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NONLINEAR SCALAR FIELD EQUATION

WITH COMPETING NONLOCAL TERMS

PIETRO D’AVENIA, JAROSŁAW MEDERSKI, AND ALESSIO POMPONIO

Abstract. We find radial and nonradial solutions to the following nonlocal problem

−∆u+ ωu =
(

Iα ∗ F (u)
)

f(u)−
(

Iβ ∗G(u)
)

g(u) in R
N

under general assumptions, in the spirit of Berestycki and Lions, imposed on f and g, where N ≥ 3,
0 ≤ β ≤ α < N , ω ≥ 0, f, g : R → R are continuous functions with corresponding primitives F,G,
and Iα, Iβ are the Riesz potentials. If β > 0, then we deal with two competing nonlocal terms
modelling attractive and repulsive interaction potentials.

1. Introduction

This paper mainly deals with the following problem

(1.1) −∆u =
(
Iα ∗ F (u)

)
f(u)−

(
Iβ ∗G(u)

)
g(u) in R

N ,

where N ≥ 3, 0 ≤ β ≤ α < N , f, g : R → R are continuous functions with corresponding primitives

F (s) =

∫ s

0
f(t)dt, G(s) =

∫ s

0
g(t)dt.

Moreover Iγ : RN → R is the Riesz potential

Iγ(x) :=
Γ(N−γ

2 )

Γ(γ2 )π
N/22γ |x|N−γ for x ∈ R

N \ {0} and γ ∈ (0, N),

while we set I0 = δ0, namely the identity for the convolution.
If N = 3, α = 2, β = 0, F (s) = 1√

2
|s|2 and G(s) = s, then (1.1) is the well-known Choquard, or

Choquard-Pekar equation

−∆u+ u =
(
I2 ∗ |u|2

)
u in R

N .

This equation comes, for instance, from an approximation to the Hartree-Fock theory of a plasma
[14,24]. A variational approach for this case was presented by Lieb [14] and Lions [16].

More generally, if N ≥ 3, F (s) = 1√
p |s|p, for suitable p, α > 0 and G(s) = s, then weak solutions

to (1.1) can be obtained by means of critical points of the associated functional. If, for instance,
N+α
N < p < N+α

N−2 and β = 0, then, according to the work of Moroz and Van Schaftingen [21],

the Hardy-Littlewood-Sobolev inequality implies that
(
Iα ∗F (u)

)
F (u) ∈ L1(RN ) for u ∈ H1(RN ).
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Moreover the associated functional is well-defined and of class C1 on H1(RN ), and its critical points
correspond to solutions to

(1.2) −∆u+ u =
(
Iα ∗ F (u)

)
f(u) in R

N .

A ground state solution and its properties was obtained in [21]. The same authors in [22] also
studied the existence of solutions with a general nonlinearity F in the spirit of the classical result
of Berestycki and Lions [6], namely

(1.3) |sf(s)| ≤ C
(
|s|N+α

N + |s|
N+α
N−2

)
, lim

s→0
F (s)/|s|N+α

N = lim
|s|→+∞

F (s)/|s|
N+α
N−2 = 0, F (s0) 6= 0,

for some s0 6= 0 and C > 0, see also a survey [23] and the references therein. Note that, if α = 0
in (1.2), since I0 ∗F (u) = F (u), (1.3) covers the Berestycki-Lions growth assumptions only for the
nonnegative (attractive) nonlinearity F 2(s) ≥ 0 of the corresponding energy functional (see (3.3)
of [6]).

On the other hand, as for instance in the Hartree-Fock theory, the interaction potential could
be also repulsive [5, 17], i.e. with β > 0 and a non-trivial G(s) ≥ 0. Moreover problems similar to
(1.1) may admit some local terms as well, see also [23] and the references therein.

Our aim is to investigate both nonlinear phenomena with both nonlocal terms (0 < β ≤ α)
in (1.1), since, in the limiting case α = β = 0, we can fully cover the Berestycki and Lions
assumptions [6].

We impose the following assumptions on f and g:

(H1) there is a constant C > 0 and p ∈
(

2β
N−2 ,

N+β
N−2

]
such that |sf(s)| ≤ C|s|

N+α
N−2 and 0 ≤

g(s)s ≤ C
(
|s|p + |s|

N+β
N−2

)
for s ∈ R;

(H2) lim
s→0

F (s)

|s|
N+α
N−2

= lim
|s|→+∞

F (s)

|s|
N+α
N−2

= 0;

(H3) there is s0 > 0 such that F (s0) 6= 0; if α = β, then we assume also F (s0) > G(s0).

Observe that, if 0 ≤ β < N−2
2 , then, due to the continuity of g, we can take p = 1 ∈

(
2β
N−2 ,

N+β
N−2

]
.

We remark that these kinds of assumptions follow naturally from the local case, namely when
α = β = 0, and equation (1.1) becomes simply

(1.4) −∆u = h(u) in R
N .

This problem has been studied in [6] and [25,26], under general assumptions. In particular, in [25,26]
Struwe considered a continuous and odd function h : R → R with primitive H(s) =

∫ s
0 h(t) dt

such that

(i) −∞ ≤ lim sups→0 h(s)s/|s|
2N
N−2 ≤ 0;

(ii) −∞ ≤ lim sup|s|→+∞ h(s)s/|s|
2N
N−2 ≤ 0;

(iii) there is s0 > 0 such that H(s0) > 0.

Observe that the above assumptions contain those in [6]. As usual, by the maximum principle, it is

enough to solve (1.4) when lim sup|s|→+∞ h(s)s/|s|
2N
N−2 = 0. Now, taking F and G even functions

such that

F 2(s) =

∫ s

0
max{h(t), 0} dt and G2(s) =

∫ s

0
max{−h(t), 0} dt, for s ≥ 0,

we get H(s) = F 2(s) − G2(s) and, in the local case α = β = 0, assumptions (H2) and (H3) are
clearly satisfied. Moreover F and G satisfy the following condition

(H∗
1 ) there is a constant C > 0 such that |(F 2)′(s)s| ≤ C|s|

2N
N−2 and 0 ≤ (G2)′(s)s ≤ C

(
|s|2 +

|s|
2N
N−2

)
for s ∈ R.
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This is a slightly weaker variant of (H1), which is essentially designed for the nonlocal problem.
In fact, with our argument, one can provide a different proof of the existence of a radial solution
under assumptions (i)–(iii) from [25,26].
Further progress on the Berestycki-Lions problem (1.4) has been made in [12, 18, 19]; see also the
references therein.

We look for a weak solution u ∈ D1,2(RN ) to (1.1), i.e.
∫

RN

∇u · ∇ψ dx =

∫

RN

(
Iα ∗ F (u)

)
f(u)ψ dx−

∫

RN

(
Iβ ∗G(u)

)
g(u)ψ dx

for any ψ ∈ C∞
0 (RN ), where D1,2(RN ) stands for the completion of C∞

0 (RN ) with respect to the
norm ‖∇ · ‖2.

At least formally solutions of (1.1) are critical points of the functional I : D1,2(RN ) → R∪{+∞}
defined as

I(u) =
∫

RN

|∇u|2 dx−
∫

RN

(
Iα ∗ F (u)

)
F (u) dx+

∫

RN

(
Iβ ∗G(u)

)
G(u) dx,

where D1,2(RN ). Since |F (s)| ≤ C|s|
N+α
N−2 for some constant C > 0, we have that

(
Iα ∗F (u)

)
F (u) ∈

L1(RN ). On the other hand
(
Iβ ∗G(u)

)
G(u) ∈ L1

loc(R
N ) and need not be integrable in RN . There-

fore I may be infinite on a dense subset of D1,2(RN ) and, thus, cannot be Fréchet-differentiable.
We remark also that scaling properties of the problem play a crucial role, but, in our case, seem

to be difficult to apply. Indeed, if α 6= β, then the nonlinear terms∫

RN

(
Iα ∗ F (u(λ·))

)
F (u(λ·)) dx = λ−(N+α)

∫

RN

(
Iβ ∗ F (u)

)
F (u) dx

∫

RN

(
Iβ ∗G(u(λ·))

)
G(u(λ·)) dx = λ−(N+β)

∫

RN

(
Iβ ∗G(u)

)
G(u) dx

have different scaling coefficients and, in particular, one cannot employ Lagrange multipliers as
in [6], rescaling as in [25], or Pohozaev constraint approach as in [18, 19].

Moreover, to recover the lack of compactness due to the fact that we are working in the whole
R
N , we start using the invariance of the functional I with respect to the orthogonal group action

O(N). Hence we may restrict our considerations to the subspace of radial function D1,2
O(N)(R

N ),

however I|D1,2
O(N)

(RN ) still preserves the above difficulties and may be infinite.

In this setting, our main result reads as follows.

Theorem 1.1. Assume that (H1)–(H3) hold. Then, there is a nontrivial and radial solution
u ∈ D1,2(RN ) to (1.1) such that

(
Iβ ∗G(u)

)
G(u) ∈ L1(RN ).

Let us describe our variational approach.
We observe that

(1.5) F(u) :=

∫

RN

(
Iα ∗ F (u)

)
F (u) dx

is well-defined on D1,2(RN ), however I may be infinite. Therefore we replace

(1.6) G(u) :=
∫

RN

(
Iβ ∗G(u)

)
G(u) dx

with

(1.7) Gn(u) :=
∫

RN

ϕn(x)
(
Iβ ∗G(u)

)
G(u) dx,

where {ϕn}n≥1 is a sequence of C∞
0 (RN ) radial functions, decreasing with respect to the radius,

such that, for every n ≥ 1, ϕn(x) = 1 for x ∈ Bn, ϕn(x) = 0 for x ∈ R
N \ B2n, 0 ≤ ϕn(x) ≤
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1, |x||∇ϕn(x)| ≤ c, and ϕn(x) ≤ ϕk(x) for n ≤ k and x ∈ R
N (Bn stands for the ball of radius n

centred at 0). Then Gn is well-defined on D1,2(RN ) and

(1.8) In(u) :=
∫

RN

|∇u|2 dx−F(u) + Gn(u)

is of class C1.
The functional In does not satisfy any variant of Ambrosetti-Rabinowitz condition [1], hence it is
difficult to find a bounded Palais-Smale sequence on a positive level. Inspired by [10,11] we apply
the variational method in [27, Theorem 2.8] to the functional

Jn := (σ, u) ∈ R×D1,2
O(N)(R

N ) 7→ In(u(eσ ·)) ∈ R.

We require a new nonlocal variant of the Brezis-Lieb Lemma for a general nonlinearity, see Lemma
2.1, and further compactness properties of F(u) on D1,2

O(N)(R
N ) demonstrated in Section 2. Then,

letting n → +∞, the careful analysis of the Mountain Pass levels provides a nontrivial radial
solution to (1.1). This approach provides also an alternative proof of the existence of a radial
solution in the local case considered in [25,26]. We would like to point out that, contrary to [6,25,26],

we no longer use the uniform decay at infinity of radial functions from D1,2
O(N)(R

N ) (see [6, Radial

Lemma A.III]) and the compactness lemma due to Strauss [6, Lemma A.I].
Therefore more can be said in higher dimensions. Let N ≥ 4, N 6= 5 and similarly as Bartsch

and Willem in [3] (cf. [12, 18, 19]), let us fix τ ∈ O(N) such that τ(x1, x2, x3) = (x2, x1, x3)
for x1, x2 ∈ R

M and x3 ∈ R
N−2M , where x = (x1, x2, x3) ∈ R

N = R
M × R

M × R
N−2M and

2 ≤M ≤ N/2, with N − 2M 6= 1. We define

Xτ :=
{
u ∈ D1,2(RN ) : u(x) = −u(τx) for all x ∈ R

N
}
.

Clearly, if u ∈ Xτ is radial, then u = 0. HenceXτ does not contain nontrivial radial functions. Then
let us consider O := O(M)×O(M)×O(N − 2M) ⊂ O(N) acting isometrically on D1,2(RN ) with

the subspace of invariant function denoted by D1,2
O (RN ). Moreover our functionals are invariant

under this action whenever f and g are odd or even.
Our result, in this setting, is

Theorem 1.2. Assume that (H1)–(H3) hold, f and g are odd or even, N ≥ 4 and N 6= 5. Then,

there is a nontrivial and nonradial solution u ∈ D1,2
O (RN )∩Xτ to (1.1) such that

(
Iβ ∗G(u)

)
G(u) ∈

L1(RN ).

Observe that in Theorem 1.1 and Theorem 1.2 we can take G(s) = s and β = 0 and we
obtain solutions in H1(RN ) solving the Choquard problem (1.2). In fact, dealing with the operator
−∆u+ u, more general assumptions imposed on F can be considered, which fully cover situation
in [22].

Actually, our argument can be, quite easily, adapted to the following problem

(1.9) −∆u+ ωu =
(
Iα ∗ F (u)

)
f(u)−

(
Iβ ∗G(u)

)
g(u) in R

N ,

where ω > 0, assuming that

(H ′
1) there is a constant C > 0 and p ∈

(
2β
N−2 ,

N+β
N−2

]
such that |sf(s)| ≤ C(|s|N+α

N + |s|
N+α
N−2 ) and

0 ≤ g(s)s ≤ C
(
|s|p + |s|

N+β
N−2

)
for s ∈ R;

(H ′
2) lim

s→0

F (s)

|s|N+α
N

= lim
|s|→+∞

F (s)

|s|
N+α
N−2

= 0;

(H ′
3) there is s0 > 0 such that F (s0) 6= 0; we assume also F (s0) > G(s0), if α = β > 0, and
F 2(s0) > G2(s0) + ωs20, if α = β = 0.
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Observe that the energy functional associated with (1.9) is given by

Kω(u) := I(u) + ω

∫

RN

|u|2 dx, u ∈ H1(RN ),

and may be also infinite due to the possible nonintegrable term
(
Iβ ∗G(u)

)
G(u).

Our results for equation (1.9) read as follows.

Theorem 1.3. Assume that (H ′
1)–(H ′

3) hold. Then, there is a nontrivial and radial solution u
to (1.9) in H1(RN ) such that

(
Iβ ∗ G(u)

)
G(u) ∈ L1(RN ). Moreover, if f and g are odd or even,

N ≥ 4 and N 6= 5, there is also a nontrivial and nonradial solution v to (1.9) in H1(RN ) ∩ Xτ

such that
(
Iβ ∗G(v)

)
G(v) ∈ L1(RN ).

In particular, if

(1.10) F (s) :=
1√
q
|s|q with 1 < q <

N + α

N − 2
, and G(s) :=

√
N − 2

N + β
|s|

N+β
N−2 ,

then F and G satisfy (H ′
1)–(H

′
3) if and only if ω ∈ (0, ω0), where

ω0 :=





2∗−2q
2∗(q−1)

(
N(q−1)

2q

) 2∗−2
2∗−2q

if α = β = 0,

+∞ if α > 0.

Then, finally, we obtain the following corollary.

Corollary 1.4. Suppose that F and G are given by (1.10).

(a) For any ω ∈ (0, ω0) there is a radially symmetric symmetric solution in H1(RN ) and a
nonradial solution in H1(RN ) ∩Xτ to (1.9).

(b) If ω /∈ (0, ω0), then (1.9) has only trivial finite energy solution.

Corollary 1.4 has been known only in the local case α = β = 0 and the problem appears
in nonlinear optics as well as in the the study of Bose–Einstein condensates [9, 20]. Note that
solutions exist only for 0 < ω < ω0 < +∞, see e.g. [6, 13, 19]. In the nonlocal case, for instance if
N = 3, q = 2 and α > β = 0, we solve the nonlocal cubic-quintic problem of the nonlinear optics
for all ω > 0, where Iα is a nonlocal response function determined by the details of the physical
process responsible for the nonlocality [8].

Through the paper we use the following notation.
We denote by ‖ · ‖k the usual norm in Lk(RN ), for k ≥ 1, and by BR the ball centered in 0 with
radius R > 0 in R

N . Recall that 2∗ = 2N
N−2 . Finally C is a generic positive constant which may

vary from line to line.

2. Functional setting and compactness properties

We prove our results for β > 0, the most difficult and fully nonlocal situation. Thus, from now
on, we assume that 0 < β ≤ α < N and (H1)–(H3) hold, with p = 1 when 0 < β < N−2

2 . The
proofs of the paper are simplified when β = 0 or α = β = 0 and we skip these cases.

It is standard to see that the functional F : L2∗(RN ) → R, defined in (1.5) is of class C1, cf. [22].
In order to control the convergence of F , we need the following nonlocal variant of the Brezis-

Lieb Lemma [7] for the general nonlinarity. Note that nonlocal variants for particular nonlinearities
have already appeared in [4, Lemma 2.2], [21, Lemma 2.4]. The proofs of [4,21] seem to be difficult
to adapt to the general nonlinear term. We provide an independent proof for any continuous f
satisfying (H1) and (H2).
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Lemma 2.1. Let un ⇀ u0 in D1,2(RN ). Then

lim
n

(∫

RN

(
Iα ∗ F (un

)
f(un)un dx−

∫

RN

(
Iα ∗ F (un − u0)

)
f(un)un dx

)

=

∫

RN

(
Iα ∗ F (u0)

)
f(u0)u0 dx.

Proof. We claim that, passing to a subsequence, for any s ∈ [0, 1],

(2.1) lim
n

∫

RN

(
Iα ∗ (f(un)un)

)
f(un − su0)u0 dx =

∫

RN

(
Iα ∗ (f(u0)u0)

)
f(u0 − su0)u0 dx.

Let ε > 0 and ψ ∈ C∞
0 (RN ) such that ‖u0 − ψ‖2∗ < ε. We have

∣∣∣∣
∫

RN

(
Iα ∗ (f(un)un)

)
f(un − su0)u0 dx−

∫

RN

(
Iα ∗ (f(u0)u0)

)
f(u0 − su0)u0 dx

∣∣∣∣

≤
∣∣∣∣
∫

RN

(
Iα ∗ (f(un)un)

)
f(un − su0)(u0 − ψ) dx

∣∣∣∣
︸ ︷︷ ︸

(A)

+

∣∣∣∣
∫

RN

(
Iα ∗ (f(un)un)

)(
f(un − su0)− f(u0 − su0)

)
ψ dx

∣∣∣∣
︸ ︷︷ ︸

(B)

+

∣∣∣∣
∫

RN

((
Iα ∗ (f(un)un)

)
−

(
Iα ∗ (f(u0)u0)

))
f(u0 − su0)ψ dx

∣∣∣∣
︸ ︷︷ ︸

(C)

+

∣∣∣∣
∫

RN

(
Iα ∗ (f(u0)u0)

)
f(u0 − su0)(ψ − u0) dx

∣∣∣∣
︸ ︷︷ ︸

(D)

.

Since {un} is a bounded sequence in L2∗(RN ), we deduce by (H1) that {f(un)un} is bounded

in L
2N

N+α (RN ). Moreover, by the continuity, we deduce that f(un)un converges to f(u0)u0 a.e.

on R
N along a subsequence. Therefore f(un)un tends weakly to f(u0)u0 in L

2N
N+α (RN ). As the

Riesz potential defines a linear and continuous map from L
2N

N+α (RN ) to L
2N

N−α (RN ), we obtain that

Iα ∗ (f(un)un) tends weakly to Iα ∗ (f(u0)u0) in L
2N

N−α (RN ). Moreover, since un− su0 converges to
u0 − su0 in Lqloc(R

N ), for 1 ≤ q < 2∗, by (H1) we infer that f(un − su0) converges to f(u0 − su0)

in Lqloc(R
N ), for 1 ≤ q < 2N/(α + 2).

Then, by the Hardy–Littlewood–Sobolev inequality and since {f(un−su0)} is bounded in L
2N
α+2 (RN )

we obtain

(A) ≤ C‖f(un)un‖ 2N
N+α

‖f(un − su0)‖ 2N
α+2

‖u0 − ψ‖2∗ ≤ Cε

and analogously, (D) ≤ Cε.
Moreover, denoting by K := supp(ψ), we have

(B) ≤ C‖f(un)un‖ 2N
N+α

‖f(un − su0)− f(u0 − su0)‖
L

N(N+2α+2)
(N+α)(α+2) (K)

‖ψ‖ 2N(N+2α+2)
(N+α)(N−2)

= on(1).

Finally, also (C) = on(1), since f(u0 − su0)ψ belongs to L
2N

N+α (RN ), namely the dual space of

L
2N

N−α (RN ).
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Therefore (2.1) is proved.
Now, for any n ∈ N, we set φn(s) =

(
Iα ∗ F (un − su0)

)
f(un)un, for s ∈ [0, 1], and we obtain

∫

RN

(
Iα ∗ F (un

)
f(un)un dx−

∫

RN

(
Iα ∗ F (un − u0)

)
f(un)un dx

=

∫

RN

(
φn(0) − φn(1)

)
dx = −

∫ 1

0

(∫

RN

φ′n(s) dx

)
ds

=

∫ 1

0

(∫

RN

(
Iα ∗ (f(un − su0)u0)

)
f(un)un dx

)
ds

=

∫ 1

0

(∫

RN

(
Iα ∗ (f(un)un)

)
f(un − su0)u0 dx

)
ds.

Hence, by (2.1), taking into account the Lebesgue Dominated Convergence Theorem

lim
n

(∫

RN

(
Iα ∗ F (un

)
f(un)un dx−

∫

RN

(
Iα ∗ F (un − u0)

)
f(un)un dx

)

= lim
n

∫ 1

0

(∫

RN

(
Iα ∗ (f(un)un)

)
f(un − su0)u0 dx

)
ds

=

∫ 1

0

(
lim
n

∫

RN

(
Iα ∗ (f(un)un)

)
f(un − su0)u0 dx

)
ds

=

∫ 1

0

(∫

RN

(
Iα ∗ (f(u0)u0)

)
f(u0 − su0)u0 dx

)
ds

= −
∫ 1

0

(∫

RN

φ′0(s) dx

)
ds = −

∫

RN

(∫ 1

0
φ′0(s) ds

)
dx

=

∫

RN

(
φ0(0)− φ0(1)

)
dx =

∫

RN

(
Iα ∗ F (u0)

)
f(u0)u0 dx.

�

Now, let O′ = O(N), or O′ = O = O(M)×O(M)×O(N − 2M) ⊂ O(N) provided that N ≥ 4

and N 6= 5 with 2 ≤ M ≤ N/2 and N − 2M 6= 1. Let D1,2
O′ (RN ) be the subspace of O′-invariant

functions. Below we demonstrate the compactness properties in the following lemmas.

Lemma 2.2. Let un ⇀ u0 in D1,2
O′ (RN ). Then

lim
n

∫

RN

(
Iα ∗ F (un)

)
f(un)un dx =

∫

RN

(
Iα ∗ F (u0)

)
f(u0)u0 dx.

Proof. By Lemma 2.1, we conclude if we prove that

lim
n

∫

RN

(
Iα ∗ F (un − u0)

)
f(un)un dx = 0.

Indeed, by the Hardy-Littlewood-Sobolev inequality and (H1), we have
∫

RN

(Iα ∗ F (un − u0))f(un)un dx ≤ C‖F (un − u0)‖ 2N
N+α

‖f(un)un‖ 2N
N+α

≤ C‖F (un − u0)‖ 2N
N+α

.

The fact that ‖F (un − u0)‖2N/(N+α) → 0 is a consequence of (H2) and [19, Lemma A.1]. �

Lemma 2.3. Let un ⇀ u0 in D1,2(RN ). Then, for any ψ ∈ C∞
0 (RN ),

(2.2) lim
n

∫

RN

(
Iα ∗ F (un)

)
f(un)ψ dx =

∫

RN

(
Iα ∗ F (u0)

)
f(u0)ψ dx.
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Proof. Arguing as in the proof of Lemma 2.1 and passing to a subsequence, we have that f(un) →
f(u0) in Lqloc(R

N ), for 1 ≤ q < 2N/(α + 2), and {Iα ∗ F (un)} is bounded in L
2N

N−α (RN ) and tends

weakly to Iα ∗ F (u0) in L
2N

N−α (RN ). Thus, since
∣∣∣∣
∫

RN

(
Iα ∗ F (un)

)
f(un)ψ dx−

∫

RN

(
Iα ∗ F (u0)

)
f(u0)ψ dx

∣∣∣∣

≤
∫

RN

(
Iα ∗ F (un)

)
|f(un)− f(u0)||ψ| dx +

∣∣∣∣
∫

RN

(
Iα ∗ F (un)− Iα ∗ F (u0)

)
f(u0)ψ dx

∣∣∣∣ ,

using the same arguments as in (B) and (C) in the proof of Lemma 2.1, we get (2.2). �

For what concerns the term with G, at least formally, we define the functional G as in (1.6).

However, if in (H1), p <
N+β
N−2 , the situation is quite different from F and G need not be finite.

Indeed, in such a case, let us consider the Banach spaces

Lµ(Ω) + Lν(Ω) := {u ∈ M(Ω) : u = u1 + u2, u1 ∈ Lµ(Ω), u2 ∈ Lν(Ω)} ,
where 1 ≤ µ ≤ ν < +∞, Ω is an arbitrary subset of RN , and M(Ω) is the set of the real measurable
functions defined on Ω, equipped with the norm

‖u‖µ,ν := inf
u=u1+u2

(‖u1‖Lµ(Ω) + ‖u2‖Lν(Ω))

(see e.g. [2, Section 2] for more details about these spaces).

Observe that if u ∈ D1,2(RN ) ⊂ L2∗(RN ), since |u|p ∈ L
2∗

p (RN ) and |u|
N+β
N−2 ∈ L

2N
N+β (RN ), by [2,

Proposition 2.3] and (H1), we get

(2.3) G(u) ∈ L
2N

N+β (RN ) + L
2∗

p (RN ).

Moreover, since

Iβ ∗G(u) ≤ C
(
Iβ ∗ (|u|p + |u|

N+β
N−2 )

)
,

by [15, Inequality (9), page 107] and [2, Proposition 2.3] we have

(2.4) Iβ ∗G(u) ∈ L
2N

N−β (RN ) + L
2N

(N−2)p−2β (RN ).

However, this does not seem enough to assure that G(u) < +∞ for any u ∈ D1,2(RN ), and so we
need a different approach. We replace G(u) with Gn(u) given by (1.7) together with the sequence
{ϕn} defined there.

We prove the following lemma.

Lemma 2.4. For every n ∈ N, Gn ∈ C1(D1,2(RN ),R).

Proof. We divide the proof in five steps.
Step 1: Gn is well defined.
Observe that

0 ≤ Gn(u) ≤
∫

B2n

(
Iβ ∗G(u)

)
G(u) dx

and, by (2.3) and (2.4), Iβ ∗ G(u) ∈ L
2N

N−β (B2n) + L
2N

(N−2)p−2β (B2n) ⊂ L
2N

N−β (B2n) and G(u) ∈
L

2N
N+β (B2n) + L

2∗

p (B2n) ⊂ L
2N

N+β (B2n). Thus, the Hölder inequality allows us to conclude.
Step 2: if {um} ⊂ L2∗(RN ) and um → u in L2∗(RN ), then, up to a subsequence, Iβ ∗ G(um) →
Iβ ∗G(u) a.e. in R

N , as m→ +∞.

Since um → u in L2∗(RN ), then, up to a subsequence, there exist Ω1 ⊂ R
N with |Ω1| = 0 and

w ∈ L2∗(RN ) such that |um| ≤ w and um → u in R
N \Ω1.

Since wp + w
N+β
N−2 ∈ L

2N
N+β (RN ) + L

2∗

p (RN ), by [15, Inequality (9), page 107], we have that Iβ ∗
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(
wp + w

N+β
N−2

)
∈ L

2N
N−β (RN ) + L

2N
(N−2)p−2β (RN ) and so, there exists Ω2 ⊂ R

N , with |Ω2| = 0, such

that

wp(y) + w
N+β
N−2 (y)

|x− y|N−β ∈ L1(RN ), for all x ∈ R
N \Ω2.

Thus, if we fix x ∈ R
N \ Ω2, we have that

G(um(y))

|x− y|N−β → G(u(y))

|x− y|N−β , for all y ∈ R
N \ Ω1

and

G(um(y))

|x− y|N−β ≤ C
|um(y)|p + |um(y)|

N+β
N−2

|x− y|N−β ≤ C
wp(y) + w

N+β
N−2 (y)

|x− y|N−β ∈ L1(RN ).

Hence, by the Lebesgue Dominated Convergence Theorem we can conclude.
Step 3: Gn is continuous.
Let {um} ⊂ D1,2(RN ) be such that um → u in D1,2(RN ) as m → +∞. Up to a subsequence we
have that um → u in L2∗(RN ), um → u a.e. in R

N , and there exists w ∈ L2∗(RN ) such that
|um| ≤ w a.e. in R

N . Thus, since G is continuous, G(um) → G(u) a.e. in R
N and, by Step 2,

Iβ ∗G(um) → Iβ ∗G(u) a.e. in R
N . Hence

ϕn(x)
(
Iβ ∗G(um)

)
G(um) → ϕn(x)

(
Iβ ∗G(u)

)
G(u) a.e. in R

N , as m→ +∞.

Moreover,

0 ≤ ϕn(x)
(
Iβ ∗G(um)

)
G(um) ≤ Cϕn(x)

(
Iβ ∗ (wp + w

N+β
N−2 )

)
(wp + w

N+β
N−2 ) ∈ L1(RN )

since, arguing as before, Iβ ∗ (wp +w
N+β
N−2 ) ∈ L

2N
N−β (B2n) and wp +w

N+β
N−2 ∈ L

2N
N+β (B2n). Thus, the

Lebesgue Dominated Convergence Theorem allows us to conclude.
Step 4: Gn is differentiable and, for any v ∈ D1,2(RN ),

G′
n(u)[v] = 2

∫

RN

ϕn(x)
(
Iβ ∗G(u)

)
g(u)v dx.

First we prove that ∣∣∣∣
∫

RN

ϕn(x)
(
Iβ ∗G(u)

)
g(u)v dx

∣∣∣∣ < +∞.

Observe that ∣∣∣∣
∫

RN

ϕn(x)
(
Iβ ∗G(u)

)
g(u)v dx

∣∣∣∣ ≤
∫

B2n

(
Iβ ∗G(u)

)
|g(u)||v| dx,

and, by assumptions on g,

(2.5) |g(u)| ≤ C(|u|p−1 + |u|
β+2
N−2 ) ∈

{
L

2N
β+2 (RN ) + L∞(RN ), if 0 < β < N−2

2 ,

L
2N
β+2 (RN ) + L

2∗

p−1 (RN ), if N−2
2 ≤ β < N.

In any case we have that Iβ ∗ G(u) ∈ L
2N

N−β (B2n) and, by (2.5), g(u) ∈ L
2N
β+2 (B2n). Thus, the

Hölder inequality allows us to conclude.
Finally, arguing as before, we prove that the map

v ∈ D1,2(RN ) 7−→
∫

RN

ϕn(x)
(
Iβ ∗G(u)

)
g(u)v dx

is continuous and this implies also the claim.
Step 5: G′

n is continuous.
Let v ∈ D1,2(RN ), with ‖∇v‖2 ≤ 1 and {um} ⊂ D1,2(RN ) be such that um → u in D1,2(RN ) as
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m→ +∞. Up to a subsequence we have that um → u in L2∗(RN ), um → u a.e. in R
N , and there

exists w ∈ L2∗(RN ) such that |um| ≤ w a.e. in R
N . Moreover

∣∣G′
n(um)[v] − G′

n(u)[v]
∣∣ ≤

∫

B2n

∣∣∣
(
Iβ ∗G(um)

)
g(um)−

(
Iβ ∗G(u)

)
g(u)

∣∣∣|v| dx

≤ C

(∫

B2n

∣∣∣
(
Iβ ∗G(um)

)
g(um)−

(
Iβ ∗G(u)

)
g(u)

∣∣∣
2N
N+2

dx

)N+2
2N

.

Using also Step 2, we have that
(
Iβ ∗G(um)

)
g(um) → [Iβ ∗G(u)]g(u) a.e. in R

N , and so, observing
that, by (H1),

0 ≤ Iβ ∗G(um) ≤ CIβ ∗ (wp + w
N+β
N−2 ) ∈ L

2N
N−β (B2n),

0 ≤ Iβ ∗G(u) ≤ CIβ ∗ (|u|p + |u|
N+β
N−2 ) ∈ L

2N
N−β (B2n),

and

|g(um)| ≤ C(wp−1 + w
β+2
N−2 ) ∈ L

2N
β+2 (B2n),

|g(u)| ≤ C(|u|p−1 + |u|
β+2
N−2 ) ∈ L

2N
β+2 (B2n),

we can conclude by the Lebesgue Dominated Convergence Theorem. �

Now we prove this further compactness result.

Lemma 2.5. Let un ⇀ u0 in D1,2(RN ). Then, for any ψ ∈ C∞
0 (RN ),

lim
n

∫

RN

ϕn(x)(Iβ ∗G(un))g(un)ψ dx =

∫

RN

(Iβ ∗G(u0))g(u0)ψ dx.

Proof. Of course it is enough to show that

lim
n

∫

Spt(ψ)

(
Iβ ∗G(un)

)
g(un)ψ dx =

∫

Spt(ψ)

(
Iβ ∗G(u0)

)
g(u0)ψ dx,

recalling that Spt(ψ) is compact and then, for n large enough, Spt(ψ) ⊂ Bn.
Since un ⇀ u0 weakly in D1,2(RN ), up to a subsequence, un → u0 a.e. in R

N and soG(un) → G(u0)
a.e. in R

N , as n→ +∞.

Moreover {G(un)} is bounded in L
2N

N+β (RN ) + L
2∗

p (RN ). Indeed, by the assumptions on g, the

definition of the norm in L
2N

N+β (RN ) + L
2∗

p (RN ), and [2, Corollary 2.12], we have

‖G(un)‖ 2N
N+β

, 2
∗

p

≤ C(‖un‖p2∗ + ‖un‖
N+β
N−2

2∗ ) ≤ C.

Thus, the reflexivity of L
2N

N+β (RN ) + L
2∗

p (RN ) (see [2, Corollary 2.11]) implies that there exists

ũ ∈ L
2N

N+β (RN ) + L
2∗

p (RN ) such that, up to a subsequence, G(un)⇀ ũ in L
2N

N+β (RN ) + L
2∗

p (RN ).
We claim that ũ = G(u0).

Indeed, using a classical argument, the weak convergence G(un) ⇀ ũ in L
2N

N+β (RN ) + L
2∗

p (RN )

implies that there exists a sequence {zn} ⊂ L
2N

N+β (RN ) + L
2∗

p (RN ) such that, for all n ∈ N,

zn ∈ conv
( n⋃

i=1

{G(ui)}
)
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and zn → ũ in L
2N

N+β (RN ) + L
2∗

p (RN ). Thus, by [2, Proposition 2.8], up to a subsequence, we get
that zn → ũ a.e. in R

N , that allows us to conclude.
About the sequence {Iβ ∗G(un)}, since by (H1)

0 ≤ Iβ ∗G(un) ≤ C(Iβ ∗ |un|p + Iβ ∗ |un|
N+β
N−2 ) ∈ L

2N
N−β (RN ) + L

2N
(N−2)p−2β (RN ),

using [2, Corollary 2.12], we have

‖Iβ ∗G(un)‖ 2N
N−β

, 2N
(N−2)p−2β

≤ C(‖Iβ ∗ |un|
N+β
N−2 ‖ 2N

N−β
+ ‖Iβ ∗ |un|p‖ 2N

(N−2)p−2β
)

≤ C(‖un‖
N+β
N−2

2∗ + ‖un‖p2∗) ≤ C.

Moreover, observe that the linear functional

w ∈ L
2N

N+β (RN ) + L
2∗

p (RN ) 7→ Iβ ∗ w ∈ L
2N

N−β (RN ) + L
2N

(N−2)p−2β (RN )

is continuous. Indeed, if w ∈ L
2N

N+β (RN ) + L
2∗

p (RN ), w = w1 + w2 with w1 ∈ L
2N

N+β (RN ) and

w2 ∈ L
2∗

p (RN ), by [15, Inequality (9), page 107] we get

‖Iβ ∗ w‖ 2N
N−β

, 2N
(N−2)p−2β

≤ ‖Iβ ∗ w1‖ 2N
N−β

+ ‖Iβ ∗ w2‖ 2N
(N−2)p−2β

≤ C(‖w1‖ 2N
N+β

+ ‖w2‖ 2∗

p

)

and, passing to the infimum on w1 ∈ L
2N

N+β (RN ) and w2 ∈ L
2∗

p (RN ), we conclude.

This, combined with the weak convergence G(un)⇀ G(u0) in L
2N

N+β (RN )+L
2∗

p (RN ), implies that

Iβ ∗G(un)⇀ Iβ ∗G(u0) in L
2N

N−β (RN ) + L
2N

(N−2)p−2β (RN ).
Hence, as done for f in Lemma 2.3, we have that

∣∣∣∣∣

∫

Spt(ψ)

(
Iβ ∗G(un)

)
g(un)ψ dx−

∫

Spt(ψ)

(
Iβ ∗G(u0)

)
g(u0)ψ dx

∣∣∣∣∣

≤
∫

Spt(ψ)

(
Iβ ∗G(un)

)
|g(un)− g(u0)||ψ| dx +

∣∣∣∣
∫

RN

(
Iβ ∗G(un)− Iα ∗G(u0)

)
g(u0)ψ dx

∣∣∣∣ .

About the first integral, observe that, the boundedness of {un} in D1,2(RN ) implies also that
un → u0 in Lτloc(R

N ), for all 1 ≤ τ < 2∗ and so, for any fixed 1 ≤ τ < 2∗ and K ⊂⊂ R
N , up

to a subsequence, there exists wK ∈ Lτ (K) such that |un| ≤ wK a.e. in K. Thus, denoting for
simplicity w := wSpt(ψ) and taking for instance

τ =
N(N + 2β + 2)

(N − 2)(N + β)
,

by the assumptions on g we have

g(un) → g(u0) a.e. in Spt(ψ),

|g(un)| ≤ C(|un|p−1 + |un|
β+2
N−2 ) ≤ C(wp−1 + w

β+2
N−2 ) ∈ L

N(N+2β+2)
(N+β)(β+2) (Spt(ψ)),

|g(u0)| ≤ C(|u0|p−1 + |u0|
β+2
N−2 ) ∈ L

N(N+2β+2)
(N+β)(β+2) (Spt(ψ)).

Moreover, the boundedness of {Iβ ∗G(un)} in L
2N

N−β (RN )+L
2N

(N−2)p−2β (RN ) implies its boundedness

in L
2N

N−β (Spt(ψ)) + L
2N

(N−2)p−2β (Spt(ψ)) = L
2N

N−β (Spt(ψ)).
Thus, by the Hölder inequality and the Lebesgue Dominated Convergence Theorem, we have
∫

Spt(ψ)

(
Iβ ∗G(un)

)
|g(un)− g(u0)||ψ| dx ≤ C

(∫

Spt(ψ)
|g(un)− g(u0)|

2N
N+β |ψ|

2N
N+β dx

)N+β
2N
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≤ C
(∫

Spt(ψ)
|g(un)− g(u0)|

N(N+2β+2)
(N+β)(β+2) dx

) (N+β)(β+2)
N(N+2β+2)

= on(1).

Finally the second integral goes to 0 due to the weak convergence Iβ ∗ G(un) ⇀ Iβ ∗ G(u0) in

L
2N

N−β (RN ) + L
2N

(N−2)p−2β (RN ), since g(u0)ψ ∈ L
2N

N+β (Spt(ψ)) ⊂ [L
2N

N−β (RN ) + L
2N

(N−2)p−2β (RN )]′,
being

∫

Spt(ψ)
|g(u0)ψ|

2N
N+β dx ≤ C

∫

Spt(ψ)
(|u0|p−1 + |u0|

β+2
N−2 )

2N
N+β |ψ|

2N
N+β dx

≤ C
(∫

Spt(ψ)
(|u0|p−1 + |u0|

β+2
N−2 )

N(N+2β+2)
(N+β)(β+2) dx

) 2(β+2)
N+2β+2

< +∞.

�

3. Proofs of our main results

Let X := D1,2
O(N)(R

N ), or X := D1,2
O (RN ) ∩Xτ provided that N ≥ 4 and N 6= 5. As observed

before, the functional I could be also +∞ on X. To avoid this problem, for every n ≥ 1, we
introduce the truncated C1-functionals In : X → R defined by (1.8).

The functionals I and In, n ≥ 1, satisfy the geometrical assumptions of the Mountain Pass
Theorem. Indeed, we prove the following lemma.

Lemma 3.1. We have:

(i) there exist ρ, c > 0 such that I(u) ≥ c and, for every n ≥ 1, In(u) ≥ c for all u ∈ X such
that ‖∇u‖2 = ρ;

(ii) there exists v0 ∈ X with ‖∇v0‖2 > ρ such that I(v0) < 0 and, for every n ≥ 1, In(v0) < 0.

Proof. We prove this lemma only for In since similar and easier arguments hold also for I .
The positivity of G and ϕn, (H1) and (H2), the Hardy-Littlewood-Sobolev and Sobolev inequalities
imply

In(u) ≥ ‖∇u‖22 − C

∫

RN

(
Iα ∗ |u|

N+α
N−2

)
|u|

N+α
N−2 dx ≥ ‖∇u‖22 − C‖u‖

2(N+α)
N−2

2∗ ≥ ‖∇u‖22 − C‖∇u‖
2(N+α)
N−2

2 .

Since 2 < 2(N+α)
N−2 , we get (i).

Now let us prove (ii).

Case X = D1,2
O(N)(R

N ). Let w = s0χB1 , where s0 is defined in (H3), then

F(w) = F 2(s0)

∫∫

B1×B1

Iα(x− y) dxdy > 0.

We take now ψ ∈ C∞
0 (RN ) radial, non-negative, non-increasing with respect to |x|, and such that

ψ(x) = s0, for |x| ≤ 1, and ψ(x) = 0, for |x| ≥ r̄, with r̄ > 1. If r̄ is sufficiently close to 1, using
the continuity of F in L2∗(RN ), we get also

(3.1) F(ψ) > 0.

We consider first the case α > β.
If we set ψλ(x) := ψ(x/λ), λ > 0 and since 0 ≤ ϕn ≤ 1 we have

∫

RN

ϕn(x)
(
Iβ ∗G(ψλ)

)
G(ψλ) dx ≤ λN+β

∫

RN

(
Iβ ∗G(ψ)

)
G(ψ) dx < +∞.

So we infer that

In(ψλ) ≤ λN−2‖∇ψ‖22 − λN+αF(ψ) + λN+βG(ψ)
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and we can conclude considering v0 := ψλ with λ large enough, by (3.1).
We now study the case α = β.
If G(s0) = 0, being, by (H1), G non-decreasing on R+, then G(ψ(x)) = 0 in R

N and so we can
conclude easily as before.
If, instead, G(s0) 6= 0, by (H3) we can find ε > 0 sufficiently small such that (1 − ε)F 2(s0) >
G2(s0) > 0. Moreover there exists r̄ > 1 sufficiently close to 1 such that

1 <

∫∫

Br̄×Br̄

Iα(x− y) dxdy

∫∫

B1×B1

Iα(x− y) dxdy

<
(1− ε)F 2(s0)

G2(s0)

and, again by the continuity of F in L2∗(RN ),

F(ψ) ≥ (1− ε)F 2(s0)

∫∫

B1×B1

Iα(x− y) dxdy > 0.

Therefore, by the positivity of G, we deduce that

F(ψ) − G(ψ) ≥ (1− ε)F 2(s0)

∫∫

B1×B1

Iα(x− y) dxdy −G2(s0)

∫∫

Br̄×Br̄

Iα(x− y) dxdy > 0.

Thus we get

In(ψλ) ≤ λN−2‖∇ψ‖22 − λN+α[F(ψ) − G(ψ)],
we can conclude again considering v0 := ψλ with λ large enough.
Case X = D1,2

O (RN ) ∩Xτ .
We take any odd and smooth function η : R → [−1, 1] such that η(s) = 1 for s ≥ 1. Then we define

ψ̃(x) = η(|x1| − |x2|)ψ(x) for x = (x1, x2, x3) ∈ R
M × R

M × R
N−2M , with the same ψ as before.

Observe that ψ̃ ∈ X. Moreover, arguing as in the previous case, we can find r̄ > 1, sufficiently
close to 1, such that, using the continuity of F in L2∗(RN ),

F(ψ̃) ≥ 1

2
F 2(s0)

∫∫

B1×B1∩{|x1|≥|x2|+1,|y1|≥|y2|+1}
Iα(x− y) dxdy > 0.

Then we argue similarly as in case X = D1,2
O(N)(R

N ). �

Let

Γ := {γ ∈ C ([0, 1],X) : γ(0) = 0 and γ(1) = v0}
and

cIn := inf
γ∈Γ

sup
t∈[0,1]

In(γ(t)), cI := inf
γ∈Γ

sup
t∈[0,1]

I(γ(t)).

Our aim is to find a sequence {un} ⊂ X such that In(un) = cIn and I ′
n(un) → 0, as n → +∞.

However, due to the general assumptions on F and G, it is not easy to prove the boundedness of
such sequence. Therefore, inspired by [10,11], we introduce the functional J : R×X → R∪{+∞}

J (σ, u) := e(N−2)σ‖∇u‖22 − e(N+α)σF(u) + e(N+β)σG(u),
and, for every n ≥ 1, the C1-functionals Jn : R×X → R

Jn(σ, u) := e(N−2)σ‖∇u‖22 − e(N+α)σF(u) + e(N+β)σ

∫

RN

ϕn(e
σx)

(
Iβ ∗G(u)

)
G(u) dx.

Observe that, for any σ ∈ R and u ∈ X, we have that J (σ, u) = I(u(e−σ·)) and Jn(σ, u) =
In(u(e−σ ·)).
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Let

Σ :=
{
(σ, γ) ∈ C ([0, 1],R ×X) :

(
σ(0), γ(0)

)
= (0, 0) and

(
σ(1), γ(1)

)
= (0, v0)

}

and

cJn := inf
(σ,γ)∈Σ

sup
t∈[0,1]

Jn
(
σ(t), γ(t)

)
, cJ := inf

(σ,γ)∈Σ
sup
t∈[0,1]

J
(
σ(t), γ(t)

)
.

As observed in [10, Lemma 4.1], using the relation, respectively, between I and J and In and
Jn, we have that

(3.2) cI = cJ , cIn = cJn .

Since, for any n ∈ N, Jn ≤ Jn+1 ≤ J , we have that the sequence {cJn} is increasing and
bounded from above by cJ , and so there exists c̄ > 0 such that cJn → c̄, as n→ +∞.

Proposition 3.2. There is a sequence {(σn, un)} in R×X such that

(i) |Jn(σn, un)− c̄| = on(1);
(ii) |σn| = on(1);
(iii) ‖J ′

n(σn, un)‖ = on(1);
(iv) {un} is bounded in X.

Proof. In view of (3.2), for any n ≥ 1 we find γk,n ∈ Γ such that

sup
t∈[0,1]

Ik(γk,n(t)) ≤ cJk
+

1

n

and, for sufficiently large k,

|cJk
− c̄| ≤ 1

n

also holds. Therefore, passing to a subsequence with a diagonalization argument, we may assume
that there exists γn ∈ Γ such that

sup
t∈[0,1]

Jn(0, γn(t)) ≤ cJn + on(1) and |cJn − c̄| ≤ on(1).

Thus, by [27, Theorem 2.8], for any n ≥ 1 there is (σn, un) ∈ R×X such that (i)–(iii) hold.
Since Jn(σn, un) = c̄+ on(1) and ∂σJn(σn, un) = on(1), we have
(
1− N − 2

N + α

)
e(N−2)σn

∫

RN

|∇un|2 dx+

(
1− N + β

N + α

)
e(N+β)σn

∫

RN

ϕn(e
σnx)

(
Iβ ∗G(un)

)
G(un) dx

− 1

N + α
e(N+β)σn

∫

RN

(
∇ϕn(eσnx) · eσnx

)(
Iβ ∗G(un)

)
G(un) dx = c̄+ on(1).

Since the cut-off functions ϕn are decreasing with respect to the radius, we have that ∇ϕn(x)·x ≤ 0,
for any x ∈ R

N and so, being α ≥ β, we infer that {un} is a bounded sequence in X. �

We can now conclude the proof of our main theorems.

Proof of Theorems 1.1 and 1.2. Let {(σn, un)} in R×X be the sequence found in Proposition 3.2.
Then there exists u0 ∈ X such that un ⇀ u0 weakly in X and a.e. on R

N . By Lemma 2.3 and
Lemma 2.5, for any ψ ∈ C∞

0 (RN ), we have that
∫

RN

∇u0 · ∇ψ dx =

∫

RN

(
Iα ∗ F (u0)

)
f(u0)ψ dx−

∫

RN

(
Iβ ∗G(u0)

)
g(u0)ψ dx.
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So we have that u0 is a weak solution of (1.1). We will prove that u0 6= 0.
Observe that, by Proposition 3.2, since {un} is bounded in X and ∂uJn(σn, un)[un] = on(1), we
deduce that there exists C > 0 such that, for any n ≥ 1,

∫

RN

ϕn(x)
(
Iβ ∗G(un)

)
g(un)un dx ≤ C.

Therefore, by Fatou’s Lemma

(3.3)

∫

RN

(
Iβ ∗G(u0)

)
g(u0)u0 dx ≤ lim inf

n

∫

RN

ϕn(x)
(
Iβ ∗G(un)

)
g(un)un dx ≤ C.

For any m ≥ 1, let

ψm(x) =





1 if |x| ≤ m,

2m− |x|
m

if m ≤ |x| ≤ 2m,

0 if |x| ≥ 2m.

Observe that, for any m ≥ 1, we have that ψmu0 belongs to X. Note that ψmu0 has a compact
support and ∂uJn(σn, un)[ψmu0] = on(1). Therefore, arguing as in Lemma 2.3 and in Lemma 2.5,
passing to the limit as n→ +∞, we have that for any m ≥ 1

(3.4)

∫

RN

∇u0 · ∇(ψmu0) dx =

∫

RN

(
Iα ∗ F (u0)

)
f(u0)ψmu0 dx−

∫

RN

(
Iβ ∗G(u0)

)
g(u0)ψmu0 dx.

Being u0 ∈ X, we have
∣∣∣∣
∫

RN

∇u0 · ∇(ψmu0) dx−
∫

RN

|∇u0|2 dx
∣∣∣∣

≤
∫

RN

|∇u0|2|ψm − 1| dx+

∫

RN

|∇u0||u0||∇ψm| dx

≤
∫

Bc
m

|∇u0|2 dx+
(∫

Am

|∇u0|2 dx
) 1

2
(∫

Am

|u0|2
∗

dx
) 1

2∗
( ∫

Am

|∇ψm|N dx
) 1

N

≤
∫

Bc
m

|∇u0|2 dx+ C
(∫

Bc
m

|∇u0|2 dx
) 1

2
(∫

Bc
m

|u0|2
∗

dx
) 1

2∗

= om(1),

(3.5)

where Am := B2m \Bm.
Moreover, observe that

(
Iα ∗ F (u0)

)
f(u0)ψmu0 →

(
Iα ∗ F (u0)

)
f(u0)u0, a.e. in R

N , as m→ +∞,

and ∣∣(Iα ∗ F (u0)
)
f(u0)ψmu0

∣∣ ≤
∣∣(Iα ∗ F (u0)

)
f(u0)u0

∣∣ ∈ L1(RN ).

Thus, by the Dominated Convergence Theorem, we have that

(3.6) lim
m

∫

RN

(
Iα ∗ F (u0)

)
f(u0)ψmu0 dx =

∫

RN

(
Iα ∗ F (u0)

)
f(u0)u0 dx.

Analogously, we have also that
(
Iα ∗G(u0)

)
g(u0)ψmu0 →

(
Iα ∗G(u0)

)
g(u0)u0, a.e. in R

N , as m → +∞,

and, using (3.3),

0 ≤
(
Iα ∗G(u0)

)
g(u0)ψmu0 ≤

(
Iα ∗G(u0)

)
g(u0)u0 ∈ L1(RN ).
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Again the Dominated Convergence Theorem implies

(3.7) lim
m

∫

RN

(
Iα ∗G(u0)

)
g(u0)ψmu0 dx =

∫

RN

(
Iα ∗G(u0)

)
g(u0)u0 dx.

Therefore, by (3.4), (3.5), (3.6) and (3.7), we have
∫

RN

|∇u0|2 dx =

∫

RN

(
Iα ∗ F (u0)

)
f(u0)u0 dx−

∫

RN

(
Iβ ∗G(u0)

)
g(u0)u0 dx.

By Lemma 2.2 and (3.3), since ∂uJn(σn, un)[un] = on(1), we infer that

lim sup
n

∫

RN

|∇un|2 dx = lim sup
n

[∫

RN

(
Iα ∗ F (un)

)
f(un)un dx−

∫

RN

ϕn(x)
(
Iβ ∗G(un)

)
g(un)un dx

]

≤
∫

RN

(
Iα ∗ F (u0)

)
f(u0)u0 dx−

∫

RN

(
Iβ ∗G(u0)

)
g(u0)u0 dx =

∫

RN

|∇u0|2 dx.

This implies that un → u0 strongly in X. Thus, since Jn(σn, un) → I(u0), we have that I(u0) =
c̄ > 0 and so u0 is a nontrivial weak solution of (1.1). �

Proof of Theorem 1.3. Proof is a slight modification of our previous arguments and we leave details
for the reader. Here we just want to comment (H ′

3). The change of assumption in the different
cases is due to the scaling properties of the functional Kω. Indeed, setting uλ(x) := u(x/λ), for
λ > 0, when α = β we have

Kω(uλ) = λN−2‖∇u‖22 + ωλN‖u‖22 − λN+α
(
F(u)− G(u)

)
.

Thus, to show the Mountain Pass geometry, if α = β > 0, we can proceed as in Lemma 3.1, but if
α = β = 0 (the local case), we need a stronger condition, namely we need to take into account the
term ωs20 in order to show that Kω(uλ) < 0 for large λ (see also [6]). ✷

Proof of Corollary 1.4. Item (a) follows from Theorem 1.3.
To prove (b), observe that, only in the local case α = β = 0, ω0 is finite. Thus, in such a case, if
ω ≥ ω0, then F 2(s)−G2(s)−ω0s

2 ≤ 0 for s ∈ R and there are no nontrivial solutions (see e.g. [6]).
If, instead, ω ≤ 0, similarly as in [22, Theorem 3], if u ∈ H1(RN ) solves (1.9) with (1.10), then we
obtain the following Pohozaev identity

‖∇u‖22 = −ω N

N − 2
‖u‖22 +

N + α

q(N − 2)

∫

RN

(
Iα ∗ |u|q

)
|u|q dx−

∫

RN

(
Iβ ∗ |u|

N+β
N−2

)
|u|

N+β
N−2 dx

and, taking into account K′
ω(u)[u] = 0, i.e.

‖∇u‖22 = −ω‖u‖22 +
∫

RN

(
Iα ∗ |u|q

)
|u|q dx−

∫

RN

(
Iβ ∗ |u|

N+β
N−2

)
|u|

N+β
N−2 dx,

we infer that u = 0. ✷

References

[1] A. Ambrosetti, P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct.
Anal. 14 (1973), 349–381. 4

[2] M. Badiale, L. Pisani, S. Rolando, Sum of weighted Lebesgue spaces and nonlinear elliptic equations, NoDEA
Nonlinear Differential Equations Appl. 18 (2011), 369–405. 8, 10, 11

[3] T. Bartsch, M. Willem, Infinitely many nonradial solutions of a Euclidean scalar field equation, J. Funct. Anal.
117 (1993), 447–460. 4

[4] J. Bellazzini, R.L. Frank, N. Visciglia, Maximizers for Gagliardo-Nirenberg inequalities and related non-local

problems, Math. Ann. 360 (2014), 653–673. 5
[5] R. Benguria, H. Brezis, E.H. Lieb, The Thomas-Fermi-von Weizsäcker theory of atoms and molecules, Commun.

Math. Phys. 79 (1981), 167–180. 2



NONLINEAR SCALAR FIELD EQUATION 17

[6] H. Berestycki, P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech.
Anal. 82 (1983), 313–345. 2, 3, 4, 5, 16

[7] H. Brézis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer-Verlag, New York,
2011. 5

[8] W. Chen, M. Shen, Q. Kong, J. Shi, Q. Wang, W. Krolikowski, Interactions of nonlocal dark solitons under

competing cubic-quintic nonlinearities, Optics Letters 39 (2014), 1764–1767. 5
[9] A. Gammal, T. Frederico, L. Tomio, Ph. Chomaz, Atomic Bose–Einstein condensation with three-body interac-

tions and collective excitations, J. Phys. B: At. Mol. Opt. Phys. 33 (2000), 4053–4067. 5
[10] J. Hirata, N. Hikoma, K. Tanaka, Nonlinear scalar field equations in R

N : mountain pass and symmetric moun-

tain pass approaches, Topol. Methods Nonlinear Anal. 35 (2010), 253–276. 4, 13, 14
[11] L. Jeanjean, Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal. 28

(1997), 1633–1659. 4, 13
[12] L. Jeanjean, S.-S. Lu, Nonlinear scalar field equations with general nonlinearity, Nonlinear Anal. 190 (2020),

111604, 28 pp. 3, 4
[13] R. Killip, T. Oh, O. Pocovnicu, M. Vişan, Solitons and Scattering for the Cubic–Quintic Nonlinear Schrödinger

Equation on R
3, Arch. Rational Mech. Anal. 225 (2017), 469–548. 5

[14] E.H. Lieb, Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation, Stud. Appl.
Math. 57 (1977), 93–105. 1

[15] E.H. Lieb, M. Loss, Analysis, 2nd ed., Graduate Studies in Mathematics, vol. 14, American Mathematical
Society, Providence, RI, 2001. 8, 11

[16] P.-L. Lions, The Choquard equation and related questions, Nonlinear Anal. 4 (1980), 1063–1072. 1
[17] P.-L. Lions, Solutions of Hartree-Fock equations for Coulomb systems, Commun. Math. Phys. 109 (1987), 33–97.

2
[18] J. Mederski, Nonradial solutions of nonlinear scalar field equations, Nonlinearity 33 (2020), 6349–6380. 3, 4
[19] J. Mederski, General class of optimal Sobolev inequalities and nonlinear scalar field equations, submitted,

arXiv:1812.11451. 3, 4, 5, 7
[20] D. Mihalache, D. Mazilu, L.-C. Crasovan, B. A. Malomed, F. Lederer, Three-dimensional spinning solitons in

the cubic-quintic nonlinear medium, Phys. Rev. E 61 (2000), 7142–7145. 5
[21] V. Moroz, J. Van Schaftingen, Groundstates of nonlinear Choquard equations: existence, qualitative properties

and decay asymptotics, J. Funct. Anal. 265 (2013), 153–184. 1, 2, 5
[22] V. Moroz, J. Van Schaftingen, Existence of groundstates for a class of nonlinear Choquard equations, Trans.

Amer. Math. Soc. 367 (2015), 6557–6579. 2, 4, 5, 16
[23] V. Moroz, J. Van Schaftingen, A guide to the Choquard equation, J. Fixed Point Theory Appl. 19 (2017),

773–813. 2
[24] S. Pekar, Untersuchung über die Elektronentheorie der Kristalle, Akademie Verlag, Berlin, 1954. 1
[25] M. Struwe, Multiple Solutions of Differential Equations Without the Palais-Smale Condition, Math. Ann. 261

(1982), 399–412. 2, 3, 4
[26] M. Struwe, Variational Methods, Springer, Berlin, 2008. 2, 3, 4
[27] M. Willem, Minimax Theorems, Birkhäuser Verlag, Boston, 1996. 4, 14

(P. d’Avenia and A. Pomponio)
Dipartimento di Meccanica, Matematica e Management
Politecnico di Bari
Via Orabona 4, 70125 Bari, Italy
Email address: pietro.davenia@poliba.it

Email address: alessio.pomponio@poliba.it

(J. Mederski)
Institute of Mathematics,
Polish Academy of Sciences
ul. Śniadeckich 8, 00-656 Warsaw, Poland
and
Departement of Mathematics, Institute for Analysis,
Karlsruhe Institute of Technology (KIT),
D-76128 Karlsruhe, Germany
Email address: jmederski@impan.pl

https://arxiv.org/abs/1812.11451
mailto:pietro.davenia@poliba.it
mailto:alessio.pomponio@poliba.it
mailto:jmederski@impan.pl

	1. Introduction
	2. Functional setting and compactness properties
	3. Proofs of our main results
	References

