
Vol.:(0123456789)1 3

Bioprocess and Biosystems Engineering 
https://doi.org/10.1007/s00449-020-02465-8

RESEARCH PAPER

Influence of image analysis strategy, cooling rate, and sample volume 
on apparent protein cloud‑point temperature determination

Marieke E. Klijn1   · Jürgen Hubbuch1

Received: 24 June 2020 / Accepted: 16 October 2020 
© The Author(s) 2020

Abstract
The protein cloud-point temperature (TCloud) is a known representative of protein–protein interaction strength and provides 
valuable information during the development and characterization of protein-based products, such as biopharmaceutics. A 
high-throughput low volume TCloud detection method was introduced in preceding work, where it was concluded that the 
extracted value is an apparent TCloud (TCloud,app). As an understanding of the apparent nature is imperative to facilitate inter-
study data comparability, the current work was performed to systematically evaluate the influence of 3 image analysis strate-
gies and 2 experimental parameters (sample volume and cooling rate) on TCloud,app detection of lysozyme. Different image 
analysis strategies showed that TCloud,app is detectable by means of total pixel intensity difference and the total number of 
white pixels, but the latter is also able to extract the ice nucleation temperature. Experimental parameter variation showed a 
TCloud,app depression for increasing cooling rates (0.1–0.5 °C/min), and larger sample volumes (5–24 μL). Exploratory ther-
mographic data indicated this resulted from a temperature discrepancy between the measured temperature by the cryogenic 
device and the actual sample temperature. Literature validation confirmed that the discrepancy does not affect the relative 
inter-study comparability of the samples, regardless of the image analysis strategy or experimental parameters. Additionally, 
high measurement precision was demonstrated, as TCloud,app changes were detectable down to a sample volume of only 5 μL 
and for 0.1 °C/min cooling rate increments. This work explains the apparent nature of the TCloud detection method, showcases 
its detection precision, and broadens the applicability of the experimental setup.

Keywords  Freezing · Protein stability · Colloidal stability · Nucleation temperature · High-throughput screening · Liquid–
liquid phase separation

Introduction

Quantification of protein–protein interactions can be used 
to assess the colloidal stability of biopharmaceutical for-
mulations [1] or to identify environmental conditions which 
induce desired phase transitions for separation techniques 
[2] and 3-D structure determination of proteins [3]. One 
of the empirical parameters to quantify protein–protein 

interactions is the protein cloud-point temperature (TCloud) 
[4]. This temperature represents the point at which a protein 
solution displays liquid–liquid phase separation (LLPS). The 
temperature at which LLPS is detected is mainly determined 
by protein–protein interaction strength, where higher TCloud 
values are found for strong attractive forces and low TCloud 
values for weaker attractive forces [5]. The accompanying 
increase in solution turbidity when LLPS occurs is a char-
acteristic that is often exploited for TCloud measurements 
by means of spectroscopic methods [6, 7], light scattering 
detection [5, 8–13], or imaging and microscopy [14–18].

Preceding work presented a novel experimental setup to 
detect TCloud in a high-throughput manner (60 samples per 
experiment) using a low sample volume (24 μL) [18]. To 
cover a wide range of protein–protein interaction strengths, 
the experimental setup included a cryogenic device. This 
allowed for TCloud detection at sub-zero temperatures in 
addition to above zero temperatures. Despite the confirmed 
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robustness of the developed method, a comparison with liter-
ature data obtained with light scattering showed that only an 
apparent TCloud (TCloud,app) is detectable with the developed 
experimental setup, as normalized values showed similar 
trends but the absolute TCloud values were different. Thus, the 
results obtained with the developed method were found to be 
robust and precise, but the apparent nature of TCloud rendered 
the absolute values meaningless for inter-study comparison.

To ensure the usability of historic and future TCloud data 
across the field to further elucidate protein phase behav-
ior, it is of importance to understand TCloud,app and how 
the employed experimental setup influences its apparent-
ness. Previously proposed sources that cause TCloud,app were 
the differences in cooling rate, sample volume, and the 
employed detection approach. Due to the limited informa-
tion available in the literature to fully evaluate the influence 
of these experimental parameters on TCloud detection with 
any experimental setup, a conclusive reason for the observed 
apparentness is lacking. The work presented in this study 
aims to identify the source of the observed TCloud,app.

The combination of a cryogenic device and an automatic 
image acquisition system allows for monitoring the protein 
solution behavior at sub-zero degrees Celsius, which was 
applied for the quantification of (weakly) attractive pro-
tein–protein interactions, represented by sub-zero TCloud 
values. Various image processing strategies are available to 
highlight image objects or image characteristics for image 
analysis purposes, such as segmentation, defocusing, and 
smoothing [19]. Work reported by other research groups 
that employ visible light-based methodologies to deter-
mine TCloud extract the mean gray level (MGL) [17], light 
intensity [14], or manually determine clouding by means 
of microscopy [15, 16]. The methodology developed in our 
lab employs the total intensity difference (TID) of images, 
where each image is compared to the starting image to detect 
change over time [18]. The current work investigates the 
effects of different visible light image analysis strategies and 
determines whether differences in absolute TCloud,app values 
occur as a result of the analysis strategies. In addition, other 
temperature points of interest may arise when protein solu-
tions are cooled to sub-zero temperatures, such as the solu-
tion freeze point, the solution thaw point, or the solutions’ 
ice nucleation temperature. Knowledge and understanding 
of these temperature points can be applied in protein for-
mulation research, as it aids the design of optimal storage 
procedures for frozen or freeze-dried products [20–23]. Such 
temperature points may already be present in the captured 
image-based data but currently applied image analysis strate-
gies are not able to extract this information.

In the scope of this research, three image analysis strate-
gies were used to investigate the effects on TCloud,app determi-
nation and to explore a broader application of the developed 
experimental setup. This included two previously reported 

image analysis strategies for TCloud detection, namely MGL 
[17] and TID [18]. As the camera used in this work captures 
color images, the mean red, blue, and green color pixel val-
ues were explored in addition to the gray color level. The 
third image analysis strategy was based on binarized images, 
where images are processed to solely contain black and 
white pixels using different threshold values.

The experimental parameters which were investigated 
during this study are the cooling rate and sample volume. 
The cooling rate was varied between 0.1 °C/min and 0.5 °C/
min, with increments of 0.1 °C/min, where 0.1 °C/min is the 
slowest cooling rate of the employed cryogenic device as 
well as the smallest step size. This relatively narrow range 
was selected to investigate whether small cooling rate incre-
ments already affect the TCloud,app absolute value and, in par-
allel, to provide information on the detection sensitivity of 
the experimental setup. In addition, a maximum of 0.5 °C/
min was chosen, as faster cooling rates may lead to deviat-
ing temperatures between the set and measured temperature 
during the course of an experiment. The sample volume 
was varied between 5 μL and 24 μL, where 24 μL was the 
original sample volume described in the preceding work. 
A reduction in sample volume was preferred to capture not 
only the effects of sample volume changes but also to further 
miniaturize the experimental setup, which is a beneficial 
characteristic for high-throughput screening applications due 
to reduced material usage.

To summarize, the work presented in this study includes 
the investigation of three different image analysis strategies 
and two experimental parameters. It was aimed to under-
stand the source of TCloud,app and explore the information 
content of the generated data beyond TCloud detection.

Materials and methods

Buffer preparation

A 0.6 molar sodium phosphate buffer at 8 different pH val-
ues (5.8, 6.0, 6.3, 6.5, 6.8, 7.2, 7.4, and 7.8) was employed. 
The buffer components were sodium di-hydrogen phosphate 
(monohydrate; Merck KGaA, Darmstadt, Germany) and di-
sodium hydrogen phosphate (anhydrous; VWR, Radnor, PA, 
USA). After preparation, and after two weeks of storage, 
the buffer solutions were filtered over a 0.2 µm Supor®-200 
filter (Pall Corporations, Port Washington, NY, USA). This 
buffer system was chosen to use literature data provided by 
Taratuta et al. [13] as a validation set. The pH value was set 
with a five-point calibrated pH meter (HI-3220, Hanna® 
Instruments, Woonsocket, RI, USA), which was equipped 
with a SenTix® 62 pH electrode (Xylem Inc., White 
Plains, NY, USA). The pH value of all buffers was checked 
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throughout the study and was maintained within ± 0.05 pH 
unit of the desired pH values.

Protein solution preparation

A 90 g/L hen-egg white lysozyme (Hampton Research, 
Aliso Viejo, CA, USA) solution was prepared on the day of 
experimentation. The required amount of protein was dis-
solved in the respective buffer. The solution was run over 
a 0.2 µm Supor® polyethersulfone (PES) pre-syringe filter 
(Pall Corporations, Port Washington, NY, USA). The pro-
tein stock concentration was measured with a NanoDrop™ 
2000c UV–Vis spectrophotometer (Thermo Fischer Scien-
tific, Waltham, MA, USA), using an extinction coefficient of 
22 Lg−1 cm−1. To remain within the detection range of the 
spectrophotometer, 1:10 dilutions were prepared for concen-
tration measurements. All prepared protein solutions were 
used within 7 h and stored at room temperature until use.

Cloud‑point temperature measurements

Image acquisition

The protein cloud-point temperature was determined 
using the setup as described by Klijn et al. [18]. This setup 
employs a cryogenic device (EF600M 105, Grant Instru-
ments, Cambridgeshire, UK) and a GoPro Hero4 camera 
(GoPro Inc., San Mateo, CA, USA) for image acquisi-
tion. The following GoPro settings were used to minimize 
image fluctuations: ProTune white balance was set to 
4000 K, ISO limits were set to 200 (minimum and maxi-
mum), and EV Comp was set to − 2.0. For varying cooling 
rates, the number of seconds per image was adjusted to 
match the images per degrees Celsius as closely as pos-
sible. This was done to keep the temperature sampling 
rate comparable between different cooling rates. In addi-
tion, this reduces the amount of data for slower cooling 
rates as these experiments run for a longer period of time. 
For example, an experiment running from 15 to − 40 °C 
with a cooling rate of 0.1 °C/min results in 3300 images 
for a 10 s per image setting, which translate to an image 

every 0.02 °C. A 0.5 °C/min cooling rate results in 660 
images for a similar setup, which is 0.08 °C per image. By 
adjusting the frame rate to 30 s per image for a 0.1 °C/min 
cooling rate, one obtains 1100 images, which translates to 
0.05 °C per image. Thus, the temperature sampling rate 
is more comparable and the amount of data is decreased. 
However, the employed GoPro Hero4 solely allows a set-
ting of 1, 5, 10, 20, 30, or 60 s per image, which is why 
an exact temperature sampling match could not be real-
ized. The employed seconds per image for a cooling rate 
of 0.1 °C/min, 0.2 °C/min, 0.3 °C/min, 0.4 °C/min, and 
0.5 °C/min, were 30, 10, 10, 10, and 10, respectively. This 
translates to an image every 0.05 °C, 0.03 °C, 0.05 °C, 
0.07 °C, and 0.08 °C, respectively.

Experimental parameters

During TCloud,app measurements, the temperature was set 
to decrease from 15 °C to − 40 °C. An overview of the 
employed parameters per experiment can be found in 
Table 1. After a holding time of 1 min at − 40 °C, a heat-
ing rate of 3 °C/min was used to return to a temperature 
of 20 °C. Heating was not monitored as it was shown in 
previous work that TCloud,app detection with the employed 
setup is more reliable during cooling than during heat-
ing [18]. All samples were prepared in 96-well crystal-
lization plates (MRC Under Oil 96 Well, SWISSCI AG, 
Neuheim, CH) and sealed with Duck® Brand HD Clear 
sealing tape (ShurTech® Brands, LC., Avon, OH, USA) 
prior to measurements to prevent evaporation. All samples 
were measured as six technical replicates, with which the 
median (as a measure of central tendency) and median 
absolute deviation (as measure of spread) of TCloud,app were 
calculated. Calculation of the median and median absolute 
deviation TCloud,app was performed after outlier detection. 
A data point was considered an outlier based on Tukey’s 
fences [24], employing a whisker length of 0.75 times the 
interquartile range. For comparison to literature data, the 
median protein cloud-point temperatures were normalized 
by means of min–max normalization.

Table 1   Overview of employed 
parameters per experiment

TID Total intensity difference, TWP Total white pixels (0.50, 0.75, 0.85, graythresh, mean intensity), MGL 
Mean gray level, MRL Mean red level, MBL Mean blue level, MGrL Mean green level

Experimental parameter Volumes Cooling rate Protein con-
centration

Image analysis 
strategy

(µL) (°C/min) (g/L)

Volume 24, 20, 15, 10, 5 0.5 90 TID
Cooling rate 24 0.1, 0.2, 0.3, 0.4, 0.5 90 TID
Image analysis 20 0.5 90 TID

TWP
MGL

MRL
MBL
MGrL
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Data evaluation

All data processing was established in the MATLAB pro-
gramming environment (version R2018b, The MathWorks 
Inc., Natick, MA, USA). Data smoothing was performed 
with a moving mean window of 5% of the total number of 
data points. Due to insufficient data quality, the experiment 
with a cooling rate of 0.3 °C/min and a sample volume of 
24 µL was smoothed with a moving mean window of 2.5%. 
Different image analysis strategies were applied to this work. 
The image analysis strategy referred to as total intensity dif-
ference (TID), indicates that image analysis was performed 
as described in Klijn et al. [18]. In addition to TID, two other 
strategies were employed, namely the mean color level and 
the total white pixel count, which will be explained in the 
following sections.

Mean color levels

The mean color value was defined as the mean pixel value 
of the cropped well image. This value was extracted for each 
color (red, green, and blue) from the raw color image and 
the gray image (obtained with the MATLAB function rgb2g-
ray). This was done to evaluate the applicability of the image 
analysis approach presented in other work, where the mean 
gray value of images was used to detect TCloud[17].

Total white pixel count

To obtain the number of white pixels in an image, each 
cropped well image was transformed into a binary image 
from which the total sum of white pixels was calculated. 
Conversion of a raw color image to a binary image requires 
the definition of a white level. The white level determines 
which pixels will become white in the binary image, thereby 
influencing the total white pixel count. Five different white 
levels were investigated, three arbitrarily predefined levels 
(0.50, 0.75, and 0.85) and two data-dependent levels that 
were set per microtiter plate well image. The two data-
dependent levels included (1) a white level calculated with 
MATLAB function graythres (employing Otsu’s method to 
find the optimal separation value [25]) based on the first 
image of each well (t0) and (2) a white level set to the mean 
intensity of the gray image of the first image of each well 
(t0). Thus, the data-dependent white levels are defined for 
each well customarily, while the predefined arbitrary levels 
are set for all wells equally. Two variables were extracted 
from the obtained data, namely TCloud,app and the ice nuclea-
tion temperature (TNuc). TCloud,app was defined as the mini-
mum number of total white pixels, which is comparable to 
the TID definition, and TNuc was defined as the maximum 
gradient where the total white pixel count increased.

Thermography

A UV-Star® µClear® half-area 96-well plate (Greiner Bio-
One, Kremsmünster, AU) was used to perform a single run 
on the cryogenic device which was monitored with a ther-
mographic camera (FLIR Ax5, FLIR Systems, Wilsonville, 
OR, USA). A framerate of 25 frames per second was used 
and temperature data were extracted with the software FLIR 
Tools (FLIR Systems, Wilsonville, OR, USA). The meas-
urement was conducted with demineralized water (50 µL) 
and the plate was sealed with Duck® Brand HD Clear seal-
ing tape. The temperature gradient was set to run from 20 
to − 20 °C, with a holding time of 2 min every 5 °C. The 
thermographic camera was not calibrated or optimized for 
the atmospheric settings. Therefore, only the relative tem-
perature change from the starting point (t0) was determined. 
This allowed for the comparison of the thermographic data 
with temperature data extracted from the cryogenic device 
software.

Results and discussion

Image analysis strategies

To evaluate the influence of different image analysis strate-
gies on TCloud,app detection, three image analysis strategies 
were performed using the same data set. The image analysis 
strategies include the TID, the total number of white pixels 
(TWP), and the evaluation of the mean gray, red, blue, and 
green level (MGL, MRL, MBL, and MGrL, respectively). 
Figure 1 shows exemplary data for TID, TWP (using a white 
level of 0.50), and MGL using data of three samples, namely 
at pH 5.8, pH 6.8, and pH 7.8 with a sample volume of 20 
µL and a cooling rate of 0.5 °C/min. Here, the left y axis 
indicates the respective variable and the right axis indicates 
the measured temperature by the cryogenic device during 
the measurement.

Total intensity difference (TID)

The TID was extensively discussed in previous work [18] 
and will therefore be only briefly described here. The TID 
is a measure of dissimilarity between two images, which 
increases when a solution moves from transparent to turbid. 
The relatively sharp increase in TID observed in Fig. 1a as 
the temperature decreases was identified as the TCloud,app. 
More specifically, TCloud,app was defined as the temperature 
at which the sharp increase flattened, which represents the 
point at which solution clouding is concluded. This was 
observed in the data shown in Fig. 1a at approximately 
t = 2600  s for the sample with pH value 7.8 (black), at 
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t = 3200 s for pH 6.8 (brown), and at t = 4200 for pH 5.8 
(yellow).

Total number of white pixels (TWP)

The TWP analysis requires a definition of the white level to 
separate black and white pixels in each image. In this work, 
five different white level definitions were evaluated, namely 
0.50, 0.75, 0.85, and two data-dependent levels (MATLAB 
function graythres value and mean gray intensity based on 
the first cropped well image). Figure 1b only shows three 
exemplary results for data obtained with the 0.50 white level, 
as this level was found to include two distinct signal changes 
and the results obtained with other white levels did not result 

in any significant signal changes or any additional informa-
tion. Data for the exemplary samples obtained with the other 
white levels can be found in the Supplementary Material, 
Figure S1. In addition, to visualize the lack of information 
available in the images obtained by the other white levels, 
exemplary images at 15 °C, TCloud,app, and − 40 °C can be 
found in the Supplementary Material in Figure S2.

The first significant signal change in Fig. 1b, represented 
by a decrease in TWP, corresponds to the increase in TID 
data seen in Fig. 1a at approximately t = 2600, 3200, and 
4200 s for pH 7.8, 6.8, and 5.8, respectively (indicated by 
the vertical line in the corresponding color). This means 
that TCloud,app is also detected by means of counting white 
pixels in a binary image. Upon visual inspection of images, 

Fig. 1   Exemplary results for a 
total intensity difference (TID), 
b total white pixels (TWP) 
using a white level of 0.50, and 
c mean gray level (MGL) on all 
left y-axes over time (seconds; 
x axis). The temperature (°C; 
gray) during the measure-
ment is shown on the right y 
axis. Each plot shows data for 
samples at pH 5.8 (yellow), pH 
6.8 (brown), and pH 7.8 (gray). 
The correspondingly colored 
solid lines indicate the median 
value and the shades indicate 
the median absolute devia-
tion of 6 technical replicates, 
respectively. The correspond-
ingly colored vertical dashed 
lines indicate the position of 
the apparent protein cloud-
point temperature (TCloud,app) as 
obtained with (a) to highlight 
the position in b and c. The 
lines are colored per corre-
sponding pH value. All data 
were obtained with a cooling 
rate of 0.5 °C/min and a sample 
volume of 20 μL (color figure 
online)
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it was found that the TWP decrease is caused by a decrease 
in light reflection by the sample as the sample becomes 
turbid. In addition to the decrease in TWP at TCloud,app, a 
distinct increase in TWP is seen at a later time point, as 
the temperature further decreases. Here, a sharp increase 
in TWP is observed at around t = 5000 for all pH values. 
Based on data obtained for demineralized water samples 
included in each data series, the observed TWP increase 
was attributed to the ice nucleation temperature (TNuc) of 
the supercooled samples. The average TNuc of these water 
samples was − 30.8 ± 2.2 °C (see Supplementary Material, 
Table S1). The average TNuc is in line with literature val-
ues of supercooled water droplets, where TNuc values down 
to -32 °C were reported for droplets with a diameter of 
1000 µm [26]. For reference, the sample volume employed 
in this work would roughly translate to a droplet diameter 
of 2000–5000 μm, assuming a perfect sphere. Even though 
a TNuc was identifiable with TWP data using a 0.50 white 
level, a trend for TNuc values was not found among the meas-
ured protein samples (see Supplementary Material, Fig. S3). 
Thus, it is concluded that the sample volume and cooling 
rate applied in this study do not affect TNuc using the cur-
rent setup. Notably, TNuc of a sample containing protein, or 
solely the buffer solution (blank), was identified by means 
of a TWP increase, while water samples showed a decrease 
in white pixels upon freezing. An example of these opposite 
trends can be found in the Supplementary Material, Fig. S4. 
Visual image inspection showed that the TWP increase for 
protein samples was due to the formation of white-colored 
ice, while water samples showed gray ice formation, a color 
comparable to the turbidity seen during protein solution 
clouding.

Mean color levels

Mean color levels were included in this study, as work by 
Pincemaille et  al. applied extracted MGL to determine 
TCloud[17]. Figure 1c shows exemplary MGL data over the 
course of a measurement with the setup developed in our 
lab. The vertical dashed lines in Fig. 1c show the position of 
TCloud,app as detected in Fig. 1a. The corresponding observed 
signal changes in Fig. 1c are a slight increase in MGL for 
pH 7.8 (black) and two slight minima for pH 5.8 (yellow) 
and pH 6.8 (brown). These inconsistent changes in MGL 
have an absolute value of approximately 1–10 (depending 
on the pH value), while Pincemaille et al. reported absolute 
changes of the MGL with a value of 100. Thus, in contrast 
to the results presented by Pincemaille et al., the MGL data 
obtained in this work did not contain enough discriminatory 
information for the extraction of a consistent signal change 
that corresponded to TCloud,app. All other mean color levels 
(red, green, and blue) also did not contain discriminatory 
information. Examples for the red, blue, and green mean 

color level can be found in the Supplementary Material, 
Figure S5. Exemplary images for each color level at 15 °C, 
TCloud,app, and − 40 °C can be found in the Supplementary 
Material as well, in Figure S2. The inability to transfer the 
MGL image analysis protocol as described by Pincemaille 
et al. to another camera-based setup illustrates a potential 
general hardware dependency of image analysis strategies 
to detect TCloud.

Validation

The TCloud,app results obtained with TID and TWP image 
analysis were compared to each other to quantify their simi-
larity in absolute TCloud,app values. Figure 2 shows TCloud,app 
values determined with the TID image analysis strategy (x 
axis), and with the TWP image analysis strategy (y axis) 
for all cooling rates, sample volumes, and pH values. All 
TCloud,app values obtained with the TWP image analysis strat-
egy can be found in the Supplementary Material, Table S3. 
The total root-mean-squared error (RMSE) of 6.4 °C, the 
average RMSE of 0.7 °C, and the R2 of 0.998 indicate there 
is a relatively small difference between the two image anal-
ysis strategies for TCloud,app detection. One-way ANOVA 
analysis resulted in an F value of 0.07 and a p value of 0.80, 
reflecting an insignificant difference between TCloud,app val-
ues obtained with the TID and TWP image analysis strate-
gies (see Supplementary Fig. S6). Nevertheless, considering 
that MGL was not readily transferable between different set-
ups, a collaborative initiative to evaluate the performance of 
multiple image analysis strategies in combination with dif-
ferent camera-based experimental setups would be of inter-
est to promote the development of robust and transferable 
image analytical approaches to facilitate relatively simple 
and high-throughput TCloud detection.

Experimental parameters

In addition to several image analysis strategies, two exper-
imental parameters were varied in this work, namely the 
cooling rate and sample volume. The cooling rate was varied 
as previous work showed TCloud,app depression for increas-
ing cooling rate (an increase from 0.5 °C/min to 2.5 °C/
min and 10 °C/min [18]). In this work, it was investigated 
for which cooling rate increment the decrease in TCloud,app 
could already be detected. The limit and effect of sample 
volume reduction were investigated as previous work pro-
posed sample volume as a possible factor influencing abso-
lute TCloud,app values. In addition, sample volume reduction 
allows for evaluating the miniaturization potential, which 
benefits high-throughput screenings due to a reduced mate-
rial requirement. The results for both experimental param-
eters are presented in Fig. 3.
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Cooling rate

Figure 3a shows the median TCloud,app per pH value for dif-
ferent cooling rates (0.1–0.5 °C/min). All median TCloud,app 
values can be found in the Supplementary Material, in 
Table S4. The last data point (pH 7.8) in the 0.2 °C/min 
cooling rate data series (dark brown) is considered an out-
lier. This was attributed to a sample preparation error, as a 
comparable TCloud,app value was found for the data point at 
pH 6.5 in the same data series. Disregarding this outlier, 
the results presented in Fig. 3a show that a cooling rate 
change between 0.1 °C/min and 0.5 °C/min resulted in a 
consistent decrease of TCloud,app for faster cooling rates. 
To quantify this observed TCloud,app decrease in Fig. 3a, 
the average TCloud,app difference between each data point 
per cooling rate was calculated with respect to the data 
obtained with a cooling rate of 0.1 °C/min. These aver-
age temperature differences are depicted in Fig. 3b, where 
the error bars indicate the standard deviation of TCloud,app 
differences obtained with all pH values per data series. 
Figure  3b indicates that a cooling rate increase from 
0.1 °C/min to 0.3 °C/min already results in a reduction 
of TCloud,app by 0.9 ± 0.8 °C. Overall, an absolute aver-
age TCloud,app decrease up to 3.2 ± 0.7 °C was found for 
increasing the cooling rate from 0.1 °C/min to 0.5 °C/min, 
respectively. One-way ANOVA analysis resulted in an F 
value of 1.33 an p value of 0.27 upon analyzing the data 
obtained with a cooling rate of 0.1 °C/min and 0.5 °C/
min (see Supplementary Fig. S6). This was considered 
a significant change as it reflects a greater difference in 

variance compared to the variance obtained between the 
image analysis strategies (F value of 0.07 and p value of 
0.80) and the high precision of the TCloud,app data (MAD 
of 0.3 °C for all 40 data points).

Sample volume

The resulting median TCloud,app values for sample volumes 
varying from 5 to 24 μL are presented in Fig. 3c. Here, it is 
shown that smaller sample volumes led to higher TCloud,app 
values. The effect of higher TCloud,app values for lower sam-
ple volumes was found to be consistent for all pH values. 
Similar to the cooling rate experiment, the average TCloud,app 
difference for each sample volume data series was calcu-
lated, with respect to the lowest sample volume (5 μL). 
These differences are depicted in Fig. 3d. A decrease in the 
TCloud,app value was already detectable for the first sample 
volume increase from 5 to 10 µL, represented by an average 
TCloud,app difference of 1.6 ± 1.0 °C. The largest difference 
was seen between a sample volume of 5 µL and 24 µL, with 
an average absolute TCloud,app difference of 5.5 ± 1.4 °C. The 
difference in TCloud,app between a sample volume of 5 μL and 
24 μL was considered significant based on ANOVA results, 
showing a F value of 3.33 and p value of 0.09 (see Sup-
plementary Material S6). Despite the TCloud,app differences 
based on sample volume, a detection limit was not reached. 
Thus, this experiment demonstrated that even a sample vol-
ume of as low as 5 μL can be used with the employed experi-
mental setup for a reliable and accurate TCloud,app detection.
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Fig. 2   Median apparent protein cloud temperature (TCloud,app in °C) 
based on the total number of white pixels (TWP; y axis) using a white 
level of 0.50 and the TCloud,app based on the total intensity difference 
(TID; x axis). Circles indicate results obtained for different cooling 
rates (0.1–0.5 °C/min) and triangles indicate results obtained for dif-

ferent sample volumes (24–5 μL). Darker colors indicate slower cool-
ing rates and lower sample volumes. The dashed line indicates a root 
mean squared error (RMSE) of 0. The textbox lists the total and aver-
age RMSE (°C) of all data points and the R2
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Validation

TCloud,app values obtained for all cooling rates, and sample 
volumes were validated by means of comparison to litera-
ture data from Taratuta et al. [13]. The RMSE was used 
to quantify the relative difference between the TCloud,app 
obtained in each data series, employing both TWP and TID, 
and literature TCloud data, where low RMSE values indicate 

a high similarity. The resulting RMSE values for varying 
cooling rates and sample volumes are presented in Fig. 4a, 
b, respectively.

With the exception of the data obtained with a cooling 
rate of 0.2 °C/min, all RMSE values are below 0.08. This 
is considered a low RMSE value, as all data are normal-
ized between 0 and 1. The high RMSE for 0.2 °C/min is 
due to the outlier at pH 7.8, as discussed in Sect. 3.2.1. The 
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Fig. 3   a Median apparent protein cloud-point temperature (TCloud,app 
in °C; y axis) per pH value (x axis) for varying cooling rates (0.1–
0.5  °C/min) and a sample volume of 24  μL, where darker colors 
indicate slower cooling rates. b Average TCloud,app difference (˚C; 
y axis) between TCloud,app obtained with 0.1  °C/min and the data for 
the respective cooling rate (°C/min; x axis), for all pH values. Colors 
are similar to a. c Median TCloud,app (°C; y axis) per pH value (x axis) 
for varying sample volumes (24–5 μL) and a cooling rate of 0.5 °C/

min, where darker colors indicate lower sample volumes. d Average 
TCloud,app difference (°C; y axis) between TCloud,app obtained with 5 µL 
and the data for the respective sample volume (µL; x axis), for all pH 
values. Colors are similar to c. For a and c: the error bars indicate the 
median absolute deviation. For b and d: a line was added to guide the 
eye and the error bars indicate the standard deviation. All data were 
obtained with the total intensity difference image analysis strategy
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relatively low RMSE between each data series and literature 
data confirms that all tested cooling rates, sample volumes, 
and image analysis strategies result in a similar data variance 
as a function of the sample pH value. Based on this data, it 
was concluded that the investigated variables are not the 
direct source of the apparent nature of TCloud,app.

Thermal imaging

The cooling rate and sample volume experiments showed 
a TCloud,app depression for faster cooling rates, and higher 
sample volumes, respectively. Our preceding study specu-
lated that this could be caused by camera-related insensi-
tivity or a difference between the temperature measured 
by the device and the actual sample temperature [18]. The 
camera-related insensitivity can no longer be considered a 
source, as not only the cooling rate but also a sample volume 
increase resulted in a TCloud,app depression. If camera-related 
insensitivity occurred, then lower sample volumes would be 
more difficult to measure with an insensitive detection, and 
therefore would lead to lower TCloud.app values. As this was 
not observed, the TCloud,app depression is attributed to the 
difference between the measured temperature by the cryo-
genic device and the actual sample temperature during the 
measurement. To gain insight into the temperature devia-
tions, an exploratory measurement with demineralized water 
samples was performed, where the visible light camera was 
substituted with a thermographic camera. It should be noted 
that using a thermographic camera brings its own techni-
cal challenges, as calibration is required for thermographic 
imaging, measurements are sensitive to atmospheric factors, 
and new data analytical infrastructure is necessary [27, 28]. 
Although we are aware of these issues regarding thermo-
graphic imaging, optimization of the thermographic setup, 
and the subsequent data analytical workflow is considered 
outside the scope of this study. This exploratory experiment 
was solely used to confirm the existence of a temperature 
deviation.

The thermographic results are shown in Fig. 5. A snap-
shot of the thermographic measurement in Fig. 5a indicates 
three locations for which temperature data was extracted, 
namely the metal adapter (Metal, cross), the microtiter plate 
(Plate, plus), and a demineralized water sample (Sample, 
circle). In Fig. 5b, the relative temperature decrease (right 
y axis) for these points are plotted over the course of the 
experiment, alongside temperature data obtained from the 
cryogenic device, namely the set temperature in the software 
(Target) and the temperature measured during the experi-
ment (Device). The measurement ran from 20 °C to − 20 °C, 
with a cooling/heating rate of 1 °C/min and a 2-min hold-
ing time every 5 °C. These holding steps were included to 
determine whether this would benefit temperature control.

The relative temperature decrease was the metric of 
choice for comparison, as the thermal camera settings were 
not optimized. Here, the temperatures are relative to the 
starting temperature of the respective measurement source. 
To highlight the temperature difference, the left y axis in 
Fig. 5b indicates the difference between the relative sam-
ple temperature (green solid line) and the relative device 
temperature (black solid line). Over the course of the meas-
urement, the sample temperature deviates from the device 
temperature up to nearly 7 °C after approximately 3250 s 
(approximately 54 min). The subsequent steep increase in 
sample temperature (approximately at t = 3200 s and a tem-
perature of − 31 °C) is the latent heat of fusion, which is a 
result of ice nucleation in the supercooled water sample. 
This confirms the occurrence of TNuc during experimental 
runs with the employed setup, as was seen in Sect. 3.1.2 for 
TWP image analysis strategy results.

In addition to the deviation between the sample tempera-
ture and the device temperature, a temperature deviation 
was seen for the metal adapter and the microtiter plate when 
compared to the device temperature. This indicates that the 
multi-layered setup as well as the samples are sources of 
the observed temperature discrepancy. Based on the ther-
mographic results, it can no longer be assumed that the 
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measured temperature by the cryogenic device is equal to the 
actual sample temperature. Thus, the systematic discrepancy 
between the measured device temperature and the actual 
sample temperature is the source of the apparent nature of 
the detected TCloud. The thermographic data shows that a 
2-min holding time every 5 °C was not long enough to reach 
a temperature equilibrium between the device, adapter, plate, 
and sample for a 24 μL sample volume. Previous studies in 
literature do not always report on the sample volume and/or 
the corresponding equilibrium time, but values were found 
to range from 2 to approximately 30 min for a sample vol-
ume of 60–300 μL [6, 17]. Thus, it is recommended that the 
equilibrium time should be determined separately for differ-
ent sample volumes, cooling rates, and employed cryogenic 
device setups. Alternatively, one could determine a TCloud,app 
correction factor with thermographic sample temperature 
data, so that one still benefits from high-throughput, low vol-
ume, and fast TCloud measurements without time-consuming 
intermediate equilibrium steps.

Conclusion

This work was performed to investigate the source of 
TCloud,app values of lysozyme obtained by means of a cry-
ogenic device in combination with an automated image 
acquisition system to facilitate a broader understanding of 

experimental and data evaluation influences and to enable 
inter-study data comparability. For this, three image analysis 
strategies, five cooling rates (0.1–0.5 °C/min), and five sam-
ple volumes (5, 10, 15, 20, and 24 µL) were investigated in 
particular. The investigation of different image analysis strat-
egies showed that extraction of the total white pixel count 
resulted in additional information compared to the previ-
ously used total intensity difference, as the total white pixel 
count is able to detect TCloud,app and TNuc. Faster cooling rates 
showed a decrease in TCloud,app, with an average absolute 
difference of 0.1 ± 0.4 °C up to 3.2 ± 0.7 °C. A similar trend 
was seen for increasing the sample volume from 5 μL to 24 
μL, where the average absolute difference in TCloud,app ranged 
from 1.6 ± 1.0 °C to 5.5 ± 1.4 °C. The observed TCloud,app was 
affected by the investigated experimental variables due to a 
discrepancy between the measured device temperature and 
the actual sample temperature, which was confirmed based 
on a thermographic measurement. Despite sample tempera-
ture discrepancy, the precision of the employed experimen-
tal setup was shown by the ability to detect differences in 
TCloud,app values induced by small cooling rate increments 
(0.1 °C/min). Moreover, the sample volume was reduced by 
80% from 24 µL down to 5 µL, which still yielded reliable 
results. This demonstrates that the employed experimental 
setup is not only capable of precise measurements, but that 
it is also highly sensitive. Overall, the presented work iden-
tified the source TCloud,app as well as the influence of the 
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sample volume and cooling rate in this regard, while simul-
taneously miniaturizing the setup and indicating a potential 
application expansion of the employed experimental setup 
by means of a different image analysis strategy.
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