

The ICoCo based Coupling of TRACE and SCF in SALOME, and a new function of TRACE: an automatic connection between Cylinder and Cartesian VESSELs instead of using the VESSEL JUNCTION component in SNAP

Kanglong Zhang Technical Advisor: Dr. Victor Hugo Sanchez Espinoza

Institute for Neutron Physics and Reactor Technology (INR)

MR

KIT - The Research University in the Helmholtz Association

The Coupling of TRACE and SCF through ICoCo in SALOME

- Elements involved in the coupling system
- Implementation of TRACE-ICoCo, SCF-ICoCo, and an interpolation toolkit to SALOME
- Strategy of the Coupling System
- Verification of the Coupling System

The Coupling of TRACE and SCF through ICoCo in SALOME

- Elements involved in the coupling system
- Implementation of TRACE-ICoCo, SCF-ICoCo, and an interpolation toolkit to SALOME
- Strategy of the Coupling System
- Verification of the Coupling System

Elements involved in the coupling system

<u>Title</u>: The Coupling of **TRACE** and **SCF** through **ICoCo** and **SALOME**

- **TRACE:** the thermal-hydraulic <u>system code</u> by U.S. NRC.
 - SCF: the sub-channel code by KIT Germany.
 - **ICoCo:** a code <u>coupling framework</u> initiated by CEA France.
- **SALOME:** an <u>open-source platform</u> for numerical simulations by CEA and EDF.

ICoCo -- two prerequisites

- 1) Codes must have explicit <u>meshes</u> in <u>MED</u> format.
- 2) Codes must be pre-split into specified <u>functional components</u>.

Elements involved in the coupling system

<u>Title</u>: The Coupling of **TRACE** and **SCF** through **ICoCo** and **SALOME**

- **TRACE:** the thermal-hydraulic system code by U.S. NRC.
 - **SCF:** the sub-channel code by KIT Germany.
- **ICoCo:** a code coupling framework initiated by CEA France.
- **SALOME:** an open-source platform for numerical simulations by CEA and EDF.

SALOME -- two main functions

- 1) Provide generic functions for numerical pre- and post- processing.
- 2) Manage codes coupling, corresponds to ICoCo.

TRACE and SCF should be implemented into SALOME based on ICoCo standard.

The Coupling of TRACE and SCF through ICoCo in SALOME

- Elements involved in the coupling system
- Implementation of TRACE-ICoCo, SCF-ICoCo, and an interpolation toolkit to SALOME
- Strategy of the Coupling System
- Verification of the Coupling System

Implementation of TRACE-ICoCo, SCF-ICoCo, and an interpolation toolkit to SALOME

SCF MED meshes

- The TRACE and SCF modules in SALOME fully follows the ICoCo framework 1) and contain the functional components.
- 2) Their different meshes have to map to translate and transfer fields.
- 3) A toolkit for mesh interpolation and field mapping is desired.

TRACE MED meshes

Fall 2020 CAMP Meeting December 04th - 06th, 2018

Implementation of TRACE-ICoCo, SCF-ICoCo, and an interpolation toolkit to SALOME

Fall 2020 CAMP Meeting December 04th – 06th, 2018

The Coupling of TRACE and SCF through ICoCo in SALOME

- Elements involved in the coupling system
- Implementation of TRACE-ICoCo, SCF-ICoCo, and an interpolation toolkit to SALOME
- <u>Strategy of the Coupling System</u>
- Verification of the Coupling System

The Coupling of TRACE and SCF through ICoCo in SALOME

- Elements involved in the coupling system
- Implementation of TRACE-ICoCo, SCF-ICoCo, and an interpolation toolkit to SALOME
- Strategy of the Coupling System
- Verification of the Coupling System

An AP1000 transient case:

- 1) Core power: 3400 MW
- 2) Core mass flow rate: 14275 kg/s
- 3) Core inlet temperature: 553.8 K
- 4) Core outlet temperature: 596.5 K

Transient1)t = 0 s, temp (inlet 1, 2, 3, 4) = 553.7 K3)t = 15 s, temp (inlet 1, 3) = 503.7 Ksequence2)t = 5 s, temp (inlet 1, 2, 3, 4) = 553.7 K4)t = 20 s, temp (inlet 1, 3) = 503.7 K

TRACE model

The model was develop with SNAP for TRACE v5.1051

Axial levels	16
Radial rings	2
Azimuthal sectors	8

SCF model

The model was develop with SCF v3.3

total_fuel_assemblies	157		
fuel_assembly_pitch [<i>m</i>]	0.214		
rod_diameter [<i>m</i>]	0.0095		
channel_area $[m^2]$	0.0253127		
wetted_perimeter [m]	9.4808		
heated_perimeter [m]	7.878782		
channel_gap [<i>m</i>]	1.016x10 ⁻³		
total_axial_length [<i>m</i>]	4.2671		

2D mesh

3D mesh

The coolant temperature profile at the beginning of the transient

The coolant temperature distribute symmetrically in TRACE(Vessel) and SCF(Core).

The coolant temperature profile at the end of the transient

The coolant temperature at the loop1 corresponding area of TRACE(Vessel) and SCF(Core) is lower than loop2 area.

The neutronic results of the transient by SCF (point kinetic model)

Evolution of the total thermal power in the core

Evolution of the reactivity in the core

- 1) As the coolant temperature decreases, a positive reactivity was introduced to the core. It first increase rapidly and then gradually reduce and finally become negative because of the thermal feedback.
- 2) Corresponding to the evolution of reactivity, the thermal power of the core increases to the peak and then decreases.

A new function of TRACE: an automatic connection between Cylinder and Cartesian VESSELs instead of using the VESSEL JUNCTION component in SNAP

- Current coupling method between Cylinder and Cartesian vessels
- The new automatic coupling between the vessels
- Additional features for the vessel coupling cases

A new function of TRACE: an automatic connection between Cylinder and Cartesian VESSELs instead of using the VESSEL JUNCTION component in SNAP

- <u>Current coupling method between Cylinder and</u>
 <u>Cartesian vessels</u>
- The new automatic coupling between the vessels
- Additional features for the vessel coupling cases

Current coupling method between Cylinder and Cartesian vessels

A TRACE model includes Cylinder and Cartesian vessels

- 1) The <u>Cylinder</u> Vessel models the <u>RPV</u>.
- 2) The <u>Cartesian</u> Vessel models the <u>Core</u>.
- The two vessel are connected by two <u>vessel</u> junction component at <u>core inlet</u> and <u>outlet</u>.

- 1) Users define the <u>positional correspondence</u>.
- 2) Users calculate and set the <u>flow area</u>, <u>hydraulic diameters</u> for <u>each channel</u>.
- Both of the operations are <u>boring</u> and <u>error</u>prone.

Current coupling method between Cylinder and Cartesian vessels

- A series of <u>additional PIPE components</u> are <u>added</u> to the <u>input file</u>. They appear in the component list and more lines follow in the component definition data block.
- 2) Make the input file <u>redundant</u> and unreadable.

	🍰 Re	ad TR/	ACE					×	
	File	File [2] trcxtv (C:\Users\hy5099\Desktop\Test\trcxtv) 💌 😰							
	Plot T	уре	Time Depe	endent	•	View	Compo	nent/Channel listing	
	4011	15 Dat	a Channels	s co	ntro	blocks			
	powe	r-100	74				Cha	nnels	
	powe	r-100	75	cb	1 [c	b 1]			
_	powe	r-100	76						
(pipe	-3000	01	=	۸.	ditio			
	pipe	-3000	03		A		nai P	IPES	
	pipe	-3000	04		а	ccesi	ble ir	n the	
	pipe	-3000	05			xt	v file		
	pipe	-3000	106	-					
	Filter							🔲 Include Descrip	
	⊮ G Grapt	roup c 1	hannels by	y type <curr< th=""><th>ent></th><th>•</th><th>•</th><th>Data sets</th></curr<>	ent>	•	•	Data sets	
	Units			SI			-		
	Time units			Seconds 💌					
	Autos	scale		XY			-		
	Geom	etric	Data Axis	Y-Axis	\$		-		
	Axial	Plot T	ime				$\ \ $		
	Eleva	tion					(m)		
	Не	lp	Clear S	iets	I	Export		Plot	

 Uses can access the variables of each additional PIPE by the vessel junction.

A new function of TRACE: an automatic connection between Cylinder and Cartesian VESSELs instead of using the VESSEL JUNCTION component in SNAP

- Current coupling method between Cylinder and Cartesian vessels
- <u>The new automatic coupling between the vessels</u>
- Additional features for the vessel coupling cases

The new automatic coupling between the vessels

Drawbacks of current vessel coupling method

- Manual definition of posi corre. _____ 1) Automatic definition of posi corre. 1)
- Manual calculation of FA, HD. 2) Automatic calculation of FA, HD. 2)
- Redundant input file. 3) Clean input file. 3)

A TRACE model includes **Cylinder and Cartesian vessels**

Features of the new vessel coupling method

Modeling instruction for users

- 1) Both of the Cylinder and Cartesian vessels must include core boundary definition.
- 2) The axial flow area of the core area in the Cylinder vessel must be 0.0.
- 3) The largest length (x, y direction) of Cartesian vessel must not exceed the core outer radial ring of the Cylinder vessel.
- 4) Source the environment of MED libs.
- Restart calculation is available. 5)

The new automatic coupling between the vessels

_4)

Principles of the method

- 1) Recognize the VESSEL component \longrightarrow 1) vessTab%igeom, vessTab%vessType. which models the Vessels.
- 2) Read the geometry data of the Vessels and construct the 2D mesh based on MED libs.
- 3) Locate the core inlet and outlets.
- 4) Load the flow area data to meshes and map the 2D meshes.
- 5) Build new PIPE as junctions between vessels and insert to TRACE data structure.

Source code level (only arrays)

- vessTab%nasx, %nrsx, %ntsx, vsAr%z(:), - 2) %rad(:), %th(:).
 - vessTab%icru, %icrl. 3)
 - vaAr3%faz(:, :, :).

vessTab%ncsr, vsAr%isrl(:), vsAr%isrc(:), 5) vsAr%isrf(:), vsAr%juns(:).

```
Other arrays to be modified in TRACE data
6)
    structure: complndices(:), compNumList(:),
    compCcoList(:), g1DAr(:), intAr(:), PipeAr(:),
    genTab(:), PipeTab(:), fillTab(:), fillAr(:),
    breakTab(:),
                    breakAr(:),
                                   chanTab(:),
    chanAr(:), radTab(:), radar(:), pumpTab(:),
    pumpAr(:), valveTab(:), valveAr(:),
    plenTab(:), plenAr(:), turbTab(:), prizeTab(:),
    teeTab(:), teeAr(:), heatrTab(:), heatrAr(:),
    jetpTab(:), sepdAr(:), hsTab(:), hsAr(:),
    hsTab(:), hsAr(:), powTab(:),
                                     powAr(:),
    flPowTab(:),
                    flPowAr(:),
                                   exterTab(:),
    exterAr(:), vsAr2(:), vsAr4(:), vsSrcAr(:).
```


The new automatic coupling between the vessels

Python scons/scons.py compiler = intel icoco_med = med

In addition to TRACE normal functions, it can automatically couple the Cylinder and Cartesian vessels.

Python scons/scons.py compiler = intel

Compile Normal TRACE executable.

A new function of TRACE: an automatic connection between Cylinder and Cartesian VESSELs instead of using the VESSEL JUNCTION component in SNAP

- Current coupling method between Cylinder and Cartesian vessels
- The new automatic coupling between the vessels
- Additional features for the vessel coupling cases

1) Full automation of simulation for vessel involved cases.

Additional features for the vessel coupling cases

2) Post-processing for the Cylinder Vessel and Cartesian Vessel

Fall 2020 CAMP Meeting December 04th – 06th, 2018

Additional features for the vessel coupling cases

2) Post-processing for the Cylinder Vessel and Cartesian Vessel

Summary

1) TRACE and SCF are coupled through ICoCo in SALOME.

2) The coupling of Cylinder and Cartesian Vessels is fully automated.

- a) Users only need to define the Vessels for vessel coupling cases, the interjunctons between vessels will be automatically established and the flow area will be automatically calculated.
- b) Volumetric and face meshes are constructed for both vessels and various fields are stored in the meshes for post-processing.
- c) Users can decide to compile classic TRACE or TRACE with auto-coupling and post-processing functions by identify a compiling flag.

Thank you for your attention.