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Abstract
Thermomechanical couplings are present in many materials and should there-
fore be considered in multiscale approaches. Specific cases of thermomechanical
behavior are the isothermal and the adiabatic regime, in which the behav-
ior of real materials differs. Based on the consistent asymptotic homogeniza-
tion framework for thermomechanically coupled generalized standard mate-
rials, the present work is devoted to computing the effective thermomechan-
ical behavior of composite materials in the context of fast Fourier transform
(FFT)-based micromechanics. Exploiting the homogeneity of the temperature
on the microscale, we develop a fast implicit staggered solution scheme for the
coupled problem, which is compatible to existing strain-based micromechanics
solvers. Due to its implicit formulation, the algorithm permits large time steps
for computations involving strong thermomechanical coupling. We investigate
the performance of modern FFT-based algorithms combined with the pro-
posed thermomechanical solution strategy. In this context, the Barzilai–Borwein
method is identified as particularly efficient, inducing only a small overhead
compared with the traditional isothermal setting. We demonstrate the effec-
tiveness of the presented approach for short-fiber reinforced composites with
viscoelastic matrix behavior.

K E Y W O R D S

composites, FFT-based micromechanics, homogenization, thermomechanical coupling,
viscoelasticity

1 INTRODUCTION

When subjected to a wide range of thermomechanical loadings, the interplay between temperature and deformation
fields has a significant impact on the effective behavior of structural materials. Clearly, variations in temperature lead to
changes in the mechanical behavior, for example, in the form of thermal softening. In return, mechanical loadings can
induce temperature changes, due to internal dissipation or changes in entropy. This interplay of mechanical and thermal
effects is governed by the balance equations for linear momentum and internal energy (in terms of the heat equation). For
instance, in the vicinity of their glass transition temperature polymers are particularly sensitive to temperature variations.1
Especially when subjected to cyclic loading, self-heating due to dissipation can critically affect the mechanical properties
of materials and the life time of components, see, for example, Rittel,2 Mortazavian-Fatemi,3 or Katunin.4

Int J Numer Methods Eng. 2021;122:1307–1332. wileyonlinelibrary.com/journal/nme © 2020 John Wiley & Sons, Ltd. 1307

https://orcid.org/0000-0002-4925-9035
https://orcid.org/0000-0001-7017-3618
https://orcid.org/0000-0001-6884-0530
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fnme.6579&domain=pdf&date_stamp=2020-11-23


1308 WICHT et al.

Thus, for the optimal use of materials, characterizing and predicting their thermomechanical behavior is of central
importance. For composite materials, this proves to be a challenging task as their properties rest on their individual
constituents and microstructure. In a small-strain framework, Chatzigeorgiou et al.5 used an asymptotic homogenization
approach to derive the governing thermomechanical equations on the micro- and macroscale for generalized standard
materials,6 taking into account both the microstructure and the thermomechanical material behavior. This generalized
previous studies using asymptotic approaches, for example, by Terada et al.7 for porothermoelasticity or Temizer8 for
finite thermoelasticity. A recent review on the homogenization of dissipative materials was given by Charalambakis et al.9

A particular result of the asymptotic homogenization is that the microscopic balance of linear momentum depends
only on the macroscopic temperature and is independent of temperature fluctuations on the microscale.5 In contrast to
earlier works on the homogenization of thermomechanical material properties, for example, by Willis,10 the uniform
temperature on the microscale is not an ad hoc assumption but arises as a direct consequence of first-order homogeniza-
tion. As a result, the thermomechanical problem on the microscale may be solved for a homogeneous temperature and is
decoupled from microscopic heat-conduction. Based on these results, Tikkarrouchine et al.11 homogenized unidirectional
short-fiber structures with temperature-independent material parameters in the context of concurrent multiscale simula-
tions, using the finite element (FE)-software ABAQUS. Similar FE-based multiscale studies which still consider thermal
conduction on the microscale were carried out by Özdemir et al.12 for elastoplasticity and Li et al.13 for single-crystal
elastoviscoplasticity.

Motivated by the aforementioned studies, we consider solvers based on the fast Fourier transform (FFT) for the com-
putational homogenization of thermomechanically coupled materials on the microscale. Since the pioneering work of
Moulinec–Suquet,14 these algorithms have become a well-established tool in computational micromechanics, owing to
three major advantages. First, FFT-based solvers operate on a regular grid, enabling them to handle complex microstruc-
tures and making them directly compatible to modern volumetric imaging techniques such as microcomputed X-ray
tomography. Second, in contrast to traditional FE-based solvers, the FFT-based methods come with a natural matrix-free
implementation. This is especially relevant for finely discretized complex microstructures, where memory can become a
limiting factor. Last but not least, FFT-based methods have proven to be computationally efficient, typically outperforming
traditional FE-based solvers.15-17 Indeed, FFT-based methods profit from optimized and freely available implementa-
tions of the eponymous FFT.18 Furthermore, research effort was devoted to developing fast solution algorithms, which
improve upon the performance of Moulinec–Suquet’s basic iterative scheme. Currently, the most efficient families of
solution schemes are the polarization-based methods,19-21 inexact Newton methods22,23 and quasi-Newton methods.24-26

An overview of the advantages of these methods is provided in Appendix A. Comparative studies on the performance of
various FFT-based solvers were carried out, for instance, by Mishra et al.27 or Schneider.25

FFT-based methods have found widespread application in various fields, such as fracture mechanics,28,29 inter-
face damage,30 and gradient plasticity,31 as well as coupled problems such as electromechanics32 and recrystallization
kinetics.33 In the context of thermomechanics, FFT-based methods have been used to homogenize linear thermoelas-
tic materials34-36 and linear thermomagnetoelectroelastic37 materials. Shantraj et al.38 proposed a FFT-based staggered
algorithm for coupled multiphysics problems, taking thermal conduction on the microscale into account.

To exploit the power of FFT-based methods for computing the effective thermomechanical behavior of nonlinear
dissipative materials, we rely upon the framework of asymptotic homogenization, as pioneered by Chatzigeorgiou et al.5
Due to the weak coupling of mechanics and thermal conduction, the cell problem on the microscale is governed only by
the microscopic balance of linear momentum and the evolution of the macroscopic temperature, cf. Section 2. Based on
these results, we propose a staggered solution algorithm, where strain-field and temperature are updated in an alternating
fashion, cf. Section 3. The proposed solution scheme may be applied on top of any iterative strain-based solution method
and can be easily integrated into existing FFT-based computational micromechanics codes. Owing to the homogeneity
of the temperature on the microscale, the temperature update only involves solving a scalar equation and introduces
little overhead. The usefulness of the approach is demonstrated in Section 4 for glass–fiber reinforced polypropylene
composites with strong thermomechanical coupling.

2 FIRST- ORDER HOMOGENIZATION OF THERMOMECHANICAL
COMPOSITES

Chatzigeorgiou et al.5 introduced a framework for the asymptotic homogenization of thermomechanically coupled gen-
eralized standard materials in the quasi-static small-strain setting. As a result, they obtained governing equations for
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macro- and microscale. In the following, we review the equations relevant for solving the thermomechanical cell problem
on the microscopic level.

Let Y ⊆ Rd be a rectangular cell, with microscopic point x ∈Y and d∈ {1, 2, 3} spatial dimensions. We denote by
Sym(d) the space of symmetric d× d matrices. For the following discussion, we consider the displacement fluctuation
field u ∶ Y × [0,T] → Rd, the infinitesimal strain field 𝜀 : Y × [0, T]→ Sym(d), the stress field 𝜎 ∶ Y × [0,T] → Sym(d), the
heat flux q ∶ Y × [0,T] → Rd, the entropy density s ∶ Y × [0,T] → R, internal energy density e ∶ Y × [0,T] → R, internal
variables z : Y × [0, T]→Z with a sufficiently large vector space Z and the macroscopic absolute temperature 𝜃 ∈ R>0. For
a heterogeneous Helmholtz free energy density

𝜓 ∶ Y × Sym(d) × R>0 × Z → R, (x, 𝜀, 𝜃, z) → 𝜓(x, 𝜀, 𝜃, z),

which is related to the internal energy e by

e = 𝜓 + s𝜃, (1)

we express stress and entropy by the potential relations

𝜎 = 𝜕𝜓

𝜕𝜀
(⋅, 𝜀, 𝜃, z), and s = −𝜕𝜓

𝜕𝜃
(⋅, 𝜀, 𝜃, z), (2)

under the assumption that𝜓 is differentiable in all arguments except for the first.39 As a result from the asymptotic homog-
enization of Chatzigeorgiou et al.,5 only the macroscopic temperature enters𝜓 . Thus, the temperature in a microstructure
cell corresponding to a macroscopic point can be interpreted as homogeneous.

We assume that the free Helmholtz energy density can be additively decomposed

𝜓(⋅, 𝜀, 𝜃, z) = 𝜓heat(⋅, 𝜃) + 𝜓mech(⋅, 𝜀, 𝜃, z) (3)

into a component 𝜓heat associated to heat storage and a component 𝜓mech representing the storage of mechanical energy.
This splitting does not reflect physics, but is computationally convenient, cf. Section 3. Many commonly used thermome-
chanical material models, such as viscoelasticity,11 elastoplasticity,5 and viscoplasticity40 feature a free energy in the form
of (3). The heat capacity density at constant strain

c𝜀 = −𝜃 𝜕
2𝜓

𝜕𝜃
2 , (4)

is typically assumed to be independent of strain 𝜀 and internal state z. Under this condition, the temperature dependence
of the mechanical free energy 𝜓mech may at most be linear. Consequently, we also partition the entropy

s = sheat(⋅, 𝜃) + smech(⋅, 𝜀, 𝜃, z)

with

sheat = −𝜕𝜓heat

𝜕𝜃
and smech = −𝜕𝜓mech

𝜕𝜃
.

For generalized standard materials, the evolution of internal variables is governed by Biot’s equation

𝜕𝜓

𝜕z
(⋅, 𝜀, 𝜃, z) + 𝜕𝜙

𝜕ż
(⋅, 𝜃, ż) = 0 (5)

involving a dissipation potential 𝜙 ∶ Y × R>0 × Z → R≥0, (x, 𝜃, ż) → 𝜙(x, 𝜃, ż). We assume that 𝜙 is convex in its third
argument and 𝜙(⋅, 𝜃, 0) = 0 holds.

For the stress and strain field, the microscopic static balance of linear momentum without volume–force
densities
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div 𝜎 = 0, (6)

and the kinematic compatibility condition

𝜀 = 𝜀 + ∇su with 𝜀 = ⟨𝜀⟩Y (7)

hold, where ⟨⋅⟩Y = 1∕|Y |∫Y (⋅) dV denotes the volume average over Y and ∇s stands for the symmetrized gradient.
The macroscopic temperature is determined by the macroscopic balance of internal energy

𝜃 ė = −divx ⟨q⟩Y + ⟨𝜎 ∶ 𝜀̇⟩Y with e = ⟨e⟩Y , (8)

where we neglect additional source terms and divx denotes the divergence with respect to the position x ∈ Ω in the
macroscopic body Ω ⊆ Rd. It is common to reformulate the balance of internal energy as a heat equation in terms of the
entropy

𝜃 ṡ = −divx ⟨q⟩Y −
⟨
𝜕𝜓

𝜕z
⋅ ż

⟩
Y

with s = ⟨s⟩Y , (9)

or the temperature

c𝜀
̇
𝜃 = −divx ⟨q⟩Y + 𝜃

⟨
𝜕2𝜓

𝜕𝜀𝜕𝜃
∶ 𝜀̇

⟩
Y
+ 𝜃

⟨
𝜕2𝜓

𝜕z𝜕𝜃
⋅ ż

⟩
Y
−

⟨
𝜕𝜓

𝜕z
⋅ ż

⟩
Y
. (10)

Note that, in the small-strain setting, the material time derivative ̇(⋅) reduces to the local time derivative 𝜕(⋅)
𝜕t

. As we
are only interested in solving the cell problem, that is, we only consider a single macroscopic point, the term −divx ⟨q⟩Y
cannot be further specified and acts as a volumetric heat supply term. Hence, we denote  = −divx ⟨q⟩Y and treat  and
𝜀 as boundary conditions. For a treatment in a concurrent multiscale context, cf., for example, Chatzigeorgiou et al.5 or
Tikkarrouchine et al.11

3 SOLUTION SCHEME FOR THE FULLY COUPLED
THERMOMECHANICAL CELL PROBLEM

Consider the Hilbert space V =L2(Y ; Sym(d)) of Y -periodic and square integrable stress and strain fields with inner
product

(S,T) → ⟨S,T⟩L2 = ⟨S ∶ T⟩Y , S,T ∈ V ,

and the induced norm

||S||L2 =
√⟨S, S⟩L2 , S ∈ V .

For a certain point in time, we want to find a strain field 𝜀 and a macroscopic temperature 𝜃 which solve Equations (5)–(8)
for prescribed 𝜀 and  . For the convenience of the reader, we restrict to pure strain boundary conditions, see Kabel
et al.41 for an extension to mixed boundary conditions. To solve our problem, we consider a fixed time step and apply
an implicit Euler discretization in time to our system of equations. We define the operator M ∶ V × R>0 → H−1

# (Y ;Rd),
where H−1

# (Y ;Rd) denotes the space of forces, and the function H ∶ V × R>0 → R

M(𝜀, 𝜃) = div 𝜕𝜓

𝜕𝜀
(⋅, 𝜀, 𝜃, z), (11)

H(𝜀, 𝜃) = 𝜃⟨sheat(⋅, 𝜃) + smech(⋅, 𝜀, 𝜃, z)⟩Y − 𝜃 sn − Δt +
⟨
𝜕𝜓

𝜕z
(⋅, 𝜀, 𝜃, z) ⋅ (z − zn)

⟩
Y

(12)
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with the mean entropy sn and internal variables zn at the last converged time step and the time increment Δt. When
evaluating M(𝜀, 𝜃) or H(𝜀, 𝜃), the internal variables z are computed by solving the discretized Biot’s equation

𝜕𝜓

𝜕z
(⋅, 𝜀, 𝜃, z) + 𝜕𝜙

𝜕ż

(
⋅, 𝜃,

z − zn

Δt

)
= 0, (13)

for given strain-field 𝜀 and temperature 𝜃. The thermomechanical cell problem is defined by the system of equations

M(𝜀, 𝜃) = 0, (14)

H(𝜀, 𝜃) = 0, (15)

where (14) describes the mechanical problem for the strain-field 𝜀 and (15) is the thermal problem, determining the
evolution of the temperature 𝜃.

There exist two general approaches for solving the thermomechanically coupled problem. In monolithic schemes,
(14) and (15) are solved simultaneously, whereas staggered approaches treat the subproblems (14) and (15) separately.42,43

Monolithic approaches enjoy unconditional stability, but the resulting system is usually nonsymmetric.42 Provided each
subproblem by itself is symmetric, staggered schemes circumvent this difficulty and thereby enable using more effi-
cient solution algorithms.44,45 Furthermore, they are convenient in terms of implementation, as existing solvers for the
subproblems may be used.38,46,47 Hence, we focus on staggered algorithms in the following.

Typically, staggered schemes are based on an isothermal split,42,44 where the mechanical problem is solved for a fixed
temperature and the thermal problem is solved for a fixed strain-field. More precisely, for given iterates 𝜀k and 𝜃k, where
𝜃0 = 𝜃

n
is set to the temperature in the last converged time step, the following steps are performed:

1. Solve M(𝜀, 𝜃k) = 0, with fixed temperature 𝜃k and assign the solution to 𝜀k+ 1.
2. Solve H(𝜀k+1, 𝜃) = 0, with fixed strain-field 𝜀k+ 1 and assign the solution to 𝜃k+1.

In this context, we distinguish between explicit and implicit staggered schemes. For explicit schemes, steps 1 and 2
are carried out only once, whereas for implicit schemes the steps are repeated until a prescribed convergence criterion is
fulfilled.

Thus, explicit schemes are naturally faster. However, they suffer from lower accuracy47,48 and are prone to
instabilities42,46,49 for problems with strong thermomechanical coupling. To address the latter difficulty, Armero–Simo42,49

proposed an unconditionally stable adiabatic split, where (14) is solved under the condition ṡ = 0. In the present work,
we do not follow this approach (see below for a discussion) and consider an implicit staggered approach with an isother-
mal split. Implicit staggered schemes enjoy the same accuracy as monolithic algorithms43 and have been shown to be
more stable than explicit schemes.46 However, when repeating steps 1 and 2 until convergence, the subproblems (14)
and (15) have to be solved multiple times per time step, which is computationally expensive. Therefore, we propose two
simplifications to enhance the overall efficiency of the scheme.

First, suppose we have an iterative strain-based fixed point scheme

𝜀k+1 = F(𝜀k, 𝜃), (16)

which solves (14) for a fixed temperature 𝜃. For better readability, we suppress the possible dependency of f on additional
algorithmic parameters and the boundary conditions 𝜀. Instead of solving (14) after each temperature update, we only
perform a single iteration (16) of the mechanical solver.

The second simplification concerns the temperature update, that is, solving (15). Evaluating H(𝜀, 𝜃) is computationally
expensive, as it involves solving (13) for all points in Y to compute the mechanical entropy smech(⋅, 𝜀k, 𝜃k, zk) and the
dissipation 𝜕𝜓

𝜕z
(⋅, 𝜀k, 𝜃k, zk) ⋅ (zk − zn), cf. (12). To obtain an efficient algorithm, we wish to avoid this operation outside of

(16), that is, without improving our current guess for the strain field. Thus, we propose an additive split of H(𝜀, 𝜃)

H(𝜀, 𝜃) = Himpl(𝜃) + Hexpl(𝜀, 𝜃) (17)

into an implicit part Himpl(𝜃)

Himpl(𝜃) = 𝜃⟨sheat(⋅, 𝜃)⟩Y − 𝜃 sn − Δt
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and an explicit part Hexpl(𝜀, 𝜃)

Hexpl(𝜀, 𝜃) = 𝜃⟨smech(⋅, 𝜀, 𝜃, z)⟩Y +
⟨
𝜕𝜓

𝜕z
(⋅, 𝜀, 𝜃, z) ⋅ (z − zn)

⟩
Y
,

following our partition of the entropy. We emphasize that this splitting is not physical but computationally convenient.
Instead of solving H(𝜀k+1, 𝜃) = 0 for updating the temperature, we solve Himpl(𝜃) + Hexpl(𝜀k, 𝜃k) = 0. More precisely, we
compute the effective mechanical entropy

smech,k = ⟨smech(⋅, 𝜀k, 𝜃k, zk)⟩Y ,

as well as the mean dissipation

k =
⟨
𝜕𝜓

𝜕z
(⋅, 𝜀k, 𝜃k, zk) ⋅ (zk − zn)

⟩
Y

(18)

as part of our mechanical iteration (16), cf. Miehe.50 Subsequently, we solve

Hsplit(𝜃) = 0 with Hsplit(𝜃) = 𝜃⟨sheat(⋅, 𝜃)⟩Y + 𝜃 (smech,k − sn) − Δt +k. (19)

This is significantly more efficient than solving H(𝜀k+1, 𝜃) = 0, as it only involves the effective entropy related to heat
storage, which is efficiently computed by

⟨sheat(⋅, 𝜃)⟩Y =
N∑

j=1
cjsheat,j(𝜃) (20)

for an N-phase composite material with volume fractions cj and phase-specific entropies sheat, j.
To summarize, our modified implicit algorithm involves the following steps, which are repeated until the convergence

criterion of the mechanical solver is met:

1. Update the strain field 𝜀k+1 = F(𝜀k, 𝜃k) with a single iteration of the mechanical solver (16). Compute smech,k and
k as part of the iteration.

2. Solve Hsplit(𝜃) = 0 and assign the solution to 𝜃k+1.

The proposed algorithm is compatible to any mechanical solver in the form of (16), including classical FE-based
methods.

For our concrete implementation, we rely on FFT-based solution schemes, due to their computational efficiency.15-17

In particular, we consider Moulinec–Suquet’s basic scheme,14 the Barzilai–Borwein method,25 and the inexact
Newton–CG method,23 cf. Appendix A. Typically, the iteration scheme (16) involves applying the operator Γ =
∇s(div ∇s)−1div in Fourier space and evaluating material law 𝜎 = 𝜕𝜓

𝜕𝜀
(⋅, 𝜃, 𝜀, z). As convergence criterion for the static

equilibrium (14), we use ||Γ ∶ 𝜎||L2||⟨𝜎⟩Y ||L2
≤ 𝛿mech, (21)

see section 5 of Schneider et al.51 for further details. The mean mechanical entropy smech,k and the mean dissipation k
are computed when evaluating the material law. For the temperature update we use Newton’s method, that is, we iterate

𝜃
i+1

= 𝜃
i
−

Hsplit(𝜃
i
)

H′
split(𝜃

i
)

with 𝜃
0
= 𝜃k,

and

H′
split(𝜃) = 𝜃⟨s′heat(⋅, 𝜃)⟩Y + ⟨sheat(⋅, 𝜃)⟩Y + smech,k − sn

,
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until the criterion ||||||
Hsplit(𝜃)

𝜃⟨sheat(⋅, 𝜃)⟩Y + 𝜃 smech,k

|||||| < 𝛿heat (22)

is met. Thus, we set 𝜃k+1 = 𝜃
i
. If the convergence criterion (21) is met, we proceed to the next time step. Otherwise, we

repeat updates (16) and (19). The algorithm is summarized in Algorithm 1.

Algorithm 1. Implicit staggered solution scheme (𝜀, maxitmech, 𝛿mech,  , maxitheat, 𝛿heat)

1: Set initial values for 𝜃̄ and 𝜀
2: k ← 0
3: rmech ← 1
4: while k<maxitmech and rmech >𝛿mech do
5: k ← k + 1

6:

⎡⎢⎢⎢⎣
𝜀

smech


rmech

⎤⎥⎥⎥⎦ ←
⎡⎢⎢⎢⎢⎣

F(𝜀, 𝜃̄)⟨
smech(⋅, 𝜀, 𝜃̄, z)

⟩
Y⟨

𝜕𝜓

𝜕z
(⋅, 𝜀, 𝜃̄, z) ⋅ (z − zn)

⟩
Y‖Γ ∶ 𝜎‖L2∕‖ ⟨𝜎⟩Y ‖L2

⎤⎥⎥⎥⎥⎦
⊳ Isothermal step of mechanical solver (16)

7: rheat ← 1
8: i ← 0
9: while i < maxitheat and rheat > 𝛿heat do ⊳ Temperature update (19)

10: i ← i + 1
11: H ← 𝜃̄

⟨
sheat(⋅, 𝜃̄)

⟩
Y + 𝜃̄ (smech − sn) − Δt +

12: H′ ← 𝜃̄
⟨

s′heat(⋅, 𝜃̄)
⟩

Y +
⟨

sheat(⋅, 𝜃̄)
⟩

Y + smech − sn

13: rheat ← |H∕(𝜃̄
⟨

sheat(⋅, 𝜃̄)
⟩

Y + 𝜃̄ smech)|
14: 𝜃̄ ← 𝜃̄ − H∕H′

15: end while
16: end while
17: return 𝜃̄, 𝜀

Several remarks are in order:

1. For the temperature update, we use the entropy-based heat equation (9) instead of the more common
temperature-based formulation (10). Consider the change in smech under the assumption that the heat capacity
c𝜀, as defined in (4), depends only on the temperature. Using the implicit Euler time discretization on 𝜃ṡheat in
(9) yields

𝜃
sheat(𝜃) − sn

heat

Δt
.

If, alternatively, we discretized the corresponding term c𝜀(𝜃)
̇
𝜃 in (10), we obtain

𝜃
𝜕sheat

𝜕𝜃
(𝜃)𝜃 − 𝜃

n

Δt
.

Apparently, the change in entropy is basically linearized. Hence, to obtain higher precision for large time
increments we prefer using (9).

2. For the temperature update (19), we only consider the temperature dependency of the entropy related to heat
storage sheat, whereas smech and  remain fixed. Indeed, if the heat capacity c𝜀 depends only on the temperature,
smech is temperature independent and  is at most a linear function of the temperature. Thus, as the strain field
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𝜀 converges, changes in subsequent iterates 𝜃k become small. As a result, the solution of (19) approaches the
solution of (15).

3. Due to the homogeneity of the macroscopic temperature 𝜃, computing the mean entropy (20) is comparatively
inexpensive. Thus, solving the scalar equation (19) introduces no significant computational overhead. Compared
with solving the isothermal mechanical problem, higher computation times may still arise for the thermome-
chanically coupled case, due to two factors. First, the iterative solver (16) may require more iterations to converge,
depending on the thermomechanical coupling of the composite, that is, the temperature dependence of the mate-
rial laws and the magnitude of smech and . Second, evaluating smech and  may affect the overall runtime of the
algorithm, provided the associated computational effort is similar to the evaluation of the material law and the
Γ operator.

4. Armero–Simo42,49 analyzed different operator splits for thermomechanically coupled problems and found that
the explicit isothermal split, that is, an isothermal mechanical step followed by a temperature update, is only
conditionally stable. As an alternative, they proposed the unconditionally stable adiabatic split, where the
mechanical problem is solved under the condition ṡ = 0. For the present algorithm, we rely on the isothermal split
as it is more convenient from the viewpoint of implementation. Suppose we already have an existing code for a
purely mechanics-based solution scheme. For the isothermal split, only an update of the temperature dependent
material parameters and the computation of smech and  have to be added to the already implemented material
law. For the adiabatic split, on the other hand, simple reduced forms of the material law, which identically fulfill
ṡ = 0, can only be derived in special cases such as linear thermoelasticity.42 For more complex material laws with
arbitrary temperature dependencies, the implementation of an additional adiabatic formulation may be cumber-
some or even require an iterative local solution scheme. Thus, for tackling the issue of instability, we prefer using
an implicit staggered approach based on an isothermal split.46 Indeed, we encountered no numerical instabilities
in our numerical experiments in Section 4, even for a composite with strong thermomechanical coupling.

4 NUMERICAL DEMONSTRATIONS

4.1 Setup

Algorithm 1 for thermomechanically coupled problems was implemented in an in-house FFT-based computational
homogenization code written in Python 3.7 with FFTW18 bindings. Applying Γ and evaluating the material law were inte-
grated as Cython extensions52 and parallelized using OpenMP. Throughout, we rely on the discretization by trigonometric
polynomials introduced by Moulinec–Suquet.14 As convergence criterion for the iterative FFT-based solver, we use (21)

||Γ ∶ 𝜎||L2||⟨𝜎⟩Y ||L2
≤ 𝛿mech

with a prescribed tolerance of 𝛿mech = 10−5. The tolerance for the convergence criterion (22) of the temperature update||||||
Hsplit(𝜃)

𝜃⟨sheat(⋅, 𝜃)⟩Y + 𝜃 smech,k

|||||| < 𝛿heat

is set to 𝛿heat = 10−4.
For the computations on the two-dimensional microstructure in Section 4.2, a desktop computer with 32 GB RAM

and a six-core Intel i7-8700K CPU was used. The computations on the three-dimensional microstructure in Section 4.3
were performed on a workstation with 512 GB RAM and two 12-core Intel Xeon(R) Gold 6146.

4.2 Continuous glass–fiber reinforced polypropylene

In the following example, we consider a composite consisting of a polypropylene matrix unidirectionally reinforced by
continuous glass fibers with a volume fraction of 30%. The microstructure, cf. Figure 1, is modeled as a two-dimensional
periodic cell with a resolution of 5122, containing 200 fibers. It was generated using the adaptive shrinking cell algorithm
of Torquato–Jiao.53
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F I G U R E 1 Continuous
glass–fiber reinforced
polypropylene: microstructure and
schematic of the generalized
Maxwell model for polypropylene

T A B L E 1 Material parameters of the glass fibers11
Thermal expansion 𝛼0 = 9 × 10−6 1/K

Heat capacity c0 = 2.1 × 106 J∕(m3 K)

Shear modulus G= 28.6 GPa

The glass fibers are modeled as an isotropic linear thermoelastic material. The free energy related to heat storage
reads

𝜓heat(𝜃) = c0

[
(𝜃 − 𝜃ref) − 𝜃 ln

(
𝜃

𝜃ref

)]
,

and corresponds to a material with a constant heat capacity c𝜀(𝜃) = c0. Typically, for solids, states of constant strain are
hard to realize under fluctuating temperatures. Hence, the heat capacity c𝜀 at constant strain is usually not measured
experimentally. However, its value is typically close to the heat capacity c𝜎 at constant stress. The mechanical part of the
free energy is given by

𝜓mech(𝜀, 𝜃) =
1
2
𝜀 ∶ C ∶ 𝜀 − 𝜀 ∶ C ∶ (𝛼(𝜃 − 𝜃ref)),

implying the stress–strain relation

𝜎 = C ∶ (𝜀 − 𝛼(𝜃 − 𝜃ref))

with a stiffness tensor C and a thermal expansion tensor 𝛼 ∈ Sym(d). The associated entropies read

sheat(𝜃) = c0 ln
(
𝜃

𝜃ref

)
and smech(𝜀) = 𝜀 ∶ C ∶ 𝛼.

As the material is elastic, no energy is dissipated, that is,  = 0, and the thermomechanical coupling is governed solely
by smech. Changes in smech cause self-heating under hydrostatic compression and self-cooling under hydrostatic extension.
This phenomenon is commonly referred to as thermoelastic coupling effect, cf. section 13.2 in Haupt,54 or Gough–Joule
effect, cf. section 96 in Truesdell–Noll.55 For the glass fibers, we assume that both stiffness and thermal expansion are
isotropic, that is,

C = 3KP1 + 2GP2 and 𝛼 = 𝛼0Id

with bulk modulus K, shear modulus G, and isotropic coefficient of thermal expansion 𝛼0. By P1 and P2 we denote the
projectors onto the spherical and deviatoric d× d matrices, respectively. The parameters of the model are taken from
Tikkarrouchine et al.11 and listed in Table 1.
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For the polypropylene matrix, we assume a linear thermoviscoelastic model based on a generalized Maxwell model,
cf. Figure 1 and section 3.5.1 in Tschoegl’s book.56 For models accounting for effects outside of the viscoelastic domain, we
refer, for example, to Krairi et al.57 and Benaarbia et al.58 for extensions to viscoplasticity and damage, and Tscharnauter
et al.59 for a study on polypropylene. Based on the caloric data in table 18.10 in the Springer Handbook of Materials Data,60

we assume a heat-storage related free energy of the form

𝜓heat(𝜃) = c0

[
(1 − k𝜃ref)

(
(𝜃 − 𝜃ref) − 𝜃 ln

(
𝜃

𝜃ref

))
− k

2
(𝜃 − 𝜃ref)2

]
,

corresponding to a linear heat capacity

c𝜀(𝜃) = c0[1 + k(𝜃 − 𝜃ref)].

The energy stored the generalized Maxwell model with NMW Maxwell elements reads

𝜓mech(𝜀, 𝜃, 𝜀v𝛼) =
1
2
𝜀 ∶ C0 ∶ 𝜀 +

NMW∑
𝛼=1

1
2
(𝜀 − 𝜀v𝛼) ∶ C𝛼 ∶ (𝜀 − 𝜀v𝛼)

− 𝜀 ∶ C0 ∶ (𝛼(𝜃 − 𝜃ref)) −
NMW∑
𝛼=1

(𝜀 − 𝜀v𝛼) ∶ C𝛼 ∶ (𝛼(𝜃 − 𝜃ref)).

Consequently, the stress computes as

𝜎 = C0 ∶ (𝜀 − 𝛼(𝜃 − 𝜃ref)) +
NMW∑
𝛼=1

C𝛼 ∶ (𝜀 − 𝜀v𝛼 − 𝛼(𝜃 − 𝜃ref)).

We assume that the viscosity tensor associated to a dashpot of the generalized Maxwell model has the form

V𝛼 = a(𝜃)𝜏𝛼C𝛼,

where a ∶ R>0 → R denotes a temperature-dependent shift function. The corresponding fluidity F𝛼 is defined by the
pseudoinverse

F𝛼 = (V𝛼)† =
1

a(𝜃)𝜏𝛼
(C𝛼)†.

In terms of the partial stresses

𝜎v𝛼 = C𝛼 ∶ (𝜀 − 𝜀v𝛼 − 𝛼(𝜃 − 𝜃ref)),

the evolution equation for the viscous strains reads

𝜀̇v𝛼 = F𝛼 ∶ 𝜎v𝛼.

For simplicity, we assume that polypropylene is isotropic and linear elastic in dilation, cf. section 9.4 in Brinson–Brinson.61

More precisely, the stiffness tensors and the thermal expansion tensor have the form

C0 = 3K0P1 + 2G0P2, C𝛼 = 2G𝛼P2, and 𝛼 = 𝛼0Id.

In this particular case, the viscous strains 𝜀v𝛼 are purely deviatoric and independent of thermal expansion. The shift func-
tion a describes the time-temperature dependency of the material. At room temperature 𝜃ref = 293.15 K, polypropylene
is above its glass transition temperature 𝜃glass ≈ 273.15 K. Hence, we use the Williams–Landel–Ferry (WLF) equation62

as ansatz for the shift function
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T A B L E 2 Material parameters of
polypropylene Thermal expansion60 𝛼0 = 1.91 × 10−4 1∕K

Heat capacity60 c0 = 1.512 × 106 J∕(m3 K)

k= 4.6× 10−3

WLF constants65 C1 = 45

C2 = 158 K

Bulk modulus65 K0 = 4930 MPa

Shear modulus65 G0 = 415.6 MPa

Maxwell elements65 𝜏1 = 10−4 s G1 = 154.8 MPa 𝜏6 = 10 s G6 = 38.4 MPa

𝜏2 = 10−3 s G2 = 127.0 MPa 𝜏7 = 102 s G7 = 36.7 MPa

𝜏3 = 10−2 s G3 = 97.6 MPa 𝜏8 = 103 s G8 = 31.5 MPa

𝜏4 = 10−1 s G4 = 72.3 MPa 𝜏9 = 104 s G9 = 30.6 MPa

𝜏5 = 1 s G5 = 50.9 MPa

log10a(𝜃) = − C1(𝜃 − 𝜃ref)
C2 + 𝜃 − 𝜃ref

. (23)

For the present study, we restrict to linear viscoelastic behavior and focus on the effects induced by the thermomechan-
ical coupling. In particular, we omit a possible pressure dependence of the shift factor as suggested by Fillers–Tschoegl63

based on free-volume considerations.
For our implementation, we use the time-integration scheme of Taylor et al.,64 which is based on the partial stresses

𝜎v𝛼 instead of the viscous strains 𝜀v𝛼 . The update reads

𝜎v𝛼 = exp
(
−Δ𝜉
𝜏𝛼

)
𝜎n

v𝛼 +

(
1 − exp

(
−Δ𝜉
𝜏𝛼

))
Δ𝜉
𝜏𝛼

C𝛼 ∶ (𝜀 − 𝜀n + 𝛼(𝜃 − 𝜃n)),

where (⋅)n denotes the value of the last converged time step and 𝜉 is a reduced time defined via

𝜉 = ∫
t

0

1
𝛼(𝜃(𝜏))

d𝜏.

We compute the change in reduced time Δ𝜉 = 𝜉 − 𝜉n by a five-point Gauss quadrature, assuming a constant temperature
rate. The entropies and dissipation in terms of the partial stresses 𝜎v𝛼 read

sheat(𝜃) = c0

[
(1 − k𝜃ref) ln

(
𝜃

𝜃ref

)
+ k(𝜃 − 𝜃ref)

]
,

smech(𝜀, 𝜃, 𝜎v𝛼) = 𝜀 ∶ C0 ∶ 𝛼 +
NMW∑
𝛼=1

𝛼 ∶ [𝜎v𝛼 + C𝛼 ∶ (𝛼(𝜃 − 𝜃ref))],

 =
NMW∑
𝛼=1

𝜎v𝛼 ∶ F𝛼 ∶ 𝜎v𝛼.

The used material parameters are listed in Table 2. The caloric parameters were chosen based on tables 18.9 and 18.10
in the Springer Handbook of Materials Data60 and the viscoelastic parameters are taken from the experimental study by
Kehrer et al.65 Note that Kehrer et al.65 characterized the behavior of polypropylene over a wide range of frequencies and
temperatures, using 27 Maxwell elements for their model. For the present study, we restrict to moderate temperature and
frequency changes and only consider nine elements with time constants 𝜏𝛼 ∈ [10−4, 104] in order to reduce computation
times. The shear moduli of the elements with 𝜏𝛼 > 104 are added to the elastic shear modulus G0, whereas the elements
with 𝜏𝛼 < 10−4 were omitted.
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F I G U R E 2 Continuous glass–fiber reinforced polypropylene: stress vs strain at various loading angles in the xz-plane with respect to
the x-direction

4.2.1 Uniaxial extension

In our first set of experiments, we take a look at the stress-strain behavior under uniaxial extension and compression. We
want to assess the strength of the thermomechanical coupling for the investigated composite microstructure. In addition,
we are interested in the performance of the different FFT-based solution algorithms in Appendix A in conjunction with
the staggered thermomechanical solution scheme in Algorithm 1. To this end, we apply mixed boundary conditions, cf.
Kabel et al.,41 corresponding to strain-controlled uniaxial extension/compression to 5% with a strain rate of 1/s at various
loading angles in the xz-plane with respect to the x-direction, that is, the fiber direction. For the first set of computations,
we consider adiabatic conditions, that is,  = 0, where self-heating/-cooling of the material is expected. The second set
of computations is performed with a fixed temperature of 𝜃ref = 293.15 K as reference.

The resulting stress–strain curves are plotted in Figure 2. In the isothermal setting, there is no distinction between
tension and compression and we observe a linear relation between stresses and strains. For the loading under adiabatic
conditions, however, the thermomechanical coupling induces an effectively nonlinear behavior. To be more precise, under
compression, smech decreases, which leads to a rise in temperature, resulting in the softening of the polypropylene matrix.
Conversely, under tension smech increases, leading to a lower temperature and the stiffening of polypropylene. Two factors
contribute to the strength of the observed thermomechanical coupling. First, due to its high thermal expansion coefficient
𝛼, the Gough–Joule effect, that is, the strain-induced change of smech is rather pronounced for polypropylene. Second,
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Basic scheme Barzilai-Borwein Newton CG adiabatic isothermal

20 40 60 80 100

101

100

10−1

10−2

10−3

10−4

10−5

Iter. count

R
es

id
ua

l

R
es

id
ua

l

(A) Residual vs iteration count

0 0.5 1 1.5 2 2.5 3

101

100

10−1

10−2

10−3

10−4

10−5

Time in s

(B) Residual vs computation time

F I G U R E 3 Continuous glass–fiber reinforced polypropylene: performance comparison for 5% uniaxial extension in z-direction in a
single load step

the mechanical behavior of polypropylene is very sensitive to temperature changes in the vicinity of its glass transition
temperature, as encapsulated by the WLF equation (23). Note that the computations for the 0◦ load angle represent an
exception to these observations. In this case, the fibers carry most of the load and we observe no difference between
isothermal and adiabatic computations, due to temperature independence of their stiffness.

4.2.2 Performance comparison for a single load step

Next, we take a closer look at the performance of the different FFT-based solution schemes. In particular, we are interested
how their convergence behavior changes in case of strong thermomechanical coupling, compared with the isothermal
setting. Hence, we consider the load case of uniaxial extension at a 90◦ load angle, where the coupling is most pronounced.
First, the performance is evaluated for a single load step up to 5% strain.

The residual is plotted as a function of iteration counts and computation time in Figure 3. Note that the convergence
behavior of the Newton–CG method in the adiabatic setting is distinctly different in comparison with the isothermal
computation. For the isothermal case, the decrease of the residual gradually grows in subsequent Newton iterations. Due
to the adaptive forcing-term choice of Eisenstat–Walker,66 the linear system is thus solved to higher accuracy. In contrast,
the convergence rate with respect to Newton iterations is roughly constant for the adiabatic computation. This is due to
the fact that we do not consider the temperature dependence of the material behavior in the computation of the Hessian.
Thus, the linear approximation of the gradient is less precise than for the isothermal computation. With respect to the
overall performance, this effect is somewhat alleviated by Eisenstat–Walker’s forcing-term choice,66 as the linear system
is solved to lower accuracy, thereby reducing the cost of each Newton iteration. Even though, Newton–CG requires 75%
more Newton iterations in the adiabatic setting, the runtime only increases by about 30%, cf. Table 3.

For the basic scheme, the convergence rate in the adiabatic and isothermal setting is nearly identical. The
same is true for the Barzilai–Borwein method, which displays its characteristic nonmonotone behavior and con-
verges in much fewer iterations than the basic scheme, cf. Table 3. Even though the iteration counts of both
schemes are roughly identical for both settings, the overall computation times are slightly higher for the adiabatic
computations.

A look at the computational cost of the most expensive operations, that is, the material law, the FFTs and the
Γ-operator, clarifies this phenomenon. In Table 4, the average computation times per application of these operations are
listed for the 0◦ load case solved by the Barzilai–Borwein scheme. Notably, for the adiabatic setting, the additional com-
putation of  and smech in the material law increases its time per application by about 70%. Thus, the overall cost per
iteration ends up 30% higher. The same is true for the basic scheme.
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Isothermal Adiabatic

Basic scheme Iter. count 349 323

Comp. time (s) 9.34 10.04

Barzilai–Borwein Iter. count 60 59

Comp. time (s) 1.60 2.01

Newton–CG Newton iter. count 8 14

CG iter. count 55 64

Comp. time (s) 1.80 2.38

T A B L E 3 Continuous glass–fiber reinforced
polypropylene: iteration counts and computation
times for 5% uniaxial extension in z-direction in a
single load step

Mean comp. time Isothermal Adiabatic

per application (ms)

Material law 9.6 16.2

FFT 9.7 9.6

Γ0 operator 2.4 2.5

T A B L E 4 Continuous glass–fiber reinforced polypropylene:
computation time per application of the most expensive operations for
loading in z-direction and solved by the Barzilai–Borwein method in a
single load step

Comparing the overall performance of the schemes, we observe that the Barzilai–Borwein method is the fastest for
both the isothermal and adiabatic setting. The Newton–CG method is only slightly slower but suffers from increased
iteration counts for the adiabatic case. The basic scheme is by far the slowest, taking five to six times longer than the
Barzilai–Borwein method.

4.2.3 Performance comparison for 20 load steps

Next, we investigate the performance of the solvers, when subdividing the strain loading of 5% into 20 equally spaced load
steps. An affine-linear extrapolation14 is applied at the beginning of each load step to obtain an initial guess for the strain
field. The total iteration counts and computation times of the different solvers in each load step are plotted in Figure 4.

For all solvers, the iteration counts decrease up to step 5 as the affine-linear extrapolation takes effect. For the isother-
mal computations, the iteration counts further decrease after this point, due to the linear stress–strain behavior. In
contrast, the iteration counts stagnate or, in case of the basic scheme, even increase for the adiabatic computations. This
coincides with the onset of the effectively nonlinear material behavior for uniaxial strains larger than 1%, cf. Figure 2(D).
Hence, the affine-linear extrapolation becomes less effective, which leads to higher iteration counts compared with the
isothermal computations. Note that for a material which already behaves nonlinearly under isothermal conditions, this
difference between adiabatic and isothermal computations is expected to be less pronounced (Table 5).

As for the loading in a single step, the Barzilai–Borwein method is fastest. Its computation time for the adiabatic
case increases by roughly 35%, due to higher iteration counts and the additional cost per iteration. The performance of
the Newton–CG method is nearly identical to the Barzilai–Borwein method for the isothermal computation. However, it
exhibits a larger decrease in performance for the adiabatic computation, with an increase in computation time by nearly
60%. For the basic scheme, the iteration counts are roughly identical for the isothermal and the adiabatic setting. In the
first nine steps, the adiabatic computation converges faster, as a consequence of the stiffening due to self-cooling and the
resulting reduction in material contrast. For the subsequent steps, the isothermal computation requires fewer iterations,
due to the more effective affine-linear extrapolation. Fortuitously, these effects roughly cancel each other out. Overall,
the basic scheme is still the slowest, taking three to four times longer than the Barzilai–Borwein method to converge.

To summarize, we observe that the convergence behavior of the basic scheme and the Barzilai–Borwein method
in conjunction with Algorithm 1 is similar to their convergence behavior under isothermal conditions, even for a
composite with strong thermomechanical coupling. The computation times for the thermomechanically coupled com-
putations increase by roughly 30% for both schemes, which is mainly due to the additional cost of computing the
dissipation  and mechanical entropy smech in the material law. The Newton–CG method suffered the highest decrease
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F I G U R E 4 Continuous glass–fiber reinforced polypropylene: performance comparison for 5% uniaxial extension in z-direction in 20
load steps

T A B L E 5 Continuous glass–fiber
reinforced polypropylene: mean iteration
counts and computation times for 5% uniaxial
extension in z-direction and 20 load steps

Isothermal Adiabatic

Basic scheme Mean iter. count 87.80 87.05

Mean comp. time (s) 2.23 2.87

Barzilai–Borwein Mean iter. count 17.45 22.00

Mean comp. time (s) 0.58 0.79

Newton–CG Mean Newton iter. count 5.15 7.70

Mean CG iter. count 15.40 23.15

Mean Comp. time (s) 0.61 0.97

in performance for the coupled computations, as the temperature dependence is neglected in the Hessian computa-
tion. This leads to a significant increase in Newton- and CG-iterations, in addition to the higher cost per Newton
iteration.

Considering the overall performance, the Barzilai–Borwein method and the Newton–CG method are the fastest
solvers. Due to its lower memory requirements and its more robust convergence behavior in the thermomechanically
coupled computations, we use the Barzilai–Borwein method for all following computations.

4.3 Planar short glass–fiber reinforced polypropylene

Motivated by the numerical experiments in the last section, we investigate a more complex microstructure, cf. Figure 5.
We consider a polypropylene matrix reinforced by 1130 short glass–fibers with an aspect ratio of 20. The fiber volume
fraction amounts to 13.2%, corresponding to mass fraction of 30%. The microstructure was generated by the sequential
addition and migration algorithm67 and discretized by 512× 512× 64 voxels. The second-order fiber-orientation tensor
reads A= diag(0.45, 0.45, 0.1), cf. Advani–Tucker.68 For the following investigations, we use the same material models and
parameters as in Section 4.2.
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(A) Microstructure (B) Von Mises equivalent strain

F I G U R E 5 Short
glass–fiber reinforced
polypropylene: microstructure
and von Mises equivalent strain
after 1% uniaxial extension in
x-direction

4.3.1 Dynamic mechanical analysis

The macroscopic behavior of viscoelastic composites is often investigated under steady-state oscillations with a fixed fre-
quency f ∈ R≥0, cf. section 5.5 in Brinson–Brinson.61 This is commonly called dynamic–mechanical analysis (DMA).
Suppose a linear viscoelastic material is harmonically excited by uniaxial tension/compression where the strain compo-
nent in loading direction is given by

𝜀(t) = 𝜀amp sin(𝜔t), (24)

with the strain amplitude 𝜀amp ∈ R≥0 and the angular frequency 𝜔 = 2𝜋f . The stress response of the material in loading
direction reads

𝜎(t) = 𝜎amp sin(𝜔t + 𝛿) (25)

with the stress amplitude 𝜎amp ∈ R≥0 and phase difference 𝛿 ∈ [0, 𝜋∕2]. Typical characteristics for the material are the
storage modulus

E′ =
𝜎amp

𝜀amp
cos(𝛿) (26)

and loss modulus

E′′ =
𝜎amp

𝜀amp
sin(𝛿). (27)

The storage modulus is related to the average elastic energy stored in a load cycle

𝜓cycle =
1
4
𝜀2

ampE′

and serves as a measure of the material’s elastic stiffness. The loss modulus is proportional to the energy dissipated over
a load cycle

cycle = 𝜋𝜀2
ampE′′, (28)

cf. section 9.1 in Tschoegl.56 Thus, E′ ′ is of particular interest in cases of harmonic loadings with high cycle counts. For
instance in fatigue experiments,69,70 the dissipated energy accumulates, leading to an increase of temperature over time.

For linear viscoelastic material models, such as the generalized Maxwell model for polypropylene, E′ and E′ ′ can be
computed analytically in the isothermal setting, cf. section 11.1 in Tschoegl.56 However, as we have seen in Section 4.2.1,
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F I G U R E 6 Polypropylene: relative error between analytic values and
the results of the virtual DMA tests for E′ , E′ ′ , and cycle as a function of
load steps per cycle

the thermomechanical coupling induces a nonlinear behavior due to self-heating and self-cooling. Thus, we characterize
the viscoelastic behavior of the composite by simulating DMA tests. More precisely, we run through the following steps:

1. In analogy to tensile DMA experiments, a static uniaxial tensile load of 𝜀static is applied in a single step in 1 second.
2. The loading 𝜀static is held constant for 100 s. In actual experiments, the holding time is usually much shorter. However,

we want to mitigate the effects of the initial stress relaxation on our numerical experiments.
3. A sinusoidal loading of the form (24) with amplitude 𝜀amp and frequency f is applied over two cycles, resolved with

a fixed number of load steps per cycle.
4. The amplitude 𝜎amp and the phase angle 𝛿 of the stress response (25) are determined via a least-square fit to the com-

puted macroscopic stress values in the second cycle to avoid transient effects. Subsequently, E′ and E′′ are computed
via Equations (26) and (27).

Note that we do not use the affine-linear extrapolation for these computations, due to the nonmonotone loading.
To validate our approach and to determine the necessary number of load steps per cycle, we apply steps 1–4 for a
homogeneous polypropylene microstructure under isothermal conditions. The parameters for the sinusoidal loading are
𝜀static = 0.1%, 𝜀amp = 0.05%, cf. Kehrer et al.,65 and f = 10 Hz. For this frequency, the storage and loss modulus of the vis-
coelastic model for polypropylene are given by E′ = 2012.22 MPa and E′′ = 177.68 MPa. In addition to E′ and E′′ , we also
track the effective dissipated energy (18) in our computations and compare it to the analytical formula (28). The relative
errors for E′, E′′ and cycle are shown in Figure 6 as a function of the load steps per cycle.

For more than 30 load steps per cycle, the relative error for all tracked quantities falls below 1%. Indeed, E′′ as deter-
mined by our DMA computation virtually coincides with its analytical value. Note that the error in dissipation does not
tend to 0 for finer resolutions. This is a consequence of the stress relaxation under static strain loading, which still causes
a small additional amount of energy dissipation. In preliminary computations, a higher number of cycles was consid-
ered as well. However, the results did not differ substantially. Hence, we choose 30 load steps per cycle for all subsequent
computations.

With the established procedure, we simulate uniaxial DMA tests at various static load values for the planar short
glass–fiber reinforced polypropylene microstructure, see Figure 5. In particular, the effect of the thermomechanical cou-
pling under adiabatic conditions on E′ and E′′ is of interest. The loading is applied in the xz-plane at angles between
0◦ and 90◦ with respect to the x-direction. Static loads 𝜀static between 0.1% and 1.0% are considered. The amplitude and
frequency are fixed at 𝜀amp = 0.05% and f = 10 Hz, respectively.

In Figure 7, the results for E′ and E′ ′ are plotted alongside the mean temperature during the harmonic excitation as a
function of the loading angle. First, we take a look at the storage modulus. For the 0◦ load case, that is, in-plane loading,
the storage modulus is at its peak value. This is due to the stiffening effect of the fibers. For increasing load angle, it
drops by ca. 20% up to 45◦ and subsequently stagnates. Similar to the observations in Section 4.2.1, the material cools
down under tensile loading due to the Gough–Joule effect, cf. Figure 7(C). This causes a stiffening of the polypropylene
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F I G U R E 7 Short glass–fiber reinforced polypropylene: complex moduli and average temperature as a function of the loading angle
with respect to the x-axis in the xz-plane

matrix and an increase E′. The effect is most pronounced for the 90◦ load case, where we observe the largest temperature
difference between adiabatic and isothermal conditions. For a static load of 1.0%, the relative error between the adiabatic
computation and the isothermal computation is slightly below 6%.

The loss modulus E′ ′ displays a slightly different profile with respect to the loading angle. Its value is at its maximum
between 0◦ to 15◦, where the strong strain localization around the fibers leads to high amounts of dissipated energy.
Subsequently, the loss modulus decreases linearly. The effect of the static loading on the loss modulus under adiabatic
conditions is more pronounced than for the storage modulus. As a decrease in temperature brings the temperature of
polypropylene closer to its glass transition temperature, the dissipated energy and E′′ increase. At a load angle of 90◦,
where the self-cooling is most pronounced, even the lowest static loading of 𝜀static = 0.1% leads to a 5% difference in the
loss moduli. The difference increases with the static loading, reaching 13% for 𝜀static = 1.0%.

We conclude that the thermomechanical coupling can have a significant effect when characterizing
thermoplastics-based composites using DMA. Due to the Gough–Joule effect, the effective behavior of the material, in
particular E′ ′ , becomes load dependent, that is, nonlinear. This is particularly pronounced for high loading frequencies,
when there is no time for thermal conduction or radiation to take place and the conditions are approximately adiabatic.
To obtain precise results for real-life experiments, a strict temperature control of the specimen and low static loadings
are therefore necessary.

4.3.2 Self-heating under harmonic loading

In the previous Section 4.3.1, we considered an oscillatory loading with a small number of cycles. In this case, the observed
temperature changes were mostly due to the Gough–Joule effect caused by the static loading. However, for a high num-
ber of cycles, the dissipated energy accumulates over time and becomes the main driver of the temperature evolution.
For example, such conditions frequently occur in fatigue testing, where the self-heating of the specimen poses a major
challenge.2,3 Typically, in the first hundreds of cycles, the temperature increases in a roughly linear fashion71 and subse-
quently reaches an equilibrium value when dissipation and thermal conduction reach an equilibrium state. This limits,
for instance, the range of viable loading frequencies for testing.72,73

Motivated by these findings, we take a look at the effect of the thermomechanical coupling on the dissipative character-
istics of the short glass–fiber reinforced composite in the initial stage of a high cycle test. More precisely, we prescribe 100
cycles of harmonic stress-controlled uniaxial tensile loading in x-direction with a frequency of f = 10 Hz. The static stress
is fixed at 𝜎static = 30MPa with a stress amplitude of 𝜎amp = 30MPa, corresponding to a load factor of R = 𝜎min∕𝜎max = 0.
As only a short time-frame of 10 s is considered, we assume adiabatic conditions.

First, we consider the evolution of the temperature and the strain amplitude. In Figure 8(A), the minimum, maximum,
and average temperature are plotted for each cycle. Initially, the mean temperature is lower than the reference 𝜃ref =
293.15 K, due to the Gough–Joule effect. Over time, the self-heating caused by the dissipated energy leads to a linear
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F I G U R E 9 Short glass–fiber reinforced polypropylene: dissipated energy and loss modulus for each of 100 cycles under
stress-controlled uniaxial harmonic loading in z-direction

increase and after 25 cycles the initial cool-down is compensated. Together with the temperature, the strain amplitude
increases as the material softens, cf. Figure 8(B). However, the reference value of 𝜀amp for the isothermal case is reached
after 42 cycles when the mean temperature has already surpassed 𝜃ref. Taking a look at the minimum and maximum
temperature in Figure 8(A), we observe that the large stress amplitude leads to a significant fluctuation of about 1 K
for each cycle. Hence, the behavior of polypropylene fluctuates within each cycle, resulting in a slight reduction of the
amplitude.

Last but not least, we take a look at the dissipation and the loss modulus for each cycle. Consistent with our observa-
tions in Section 4.3.1, the magnitude of the loss modulus, cf. Figure 9(A), is initially higher than the isothermal prediction
and subsequently decreases with increasing temperature. As the temperature reaches its reference value, so does E′ ′ , indi-
cating that it is mostly unaffected by the large stress amplitude and the resulting intercyclic temperature fluctuations.
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The dissipation per cycle follows a similar trend. However, it barely exceeds the isothermal reference value in the first
few cycles, as the higher loss modulus is partly compensated by the lower strain amplitude.

Overall, we observe that the dissipative behavior of the material changes significantly in the first cycles of a
long-term harmonic excitation. At the end of 100 cycles, the loss modulus and dissipation are 16% and 12% lower,
respectively, than the values predicted for the isothermal setting. Thus, when predicting the temperature changes
for fatigue tests based on (28), cf. Handa et al.,69 accounting for the temperature dependence of the material is
mandatory.

5 CONCLUSIONS

The present study was devoted to enabling the efficient computational homogenization of thermomechanically coupled
materials. Based on the consistent asymptotic homogenization framework for dissipative materials,5 we presented an
efficient staggered algorithm compatible to strain or displacement-based micromechanical solvers. Due to their computa-
tional power, we focused on FFT-based solution schemes and found that best performance was achieved in combination
with the Barzilai–Borwein method. Even for a composite with strong thermomechanical coupling, its iteration counts
and convergence behavior hardly differed from the usual isothermal setting. The powerful class of polarization-based
schemes19,20,74 was excluded from the present work, as the complexity-reduction approach by Schneider et al.51 may
prevent the evaluation of dissipation and entropy. Further studies are necessary, to make these solvers available for
thermomechanically coupled problems.

In our numerical experiments, we observed that the computational overhead for the temperature-update step in
the proposed algorithm was negligible. The difference in runtime between thermomechanically coupled and isothermal
computations was dominated by evaluating the entropy and the dissipation, as part of the material law. In particular, com-
puting the dissipation was costly for the chosen linear viscoelastic model, as it involves applying an inverse stiffness tensor
for each Maxwell element. This lead to an increase in overall computation times by 20%–30%. However, for material laws
such as J2-plasticity, where the dissipation is readily computed, the difference is much smaller. Overall, we conclude that
the proposed algorithm enables computing the effective mechanical behavior of thermomechanically coupled materials
with nearly the same computational efficiency as traditional FFT-based methods in an isothermal setting.

For the investigated glass–fiber reinforced polypropylene composites we observed that the thermomechanical cou-
pling induced an effectively nonlinear material behavior, even though the underlying material model was linear
viscoelastic. In particular, the dissipative characteristics of the materials changed significantly between the isothermal
and adiabatic computations. Expanding the study of similar polymer-based lightweight-materials, such as sheet-molding
compounds,75 to include thermal effects seems promising. The presented thermomechanical solver is compatible to the
interpolation approach by Köbler et al.,76 enabling the development of effective (macroscopic) surrogate models for arbi-
trary fiber orientations. For more general structures and material models, thermomechanical FFT-based computations
may enter data-driven approaches, such as deep material networks,77-79 to facilitate the simulation of components on the
macroscale.

With regard to the material model of the polymer, it would be interesting to apply a free-volume-based approach
for the shift factor,63 which takes into account the pressure dependence of the viscosity. Whereas a tensile loading
mechanically increases the free volume, the accompanying adiabatic cooldown, observed in this study, may weaken
this effect. Investigating the interaction between these phenomena seems worthwhile to enable a thorough charac-
terization of the thermomechanical material behavior. In addition, expanding the material model to the viscoplastic
domain57 appears attractive to investigate the influence of the plastic dissipation on the self-heating behavior of
the material. As self-heating effects are particularly relevant in the context of fatigue and life-time predictions, cou-
pling the presented thermomechanical solver with FFT-based schemes for damage30,80 or fracture28,29 would be of
interest.
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APPENDIX A. FFT-BASED SOLUTION SCHEMES FOR THE ISOTHERMAL PROBLEM

Due to their computational efficiency, we chose FFT-based algorithms for the iterative solution scheme in our staggered
thermomechanical algorithm 1. In this appendix, we recast the isothermal balance of linear momentum, cf. (14), as an
optimization problem. Based on this variational framework, the basic scheme,14 the Barzilai–Borwein method,25 and the
inexact Newton method22,23 are briefly summarized in Sections A.1–A.3.

Let w
𝜃
(⋅, 𝜀) = w(⋅, 𝜃, 𝜀) denote the condensed incremental potential of a generalized standard material for a fixed

temperature 𝜃, cf. Lahellec–Suquet.81 The material law is defined by the hyperelastic relation

𝜎 =
𝜕w

𝜃

𝜕𝜀
(⋅, 𝜀).

For a prescribed macroscropic strain 𝜀, we seek a compatible strain field

𝜀 = 𝜀 + ∇su with ⟨𝜀⟩Y = 𝜀, (A1)

which solves the balance of linear momentum

div
𝜕w

𝜃

𝜕𝜀
(⋅, 𝜀) = 0. (A2)

After solving (A2), the macroscopic stress is computed by

𝜎 =
⟨
𝜕w

𝜃

𝜕𝜀
(⋅, 𝜀)

⟩
Y
.

This problem can be interpreted as a critical point of the mean energy W(𝜀̂) = ⟨w
𝜃
(𝜀 + 𝜀̂)⟩Y , cf., for instance, Schneider25

or Zeman et al.,82

W(𝜀̂) → min
𝜀̂∈U⊂V

with respect to the strain fluctuations 𝜀̂ in the subspace

U = {𝜀̂ ∈ V |𝜀̂ = ∇su,u ∈ H1
#(Y ,R

d)},

where H1
#(Y ,R

d) denotes the first-order Sobolev space of periodic and mean-free displacement fluctuations u. By the
Helmholtz decomposition, cf. chapter 12.1 in Milton’s book,83 Γ = ∇s(div ∇s)−1div is an orthogonal projector onto U.
Thus, we can write the differential in the form

DW(𝜀̂)[S] =
⟨
Γ ∶

𝜕w
𝜃

𝜕𝜀
(𝜀 + 𝜀̂), S

⟩
L2
, S ∈ U

and identify the gradient

∇W = Γ ∶
𝜕w

𝜃

𝜕𝜀̂
(⋅, 𝜀).

by the definition ⟨∇W(𝜀̂), S⟩L2 = DW(𝜀)[S], ∀S ∈ U.

Note that the condition ∇W = 0 for critical points of W is equivalent to the static equilibrium div 𝜎 = 0 in (A2).

A.1 Basic scheme
Using the gradient descent method for solving (A2) yields the iterative scheme23

𝜀k+1 = 𝜀k − skΓ ∶
𝜕w

𝜃

𝜕𝜀
(⋅, 𝜀k). (A3)
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The optimal step size for the scheme is given by

s = 2
𝛽+ + 𝛽−

, (A4)

cf. section 1.2.3. in Nesterov’s book,84 where 𝛽+ and 𝛽− denote the extreme eigenvalues of the material tangent 𝜕2w
𝜃

𝜕𝜀2

evaluated over all microscopic points. Rewriting (A3) as a Lippmann–Schwinger equation

𝜀k+1 = 𝜀 − Γ0 ∶
(
𝜕w

𝜃

𝜕𝜀
(⋅, 𝜀k) − C

0 ∶ 𝜀k

)
, with C

0 = 1
s

Id, and Γ0 = sΓ,

we see that the gradient-descent method coincides with Moulinec–Suquet’s basic scheme.14 The pseudocode for the basic
scheme is summarized in Algorithm 2.

Algorithm 2. Basic scheme iteration(𝜀, 𝜀, s)14

1: 𝜀 ←
𝜕w𝜃̄

𝜕𝜀
(𝜀) −C0 ∶ 𝜀

2: 𝜀 ← FFT(𝜀)

3: 𝜀(𝜉) ←
{

𝜀 𝜉 = 0
−Γ0(𝜉) ∶ 𝜀(𝜉) else

4: 𝜀 ← FFT−1(𝜀)
5: return 𝜀

The basic scheme is robust and memory efficient as it operates on a single strain-like field. However, it converges
exceedingly slow for composites with high material contrast 𝜅 = 𝛽+∕𝛽−.

A.2 Barzilai–Borwein method

Schneider25 exploited the quasi-Newton-based Barzilai–Borwein85 step size for gradient descent

sk = sk−1

⎛⎜⎜⎝1 −
⟨ 𝜕w

𝜃

𝜕𝜀
(⋅, 𝜀k),Γ ∶ 𝜕w

𝜃

𝜕𝜀
(⋅, 𝜀k−1)⟩L2

||Γ ∶ 𝜕w
𝜃

𝜕𝜀
(⋅, 𝜀k−1)||L2

⎞⎟⎟⎠
−1

with s0 = 2
𝛽+ + 𝛽−

, (A5)

to accelerate the basic scheme (A3). The resulting algorithm is presented in Algorithm 3 and requires storing two
strain-like fields. Note that for the first iteration (k= 0), a single iteration of the basic scheme, cf. Algorithm 2, should be
used to fix the mean value of 𝜀.

Algorithm 3. Barzilai–Borwein iteration(𝜀, 𝜀, s)25

1:

[
R

innerProduct

]
←

[ 𝜕w𝜃̄

𝜕𝜀
(𝜀)⟨

𝜕w𝜃̄

𝜕𝜀
(𝜀) ∶ R

⟩
Y

]
2: R ← FFT(R)

3: R(𝜉) ←
{

0 𝜉 = 0
−Γ(𝜉) ∶ R(𝜉) else

4: R ← FFT−1(R)
5: s ← s∕(1 − innerProduct∕‖R‖L2)
6: 𝜀 ← 𝜀 − sR
7: return 𝜀

In practice, the Barzilai–Borwein method outperforms the basic scheme significantly, both in terms of iteration count
and runtime.25,26 For problems where the computational effort of evaluating 𝜎 = 𝜕w

𝜃

𝜕𝜀
(𝜀) is comparable to the cost of
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computing Γ and the associated FFTs, the Barzilai–Borwein method is the general-purpose method of choice. Note,
however, that its convergence behavior is nonmonotone.

A.3 Inexact Newton method
The inexact Newton method in conjunction with Krylov-subspace solvers was introduced to FFT-based micromechanics
by Gélébart–Mondon–Cancel22 and Kabel et al.23 A Newton iteration for solving (A2) reads

𝜀k+1 = 𝜀k + 𝛼kΞk, (A6)

where the damping parameter 𝛼k ∈ (0, 1] is determined by an inexact line-search86 and Ξk solves

Ξk + Γ0 ∶

[
𝜕2w

𝜃

𝜕𝜀2 (⋅, 𝜀k) − C
0

]
∶ Ξk = −Γ0 ∶

𝜕w
𝜃

𝜕𝜀
(⋅, 𝜀k), (A7)

up to a prescribed tolerance 𝛾k. In our implementation, we rely upon Dong’s criteria86 to determine 𝛼k and use
Eisenstat–Walker’s choice 266 for 𝛾k. For an algorithmic overview, see Algorithm 4. The conjugate-gradient (CG) method
is very efficient for solving (A7). Zeman et al.87 showed that the CG method is independent of s entering the reference
material C0. As it does not matter, we use the step size of the basic scheme (A4). More precisely, we start with a single
iteration of the basic scheme to fix the mean value of 𝜀 and C0.

Algorithm 4. Newton iteration with Dong’s line search86 (𝜀, 𝜀, s, c1,0, c2,maxit)

1: Ξ ← −
(

Id + Γ0 ∶
[
𝜕2w𝜃̄

𝜕𝜀2 (𝜀) −C0
])−1

∶ Γ0 ∶ 𝜕w𝜃̄

𝜕𝜀
(𝜀) ⊳ Solving (A7), cf. Kabel et al.23

2: 𝜇 ← 0
3: 𝜈 ← +∞
4: 𝛼 ← 1
5: k ← 0
6: while k<maxit do
7: k ← k + 1
8: c1 ← c1,0(1 − (c2)k) − (c2)k ⊳ Typical line-search parameters:

c1,0 = 10−4, c2 = 0.9, cf. Dong86

9: if ⟨Γ0 ∶ 𝜕w𝜃̄

𝜕𝜀
(𝜀 + 𝛼Ξ),Ξ⟩L2>c1⟨Γ0 ∶ 𝜕w𝜃̄

𝜕𝜀
(𝜀),Ξ⟩L2 then

10: 𝜈 ← 𝛼

11: 𝛼 ← 0.5(𝜇 + 𝜈)
12: else if ⟨Γ0 ∶ 𝜕w𝜃̄

𝜕𝜀
(𝜀 + 𝛼Ξ),Ξ⟩L2<c2⟨Γ0 ∶ 𝜕w𝜃̄

𝜕𝜀
(𝜀),Ξ⟩L2 then

13: 𝜇 ← 𝛼

14: 𝛼 ← 2𝜇
15: else
16: break
17: end if
18: end while
19: 𝜀 ← 𝜀 + 𝛼Ξ
20: return 𝜀

Newton’s method exhibits excellent performance, especially for composites where the evaluation of the material law
dominates the overall runtime. However, its memory requirements are significant. If CG is used for solving (A7) and
the tangent is kept in memory, 8.5 strain-like fields have to be stored. Using Dong’s line search increases the memory
requirements by an additional strain field.

Memory efficient versions of the Newton–CG method23,88,89 operating on the displacement instead of the strain
can be implemented, provided a finite-difference90,91 or a finite-element92,93 discretization is used. Additional memory
can be saved by storing the Hessian in single precision,26 resulting in a reduced memory footprint of nine
displacement fields.


