing phase is similar to that of the basic
2lABE approach.

6.2.4 Secrecy Proofs

This subsection provides the secrecy analysis of our proposed approaches. The
proofs are organized as follows: For each approach, we first prove that, under
our adversary model defined in Section 6.1.2, the approach provides the secrecy
guarantee Gposition, then Gdistance, and finally Gauthorization.

For each proof, we first consider the case that a user colludes with the LBS provider
and then the case that a user colludes with the ACS, during the first execution of
the protocol. During the second execution of the protocol, the user is not allowed
to collude anymore (twofold-composition strategy). The case where each party
individually acts as an adversary is straightforward and therefore omitted. Given
two entities A and B, we study the case where entity A colludes with B, and omit
the case where B colludes with A. In the case of collusion of two entities A and
B, we assume that either A or B has access to all information and functionality
of A and B together.

153

6 Providing Secure Services to Users of Online Social Networks

User
u ACS

LBS
provider

idACSu ,

d,Enc(pkLBS ,

(Enc(pkH , pu))
Range(u, d)

C = {};
foreach t in
Grantoru
Add 〈t2, t3〉
to C

C,Enc
(
pkLBS ,

Enc(pkH , pu)
)
Res = {}
foreach t in C
id←Dec(skLBS , t2);

rand←Dec(skLBS , t3);

e= 〈 namerand, Zid;
Enc(pkH ,

dist(pid, pu)
2) 〉 ;

Add e to Res;
Res

Ans = {};
foreach e in Res

if Dec(skH , e3) ≤ d2

Add l= 〈 Dec(skACS , e1),

Dec(skACS , e2) 〉 to Ans;

Ans
foreach l in Ans

kshared←(l2)
ηu (mod p);

name←Dec(kshared, l1);

Figure 6.10: Query Phase - basic 2lSE

Before starting with the proofs, let us recall the information that the users, LBS
provider, and ACS have. First, each user s knows: his identifiers idLBSs , idACSs , the
keys ks, pkH and pkACS, his encrypted identifier Enc(pkACS′ ,Enc(pkLBS, id

LBS
s)),

and the parameters p, g, ηs. Second, the LBS provider stores: the user identi-
fiers, the encrypted positions, the encrypted public numbers, the encrypted names
together with the random numbers, and the secret key skLBS. Additionally, the
LBS provider knows the relations existing between the information that it stores,
e.g., the encrypted position that corresponds to a given identifier. Third, the ACS
stores: the encrypted sets of grantors and grantees of all the users, and the keys
skH , skACS and skACS′ . Additionally, the ACS knows the relations existing between
the stored information.

2lSE - Secrecy Proofs

Lemma 6.1. Given a user u, the 2lSE approach guarantees that, in the presence of
adversaries with the characteristics defined in our adversary model, Section 6.1.2,
only authorized entities can learn the physical position of u.

154

6.2 Our Approaches

Proof. Case 1: A user s colludes with the LBS provider. During the first protocol
execution, s has access to the information that he owns and the one stored at
the LBS provider. However, none of the information that s has can be used to
decrypt the encrypted positions. Only the ACS knows the decryption key skH .
According to our adversary model, s cannot collude with both entities at the same
time. Furthermore, somewhat homomorphic encryption, which is used to encrypt
the physical positions of the users, is IND-CPA secure [LMSV11].

In addition to the information that s has learned, s can execute queries and get
their respective answers. We now show that s cannot use this information to learn
the physical positions of users who have not authorized him to do so. During
query processing, the LBS provider receives from the ACS a set containing the
encrypted identifiers of the grantors of s. So, s knows that the set of identifiers
used by the LBS provider to process his query corresponds to his grantors. Since
the identifiers are random numbers, s cannot link the identifiers with their owners,
except if |Grantors| = 1. In this last case, s can learn the identifier of his unique
grantor, namely u, idLBSu , see Example 6.5. However, idLBSu does not leak any
information about the position of u or cannot be used to decrypt his encrypted
position. Next, during query processing, s receives a set of encrypted names and
public numbers corresponding to the grantors of s that fulfill the query condition.
Since the information received belongs to the grantors of s, s is allowed to learn
such information. Next, assume that the LBS provider deviates from the query
processing protocol, as part of the collusion. The LBS provider processes the
query with different identifiers from the ones sent by the ACS. So, instead of using
the information that belongs to the grantors of s, it selects different identifiers
and random numbers to give s information that he is not authorized to access.
However, the identifiers are random numbers, and neither s nor the LBS provider
knows the relationship between identifier and users. Next, if the LBS provider
processes the query with identifiers selected at random, s receives as query result
a set of encrypted names and public numbers. The names are encrypted using
probabilistic symmetric encryption, which is IND-CPA secure [KL07], and s does
not know the key to decrypt them. Next, by using the received public numbers,
and the parameters p and g, s cannot compute the decryption key because of the
security offered by the DH problem, which has been proven to be computationally
infeasible in [Bon98]. Then, s cannot learn, in the first protocol execution, the
physical position of users that he is not authorized.

During the second protocol execution, since s is not allowed to collude anymore
with any entity, s only has access to information that he owns, information that
he has learned during the first protocol execution, and the one that he will ob-
tain during the second protocol execution. However, during the second protocol

155

6 Providing Secure Services to Users of Online Social Networks

execution, s does not learn any new information. Then, as in the first execution,
this information is not enough to decrypt and learn the physical positions of other
users.

Case 2: A user s colludes with the ACS. During the first protocol execution, s has
access to the information that he owns and the one stored at the ACS. Although
s knows the key skH to decrypt the encrypted positions, s does not have the
ciphertext to decrypt them because they are stored at the LBS provider. Since,
according to our adversary model, s cannot collude with both entities at the same
time, s cannot use the key skH to decrypt the physical positions of other users.

In addition to the information that s has learned, s can execute queries and get
their respective answers. We now show that s cannot use this information to learn
the physical positions of other users.

By following the query processing protocol, s receives a set of encrypted names and
public numbers corresponding to the grantors of s that fulfill the query condition.
Since the information received belongs to the grantors of s, s is allowed to learn
that information. Next, assume that the ACS deviates from the query processing
protocol, as part of the collusion. That is, the ACS includes in the set Grantors,
information from the other sets of grantors to give access to s to information that
he is not authorized to access. s receives as query answer, a set of encrypted names
and public numbers. Based on the same arguments as the ones presented in the
Case 1, s cannot compute the decryption key and cannot learn any information
from the encrypted names. Then, during the first protocol execution, s cannot
learn the physical position of users who have not authorized him.

During the second protocol execution, since s is not allowed to collude anymore
with any entity, s only has access to information that he owns, information that
he has learned during the first execution, and the one that he will obtain during
the second protocol execution. Different from the case 1, after query processing, s
cannot learn any extra information, i.e., s has access to the same information as in
the first protocol execution. Using the same arguments as in the first execution,
scannot learn the physical positions of users that he is not authorized..

Consequently, given a user u, the 2lSE approach guarantees that, in the presence
of adversaries with the power defined in our adversary model, only authorized
entities can learn the physical position of u.

Lemma 6.2. Given a user u, the 2lSE approach guarantees that, in the presence of
adversaries with the characteristics defined in our adversary model, Section 6.1.2,
only entities they themselves have authorized can learn the distance between their
physical position and the one of u.

156

6.2 Our Approaches

Proof. Case 1: A user s colludes with the LBS provider. During the first protocol
execution, s has access to the information that he owns and the one stored at the
LBS provider. Using this data, as proved in Lemma 6.1, s cannot learn any useful
information from the encrypted data.

In addition to the information that s has learned, s can execute queries and get
their respective answers. We now show that s cannot use this information to learn
the distance between his position and the one of the users who have not authorized
him to do so. As explained in the proof of Lemma 6.1, during query processing, if
|Grantors| = 1, s can learn the identifier of his unique grantor, namely u, idLBSu .
The identifier idLBSu is a random number and it does not leak any information about
the physical positions or the distance between users. Additionally, as proved in
Lemma 6.1, by following the query processing protocol, s receives as query answer
only information that he is authorized to access.

Next, assume that the LBS provider deviates from the query processing protocol,
as part of the collusion. That is, instead of using the information that belongs
to the grantors of s, the LBS provider selects different identifiers and random
numbers to give s information that he is not authorized to access. As proved in
Lemma 6.1, since s cannot compute the encryption key and probabilistic encryp-
tion is IND-CPA secure [KL07], s cannot learn any useful information from the
encrypted data received during query processing. Then, s cannot learn, in the first
protocol execution, the distance between his position and the one of users that he
is not authorized.

Next, during the second protocol execution, since s is not allowed to collude any-
more with any entity, s only has access to information that he owns, information
that he has learned during the first protocol execution, and the one that he will
obtain during the second protocol execution. Assume that in the second protocol
execution, u revokes access to s. Then s can try himself to add idLBSu to his set
Grantors following the steps of the access request phase. However, s needs to send
the ciphertext c = Enc(pkACS′ ,Enc(pkLBS, id

LBS
u)) to the ACS. Since s does not

know c or the key skACS′ to generate c, s cannot add idLBSu in his set Grantors.
Therefore, in the case of revocation, s cannot regain access.

Case 2: A user s colludes with the ACS. During the first protocol execution, s has
access to the information that he owns and the one stored at the ACS. Knowing
all this information, as proved in Lemma 6.1, s cannot obtain the ciphertexts
corresponding to the encrypted positions of other users. So s cannot learn any
useful information in this step.

In addition to the information that s has learned, s can execute queries and get
their respective answers.

157

6 Providing Secure Services to Users of Online Social Networks

As proved in Lemma 6.1, by following the query processing protocol, s receives as
query answer only information that he is authorized to access.

Next, assume that the ACS deviates from the query processing protocol, as part of
the collusion. That is, the ACS includes in the set Grantors, information from the
other sets of grantors to give access to s to information that he is not authorized to
access. As proved in Lemma 6.1, and similar to Case 1, since s cannot compute the
encryption key and probabilistic encryption is IND-CPA secure [KL07], s cannot
learn any useful information from the encrypted data received during query pro-
cessing. Then, s cannot learn, in the first protocol execution, the distance between
his position and the one of users that he is not authorized.

During the second protocol execution, since s is not allowed to collude anymore
with any entity, s only has access to information that he owns, information that he
has learned during the first execution, and the one that he will obtain during the
second protocol execution. Different from Case 1, after query processing, s cannot
learn any extra information. Using the same arguments as in the first execution, s
cannot learn the distance between his position and the one of the users who have
not authorized him. So, in the case of revocation, by using the information that s
knows, s cannot regain access.

Consequently, given a user u, the 2lSE approach guarantees that, in the presence
of adversaries with the power defined in our adversary model, only entities they
themselves have authorized can learn the distance between their physical position
and the one of u.

We note that although users do not receive as part of the query answers the
physical position of authorized users, they could submit fake positions and check
the results of the query to infer the real position of a target. However, as proved in
Lemma 6.2, if a user u submits a query, the query result contains only users who
have authorized u to learn the distance between their physical position and the
one of u. That is, only authorized users could infer the real position of a target.
However, these users are authorized to access such information according to our
secrecy guarantees.

Lemma 6.3. Given two users u and v, the 2lSE approach guarantees that, in the
presence of adversaries with the characteristics defined in our adversary model,
Section 6.1.2, an adversary will not be able to learn whether u or v are allowed to
learn the distance between them.

Proof. Case 1: A user s colludes with the LBS provider. During the first protocol
execution, s has access to the information that he owns and the one stored at the
LBS provider. First, the user identifiers are random numbers, and by using all the

158

6.2 Our Approaches

known information, neither the LBS provider nor s can determine the link between
users and identifiers.

Second, the information that s knows does not contain any link between grantees
and grantors. Then, s cannot determine whether two given users u and v are
allowed to learn the distance between them.

In addition to the information that s has learned, s can execute queries and get
their respective answers. We now show that s cannot use this information to learn
whether two given users u and v are allowed to learn the distance between them.
As explained in the proof of Lemma 6.1, during query processing, if |Grantors| = 1,
s can learn the identifier of his unique grantor, namely u, idLBSu . However, given
a set of queries, neither s nor the LBS provider knows who are the querying
users. Therefore, if the identifier idLBSu is used during query processing, s cannot
determine who are the grantees of u.

Additionally, during query processing, s receives a set of encrypted names and
public numbers corresponding to the grantors of s that fulfill the query condition.
However, the received information does not reveal any data about the grantees and
grantors of other users. Then, given two users u and v, during the first protocol
execution, s is not able to learn whether u or v are allowed to learn the distance
between them.

During the second protocol execution, since s is not allowed to collude anymore
with any entity, s only has access to information that he owns, the one that he
has learned during the first execution, and the one that he will obtain during the
second protocol execution. Since the information that s gets in the second protocol
execution is similar to the one of the first execution, this information is not enough
to learn whether u or v are allowed to learn the distance between them.

Case 2: A user s colludes with the ACS. During the first protocol execution, s has
access to the information that he owns and the one stored at the ACS. First, the
set of grantors is encrypted using asymmetric encryption and the key pkLBS. Since
s does not know pkLBS and asymmetric encryption is IND-CPA secure [KL07], s
cannot learn any useful information from the encrypted data.

Second, the set of grantees are encrypted using probabilistic encryption and the
key of its owner. Since s knows only the key to decrypt his set of grantees,
and probabilistic encryption is IND-CPA secure [KL07], s cannot learn any useful
information from the encrypted data.

In addition to the information that s has learned, s can execute queries and get
their respective answers. Similar to the case 1, the information that s received

159

6 Providing Secure Services to Users of Online Social Networks

during query processing does not reveal any data about the grantees and grantors
of other users.

Next, during the second protocol execution, since s is not allowed to collude any-
more with any entity, s only has access to information that he owns, the one that
he has learned during the first protocol execution, and the one that he will obtain
during the second execution. Similar to the case 1, s has access to the same infor-
mation as in the first protocol execution. Therefore, using the same arguments as
in the first protocol execution, s cannot learn whether u or v are allowed to learn
the distance between them.

Consequently, given two users u and v, the 2lSE approach guarantees that, in
the presence of adversaries with the power defined in our adversary model, an
adversary will not be able to learn whether u or v are allowed to learn the distance
between them.

2lABE - Secrecy Proofs

Lemma 6.4. Given a user u, the 2lABE approach guarantees that, in the pres-
ence of adversaries with the characteristics defined in our adversary model, Sec-
tion 6.1.2, only authorized entities can learn the physical position of u.

Lemma 6.5. Given a user u, the 2lABE approach guarantees that, in the pres-
ence of adversaries with the characteristics defined in our adversary model, Sec-
tion 6.1.2, only entities they themselves have authorized can learn the distance
between their physical position and the one of u.

Lemma 6.6. Given two users u and v, the 2lABE approach guarantees that, in
the presence of adversaries with the characteristics defined in our adversary model,
Section 6.1.2, an adversary will not be able to learn whether u or v are allowed to
learn the distance between them.

The proofs of Lemmas 6.4 - 6.6 are analogous to the proofs of Lemmas 6.1 - 6.3, re-
spectively. Although the 2lSE and the 2lABE approaches have some differences,
the properties of the 2lSE used for the proofs also hold for 2lABE. First, both
approaches differ in the encryption scheme used to encrypt the usernames. The
2lABE uses CP-ABE. Since CP-ABE is IND-CPA secure [BSW07], adversaries
cannot learn any useful information from the encrypted names. Second, different
from the 2lSE, the 2lABE does not use the DH protocol to share keys between
users. Instead, each user receives, as part of the CP-ABE, a secret key for decryp-
tion. A user can decrypt a ciphertext c only if the attributes used to generate his
secret key satisfies the access policy used to generate c. That is, a user can decrypt
only usernames that belong to his grantors.

160

6.3 Time Complexity Analysis

6.3 Time Complexity Analysis

A complexity analysis is helpful to predict the behavior of the 2lSE and 2lABE
approaches and to facilitate meaningful comparisons. As explained in Section 5.3
an average complexity analysis depends on the internal behavior of the database,
which is specific to the product and is not openly available. Furthermore, if there
are changes in the system settings, the average analysis is void. So our complexity
analysis is a worst case analysis. Here, we focus on the complexity of the query
phase because this is the most frequently used phase in our scenario.

6.3.1 2lSE - Time Complexity Analysis

The number of operations at the user-side depends on the number of grantors of the
querying user u that are inside the query range. Then, our worst-case complexity
analysis considers that all the users in the set of grantors of u are located within the
query range. To perform the complexity analysis of our approaches, one needs to
specify the complexity of the encryption/decryption process, which depends on the
type of encryption/decryption algorithm used. We select the following well-known
algorithms from the literature: For symmetric and asymmetric encryption schemes,
we use AES and RSA, respectively. For somewhat homomorphic encryption, we
use algorithms based on the learning with errors problem over rings, such as the
ones presented in [LPR10]. For CP-ABE, we select the algorithm presented in
[LGR+12].

Let A be the total number of authorized access requests, i.e., A=
∑

u∈U |Grantoru|,
B(pu) be the bit string representation of the physical position pu, and |B(pu)| its
length. Further, let TCuser, TCACS, and TCLBS denote the time complexity at
the user-side, the ACS and the LBS provider, respectively. A ciphertext generated
using somewhat homomorphic encryption is represented as a matrix M . We use
|M | to denote the size of the matrix. Next, the initialization of the RSA algorithm
requires to select at random two large primes. We use N to denote the product
of the selected primes. Next, note that p and ηu are the integer and the secret
number of a given user u, respectively, which are part of the DH protocol.

Lemma 6.7. Given a range query Range = (u, d), the time complexities of the
2lSE approach at the user-side, the ACS, and the LBS provider are:

TCuser = O
(
|Grantoru| · log(p)2 · log(ηu)

)
TCACS = O

(
|Grantoru| · (|B(pu)| · log(|B(pu)|) + log(N)3)

)
TCLBS = O

(
|Grantoru| · |M |3

) (6.1)

161

6 Providing Secure Services to Users of Online Social Networks

Proof. We start by analyzing the complexity of the encryption/decryption process
of each of the encryption schemes used in the 2lSE approach, i.e., symmetric,
asymmetric encryption, and SHE. First, the complexity of symmetric encryption
schemes, specifically AES, depends on the length of the message m to be encrypted,
|m|, [OEHB11]. Then, the complexity of the encryption/decryption process is
O(|m|). In our scenario, we use symmetric encryption to encrypt the usernames.
We consider that the length of the string that represents a username has a constant
size of 12 bytes. Therefore, the complexity of the encryption/decryption process
using symmetric encryption reduces to O(1).

Second, the complexity of asymmetric encryption schemes, specifically RSA, is
based on the complexity of modular exponentiation. Given a message m, the
resulting ciphertext using RSA is c = me (mod N), and the decryption of c is
m = cd (mod N), where e is the public key and d is the secret key. Given the inte-
ger numbers B,C,N , the complexity of the modular exponentiation BC (mod N)
is O(log(N)2 · log(C)). We consider that the exponent e in the RSA algorithm,
i.e., the public key, is fixed, as specified in FIPS-186-3 [LG09]. So the encryption
complexity using RSA is O(log(N)2). Using standard RSA assumptions, the ex-
ponent d in the RSA algorithm, i.e., the secret key, has size in bits close to that
of N . Then, the decryption complexity using RSA is O(log(N)3).

Third, using somewhat homomorphic encryption, SHE, schemes [LPR10], the en-
cryption/decryption process depends on modular multiplication and addition of
vectors. Given a message m, the complexity of encrypting/decrypting m using
SHE is log(|B(m)|) per bit [CZZ16], assuming the use of the Montgomery mul-
tiplication, which is one of the fastest methods available for performing modular
multiplication. Then, the encryption/decryption complexity of SHE schemes is
O(|B(m)| · log(|B(m)|)). The following steps are required to compute a given
range query with the 2lSE approach.

1. Encrypt using SHE the position of the querying user u. The user executes
this step. The complexity of this step is O(|B(pu)| · log(|B(pu)|)).

2. Use the identifier of the querying user u, idACSu to retrieve the set of grantors
Grantoru. The ACS executes this step. We assume the ACS uses B-tree
indexing. Then, the complexity of this step is O(log(|U |)).

3. Decrypt the set of encrypted identifiers and the set of encrypted random
numbers sent by the ACS. Since both sets have a size of |Grantoru| and
each element of these sets is encrypted using the asymmetric encryption, the
LBS provider has to execute 2 · |Grantoru| asymmetric decryptions. The
complexity of this step is O(|Grantoru| · log(N)3).

162

6.3 Time Complexity Analysis

4. For each decrypted identifier in step 3, retrieve the corresponding encrypted
position and encrypted public value. The LBS provider does this step. We
assume the LBS provider uses B-tree indexing. Then, the complexity of this
step is O(|Grantoru| · log(|U |)).

5. Compute the encrypted square distances between the querying user and the
ones retrieved in step 4. The LBS provider executes this step. This operation
requires three homomorphic additions and two multiplications. A ciphertext
generated using SHE is represented as a matrix. So adding and multiplying
two ciphertexts imply addition and multiplication of two matrices [SS15].
The addition and multiplication operations have a complexity of O(|M |2) and
O(|M |3), respectively. Since O(|M |3) dominates O(|M |2), the complexity of
computing one encrypted square distance is O(|M |3). The complexity of this
step is O(|Grantoru| · |M |3).

6. Retrieve from the set of encrypted names stored at the LBS provider the
encrypted names corresponding to each of the random numbers decrypted
in step 3. The LBS provider executes this step. The complexity of this step
is O(|Grantoru| · log(A)).

7. Decrypt the information sent by the LBS provider: the encrypted square
distances, the second layer of encryption of the encrypted names, and the
encrypted public numbers. The ACS executes this step. It decrypt in
total 3 · |Grantoru| ciphertexts. The square distances are encrypted us-
ing SHE, and the names and public numbers are encrypted using asym-
metric encryption. Then, the ACS performs |Grantoru| SHE decryptions
and 2 · |Grantoru| asymmetric decryptions. The complexity of this step is
O(|Grantoru| · (|B(pu)| · log(|B(pu)|) + log(N)3)).

8. Compute the shared keys and decrypt the encrypted names corresponding to
users that fulfill the query condition. The user does this step. u computes in
total |Grantoru| shared keys. The shared keys are generated using the DH
protocol, which requires modular exponentiation. Given a public number of
a user v, Zv, and the secret number of u, ηu, the complexity of the modular
exponentiation Zv

ηu (mod p) is O(log(p)2 · log(ηu)), where p is the parameter
of the DH protocol. The number of decryptions performed are |Grantoru|,
where each decryption has a complexity of O(1). The complexity of this step
is O(|Grantoru| · log(p)2 · log(ηu)).

By considering the step with the highest complexity that each entity of the system
performs, one can easily construct the terms of Equation 6.1.

163

6 Providing Secure Services to Users of Online Social Networks

6.3.2 2lABE - Time Complexity Analysis

We introduce further notation: Let G and GT be two cyclic groups of the same
order, where G and GT are the groups selected during the initialization of the CP-
ABE scheme. Further, let e be a bilinear map of the form e : G×G → GT . The
encryption/decryption process using CP-ABE is based on bilenear mappings and
operations in the groups G and GT . We use Ce and CGT to denote the complexity
of computing e, and the complexity of performing an operation in the group GT ,
respectively.

Lemma 6.8. Given a range query Range = (u, d), the time complexities of the
2lABE approach at the user-side, the ACS, and the LBS provider are:

TCuser = O
(
|Grantoru| · (Ce + CGT)

)
TCACS = O

(
|Grantoru| · (|B(pu)| · log(|B(pu)|) + log(N)3)

)
TCLBS = O

(
|Grantoru| · |M |3

) (6.2)

Proof. We start by analyzing the complexity of the encryption/decryption process
of each of the encryption schemes used in the 2lABE approach, i.e., asymmetric
encryption, SHE, and CP-ABE. As shown in the proof of Lemma 6.7, the encryp-
tion and decryption complexity of asymmetric encryption schemes are O(log(N)2)
and O(log(N)3), respectively, and the encryption/decryption complexity of SHE
is O(|B(m)| · log(|B(m)|)), where m is the given message.

Next, the encryption complexity of CP-ABE schemes [LGR+12] depends on the
size of the access policy and the cyclic groups G and GT . The encryption costs
using CP-ABE is (n+ 3) ·CG + 2 ·CGT , where n is the size of the access policy and
CG is the complexity of performing an operation in the group G [XWL13]. In our
scenario, the size of the access policy depend on the size of the set of grantees of
each user. Then, the encryption complexity of CP-ABE is O(|Granteeu|·CG+CGT).
The decryption cost using CP-ABE is 2·Ce+2·CGT [XWL13]. Then, the decryption
complexiy of CP-ABE is O(Ce + CGT).

The following steps are required to compute a given range query with the 2lABE
approach.

(1)-(3) Similar to the step 1-3 of the 2lSE.

(4) Retrieve the encrypted position and encrypted name corresponding to each
decrypted identifier in step 3. The LBS provider executes this step. The
complexity of this step is O(|Grantoru| · log(|U |).

(5) Similar to the step 5 of the 2lSE.

164

6.3 Time Complexity Analysis

(6) Decrypt the encrypted square distances and the second layer of encryption
of the encrypted names sent by the LBS provider. The total number of ci-
phertexts that the ACS has to decrypt is 2 · |Grantoru|, where the square
distances are encrypted using SHE and the names are encrypted using asym-
metric encryption. This step is done by the ACS. The complexity of this step
is O(|Grantoru| · (|B(pu)| · log(|B(pu)|) + log(N)3)).

(7) Decrypt the encrypted names corresponding to users that fulfill the query
condition. The user executes this step. The number of decryptions performed
are |Grantoru|. Then the complexity of this step is O(|Grantoru| · (Ce +
CGT)).

By considering the step with the highest complexity that is performed by each
entity of the system, one can easily construct the terms of Equation 6.2.

6.3.3 Discussion

From our worst-case analysis, Lemmas 6.7 and 6.8, we observe that both ap-
proaches differ only at one entity: the user-side. The main difference relies on the
decryption process, which is related to the encryption scheme used. With the 2lSE,
the encryption/decryption complexity of symmetric schemes is O(1). However, the
querying user has to perform a total of |Grantoru| exponentiations module p to
calculate the shared key. In contrast, with the 2lABE, each user uses a single key
to decrypt the received ciphertexts. However, the encryption/decryption complex-
ity of CP-ABE schemes depends on the size of the access policy used to generate
a given ciphertext and bilinear pairing operations, which are computationally ex-
pensive [XWL13, PYJ14].

In fact, both schemes have a trade-off between secrecy and efficiency, as we explain
in the following. Our 2lSE approach uses the DH protocol to build a shared secret
key between two users. The secrecy of this protocol relies on the Computational
DH problem (CDH) [DH76]. Our 2lABE approach uses CP-ABE to encrypt the
name of the users. CP-ABE schemes are built based on bilinear pairing functions,
which themselves rely on the CDH problem. The secrecy and efficiency of both
approaches rely, among others, on the hardness of the CDH problem, and the
algebraic operations in the cyclic group that is being used. The CDH problem
has a trade-off between secrecy and performance. A large order of a cyclic group
implies higher secrecy [GKR04], i.e., less success probability of an adversary solving
the CDH problem. However, the efficiency of computing algebraic operations is
affected. Then one has to make a trade-off between the secrecy level needed and
the efficiency of the approach.

165

6 Providing Secure Services to Users of Online Social Networks

Encryption Scheme Library

Somewhat Homomorphic Encryption Microsoft SEAL [SEA18]

Symmetric, Asymmetric

encryption and CP-ABE

Java Pairing-Based Cryptography

Library and the Cryptographic Packages

namely javax.crypto and java.security

Table 6.2: Libraries Used for Implementation

Since a complexity analysis considers only the dominating operations, a worst-
case analysis is insufficient to determine the performance of an algorithm in prac-
tice. For instance, for the complexity at the LBS provider, one can observe that
both approaches have the same time complexity. However, one can find signifi-
cant differences between both approaches in the less dominant steps. With the
2lSE approach, the LBS provider has to perform |Grantoru| extra searches with
complexity log(A), which will affect its performance. Therefore, we additionally
perform experiments to validate our complexity analysis, evaluate how the differ-
ences between both approaches impact on their performance and determine at the
end which approach performs better in practice.

6.4 Experiments

In this section, we present an experimental analysis of the performance of the 2lSE
and 2lABE approaches.

6.4.1 Experiment Setup

Dataset and Query Sample

We use the Tokyo dataset [YZZY15] in our experiments, which is a dataset that
contains 573703 real check-ins, i.e., positions. We choose a sample of 1000 users
at random. Next, we divide the users into ten equally classes. We generate autho-
rized access requests such that all the users in each class have the same number
of grantors. Specifically, we selected at random from the dataset the following
grantors sizes: 10, 25, 50, 100, 250, 500, 750, 1000, 2500, and 5000.

Encryption Algorithms

We use the following libraries for the implementation of our approaches:

166

6.4 Experiments

Evaluation Measures

For our evaluation, we considered the access request and query phases. All other
phases are executed only once, at least with respect to one of the entities of the
systems.

We consider six measures: the storage size, the access request time, the query
processing time at the user-side, the query processing at the LBS provider, the
query processing time at the ACS, and the total query processing time. The
total query processing time is the sum of the query processing time at each of the
entities.

Note that positioning and query processing are two separate activities. In our ex-
periments, we do not study the time that a positioning technology needs to provide
the physical position of the users and its accuracy. The level of position accuracy
and its computational time depend on the underlying technology and factors such
as receiver noise and satellite geometry. For instance, under open sky conditions,
GPS-based solutions have an accuracy of 3− 5 meters and a computational time
of 3.6 seconds [ZB11]. In the case of GSM-based solutions, they have an accuracy
of 65 - 134 meters [CSC+06] and a computation time of 7.04 milliseconds [IY11].
Improving the accuracy and computational time of the positioning technologies is
not a topic of this dissertation.

6.4.2 Results

We now use the metrics specified in the previous subsection to evaluate experi-
mentally our approahes.Note that we omit the network-communication time.

Storage-Size

Figure 6.11(a) shows the total storage size occupied by each of the approaches.
The dark green and light green colors represent the storage size at the ACS and
LBS providers, respectively. The 2lABE approach requires more storage capacity.
However, the difference between the storage capacity of both approaches is minimal
(2 percent in our scenario).

Access Request Time

Given an authorized access request accessReq(u,v)=true, we measure the time
required by the grantor v to generate and add the information needed at the ACS
and the LBS provider, with each approach. Figure 6.11(b) displays the average

167

6 Providing Secure Services to Users of Online Social Networks

Figure 6.11: Storage size(a), Access request time (b) and Encryption time (c)

access request time with both approaches for our sample. Both approaches require
the same amount of time to generate and store the corresponding information at
the ACS (blue color). With the 2lABE approach, the grantors require more time
to generate and store the information at the LBS provider. Such a time increment
is due to the encryption scheme used to encrypt the usernames stored at the LBS
provider.

One could think that our results are specific to the number of grantees of the users
in our sample. Next, we show that our results apply to any number of grantees.
Lemma 6.8 shows that the encryption complexity using CP-ABE, which is used
by the 2lABE approach, depends, among others, on the number of grantees that
a user has. To analyze in-depth, the effect of each encryption scheme, we select
a user and increase his number of grantees, starting from 1 up to 500. Next, we
measure the time required by the user to encrypt his username against the size of
his set of grantees.

Figure 6.11(c) shows the encryption time with both approaches. One can observe
that even for a set of grantees with cardinality one, the 2lSE approach performs
better than the 2lABE. Furthermore, as expected from our complexity analysis,
the encryption time with the 2lABE grows linearly with the number of grantees.
With the 2lSE the encryption time is constant because each grantor generates
a different ciphertext for each of his grantees. Consequently, with the 2lSE, the
encryption time of each ciphertext is independent of the number of grantees of
a user. With the 2lABE, although each grantor generates only one ciphertext,

168

6.4 Experiments

which can be accessed by all of his grantees, the number of operations required to
encrypt a ciphertext depends, among others, on the number of grantees.

Query Time

Figures 6.12(a), 6.12(b), and 6.12(c) show the average query processing time for
each of the ten classes at the ACS, the LBS provider, and the user, respectively.
The query processing times of the LBS provider and ACS with the 2lSE approach
are higher than that of the ones with the 2lABE. In contrast, the query processing
time of the user with the 2lSE approach is less than the one with the 2lABE. The
reasons are as follows:

• With the 2lSE, the LBS provider performs an additional search to recover the
encrypted version of the name that can be decrypted by the querying user.
The LBS provider does not perform this search with the 2lABE because it
stores one encrypted version of the name for each user.

• With the 2lSE approach, the ACS decrypts three ciphertexts for each user
v in the query answer: the second layer of the encrypted name of v, the
encrypted square distance, and the encrypted public number Zηv . With the
2lABE approach, it decrypts only the encrypted square distances and the
second layer of the encrypted names.

• With the 2lSE approach, the user has to compute the shared key and decrypt
the names encrypted with symmetric encryption. With the 2lABE the user
decrypts the names encrypted with CP-ABE. The encryption/decryption
process using CP-ABE is computationally more expensive than the one using
symmetric encryption and even more expensive than computing the shared
keys and decrypting.

To summarize, the query processing time of the 2lABE at the LBS provider and
the ACS is less than the one with the 2lSE. However, the user-side performance of
the 2lSE is that much high that it compensates for the advantages of the 2lABE.
Figure 6.12(d) shows that the total average query processing time, i.e., the sum
of the times required by the LBS provider, the ACS, and the user, with the 2lSE
approach is much less (approximately by a factor of 2) than the one with the
2lABE.

Discussion

One crucial difference between the proposed approaches that affect query perfor-
mance is the encryption scheme used to encrypt the usernames. In general, in our

169

6 Providing Secure Services to Users of Online Social Networks

Figure 6.12: Average query processing time at the ACS (a), the LBS provider (b)
and the user-side (c). Total average query processing time (d)

scenario, as our experimental results show, having multiple encrypted copies of a
message (2lSE) is more efficient in terms of query performance.

With the 2lSE, during the query process, the additional searching step needed
doubles the query processing time at the LBS provider side compare to the 2lABE
approach. At the user-side, the opposite happens with the decryption step— with
the 2lABE the decryption time increases by more than twice compared to the
decryption time of the 2lSE. However, the time contribution to the total query
processing time of the LBS provider is less in comparison to that of the user. The
total query processing time reflects these time differences. The 2lSE approach is
twice more efficient than the 2lABE, which is impressive. Therefore, one can say
that the 2 percent extra storage required by the 2lSE pays off with better query
performance.

Our results not only apply to any social network with the same average number of
friends as Orkut and Livejournal, including Facebook, where the average number
of friends is 322 [SU15], but also to unrealistic scenarios where the size of the set
of grantors is 5000. These results are in line with our complexity analysis, and one
may interpret them as an indication that our analysis also holds for the average
case. Consequently, the 2lSE approach is the most feasible option in our scenario.

170

6.5 Related Work

6.5 Related Work

We categorize exiting works aiming to preserve location secrecy in two groups:
location secrecy in LBS and location secrecy in mSNs. The main difference between
these two categories is that approaches in the first one do not consider access
policies, i.e., users are allowed to access the location of any user in the system.

Location secrecy in LBS: Several techniques have been proposed in the litera-
ture to achieve location secrecy in LBS such as:

• Mix zones: This concept was first proposed in [BS03] and has been widely
extended in [FSH09, PLL+14]. The goal of mix zones is to prevent an adver-
sary from tracking long-term user movements [BS04]. Mix zones are spatial
regions with a predetermined size. Users inside a mix zone do not report
their position or communicate with the LBS provider. These approaches fo-
cus on data anonymization and replace the user identity with a pseudonym.
They offer anonymity guarantees by changing the pseudonyms of users in-
side a mix zone such that an adversary will not be able to link users that go
inside the mix zone with those leaving it. Since these approaches do not hide
the position of users outside the mix zones, one can perform any query on
the plaintext data. However, users inside the mix zones do not communicate
with the LBS provider, and therefore they cannot get any service. This lack
of communication affects functionality.

• Coordinates transformation: Approaches in this area aim to guarantee that
an adversary should not be able to learn the position of the users. Coordi-
nates transformation consists on mapping the location of users to another
space coordinate and addressing the query on the transformed space. In the
approach presented in [Gut06], users use a transformation function over their
physical position before sending it to the LBS provider. The transformation
function consists of shifts and rotations. Each user sets the parameters of the
transformation function and distributes these parameters among the rest of
users to allow them to recover the original physical position. This approach
is subject to data reconstruction attacks [KHC16]. To avoid this kind of
attacks, the authors in [LBCP08] use agents to transform the physical posi-
tions of users. Agents are trusted third parties servers that act as middleware
between the users and the LBS provider. Agents periodically change their
transformation functions, which prevents the adversaries from analyzing the
data. These approaches allow users to query for one specific user at each
time, i.e., point queries. The secrecy of this approach relies on trusted third
servers.

171

6 Providing Secure Services to Users of Online Social Networks

• Cryptography: Approaches like the ones proposed in [NTL+11, ZLLH12]
keep the position of users secret from any adversary, including the service
provider. These approaches use encryption techniques and hash functions to
compute proximity between two users privately. The authors in [ZLLH12]
use, besides hash functions, location tags to prevent users from cheating their
location, i.e., announcing an untruthful location. Location tags are pieces of
information obtained from the network protocol like 802.11 frames in WiFi
networks. In these approaches, users are allowed to query for the proximity
of one specific user at each time, i.e., point queries.

• Other works in the area [CML06, MCA06, GKK+08, YPBV14] focus on
executing private queries over public data. The public data is information
about points of interest, e.g., museums, restaurants, which is owned by the
LBS provider. The goal of these approaches is to allow users to execute
queries without revealing their location to the LBS provider. In our scenario,
the data stored at the LBS provider is not public data and must be kept secret
from any adversary, including the LBS provider.

Location secrecy in mSNs: Approaches in this area restrict access to the physi-
cal position of users based on access control policies. Each user defines a set of users
who are authorized to read his physical position. The authors in [PWS+14] intro-
duced a scheme to guarantee location secrecy. Their approach uses encryption and
coordinate transformation techniques. The LBS provider stores the transformed
data. For querying purposes, users have to distribute among their friends the
transformation parameters and the corresponding decryption keys. This scheme
deals with point and nearest neighbor queries.

Wei et al. [WXL12] proposed an approach called Mobishare. The architecture
of this approach consists of a trusted central tower, an untrusted LBS provider
and an untrusted ACS. Mobishare uses dummy techniques to prevent the LBS
provider and the ACS from learning the identities of the users and their physical
positions. Before outsourcing the data to the LBS provider, Mobishare replaces
users identities with pseudonyms and adds dummy pseudonyms together with
dummy locations. Since the LBS provider stores the position of users in plaintext,
it can compute any query. Before sending the final query answer to the user, the
ACS filters the data based on the access policies, and the central tower replaces
pseudonyms with user identities. However, an adversary who can observe query
executions could be able to identify real pseudonyms from dummy ones. Using
this information, an adversary could link a pseudonym with a user identity and
therefore learn the position of the user. The adversary could also acquire informa-
tion about access policies, i.e., the set of users that have allowed a given user to
access their position. To avoid this leakage, the authors in [LLC+14] extended the

172

6.6 Summary

previous approach by adding dummy queries and using a private set intersection
protocol. The authors in [LYL+17] extended the previous approach by introducing
a new architecture with multiple LBS providers. The authors aim to prevent an
adversary from identifying queries coming from the same user because an adver-
sary could use this information to learn the identities of the users. To summarize,
approaches in this area focus on point or nearest neighbor queries, or they rely on
trusted central towers. Furthermore, their adversary model is weaker than ours,
as explained in Section 6.1.2.

6.6 Summary

Location-based services are an essential feature provided by MSNs. However, users
usually are reluctant to share their position with others due to secrecy reasons. In
this chapter, we have shown how to offer LBS, in the example of range queries, in
MSNs with a revocation feature while providing to the users the secrecy guaran-
tees Gposition, Gdistance, and Gauthorization under collusion assumption. This chapter
presented two approaches namely two-layer symmetric encryption, 2lSE, and two-
layer attribute-based encryption, 2lABE. The main differences between them is
that they use, among other encryption schemes, symmetric and attribute-based
encryption, respectively. A complexity analysis of the query phase tells us that
both approaches differ only at one entity—the user-side. We have further compared
our approaches experimentally. Although with the 2lABE, the key management
is more straightforward than with the 2lSE, and the LBS provider stores a single
encrypted copy for each message, we found that our former solution is on average
twice more efficient in our scenario.

173

7 Conclusion and Future Work

Most of the information stored in online social networks about their users is private.
Online social networks use access control systems to protect the information from
unauthorized access and avoid secrecy issues. In this dissertation, we have tackled
two open issues regarding these systems: the flexibility of existing access control
models and the distrusts of users towards the entity that manages the authorization
mechanism, i.e., the service providers. We have developed techniques and models
to address these two issues.

7.1 Summary

In Chapters 2 and 3, we first introduced two research areas relevant to our work
— access control systems and cryptography. We have formally defined the basic
notions and have given and overview of these areas. We have used these notions
in the following chapters to build our proposed approaches.

Chapter 4 studied the first issue — the flexibility problem of existing access control
models. Studies in different fields [FFG02, SBC09, FF06] have revealed that, while
humans are self-interested, they often deviate from this attitude reciprocally, i.e.,
in response to friendly actions, people are more cooperative. None of the existing
access control models capture this reciprocity phenomenon. We increased their
flexibility by defining the syntax and semantics of a new type of authorization,
called mutual authorizations. Mutual authorizations allow users to grant access
to their resources to users that enable them to the same. To focus on the idea of
reciprocity itself, we have first assumed that all resources have the same sensitivity
degree, e.g., physical positions. We have also generalized our model to support
settings where resources have different sensitivity degrees, e.g., health records.
Deciding whether two resources have the same degree of sensitivity is a general
problem that is far from being solved in an automated manner —in any scenario.
Our general model of mutual authorization, inspired by trust models from the
literature such as [KSGM03, ZH07, HLB11], aims to alleviate this problem. To
show how to integrate mutual authorizations with existing services, we used lo-
cation-based services. We presented two approaches for such integration, proved

175

7 Conclusion and Future Work

their soundness, and conducted time complexity analyses of them. F We have
evaluated the impact of mutual authorizations on the performance of an access
decision and the performance of our approaches experimentally.

Chapter 5 and 6 studied the second issue —the distrust of users towards the service
providers— from two different angles.

Chapter 5 considered the scenario in which the user, i.e., the entity who wants to
perform queries over the data, is also the data owner. A broad range of real-world
datasets exhibits a graph structure, and many real graphs, such as the email net-
work or the Web, follow a scale-free power-law distribution. Here, we focused on
datasets with these characteristics. We proposed a secrecy notion for graph-struc-
tured data. We then presented our bucketization approach for secure outsourcing
of this kind of data. We showed that finding an optimal bucketization tailored to
graph-structured data is NP-hard. We therefore came up with a heuristic, which
guarantees that the worst bucketization solution will be off by a factor of 11

9
of the

optimal one. Our approach encrypts the label of the nodes and edges to protect
them against deterministic chosen-plaintext attacks and creates buckets with the
edges to protect against frequency attacks. We also came up with a performance
model for query processing on scale-free graphs. We conducted systematic ex-
periments to validate the accuracy of our estimation model and demonstrate the
efficiency of our proposed bucketization technique.

Chapter 6 considered the scenario in which each user owns a portion of the data,
and users are not allowed to access to the data needed to compute queries. But
they are allowed to access query results over the data. Specifically, we focused
on mobile social network scenarios, where multiple users want to access location-
based services while keeping their information secret from both the service provider
and unauthorized users. We have shown how to offer location-based services, in
the example of range queries, in mobile social networks with a revocation feature
while providing secrecy guarantees under collusion assumption to the users. We
introduced two approaches namely two-layer symmetric encryption, 2lSE, and two-
layer attribute-based encryption, 2lABE. We presented complexity analyses of our
approaches, which allow us to compare them. Finally, we conducted experiments
to validate our complexity analyses and study the performance of our approaches.

7.2 Future Work

This dissertation provides techniques and models to address secrecy issues in on-
line social networks. Possible improvements and future research steps include the
following:

176

7.2 Future Work

Our work regarding mutual authorizations assumes that the service provider is
trusted. It will be interesting to consider an adversary model with an untrusted
service provider and study how to combine encryption techniques into our mutual
authorization model to achieve data secrecy. Another direction in this area is
to explore how to incorporate mutual authorizations into existing model-checking
techniques, like the approaches presented in [SMJG05, RLFK04], to evaluate the
correctness of access request decisions. Yet another direction is to extend mutual
authorizations by considering different resources with more than one controller,
i.e., users who can regulate access to the resource, and users owning more than
one resource with different degrees of sensitivity.

Finally, in our mobile social network scenario, one could study how to offer loca-
tion-based services while providing secrecy guarantees considering a different kind
of access policies. For instance, one can consider integrating our mutual autho-
rization model, or location constraints [BCDP05], where users restrict access to
their resources based on the location of the accessing user. Another direction is
to extend our approaches with position verification techniques [VdHKAS+16] to
verify that the positions of the users that are input to the system are real.

177

Appendices

179

A Hardness Result

We start by introducing the Bin-packing problem problem.

Definition A.1: Bin-packing Problem

Let a set of n bins C = {c1, c2, . . . , cn} and the same number of n items
I = {a1, a2, . . . , an} be given. All bins have equal capacity wc, and the
weight of each item ai ∈ I, wai , is smaller than or equal to the capacity wc.
The Bin-packing problem (BP problem) is to find a mapping BP : I → C
of each item in I to one bin in C such that the following Constraints bp1,
bp2 and bp3 are met:

(bp1) An item is assigned to only one bin.
(bp2) The sum of the weights of all items assigned to a bin does not exceed

the bin capacity wc. Formally, ∀cj ∈ C : Wcj ≤ wc where Wcj =∑
ai∈{a∈I|BP (a)=cj}wai .

(bp3) The number m of bins used is as small as possible, i.e., minimize
m =

∣∣⋃
ai∈I{BP (ai)}

∣∣.
For the hardness proof, we use a restricted version of the bin-packing problem.
Here, we limit the weight of the items to be polynomial in n. Since the bin-packing
problem is strongly NP-complete, bounding any of its numerical parameters by a
polynomial in the length of the input, the resulting problem remains NP-complete
[GJ78].

We introduce Lemmas A.1 and A.2, which we use in the hardness proof. These
two lemmas help us to show that an instance of the bin-packing problem, called
initial BP, can be reduced in polynomial time to an instance of the bucketization
problem, called transformed BP, and to prove that one can transform a given
solution of the transformed BP to a solution of the initial BP in polynomial
time. In what follows, we identify the steps required to construct the transformed
BP.

Transformed BP construction: Given a bin-packing problem with a set of
items I, the transformed BP is constructed as follows:

181

A Hardness Result

• For each item ai ∈ I, create the set of nodes Vi = {ai, ai1, ai2, . . . , aiwai} and
the set of edges Ei = {(ai, ai1), (ai, ai2), . . . , (ai, aiwai)}.

• The graph that represents the transformed BP is G = (∪ni=1Vi,∪ni=1Ei).

Lemma A.1. Given an initial bin-packing problem, initial BP, the transformed
BP can be constructed in polynomial time.

Proof. For each item ai ∈ I, in order to build transformed BP, we need (wai + 1)
nodes and wai edges. Altogether this requires

∑n
i=1(wai + 1) steps. Since in

the restricted version of the bin-packing problem, the weight of the items are
polynomial in n, the construction is still polynomial in n. Then an initial BP can
be transformed to a transformed BP in polynomial time.

Example A.1 illustrates the construction of the transformed BP.

Example A.1. Consider the initial BP with set of items I = {a1, a2, a3, a4}
with weights wa1 = 3, wa2 = 1, wa3 = 2, wa4 = 4 and the set C of bins with
capacity wc = 5. Figure. A.1 shows the corresponding transformed BP.

Figure A.1: Transformed BP of Example A.1

Once we have built transformed BP, we can run an algorithm that solves the
bucketization problem on it, by setting maxEdges to wc. The solution of the
transformed BP is a bucketization structure BS that fulfills Constraints c1-c4.
The following set of buckets BG, which is part of the bucketization structure BS,
is a possible solution of the transformed BP of Example A.1:

BG =

{
b1 : (a1, a11), (a1, a12), (a1, a13), (a3, a31), (a3, a32)

b2 : (a2, a21), (a4, a41), (a4, a42), (a4, a43), (a4, a44)

}

182

where b1 and b2 are the bucket identifiers. Since we set maxEdges = wc, it holds
for all buckets b ∈ BG that freq(b) ≤ wc.

The next lemma, Lemma A.2, states that a solution of the initial BP can be
constructed in polynomial time from a solution of the transformed BP. Before
moving to Lemma A.2, we first explain the solution construction process.

Initial BP solution construction: A solution of the initial BP can be con-
structed from a solution of the transformed BP as follows:

• Select the bins cj, . . . , cm needed to store the items in I, where m = |BG|.

• Map each item ai ∈ I to one bin cj, where j ∈ {1, . . . ,m}, as follows: ∀bj ∈
BG : Icj = {ai | ∃y ∈ {1, . . . , wai}, (ai, aiy) ∈ bj}. Then ∀ai ∈ Icj : ai → cj.

The following shows the solution constructed for the initial BP from the trans-
formed BP of Example A.1:

m = |BG| = 2

Ic1 = {a1, a3}, Ic2 = {a2, a4}
a1 → c1

a3 → c1

a2 → c2

a4 → c2

Lemma A.2. A solution of the transformed BP can be transformed to a solution
of the corresponding initial BP in polynomial time.

Proof. Consider a bucketization of the transformed BP that fulfills Constraints
c1-c4. We transform it to a bin-packing solution with the solution construction
process. Now, we proceed to demonstrate that the transformed solution fulfills
the constraints of the bin-packing problem, bp1 to bp3, with respect to the initial
BP. We start by analyzing the constraints of the bin-packing problem and of the
bucketization problem. First, Constraint bp1 is fulfilled because of Constraints
c1 and c3 of the bucketization problem. Constraint c1 ensures that each edge is
assigned to only one bucket. Then ∀i 6= j : ci ∩ cj = ∅. Together with the fact
that for all items ai ∈ I, wai ≤ maxEdges, Constraint c3 ensures that the edges
belonging to the same node are placed in the same bucket.

Second, Constraint bp2 is fulfilled because of Constraint c2 of the bucketization
problem. For all bins cj ∈ C,Wcj = freq(bj) andmaxEdges = wc, then freq(bj) ≤

183

A Hardness Result

wc, which fulfills Constraint bp1. Third, bp3 is fulfilled because of Constraint c4.
The number of buckets is the number of bins used in the initial BP solution. Then
minimizing the buckets is the same as minimizing the number of bins used.

Finally, a bucketization solution of a transformed BP can be transformed to a
solution of the initial BP in polynomial time. The reconstruction requires one
lookup in all the elements of each bucket bi ∈ BG. Then the complexity of the
reconstruction is O(m), where m is the total number of elements, i.e., edges, stored
in BG. Since BG stores the set of items I, m =

∑n
i=1wai .

Theorem A.3. Finding an optimal bucketization that meets Constraints c1-c4 is
NP-hard.

Proof. With Lemma A.1 and Lemma A.2 we have shown that an instance of the
bin-packing problem can be reduced to an instance of the bucketization problem in
polynomial time. Since the bin-packing problem is NP-hard [Joh73], the optimal
bucketization problem is NP-hard as well.

184

List of Figures

1.1 Access Control System - Main Components 2

3.1 Ciphertext-policy attribute-based encryption scheme (CP-ABE) . . 24
3.2 Key-policy attribute-based encryption scheme (KP-ABE) 25
3.3 Indistinguishability experiment IND-CPAA,Π(n) 33

4.1 Access Control Model - Flexibility Problem 35
4.2 Grant-trust Resolve-conflict Function resCtr

gr(B,Alice) 50
4.3 Trust-based authorizations Access Request Process 51
4.4 System Architecture . 60
4.5 Complexity of the QF and FQ Approaches– knn Query (k = 20, δ = 0) 70
4.6 Access Request Decision – Performance Evaluation 75
4.7 Comparison of the QF and FQ Approaches for kNN Queries 77

5.1 Access Control Mechanism - Distrust Problem 81
5.2 Bucketization and Encryption of Graph G 90
5.3 System Architecture and Query Processing 93
5.4 Phases of our Bucketization Approach 95
5.5 Illustration of Example 5.5 . 97
5.6 Indistinguishability experiment Ind-Graph 101
5.7 Abstract output of the bucketization algorithm 102
5.8 Graphs G0, G1 - Example 5.6 . 105
5.9 |BucketG| obtained for the synthetic and real datasets 120
5.10 Server Query-processing Time, RTserverBSGQ , and Client Query-

processing Time, RTclientBSGQ -Real Datasets 123
5.11 Total Average Query-processing Time - Real Datasets 124
5.12 Total query processing time - Real datasets 125
5.13 Graph - Example 5.8 . 127

6.1 Access Control Mechanism - Distrust Problem 131
6.2 MSN System Architecture . 135
6.3 Adversary Model Strategies . 139
6.4 Registration Phase - basic 2lSE . 143
6.5 Access Request Phase - basic 2lSE 145

185

List of Figures

6.6 Query Phase - basic 2lSE . 147
6.7 2lSE Approach - Example . 148
6.8 Registration Phase - basic 2lSE . 152
6.9 Access Request Phase - basic 2lSE 153
6.10 Query Phase - basic 2lSE . 154
6.11 Storage size(a), Access request time (b) and Encryption time (c) . . 168
6.12 Average query processing time at the ACS (a), the LBS provider

(b) and the user-side (c). Total average query processing time (d) . 170

A.1 Transformed BP of Example A.1 182

186

List of Tables

4.1 Elements of an Authorization A 38
4.2 Intersection points of QF and FQ — knn Query (k = 20, δ = 0) . . 70
4.3 Experiment Cases - Resources with the same Degree of Sensitivity 73
4.4 Experiment Cases – Resources with Different Degrees of Sensitivity 73

5.1 Number-of-Buckets Model - Notation 109
5.2 Query-Cost Model - Notation . 113
5.3 Synthetic Graph-structured Datasets 117
5.4 Real Graph-structured Datasets 117
5.5 Percentage of Dummy Edges for the Synthetic Datasets 121
5.6 Percentage of Dummy Edges for the Real Datasets 121
5.7 Average percentage of Full Buckets after the initialization phase -

Synthetic Datasets . 121
5.8 Percentage of Full Buckets after the initialization phase - Real Datasets122
5.9 Secretized Relation of Example 5.8 127

6.1 Summary of Encryption Schemes and the Corresponding Keys Used 141
6.2 Libraries Used for Implementation 166

187

Bibliography

[AAUC18] Abbas Acar, Hidayet Aksu, A Selcuk Uluagac, and Mauro Conti.
A survey on homomorphic encryption schemes: Theory and imple-
mentation. ACM Computing Surveys (CSUR), 51(4):79, 2018.

[ABG+05] Gagan Aggarwal, Mayank Bawa, Prasanna Ganesan, Hector
Garcia-Molina, Krishnaram Kenthapadi, Rajeev Motwani, Utkarsh
Srivastava, Dilys Thomas, and Ying Xu. Two can keep a secret: A
distributed architecture for secure database services. CIDR 2005,
2005.

[ASV08] Vijayalakshmi Atluri, Heechang Shin, and Jaideep Vaidya. Effi-
cient security policy enforcement for the mobile environment. Jour-
nal of Computer Security, 16(4):439–475, 2008.

[BA99] Albert-László Barabási and Réka Albert. Emergence of scaling in
random networks. science, 286(5439):509–512, 1999.

[BBHJ11] Christoph Bösch, Richard Brinkman, Pieter H Hartel, and Willem
Jonker. Conjunctive wildcard search over encrypted data. Secure
data management, 6933:114–127, 2011.

[BBO07] Mihir Bellare, Alexandra Boldyreva, and Adam O’Neill. Determin-
istic and efficiently searchable encryption. In Annual International
Cryptology Conference, pages 535–552. Springer, 2007.

[BCDP05] Elisa Bertino, Barbara Catania, Maria Luisa Damiani, and Paolo
Perlasca. Geo-rbac: A spatially aware rbac. In Proceedings of the
10th ACM Symposium on Access Control Models and Technologies,
New York, NY, USA, 2005.

[BDPR98] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Ro-
gaway. Relations among notions of security for public-key en-
cryption schemes. In Annual International Cryptology Conference,
pages 26–45. Springer, 1998.

189

Bibliography

[BF18] Elisa Bertino and Elena Ferrari. Big data security and privacy.
In A Comprehensive Guide Through the Italian Database Research
Over the Last 25 Years, pages 425–439. Springer, 2018.

[Bon98] Dan Boneh. The decision diffie-hellman problem. In International
Algorithmic Number Theory Symposium, pages 48–63. Springer,
1998.

[BS03] Alastair R Beresford and Frank Stajano. Location privacy in per-
vasive computing. IEEE Pervasive computing, (1):46–55, 2003.

[BS04] Alastair R Beresford and Frank Stajano. Mix zones: User privacy
in location-aware services. In Pervasive Computing and Communi-
cations Workshops, 2004. Proceedings of the Second IEEE Annual
Conference on, pages 127–131. IEEE, 2004.

[BS08] Dan Boneh and Victor Shoup. A graduate course in applied cryp-
tography. https://crypto.stanford.edu/ dabo/cryptobook/, 2008.

[BSK16] Prosunjit Biswas, Ravi Sandhu, and Ram Krishnan. Label-based
access control: An abac model with enumerated authorization pol-
icy. In Proceedings of the 2016 ACM International Workshop on
Attribute Based Access Control, pages 1–12. ACM, 2016.

[BSW07] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-
policy attribute-based encryption. In IEEE Security and Privacy,
2007., 2007.

[Can01] Ran Canetti. Universally composable security: A new paradigm for
cryptographic protocols. In Proceedings 2001 IEEE International
Conference on Cluster Computing, pages 136–145. IEEE, 2001.

[CFB05] Barbara Carminati, Elena Ferrari, and Elisa Bertino. Securing
xml data in third-party distribution systems. In Proceedings of the
14th ACM international conference on Information and knowledge
management, pages 99–106. ACM, 2005.

[CGKO11] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky.
Searchable symmetric encryption: improved definitions and effi-
cient constructions. Journal of Computer Security, 19(5):895–934,
2011.

[CML06] Chi-Yin Chow, Mohamed F Mokbel, and Xuan Liu. A peer-to-peer
spatial cloaking algorithm for anonymous location-based service. In
Proceedings of the 14th annual ACM international symposium on

190

Bibliography

Advances in geographic information systems, pages 171–178. ACM,
2006.

[Com18] MacKenzie F Common. Facebook and cambridge analytica: let
this be the high-water mark for impunity. LSE Business Review,
2018.

[Com19] Federal Trade Commission. Data security, 2019.

[Con18] Nicholas Confessore. Cambridge analytica and facebook: The scan-
dal and the fallout so far. The New York Times, 4:2018, 2018.

[CRK+13] Jianneng Cao, Fang-Yu Rao, Mehmet Kuzu, Elisa Bertino, and
Murat Kantarcioglu. Efficient tree pattern queries on encrypted
xml documents. In Proceedings of the Joint EDBT/ICDT 2013
Workshops, pages 111–120. ACM, 2013.

[CSC+06] Mike Y Chen, Timothy Sohn, Dmitri Chmelev, Dirk Haehnel, Jef-
frey Hightower, Jeff Hughes, Anthony LaMarca, Fred Potter, Ian
Smith, and Alex Varshavsky. Practical metropolitan-scale posi-
tioning for gsm phones. In International Conference on Ubiquitous
Computing, pages 225–242. Springer, 2006.

[CYW+11] Ning Cao, Zhenyu Yang, Cong Wang, Kui Ren, and Wenjing Lou.
Privacy-preserving query over encrypted graph-structured data in
cloud computing. In Distributed Computing Systems (ICDCS),
2011 31st International Conference on, pages 393–402. IEEE, 2011.

[CZZ16] Qi Cheng, Jun Zhang, and Jincheng Zhuang. Lwe from non-
commutative group rings. arXiv preprint arXiv:1612.06670, 2016.

[Dam88] Ivan Bjerre Damg̊ard. Payment systems and credential mechanisms
with provable security against abuse by individuals. In Conference
on the Theory and Application of Cryptography, pages 328–335.
Springer, 1988.

[DH76] Whitfield Diffie and Martin Hellman. New directions in cryptog-
raphy. IEEE transactions on Information Theory, 22(6):644–654,
1976.

[DMS04] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The
second-generation onion router. Technical report, Naval Research
Lab Washington DC, 2004.

191

Bibliography

[Fal11] Howard Falk. Applications, architectures, and protocol design is-
sues for mobile social networks: A survey. Proceedings of the IEEE,
99(12):2125–2129, 2011.

[FCC+15] Zhe Fan, Byron Choi, Qian Chen, Jianliang Xu, Haibo Hu, and
Sourav S Bhowmick. Structure-preserving subgraph query ser-
vices. IEEE Transactions on Knowledge and Data Engineering,
27(8):2275–2290, 2015.

[Fer10] Elena Ferrari. Access Control in Data Management Systems. Mor-
gan and Claypool Publishers, 2010.

[FF06] Armin Falk and Urs Fischbacher. A theory of reciprocity. Games
and economic behavior, 54(2), 2006.

[FFG02] Ernst Fehr, Urs Fischbacher, and Simon Gächter. Strong reci-
procity, human cooperation, and the enforcement of social norms.
Human Nature, 13(1), 2002.

[fFRoE18] European Union Agency for Fundamental Rights and Council
of Europe. Handbook on European data protection law. Publi-
cations Office of the European Union, 2018.

[FSH09] Julien Freudiger, Reza Shokri, and Jean-Pierre Hubaux. On the op-
timal placement of mix zones. In International Symposium on Pri-
vacy Enhancing Technologies Symposium, pages 216–234. Springer,
2009.

[GJ78] Michael R Garey and David S Johnson. “strong”np-completeness
results: Motivation, examples, and implications. Journal of the
ACM (JACM), 25(3):499–508, 1978.

[GJ79] Michael R Garey and David S Johnson. A guide to the theory of
np-completeness. WH Freemann, New York, 70, 1979.

[GKK+08] Gabriel Ghinita, Panos Kalnis, Ali Khoshgozaran, Cyrus Shahabi,
and Kian-Lee Tan. Private queries in location based services:
anonymizers are not necessary. In Proceedings of the 2008 ACM
SIGMOD international conference on Management of data, pages
121–132. ACM, 2008.

[GKR04] Rosario Gennaro, Hugo Krawczyk, and Tal Rabin. Secure hashed
diffie-hellman over non-ddh groups. In International Conference on
the Theory and Applications of Cryptographic Techniques, pages
361–381. Springer, 2004.

192

Bibliography

[GTK01] Lise Getoor, Benjamin Taskar, and Daphne Koller. Selectivity
estimation using probabilistic models. In ACM SIGMOD Record,
volume 30, pages 461–472. ACM, 2001.

[Gut06] Andreas Gutscher. Coordinate transformation-a solution for the
privacy problem of location based services? In Parallel and Dis-
tributed Processing Symposium, 2006. IPDPS 2006. 20th Interna-
tional, pages 7–pp. IEEE, 2006.

[GZC08] Fausto Giunchiglia, Rui Zhang, and Bruno Crispo. Relbac: Re-
lation based access control. In Semantics, Knowledge and Grid,
2008. SKG’08. Fourth International Conference on. IEEE, 2008.

[HA11] Hongxin Hu and Gail-Joon Ahn. Multiparty authorization frame-
work for data sharing in online social networks. In IFIP An-
nual Conference on Data and Applications Security and Privacy.
Springer, 2011.

[HAJ12] Hongxin Hu, Gail-Joon Ahn, and Jan Jorgensen. Multiparty access
control for online social networks: model and mechanisms. IEEE
Transactions on Knowledge and Data Engineering, 25(7):1614–
1627, 2012.

[HAK00] Alexander Hinneburg, Charu Aggarwal, and Daniel A Keim. What
is the nearest neighbor in high dimensional spaces? In Proceeding
of the 26th VLDB, 2000.

[HFK+13] Vincent C Hu, David Ferraiolo, Rick Kuhn, Arthur R Friedman,
Alan J Lang, Margaret M Cogdell, Adam Schnitzer, Kenneth San-
dlin, Robert Miller, Karen Scarfone, et al. Guide to attribute based
access control (abac) definition and considerations (draft). NIST
special publication, 800(162), 2013.

[HIM05] Hakan Hacıgümüş, Bala Iyer, and Sharad Mehrotra. Query opti-
mization in encrypted database systems. In International Confer-
ence on Database Systems for Advanced Applications, pages 43–55.
Springer, 2005.

[HL10] Carmit Hazay and Yehuda Lindell. Efficient secure two-party pro-
tocols: Techniques and constructions. Springer, 2010.

[HLB11] Christian Hutter, Raphael Lorch, and Klemens Bohm. Evolving
cooperation through reciprocity using a centrality-based reputation
system. In 2011 IEEE/WIC/ACM International Conferences on

193

Bibliography

Web Intelligence and Intelligent Agent Technology, volume 2, pages
264–271. IEEE, 2011.

[HLK19] Florian Hahn, Nicolas Loza, and Florian Kerschbaum. Joins over
encrypted data with fine granular security. In Data Engineering,
2019. ICDE 2019. IEEE 35th International Conference on, pages
674–685. IEEE, 2019.

[HMS98] Elizabeth Hoffman, Kevin A McCabe, and Vernon L Smith. Be-
havioral foundations of reciprocity: Experimental economics and
evolutionary psychology. Economic inquiry, 36(3):335–352, 1998.

[HMT04] Bijit Hore, Sharad Mehrotra, and Gene Tsudik. A privacy-
preserving index for range queries. In Proceedings of the Thirti-
eth international conference on Very large data bases-Volume 30,
pages 720–731. VLDB Endowment, 2004.

[HVS+10] Xiaoyun He, Jaideep Vaidya, Basit Shafiq, Nabil Adam, and Xi-
aodong Lin. Reachability analysis in privacy-preserving perturbed
graphs. In Web Intelligence and Intelligent Agent Technology (WI-
IAT), 2010 IEEE/WIC/ACM International Conference on, vol-
ume 1, pages 691–694. IEEE, 2010.

[IMI10] Sergio Ilarri, Eduardo Mena, and Arantza Illarramendi. Location-
dependent query processing: Where we are and where we are head-
ing. ACM Computing Surveys (CSUR), 42(3), 2010.

[IY11] Mohamed Ibrahim and Moustafa Youssef. Cellsense: An accurate
energy-efficient gsm positioning system. IEEE Transactions on
Vehicular Technology, 61(1):286–296, 2011.

[Joh73] David S Johnson. Near-optimal bin packing algorithms. PhD thesis,
Massachusetts Institute of Technology, 1973.

[KHC16] Hyeong-Il Kim, Seungtae Hong, and Jae-Woo Chang. Hilbert
curve-based cryptographic transformation scheme for spatial query
processing on outsourced private data. Data & Knowledge Engi-
neering, 104:32–44, 2016.

[KKNO16] Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam
O’Neill. Generic attacks on secure outsourced databases. In Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 1329–1340. ACM, 2016.

194

Bibliography

[KL07] Jonathan Katz and Yehuda Lindell. Introduction to modern cryp-
tography, 2007.

[KMVOV96] Jonathan Katz, Alfred J Menezes, Paul C Van Oorschot, and
Scott A Vanstone. Handbook of applied cryptography. CRC press,
1996.

[KPR12] Seny Kamara, Charalampos Papamanthou, and Tom Roeder. Dy-
namic searchable symmetric encryption. In Proceedings of the 2012
ACM conference on Computer and communications security, pages
965–976. ACM, 2012.

[KSGM03] Sepandar D Kamvar, Mario T Schlosser, and Hector Garcia-
Molina. The eigentrust algorithm for reputation management in
p2p networks. In Proceedings of the 12th international conference
on World Wide Web, pages 640–651. ACM, 2003.

[Kun13] Jérôme Kunegis. Konect: the koblenz network collection. In Pro-
ceedings of the 22nd International Conference on World Wide Web,
pages 1343–1350. ACM, 2013.

[LBCP08] Dan Lin, Elisa Bertino, Reynold Cheng, and Sunil Prabhakar. Po-
sition transformation: a location privacy protection method for
moving objects. In Proceedings of the SIGSPATIAL ACM GIS
2008 International Workshop, pages 62–71, 2008.

[LDR06] Kristen LeFevre, David J DeWitt, and Raghu Ramakrishnan.
Mondrian multidimensional k-anonymity. In Data Engineering,
2006. ICDE’06. Proceedings of the 22nd International Conference
on, pages 25–25. IEEE, 2006.

[LG09] G Locke and P Gallagher. Fips pub 186-3: Digital signature stan-
dard (dss). Federal Information Processing Standards Publication,
3:186–3, 2009.

[LGR+12] Xiaohui Li, Dawu Gu, Yanli Ren, Ning Ding, and Kan Yuan. Ef-
ficient ciphertext-policy attribute based encryption with hidden
policy. In International Conference on Internet and Distributed
Computing Systems, pages 146–159. Springer, 2012.

[LK+07] Marc Lasserre, Vach Kompella, et al. Virtual private lan service
(vpls) using label distribution protocol (ldp) signaling. Technical
report, RFC 4762, January, 2007.

195

Bibliography

[LK14] J Leskovec and A Krevl. Snap datasets: Stanford large net-
work dataset collection. URL http://snap.stanford.edu/data/cit-
HepTh.html, 2014.

[LLC+14] Jingwei Li, Jin Li, Xiaofeng Chen, Zheli Liu, and Chunfu Jia.
{MobiShare}+: Security improved system for location sharing
in mobile online social networks. J. Internet Serv. Inf. Secur.,
4(1):25–36, 2014.

[LLDM09] Jure Leskovec, Kevin J Lang, Anirban Dasgupta, and Michael W
Mahoney. Community structure in large networks: Natural clus-
ter sizes and the absence of large well-defined clusters. Internet
Mathematics, 6(1):29–123, 2009.

[LMSV11] Jake Loftus, Alexander May, Nigel P Smart, and Frederik Ver-
cauteren. On cca-secure somewhat homomorphic encryption. In
International Workshop on Selected Areas in Cryptography, pages
55–72. Springer, 2011.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal
lattices and learning with errors over rings. In Annual Interna-
tional Conference on the Theory and Applications of Cryptographic
Techniques, pages 1–23. Springer, 2010.

[LS15] Silvio Lattanzi and Yaron Singer. The power of random neighbors
in social networks. In Proceedings of the 8th ACM International
Conference on Web Search and Data Mining, 2015.

[LWW+10] Jin Li, Qian Wang, Cong Wang, Ning Cao, Kui Ren, and Wenjing
Lou. Fuzzy keyword search over encrypted data in cloud com-
puting. In INFOCOM, 2010 Proceedings IEEE, pages 1–5. IEEE,
2010.

[LYL+17] Jin Li, Hongyang Yan, Zheli Liu, Xiaofeng Chen, Xinyi Huang,
and Duncan S Wong. Location-sharing systems with enhanced
privacy in mobile online social networks. IEEE Systems Journal,
11(2):439–448, 2017.

[MC15] Rajendra Prasad Mahapatra and Partha Sarathi Chakraborty.
Comparative analysis of nearest neighbor query processing tech-
niques. Procedia Computer Science, 57, 2015.

[MCA06] Mohamed F Mokbel, Chi-Yin Chow, and Walid G Aref. The new
casper: Query processing for location services without compromis-

196

Bibliography

ing privacy. In Proceedings of the 32nd international conference on
Very large data bases, pages 763–774. VLDB Endowment, 2006.

[MKNK15] Xianrui Meng, Seny Kamara, Kobbi Nissim, and George Kollios.
Grecs: graph encryption for approximate shortest distance queries.
In Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, pages 504–517. ACM, 2015.

[MP10] Hossein Maserrat and Jian Pei. Neighbor query friendly compres-
sion of social networks. In Proceedings of the 16th ACM SIGKDD
international conference on Knowledge discovery and data mining,
pages 533–542. ACM, 2010.

[MPS99] S Muthukrishnan, Viswanath Poosala, and Torsten Suel. On rect-
angular partitionings in two dimensions: Algorithms, complexity
and applications. In International Conference on Database Theory,
pages 236–256. Springer, 1999.

[MS18] Dinesh P Mehta and Sartaj Sahni. Handbook of data structures
and applications. Chapman and Hall/CRC, 2nd edition edition,
2018.

[MTR+09] Clara Mancini, Keerthi Thomas, Yvonne Rogers, Blaine A Price,
Lukazs Jedrzejczyk, Arosha K Bandara, Adam N Joinson, and
Bashar Nuseibeh. From spaces to places: emerging contexts in
mobile privacy. In Proceedings of the 11th international conference
on Ubiquitous computing, pages 1–10. ACM, 2009.

[MVW98] Yossi Matias, Jeffrey Scott Vitter, and Min Wang. Wavelet-based
histograms for selectivity estimation. In ACM SIGMoD Record,
volume 27, pages 448–459. ACM, 1998.

[NKW15] Muhammad Naveed, Seny Kamara, and Charles V Wright. In-
ference attacks on property-preserving encrypted databases. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, pages 644–655. ACM, 2015.

[NTL+11] Arvind Narayanan, Narendran Thiagarajan, Mugdha Lakhani,
Michael Hamburg, Dan Boneh, et al. Location privacy via pri-
vate proximity testing. In NDSS, volume 11, 2011.

[OEHB11] Ghizlane Orhanou, Säıd El Hajji, and Youssef Bentaleb. Eps aes-
based confidentiality and integrity algorithms: Complexity study.
In Multimedia Computing and Systems (ICMCS), 2011 Interna-
tional Conference on, pages 1–4. IEEE, 2011.

197

Bibliography

[OKM19] Safa Otoum, Burak Kantarci, and Hussein T Mouftah. On the
feasibility of deep learning in sensor network intrusion detection.
IEEE Networking Letters, 1(2):68–71, 2019.

[OP03] Sejong Oh and Seog Park. Task–role-based access control model.
Information systems, 28(6), 2003.

[PLL+14] Balaji Palanisamy, Ling Liu, Kisung Lee, Shicong Meng, Yuzhe
Tang, and Yang Zhou. Anonymizing continuous queries with delay-
tolerant mix-zones over road networks. Distributed and Parallel
Databases, 32(1):91–118, 2014.

[PU09] A John Prakash and V Rhymend Uthariaraj. Multicrypt: A prov-
ably secure encryption scheme for multicast communication. In
Networks and Communications, 2009. NETCOM’09. First Inter-
national Conference on, pages 246–253. IEEE, 2009.

[PWS+14] Krishna PN Puttaswamy, Shiyuan Wang, Troy Steinbauer, Di-
vyakant Agrawal, Amr El Abbadi, Christopher Kruegel, and Ben Y
Zhao. Preserving location privacy in geosocial applications. IEEE
TMC, 13(1):159–173, 2014.

[PYJ14] Liaojun Pang, Jie Yang, and Zhengtao Jiang. A survey of research
progress and development tendency of attribute-based encryption.
The Scientific World Journal, 2014, 2014.

[Rab93] Matthew Rabin. Incorporating fairness into game theory and eco-
nomics. The American economic review, 1993.

[RH05] Naveen Reddy and Jayant R Haritsa. Analyzing plan diagrams of
database query optimizers. In Proceedings of the 31st international
conference on Very large data bases, pages 1228–1239. VLDB En-
dowment, 2005.

[Rib12] Paulo Ribenboim. The book of prime number records. Springer
Science & Business Media, 2012.

[RLFK04] Indrakshi Ray, Na Li, Robert France, and Dae-Kyoo Kim. Using
uml to visualize role-based access control constraints. In Proceed-
ings of the ninth ACM symposium on Access control models and
technologies. ACM, 2004.

[Rob57] C Carl Robusto. The cosine-haversine formula. The American
Mathematical Monthly, 64(1), 1957.

198

Bibliography

[SBC09] Luca Stanca, Luigino Bruni, and Luca Corazzini. Testing theories
of reciprocity. Journal of economic behavior & organization, 71(2),
2009.

[SCFY96] Ravi S Sandhu, Edward J Coynek, Hal L Feinsteink, and Charles E
Youmank. Role-based access control models. IEEE computer,
29(2), 1996.

[SdV00] Pierangela Samarati and Sabrina Capitani de Vimercati. Access
control: Policies, models, and mechanisms. In International School
on Foundations of Security Analysis and Design, pages 137–196.
Springer, 2000.

[SEA18] Microsoft SEAL (release 3.1). https://github.com/Microsoft/

SEAL, December 2018. Microsoft Research.

[SEGB] Gabriela Suntaxi, Aboubakr Achraf El Ghazi, and Klemens Böhm.
Preserving secrecy in mobile social networks. ACM Transactions
on Cyber-Physical Systems, in press.

[SEGB19a] Gabriela Suntaxi, Aboubakr Achraf El Ghazi, and Klemens Böhm.
On preserving secrecy in mobile social networks. Technical report,
Karlsruhe Institute of Technology, 2019.

[SEGB19b] Gabriela Suntaxi, Achraf El Ghazi, and Klemens Böhm. Mutual
authorizations: Semantics and integration issues. In Proceedings
of the 24th ACM Symposium on Access Control Models and Tech-
nologies, SACMAT ’19, Toronto, Canada, 2019. ACM.

[SEGB19c] Gabriela Suntaxi, Achraf El Ghazi, and Klemens Böhm. On mutual
authorizations: Semantics, integration issues, and performance.
Technical report, Karlsruhe Institute of Technology, 2019.

[SEGB20] Gabriela Suntaxi, Aboubakr Achraf El Ghazi, and Klemens Böhm.
Secrecy and performance models for query processing on out-
sourced graph data. Distributed and Parallel Databases, January
2020.

[SL12] Yan Sun and Yuhong Liu. Security of online reputation systems:
The evolution of attacks and defenses. IEEE Signal Processing
Magazine, 29(2):87–97, 2012.

[SMJG05] Basit Shafiq, Ammar Masood, James Joshi, and Arif Ghafoor. A
role-based access control policy verification framework for real-time

199

https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL

Bibliography

systems. In Object-Oriented Real-Time Dependable Systems, 2005.
WORDS 2005. IEEE, 2005.

[SMSB14] Irina Shklovski, Scott D Mainwaring, Halla Hrund Skúladóttir, and
Höskuldur Borgthorsson. Leakiness and creepiness in app space:
Perceptions of privacy and mobile app use. In Proceedings of the
32nd annual ACM conference on Human factors in computing sys-
tems, pages 2347–2356. ACM, 2014.

[SNS10] Amril Syalim, Takashi Nishide, and Kouichi Sakurai. Preserving
integrity and confidentiality of a directed acyclic graph model of
provenance. Data and Applications Security and Privacy XXIV,
pages 311–318, 2010.

[SS08] Daniel A Schult and P Swart. Exploring network structure, dy-
namics, and function using networkx. In Proceedings of the 7th
Python in Science Conferences (SciPy 2008), volume 2008, pages
11–16, 2008.

[SS15] Thomas Shortell and Ali Shokoufandeh. Secure signal processing
using fully homomorphic encryption. In International Conference
on Advanced Concepts for Intelligent Vision Systems, pages 93–
104. Springer, 2015.

[SU15] Seydi Ahmet Satici and Recep Uysal. Well-being and problematic
facebook use. Computers in Human Behavior, 49:185–190, 2015.

[SW10] Stefan Saroiu and Alec Wolman. I am a sensor, and i approve
this message. In Proceedings of the Eleventh Workshop on Mobile
Computing Systems & Applications, pages 37–42. ACM, 2010.

[SYY+16] Nan Shen, Jun Yang, Ke Yuan, Chuan Fu, and Chunfu Jia. An
efficient and privacy-preserving location sharing mechanism. Com-
puter Standards & Interfaces, 44:102–109, 2016.

[SZFJ09] Jie Shi, Hong Zhu, Ge Fu, and Tao Jiang. On the soundness
property for sql queries of fine-grained access control in dbmss.
In 2009 Eigth IEEE/ACIS International Conference on Computer
and Information Science. IEEE, 2009.

[TLT15] Romuald Thion, François Lesueur, and Meriam Talbi. Tuple-based
access control: a provenance-based information flow control for re-
lational data. In Proceedings of the 30th Annual ACM Symposium
on Applied Computing. ACM, 2015.

200

Bibliography

[TSBV05] Goce Trajcevski, Peter Scheuermann, Hervé Brönnimann, and
Agnès Voisard. Dynamic topological predicates and notifications
in moving objects databases. In Proceedings of the 6th MDM In-
ternational Conference, pages 77–85. ACM, 2005.

[VdHKAS+16] Rens W Van der Heijden, Frank Kargl, Osama MF Abu-Sharkh,
et al. Enhanced position verification for vanets using subjective
logic. In 2016 IEEE 84th Vehicular Technology Conference (VTC-
Fall), pages 1–7. IEEE, 2016.

[VFJ+10] Sabrina Vimercati, Sara Foresti, Sushil Jajodia, Stefano Para-
boschi, and Pierangela Samarati. Encryption policies for regu-
lating access to outsourced data. ACM Transactions on Database
Systems (TODS), 35(2), 2010.

[VLSD+10] Peter Van Liesdonk, Saeed Sedghi, Jeroen Doumen, Pieter Hartel,
and Willem Jonker. Computationally efficient searchable symmet-
ric encryption. In Workshop on Secure Data Management, pages
87–100. Springer, 2010.

[WD08] Jieping Wang and Xiaoyong Du. A secure multi-dimensional par-
tition based index in das. In Asia-Pacific Web Conference, pages
319–330. Springer, 2008.

[WL06] Hui Wang and Laks VS Lakshmanan. Efficient secure query eval-
uation over encrypted xml databases. In Proceedings of the 32nd
international conference on Very large data bases, pages 127–138.
VLDB Endowment, 2006.

[WRD+17] Qian Wang, Kui Ren, Minxin Du, Qi Li, and Aziz Mohaisen.
Secgdb: Graph encryption for exact shortest distance queries with
efficient updates. In International Conference on Financial Cryp-
tography and Data Security, pages 79–97. Springer, 2017.

[WSI03] Yodai Watanabe, Junji Shikata, and Hideki Imai. Equivalence
between semantic security and indistinguishability against chosen
ciphertext attacks. In International Workshop on Public Key Cryp-
tography, pages 71–84. Springer, 2003.

[WWY+12] Zachary Weinberg, Jeffrey Wang, Vinod Yegneswaran, Linda
Briesemeister, Steven Cheung, Frank Wang, and Dan Boneh. Ste-
gotorus: a camouflage proxy for the tor anonymity system. In
Proceedings of the 2012 ACM conference on Computer and com-
munications security, pages 109–120. ACM, 2012.

201

Bibliography

[WXL12] Wei Wei, Fengyuan Xu, and Qun Li. Mobishare: Flexible privacy-
preserving location sharing in mobile online social networks. In
INFOCOM, 2012 Proceedings IEEE, pages 2616–2620. IEEE, 2012.

[XWL13] Runhua Xu, Yang Wang, and Bo Lang. A tree-based cp-abe scheme
with hidden policy supporting secure data sharing in cloud com-
puting. In 2013 International Conference on Advanced Cloud and
Big Data, pages 51–57. IEEE, 2013.

[XZTS08] Kefeng Xuan, Geng Zhao, David Taniar, and Bala Srinivasan. Con-
tinuous range search query processing in mobile navigation. In Par-
allel and Distributed Systems ICPADS’08, pages 361–368. IEEE,
2008.

[YFY14] Peipei Yi, Zhe Fan, and Shuxiang Yin. Privacy-preserving reacha-
bility query services for sparse graphs. In Data Engineering Work-
shops (ICDEW), 2014 IEEE 30th International Conference on,
pages 32–35. IEEE, 2014.

[YPBV14] Xun Yi, Russell Paulet, Elisa Bertino, and Vijay Varadharajan.
Practical k nearest neighbor queries with location privacy. In 2014
IEEE 30th ICDE. IEEE, 2014.

[YT05] Eric Yuan and Jin Tong. Attributed based access control (abac)
for web services. In Web Services, 2005. ICWS 2005. IEEE, 2005.

[YZZY15] Dingqi Yang, Daqing Zhang, Vincent W Zheng, and Zhiyong Yu.
Modeling user activity preference by leveraging user spatial tempo-
ral characteristics in lbsns. IEEE Transactions on Systems, Man,
and Cybernetics: Systems, 45(1), 2015.

[ZB11] Paul A Zandbergen and Sean J Barbeau. Positional accuracy of
assisted gps data from high-sensitivity gps-enabled mobile phones.
The Journal of Navigation, 64(3):381–399, 2011.

[ZH07] Runfang Zhou and Kai Hwang. Powertrust: A robust and scal-
able reputation system for trusted peer-to-peer computing. IEEE
Transactions on parallel and distributed systems, 18(4):460–473,
2007.

[ZLLH12] Yao Zheng, Ming Li, Wenjing Lou, and Y Thomas Hou. Sharp:
Private proximity test and secure handshake with cheat-proof lo-
cation tags. In European Symposium on Research in Computer
Security, pages 361–378. Springer, 2012.

202

Bibliography

[ZP08] Bin Zhou and Jian Pei. Preserving privacy in social networks
against neighborhood attacks. In Data Engineering, 2008. ICDE
2008. IEEE 24th International Conference on, pages 506–515.
IEEE, 2008.

[ZSW+14] Yingguang Zhang, Sen Su, Yulong Wang, Weifeng Chen, and
Fangchun Yang. Privacy-assured substructure similarity query over
encrypted graph-structured data in cloud. Security and Commu-
nication Networks, 7(11):1933–1944, 2014.

203

	01_Titelblatt_der_vorgelegten_Dissertation.pdf
	Preserving_secrecy_in_Online_Social_Networks.pdf
	Acknowledgements
	Abstract
	Deutsche Zusammenfassung
	Introduction
	Challenges and Contributions
	Access Control Model - Flexibility Problem
	Authorization Mechanism - Distrust Problem

	Dissertation Outline

	Access Control Systems
	Access Control Policies
	Access Control Models
	Authorization
	Quality Criteria for Access Control Models
	Attribute-based Access Control

	Authorization Mechanism

	Cryptography
	Encryption Schemes
	Symmetric Encryption
	Asymmetric Encryption
	Homomorphic Encryption
	Attribute-based Encryption

	Secure Cryptographic Schemes
	Formal secrecy definitions
	Secrecy Proofs

	Standard Secrecy Definitions for Encryption Schemes
	Standard Secrecy Guarantees for Encryption Schemes
	Standard Adversary Models for Encryption Schemes
	Indistinguishability under chosen-plaintext attacks

	Integrating Reciprocity into Access Control Models
	Mutual Authorizations: Syntax and Semantics
	Syntax
	Semantics
	Authorization Conflicts Resolution
	Authorized Access Request

	Extending Mutual Authorizations
	Revocation Fraud Problem
	Sensitivity Problem
	Trust-based authorizations

	Integrating Mutual Authorizations into LBS
	Soundness Criteria
	Resolve Conflicts Algorithm
	Primitives and Algorithms for Mutual Authorizations
	System Architecture
	Design Alternatives for Integrating LBS with Mutual Authorizations

	Experiments
	Impact of Mutual Authorizations
	Experimental Validation of the Complexity Analysis of QF and FQ

	Related Work
	Summary

	Secure Outsourcing of Graph-Structured Data
	Our Secrecy Notion
	Notation
	Our Secrecy Notion for Graph-structured Data

	Our Secrecy Approach
	System Architecture
	Bucketization Challenges
	The Optimal Bucketization Problem
	Our Bucketization Approach
	Query Transformation
	Secrecy Proofs

	Performance Model
	Scale-Free Networks
	The Number-of-Buckets Model
	Query-Cost Model

	Experiments
	Experiment Setup
	Results

	Related Work
	Secrecy Notions - Related Work
	Bucketization on Relational Databases - Related Work
	Secure Storage for Grap-Structured Data - Related Work

	Summary

	Providing Secure Services to Users of Online Social Networks
	Problem Definition
	System Architecture
	Adversary Model
	Secrecy Guarantees
	Preliminaries and Notation

	Our Approaches
	Basic Two-layer Symmetric Encryption (basic 2lSE)
	Basic Two-layer Attribute-based Encryption (basic 2lABE)
	Extending the Basic Schemes
	Secrecy Proofs

	Time Complexity Analysis
	2lSE - Time Complexity Analysis
	2lABE - Time Complexity Analysis
	Discussion

	Experiments
	Experiment Setup
	Results

	Related Work
	Summary

	Conclusion and Future Work
	Summary
	Future Work

	Appendices
	Hardness Result

