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a b s t r a c t 

For high-temperature environments, as in future fusion reactors, the use of tungsten materials has been 

sincerely discussed in the last decade. Although severe cold-rolling of tungsten leads to significant im- 

provements in mechanical properties, the fine-grained microstructure of such tungsten material has to 

be stabilized. For that, the use of potassium-doping (K-doping) in tungsten sheets is investigated in our 

ongoing study. In this work, we compare mechanical properties of warm- and cold-rolled sheets of pure 

tungsten and K-doped tungsten (for five different degree of deformation respectively) by means of frac- 

ture toughness tests and tensile tests. 

Fracture toughness and brittle-to-ductile transition temperatures ( T BDT ) are assessed, showing a slightly 

lower transition temperature for the cold-rolled K-doped sheets (lower than −100 °C for the 50 μm thick 

foil). The better performance of the K-doped sheet is related to its finer grain size. The thickest K-doped 

sheet shows a much higher T BDT than its pure tungsten counterpart. This is presumably caused by the 

presence of several tens of micrometre thick bands, containing only low angle boundaries, in the mi- 

crostructure of the K-doped sheet. 

Tensile tests reveal an outstanding yield strength of 2860 MPa and an ultimate tensile strength of 

2970 MPa for the thinnest K-doped sheet with similar, but slightly lower values for the pure tungsten 

counterpart. Both thinnest sheets show a drastic increase in ultimate tensile strength in correlation to 

their mean grain size, much higher than expected by a Hall-Petch relation. This deviation has been ob- 

served for the microhardness as well and is assumed to be caused by an extraordinary increase in the 

density of dislocations. 

Our results indicate that no disadvantages in tensile strength and brittle-to-ductile transition are to be 

expected compared to pure tungsten, when K-doped tungsten is used to inhibit recrystallization in high- 

temperature environments. 

© 2020 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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The use of tungsten (W) and tungsten-based materials in future 

usion power reactors has been investigated and discussed for sev- 

ral years [1] . Tungsten is the element with the highest melting 

emperature among all metals ( T m 

= 3693 K [2] ), therefore it pos- 

esses a low vapour pressure in the plasma chamber of a fusion 

eactor. It exhibits a high wear resistance, as well as good high- 

emperature strength and good thermal conductivity. It is therefore 

onsidered as the most promising material for the use in critical 

arts of fusion reactors which have to suffer high thermal loads. 
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However, a major drawback of conventionally produced tung- 

ten is its brittleness at room temperature. In order to avoid this 

isadvantage, the influence of cold-working on tungsten has been 

ssessed in several studies [3–7] ; mechanical properties like tensile 

roperties [8,9] and fracture toughness [7,10] have been investi- 

ated in-depth on such severely rolled sheets. Such thin cold-rolled 

ungsten sheets could be joined to a laminate bulk material [11] or 

aminate pipes [12] for applications in fusion related environments. 

On the other hand, the improvement of mechanical properties 

y severe deformation (e.g. rolling) also introduces higher driving 

orces for recovery and recrystallization [13] , leading very likely to 

ccelerated embrittlement during thermal treatment [14] . In order 

o reduce the tendency of recrystallization during the lifetime of 

he material in the reactor (by inhibiting the movement of grain 

oundaries), the incorporation of particles or precipitations into 

he material matrix is a well-established approach, such as car- 

ides [15–18] , oxides [19,20] , or doping e.g. with potassium (K) 

hich forms bubbles in the W matrix [21,22] . 

For example, extruded W-1%La 2 O 3 has been investigated, but 

 higher brittle-to-ductile transition temperature ( T BDT ) was found 

ue to the presence of elongated La 2 O 3 particles in the rolled W 

atrix [23] . Another observation was the limited workability of W- 

%La 2 O 3 in rolling studies. When approaching a specific degree of 

eformation in own experiments (April 2019), cracking along the 

olling direction occurred, presumably by a preferred crack path 

long the elongated La 2 O 3 particles in W. 

A very interesting approach is the incorporation of rhenium, in 

ome studies also combined with K-doping [24] . The addition of 

everal percent of rhenium significantly decreases the T BDT and im- 

roves high-temperature strength with some drawbacks, e.g. lower 

hermal conductivity, higher irradiation embrittlement in peculiar 

rradiation conditions and increased bulk material costs compared 

o pure W [1,15,24,25] . 

Another approach is K-doping of tungsten. K-doping has been 

sed for enhancing the creep properties of tungsten wires in tung- 

ten filaments for many decades in the lighting industry. Recently, 

-doped tungsten wires gained interest as well for fusion related 

aterials in fibre-reinforced composites [26–28] , and K-doping of 

ot-rolled tungsten plates together with rhenium addition has 

een investigated [24,29] . 

Combining heavy cold-rolling of tungsten sheets with K-doping 

as used in the present study – is a new approach. Two sets of 

heets with pure W and K-doped W (containing 60 ppm potas- 

ium) have been produced in the same manner with an increas- 

ng degree of deformation by rolling for direct comparison of the 

ecrystallization behaviour and mechanical properties. Both sets 

f materials were characterized after rolling regarding their mi- 

rostructural properties (grain size, rolling texture) and microhard- 

ess in the as-rolled condition. Despite a slight hardening effect 

y the K-doping, both materials showed similar results [30] . Ad- 

itionally, isochronal annealing experiments were carried out, in- 

icating a better performance in recrystallization inhibition with 

ncreasing degree of deformation for the K-doped W which retains 

 finer microstructure than pure W at temperatures above 1400 °C 

30] . 

With these promising results in the recrystallization behaviour, 

he focus of further investigations shifted towards the mechanical 

roperties of the rolled W sheets with the following questions in 

ind: Are mechanical disadvantages or even advantages to be ex- 

ected, if pure W is replaced by K-doped W? K-doping seems to 

mprove the hardness slightly [30] ; does K-doping also have an im- 

act on tensile strength? Are the severely rolled, K-doped sheets 

ore brittle than pure W sheets, as seen e.g. for W-1%La 2 O 3 [23] ,

r less, as Charpy-impact tests on 7 mm thick, K-doped plates in- 

icate [31] ? These open questions are assessed in this study by 

ensile and fracture toughness tests. After a materials and meth- 
2 
ds section, the results are presented for both testing procedures 

nd are discussed separately afterwards in relation to results from 

he preceding study on microstructure and microhardness (as mea- 

ured in sections defined by the rolling and the normal direction) 

30] . 

aterials and methods 

aterials 

For this study, we used the same material sets as in a former 

olling study [30] . These material sets have been produced from 

wo sintered ingots at PLANSEE SE (Reutte, Austria): (i) K-doped 

ungsten, which is commercially available as “WVM”, and (ii) tech- 

ically pure tungsten ( > 99.97 wt.% W), which is also commercially 

vailable. The abbreviations for both materials used in this study 

as in the previous one) are W K and W pure , respectively. Chemi- 

al analysis revealed a K-content of 60 ppm for W K and techni- 

al purity for W pure (the exact chemical compositions are given in 

30] ). Although pure tungsten and K-doped tungsten are commer- 

ially available, the rolling to very high degrees of deformation is a 

ather new approach [32] and has been advanced in our preceding 

tudy [30] to sheets of 50 μm thickness (thickness reduction more 

han 99%). 

The rolling study involved three major processing steps, begin- 

ing with hot-rolling above the standard recrystallization temper- 

ture of 1250 °C to shape the sintered ingot to a 5 mm thick 

heet. The subsequent warm-rolling was performed in the range 

etween 800 °C and 1000 °C with intermediate heating steps. 

fter a thickness reduction of around 80% (logarithmic strain of 

.6), one part of the resulting sheet was separated as first sheet 

 K (1.6) of the series. After that, the warm-rolling process was con- 

inued and the sheets W K (2.7) and W K (3.1) at logarithmic strains 

f 2.7 and 3.1 were separated likewise. In the last production steps, 

he rolling temperature was reduced below 300 °C and W K (3.7) 

s well as W K (4.6) were produced by cold-rolling to logarithmic 

trains of 3.7 and 4.6. In this way, we produced W K sheets of the

ame chemical composition with five different degrees of deforma- 

ion. The same procedure was applied to W pure , to create sheets 

ith comparable logarithmic strain ( ε log ): W pure (1.6), W pure (2.7), 

 pure (3.3), W pure (3.7) and W pure (4.7). An overview of the result- 

ng thicknesses and the corresponding engineering strains ( ε eng ) is 

iven in Table 1 . For convenience, the results of grain size determi- 

ation from EBSD data [30] are included in the table. 

racture toughness tests 

For fracture toughness tests, single edge notched tensile (SENT) 

pecimens were prepared from the manufactured sheets listed in 

able 1 (W K (1.6) to W K (4.6) and W pure (1.6) to W pure (4.6)). Cutting 

f these specimens (contour and crack-starting notch) was done by 

eans of electrical discharge machining. The sample thickness cor- 

esponded to the thickness of the respective sheet, which ensures 

hat microstructure heterogeneities, as reported in the preceding 

tudy [30] on the investigated sheets or through-thickness gradi- 

nts as observed in rolled sheets from the surfaces in contact with 

he rolls [33] , are reflected in the mechanical properties as well, 

ince the whole specimen width is tested. With the crack-starting 

otch along the transversal direction, the testing procedure in this 

tudy loads the L-T crack system as described in ASTM E399 [34] . 

he notch length ( a ) is chosen as half of the specimen width ( w ). 

A fatigue pre-crack was not inserted in the specimen (which 

s common practice for brittle materials), as this would have re- 

uired a disproportional experimental effort for more than 110 

ested samples. Preparing notches by FIB, as used in similar stud- 

es on thin tungsten sheets [10] , would not have been possible 
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Table 1 

Comparison of the initial hot-rolled plate (HR) and the investigated warm-rolled (WR) and cold-rolled (CR) W sheets 

by thickness ( t), engineering and logarithmic strain ( ε). Average grain sizes, as analysed in the previous study [30] , 

were determined by measuring the length between line intercepts along normal direction (ND) with high angle 

boundaries (HABs), as well as all types of boundaries, including low angle boundaries (LABs). Ratios between mea- 

suring length ( L 0 ) in tensile tests and (square root of) cross section area of used samples ( A 0 ) are given in the last 

column. 

Material Rolling t / mm ε eng / % ε log / - d ND (HAB) / μm d ND (HAB + LAB) / μm L 0 / A 0 
1 / 2 / - 

W, K-doped HR 5.0 0.0 0.0 - - - 

W, K-doped WR 1.03 79.4 1.6 1.87 0.48 9.1 

W, K-doped WR 0.35 93.0 2.7 0.63 0.34 15.5 

W, K-doped WR 0.22 95.6 3.1 0.45 0.27 19.6 

W, K-doped CR 0.127 97.5 3.7 0.26 0.16 25.8 

W, K-doped CR 0.052 99.0 4.6 0.17 0.11 21.7 

W, pure HR 5.4 0.0 0.0 - - - 

W, pure WR 1.09 79.8 1.6 0.80 0.40 8.8 

W, pure WR 0.36 93.3 2.7 0.46 0.32 15.3 

W, pure WR 0.19 96.5 3.3 0.43 0.30 21.1 

W, pure CR 0.134 97.5 3.7 0.30 0.20 25.1 

W, pure CR 0.051 99.1 4.7 0.17 0.11 21.9 
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ith thicker specimen up to 1 mm thickness. Therefore, crack- 

tarting notches were prepared by EDM as they contain multiple 

hermally induced cracks in the surface (see [7,35] and references 

herein). In this manner, the fracture toughness could be overes- 

imated and the BDTT underestimated, which should be kept in 

ind when comparing the presented values to other studies. Nev- 

rtheless, this study aims mainly to compare similarly produced 

ure and K-doped W sheets of varying degree of deformation and 

he values obtained here are comparable to each other and to val- 

es from similar studies using the same notching method [7,35] . 

A Zwick-Roell 1474 universal testing machine (electro- 

echanical test device with a screw-driven step-motor), equipped 

ith an Instron SFL 3119-400 series environmental chamber, was 

sed for all low and intermediate temperature tests, i.e. between 

150 °C and 320 °C). All tests are conducted in air as no oxi- 

ation is to be expected in this temperature regime. Cooling in 

he chamber was achieved with inlet of liquid nitrogen. SENT 

pecimens were loaded in tension in mode I with a fixed velocity 

f the crosshead of the testing machine. Depending on the sample 

hickness, the velocity was adjusted to achieve an applied loading 

ate ( d K/d t) in the elastic regime of 1 MPa m 

0.5 s −1 for all tests. 

From the resulting force ( F ) versus displacement ( u ) curve, the 

ritical force ( F Q ) is calculated as described in ASTM E399 [34] : A

ecant is applied to the F - u curve with 95% of the slope of the lin-

ar elastic part and the upper intersection point of this secant with 

he F - u curve is taken as F Q . The sample is classified as ductile if

he F - u -curve shows a clear peak with a drop in force before frac-

ure (excluding pop-in events). Semi-brittle sample behaviour was 

dentified if the curve does not show a distinct drop and fractures 

n the regime where plastic deformation begins to dominate the 

urve. In this case, the secant with 95% of the slope still intersects 

ith the F - u curve. If the secant does not intersect the F - u curve,

he sample is classified as brittle in the respective testing condition 

nd the maximum force before fracture is taken as F Q . The fracture 

oughness ( K Q ) is calculated from F Q as 

 Q = 

F Q 
w t 

√ 

πa f 

(
a 

W 

)
(1) 

ith thickness ( t) and width ( w ) of the specimen, as well as length

f the crack-starting notch ( a ) and f ( a/w ) as correction factor, 

ompensating for the finite size of the specimen [34] . In this study, 

 value of 2.85 has been chosen for the correction factor f ( a/w ) 

rom Murakami’s tables [36] , as fitting for a ratio of 0.5 for a/w .

ote, that Eq. (1) takes into account the different specimen thick- 

ess ( t), but for the thin samples, plain strain conditions cannot 

e ensured. Therefore, the measurements do not meet the require- 
3 
ents for calculation of plain strain fracture toughness ( K IC ) as 

pecified by ASTM 399 [34] and the fracture toughness value ( K Q ) 

eported here must be comprehended as a geometry-dependent 

alue which provides overestimated values of the fracture tough- 

ess. This geometry-dependent value cannot compared directly for 

heets with different thicknesses. Nevertheless, this does not ex- 

lude a comparison of the fracture toughness of pure W and K- 

oped sheets with identical rolling deformation. 

For more details on the testing procedure and data evaluation, 

s well as the classification of brittle, semi-brittle and ductile be- 

aviour, we refer to an earlier study [7] which was conducted in 

he same manner. 

ensile tests 

For tensile tests, flat, bone-shaped specimens have been pre- 

ared out of the manufactured sheets by electrical discharge ma- 

hining. The gauge section of the specimens, where the elonga- 

ion was measured by an extensometer, had a width of 2 mm and 

 length of 14.1 mm. The sample thickness corresponded to the 

hickness of the respective sheet. All samples were cut from the 

olled sheets along the rolling direction, so that the tensile direc- 

ion lies parallel to the rolling direction. The specimen surface was 

either ground nor polished, so that the surface exhibits the orig- 

nal surface roughness after rolling and the surface quality after 

DM along the edges. 

Tensile tests were performed with a universal mechanical test- 

ng machine (Zwick-Roell Z150, Germany) equipped with a vac- 

um high-temperature radiation heater (MAYTEC Mess- und Regel- 

echnik, Germany). This electro-mechanical test device is driven 

y screw-based transmission, propelled by a step-motor. All tests 

ere carried out with a strain rate of 10 −3 s −1 in displacement- 

ontrolled mode. To test at different temperatures ( T t ) ranging from 

0 °C to 800 °C, a special holder was designed (as used in [9] ),

n which the samples can be heated by a surrounding radiation 

eater before testing, without preloading or bending the sheets. It 

urther enabled the use of an extensometer to measure the elonga- 

ion directly on the sample, which yields much more precise strain 

easurements than the crosshead motion since the elongation of 

he testing device does not affect the measurement. By that, the 

easuring length ( L 0 ) for measuring the elongation on the sample 

as 13 mm, except for the thinnest sheets of 50 μm thickness. Due 

o otherwise unacceptable bending of the thinnest samples, L 0 had 

o be reduced to 7 mm. Decreasing ratios of measuring length to 

he (square root of the) area of the cross section ( A 0 ) (by thicker

amples or increasing gauge length) can lead to a higher total elon- 
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ation. Even keeping constant ratios will not eliminate potential 

ifferences between the different specimen thicknesses, and hence 

he reported total elongations should be generally taken with cau- 

ion, as specified in ASTM E8/E8M [37] . For comprehensiveness, we 

pecify L 0 / A 0 
1 / 2 ratios in Table 1 . 

For measurement at elevated temperatures, the samples were 

eated to the respective test temperature (30 0, 40 0, 60 0 or 80 0 °C)

n the testing machine. Although the samples reached T t during 

eating after around 15 min, T t was kept for 45 min more before 

ensile testing, in order to ensure a uniform temperature distribu- 

ion over the whole sample. Then, 1 h after starting of the heating 

rocedure, tensile testing was performed. 

During data evaluation, the ultimate tensile strength (UTS) is 

educed from the maximum in the engineering stress ( σ ) versus 

ngineering strain ( ε) curve. The yield strength ( σys ) is deduced 

s proof stress after 0.2% plastic deformation from the intersection 

oint of the stress-strain curve with a parallel line with the slope 

f the elastic part, shifted by 0.2% of strain [38] . An example of UTS

nd σys analysis from stress-strain curves is shown in Fig. 2 for the 

heets with 50 μm thickness. 

esults 

racture toughness tests 

The values for the (provisional) fracture toughness ( K Q ) ob- 

ained for W pure and W K are shown in Fig. 1 . With increasing de-

ree of deformation, an increase of the measured K Q of ductile and 

emi-brittle fractured samples can be seen. The highest toughness 

alue is recorded for the thinnest W sheet W pure (4.7) with up to 

40 MPa m 

0.5 , compared to the next thicker sheet W pure (3.7) with 

p to 60 MPa m 

0.5 . The fracture toughness for sheets of W K are in

he same range. 

Although the statistical support of the data is not as high as in 

 preceding study on similarly rolled W sheets [7] , this study gives 

 rough estimation of the T BDT for the investigated W sheets. For 

ach W sheet, the brittle-to-ductile transition temperature ( T BDT ) 

s estimated by defining its lower limit by the brittle data point 

t the highest temperature. Its upper limit is defined by the next 

emi-brittle data point towards higher temperatures (or ductile 

ata point if no semi-brittle data point is present). The resulting 

emperature range for the estimated T BDT is marked by vertical 

ars in Fig. 1 for each sheet. 

While W pure (1.6) shows a low T BDT between + 20 °C to + 50 °C, 

he T BDT defined in this manner is not altered significantly for the 

arm-rolled sheets W pure (2.7) and W pure (3.3). However, the cold- 

olled sheets show a severe decrease of the T BDT below room tem- 

erature at −50 °C to −60 °C for W pure (3.7) and −80 °C to −100 °C
or W pure (4.7). 

The K-doped sheets show a similar trend, however, W K (1.6) 

hows a much higher T BDT between 240 °C to 260 °C than its 

 pure counterpart. The T BDT of W K (2.7) and W K (3.1) is comparable 

o that of their W pure counterparts. The cold-rolled sheets W K (3.7) 

nd W K (4.6) exhibit even a slightly lower T BDT than W pure (3.7) and 

 pure (4.7) with −70 °C to −80 °C and −100 °C to −130 °C respec-

ively. 

ensile tests 

The resulting engineering stress-strain ( σ - ε) curves from the 

ensile tests at 20 °C are shown in Fig. 2 . The curves reveal the

owest strength for the thickest tungsten sheets with even brit- 

le behaviour for the W K (1.6) sheet (therefore, no value for yield 

trength is deduced at 20 °C for this sheet). Ultimate tensile 

trength (UTS) and yield strength ( σys ) increase for both material 
4 
ets with increasing degree of deformation, with the sole excep- 

ion of the transition from W pure (2.7) to W pure (3.3) where UTS is 

ot increasing. The most significant increase by rolling is seen for 

he thinnest cold-rolled sheets compared to the next thicker sheets 

ith thickness of 130 μm: W pure (4.7), with a UTS of 2790 MPa, ex- 

ibits an increase of 700 MPa compared to W pure (3.7) and W K (4.6), 

ith a UTS of 2966 MPa, exhibits an increase of 800 MPa com- 

ared to W K (3.7). 

The σ - ε curves show a near elastic-ideal-plastic behaviour 

ith a narrow hardening region, where plastic behaviour be- 

ins to dominate, and a long, flat plateau, indicating no recog- 

izable necking of the samples during elongation up to several 

ercent of strain. Although W K (3.1) and W K (3.7) show a slightly 

igher total elongation than their W pure counterparts, the other 

 K sheets show smaller total elongation compared to W pure . Es- 

ecially the cold-rolled W K (4.6) has significantly less total elonga- 

ion than W pure (4.7). As already mentioned, W K (1.6) showed brittle 

ehaviour, while W pure (1.6) has the highest total elongation of all 

ested sheets (with 4.3%). 

We further investigated both material sets by tensile tests at 

levated temperatures (300 °C, 40 0 °C, 60 0 °C, 80 0 °C) and in-

erred the respective ultimate tensile strength (UTS) as well as 

ield strength ( σys ) as shown in Fig. 3 . The UTS decreases with

ncreasing test temperature, still showing at 800 °C more than 

40 MPa for the sheets with lowest degree of deformation and 

ore than 1200 MPa for the sheets with highest degree of defor- 

ation. Values for the yield strength ( σys ) are in a similar range 

approximately 100 to 300 MPa lower than UTS) and show the 

ame trends as the UTS with a decrease in strength with increasing 

est temperatures. 

When comparing sheets of both material sets with same degree 

f deformation, all investigated W K samples show slightly higher 

alues for both, UTS and σys , compared to their W pure counterparts. 

alues for the total elongation are in a similar range for the K- 

oped sheets WK compared to their counterparts of pure tungsten 

pure of same thickness (not shown here). 

iscussion 

racture toughness 

The thinnest sheets W pure (4.7) and W K (4.6) show a significantly 

ecreased T BDT with less than −80 °C (193 K) and −100 °C (173 K) 

espectively. This an outstanding performance for a tungsten ma- 

erial and surpasses even the excellent T BDT of cold-rolled pure W 

heets ( ε log = 4.1) with −65 °C (208 K), which was reported in 

 preceding study [7] . However, care should be taken when com- 

aring these values with other studies where fatigue cracks were 

nduced in the sample preparation, as our results for the estimated 

DTT could be slightly underestimated due to the notch created by 

DM. 

Comparing the T BDT of the W K sheets directly with their W pure 

ounterparts, the cold-rolled sheets of K-doped tungsten (50 and 

30 μm thickness) seem to have a slightly lower T BDT than the cor- 

esponding pure tungsten sheets. However, the most striking dif- 

erence between both material sets is seen in the T BDT of the thick- 

st sheets W K (1.6) and W pure (1.6) with around + 250 ± 10 °C and

 35 ± 15 °C respectively. This is an impressive discrepancy be- 

ween the T BDT with �T BDT of more than 200 K. A reason for this 

ould be the significant difference in the microstructure between 

oth sheets, which has been elucidated in the previous study [30] : 

hile both sheets show a weak rolling texture with preferred α- 

nd γ -fibre texture components and shear textures near the sheet 

urface, the sheet W K (1.6) shows a peculiar phenomenon where 

ands of several tens of μm thickness along the normal direction 

ominate the microstructure in the centre of the longitudinal sec- 
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Fig. 1. Dependence of fracture toughness on test temperature for all sheets with five different degrees of deformation from (a) W pure and (b) W K . Fracture behaviour is 

classified as brittle (closed symbol), semi-brittle (crossed symbol) and ductile (open symbol); more details on the classification are given in the methods section. For each 

sheet, the estimated T BDT between the data point at the highest temperature showing brittle fracture and the semi-brittle or ductile data point at the next higher temperature 

is marked by vertical bars for each sheet. 

Fig. 2. Engineering stress-strain curves for (a) pure tungsten and (b) K-doped tungsten sheets at room temperature (20 °C) for all sheets with five different degrees of 

deformation. 

5 
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Fig. 3. Results on the tensile tests of pure and K-doped tungsten sheets: (a) ultimate tensile strength and (b) yield strength. The thickest K-doped sheet (10 0 0 μm) showed 

brittle material behaviour in all tests at 20 °C (black circle), therefore its UTS is not directly comparable and no value for yield strength is deduced at this temperature. 

Fig. 4. Orientation maps of RD/ND sections of W K (1.6). Both sections show several micrometre thick bands (marked by green bars at the top), which do not contain HABs. 

They consist only of orientation components from either α-fibre (appearing red to purple) or γ -fibre (appearing blue). Some of these orientation bands additionally contain 

shear bands, inclined by 55 ° to the rolling direction. For more detail, we refer to the preceding study [30] . 
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ion ( Fig. 4 , or see Fig. 8 in [30] ). These bands stretch along the

olling direction, contain only LABs and consist only of a single ori- 

ntation component from α- or γ -fibre. Therefore, the bands were 

eferred to as “orientation bands” in the previous study. Some of 

hese comprise shear bands, especially the orientation bands con- 

isting only of crystallites with γ -fibre orientations. The possible 

nfluence of the orientation bands is discussed in the following. 

The relationship of the T BDT to the grain size has been inves- 

igated in literature for example for steels [39] and good correla- 

ions with the grain size by Hall-Petch relation have been found 

or tungsten sheets as well [3,14] . Similarly, we compared the de- 

endence of T BDT on grain size in this study with a Hall-Petch 

elation. Mean grain sizes have been determined by EBSD in the 

receding study [30] as boundary spacing along normal direction 

 ND (given in Table 1 ), and the estimated T BDT is plotted against 

 ND 
−1 / 2 

in Fig. 5 . As in the preceding study [30] , two approaches 

re tested: First, only high angle boundaries with misorientation 

ngles above 15 ° are considered in the boundary spacing d ND (HAB), 

econd all boundaries with misorientation angles above 2 ° are con- 
6 
idered in the boundary spacing d ND (HAB + LAB). While the first 

pproach is commonly used, the second approach was pursued in 

he preceding study [30] due to the specific microstructure of the 

everely cold-rolled sheets with high densities of LABs. Since a lin- 

ar regression of the Hall-Petch relation for microhardness in de- 

endence on d ND showed a far better fit to the data when LABs 

ere included in d ND (see Fig. 10 in [30] ), a significant contribu- 

ion of LABs to hardness has been discussed. 

In a grain size analysis with line intercepts along ND, where 

nly HABs are considered as grain boundaries, orientation bands 

ppear as huge grains with several tens of μm thickness as they 

ontain mainly LABs. Therefore, the mean grain size d ND (HAB) has 

 large value for the sheet W K (1.6), which shows many orientation 

ands, compared to its counterpart W pure (1.6) ( Table 1 ). For the 

oundary spacing d ND (HAB + LAB), the discrepancy between both 

heets is rather small. 

These findings are also reflected in Fig. 5 , where W K (1.6) shows 

ignificantly smaller values for d ND (HAB) −1/2 than W pure (1.6). The 

urve for the K-doped sheets shows a more or less linear decrease 
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Fig. 5. Dependence of estimated brittle-to-ductile transition temperature on grain size d ND for pure W and K-doped W. a) Only HABs are considered in d ND (HAB). b) As an 

alternative approach, HABs and LABs are both considered in the boundary spacing d ND (HAB + LAB). Vertical bars mark the lower and upper limit of T BDT with the estimated 

T BDT as data point in the middle between. 

f

t  

s

d

T

i

o

d

W

m

a

d

c

c

d

f

s

r

e

d

a

t

c

c

W

o

s

n

c

n

t

p

a

a

r

i

t

o

t

k

i

t

t

b

s

p

e

t

(

a

r

l

c

r

o

s

d

i

w

s

T

C

a

e

s

W

p

a

s

t

W  

t

s

d

l

t

h

5

L

b

or T BDT with increasing d ND (HAB) −1/2 for all degrees of deforma- 

ion ( Fig. 5 a). If LABs are considered in d ND ( Fig. 5 b), the curve still

hows a linear decrease for the W K sheets with higher degree of 

eformation only, but W K (1.6) deviates from the linear behaviour. 

his indicates that the density of HABs is still controlling the T BDT 

n contrast to microhardness which was controlled by both types 

f boundaries. The high amount of orientation bands causes a low 

ensity of HABs, leading to a higher T BDT in W K (1.6) compared to 

 pure (1.6). 

It may be further argued, that crack propagation can proceed 

ore easily across such an orientation band. In general, HABs at 

 crack front are known to be substantial sources for dislocations 

uring plastic deformation [40] . Since the orientation bands solely 

ontain LABs, the amount of dislocation sources would be drasti- 

ally reduced. If the density of dislocation sources is insufficient 

uring the deformation, such bands could be more prone to brittle 

racture than a more fine-grained microstructure with higher den- 

ity of dislocation sources. Therefore, orientation bands could rep- 

esent regions in the sample, where cracking could propagate more 

asily. Due to the huge volume of the orientation bands, an in- 

uced crack could spread more easily through the sample volume 

nd initiate cracking of the surrounding microstructure as well, 

herefore leading to a brittle fracture on a macroscopic scale. To 

onfirm this hypothesis, investigations e.g. of the fracture surface 

ould prove useful. 

The reasons for the occurrence of the orientation bands in the 

 K sheet remain unknown at the present stage. From experience 

f the manufacturer, K-doped W can develop huge grains during 

intering at high temperatures due to abnormal grain growth. Ab- 

ormal grain growth could also occur during the hot rolling pro- 

ess through intermediate heating of the sheets. Additionally, ab- 

ormal grain growth – instead of normal grain growth – is known 

o be promoted by the presence of particles or bubbles, which are 

inning grain boundaries and prevent normal grain growth [13,41] , 

s observed in K-doped W [42,43] . Assuming a microstructure with 

bnormally large grains present in the sintered ingot or the hot- 

olled plate, it is imaginable that an orientation band could orig- 

nate from an abnormally large grain by deformation and elonga- 

ion during rolling. However, this reasoning is speculative, as the 

ccurrence of abnormally grown grains in the hot-rolled condi- 

ions has not been investigated in detail. Furthermore, it is un- 

nown, if orientation bands can also develop in pure W sheets 

n general, although none of these have been found in the inves- 

igated pure W sheets which are used in this study [30] . Never- 

e

7 
heless, since our data suggest a brittle behaviour of the sheets 

y the existence of orientation bands in the 1 mm thick sheet, it 

eems advisable to avoid orientation bands in the final product, if 

ossible. The data also imply that further rolling can reduce the 

ffect of the orientation bands, as d ND (HAB) and T BDT are dras- 

ically reduced in the next rolling step from W K (1.6) to W K (2.7) 

 Fig. 5 ). 

Although pure W and K-doped W sheets are commercially 

vailable at PLANSEE, we want to emphasize that the tested mate- 

ials in this study are part of a rolling study to investigate the evo- 

ution of microstructure and mechanical properties of two material 

lasses and that most sheets represent intermediate stages in the 

olling process. Therefore, especially the sheets with lower degree 

f deformation (which did not receive cold-rolling) do not repre- 

ent standard commercially available materials from PLANSEE. The 

ata presented here indicate that optimizations in the manufactur- 

ng should be considered, if phenomena like the orientation bands 

ould persistently occur in future productions of 1 mm thick W 

heets (with or without K-doping). 

ensile tests 

omparison of W materials at room temperature 

Nearly all sheets showed ductile behaviour in the tensile tests 

t 20 °C, except the brittle behaviour for the W K (1.6) sheet. An 

lastic-ideal-plastic behaviour in the σ - ε curves ( Fig. 2 ) can be 

een particularly well for the cold-rolled materials W pure (3.7), 

 pure (4.7) and W K (3.7). Such a phenomenon of near elastic-ideal- 

lastic behaviour has been described by Wei and Kecskes [44] and 

 previous study from Bonk et al. [9] for cold-rolled tungsten 

heets with 100 μm thickness ( ε log = 4.0), similarly produced as 

he W pure sheets in our own study. 

Quite unique is the high amount of total elongation for 

 pure (1.6) with 4.3% ( Fig. 2 ) which increases to more than 6% for

ensile tests above 300 °C. In an analogous study on pure tung- 

ten sheets [9] , for the thickest W sheet with similar degree of 

eformation as W pure (1.6) the amount of total elongation is much 

ower (around 1.5%) at room temperature. However, beginning at a 

est temperature of 200 °C, this thickest W sheet also showed the 

ighest total elongation of all investigated sheets with more than 

% [9] . As already mentioned in the methods section, decreasing 

 0 / A 0 
1 / 2 ratios can yield increasing total elongation, which could 

e the reason for the high elongation of W pure (1.6) with the low- 

st L / A 

1 / 2 ratio ( Table 1 ). 
0 0 
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On the other hand, the K-doped counterpart W K (1.6) is the 

nly sheet showing brittle behaviour at room temperature. Even 

hough tensile tests and fracture toughness tests are difficult to 

ompare, the brittle behaviour during tensile testing corresponds 

o the results of the fracture toughness tests where W K (1.6) 

hows the highest T BDT of all sampled sheets, which is presum- 

bly caused by the high amount of orientation bands with tens 

f micrometres in thickness, as discussed before. As the sam- 

les are not polished, slight surface roughness by the rolling pro- 

ess can initiate cracks, leading to more brittle behaviour. This, 

owever, should be equal among all investigated samples in this 

tudy. 

The increasing UTS and σys with increasing degree of deforma- 

ion can be easily explained by the decreasing grain size. However, 

he very high tensile strength of the 50 μm thick sheets (grain size 

0.17 μm along ND), with around 2790 MPa for W pure (4.7) and 

970 MPa for W K (4.6), is outstanding and to our knowledge the 

ighest UTS reported for a rolled tungsten sheet. This applies to 

ys as well with values of 2720 MPa and 2860 MPa respectively. To 

ut these results into perspective: These sheets are outperforming 

or example a pure W sheet with 100 μm thickness (and lower 

egree of deformation) of the preceding study from [9] where val- 

es of around 2300 MPa for UTS and 2200 MPa for σys have been 

bserved (grain size of 0.24 μm). It should be kept in mind that 

his is an anisotropic material and tensile tests with loading along 

ther directions should yield lower results. 

For further comparison, many results on tensile tests for tung- 

ten wires can be found in the literature. Naturally, wires can 

e produced with high degree of deformation more easily than 

olled sheets. For the same logarithmic strain, grains develop much 

maller sizes along TD in rolling than along the radial direction 

n wire drawing. Or other way round: The same grain sizes are 

chieved in wire drawing after much larger logarithmic strain than 

n rolling. Logarithmic strains of more than 8 are common for 

ires and by that, extreme UTS values of W wires can be found 

n reports, e.g. 5.2 GPa observed for wires with a radial grain size 

f 100 nm [21] . However, other studies report much lower UTS val- 

es for commercially available W wires. For example 2914 MPa to 

940 MPa for drawn wire of pure W (150 μm diameter) with a ra- 

ial grain size of 0.1 μm to 1 μm [45] , or 2721 MPa for drawn wire

f K-doped W (150 μm diameter, grain size not mentioned) [28] , 

oth provided by OSRAM GmbH, Schwabmünchen. These lower 

TS from commercially available wires compared to the reported 

.2 GPa can be caused by lower degree of deformation, but also 

rom potential annealing for stress relieving. Due to thermal insta- 

ility [30] , degradation in strength by annealing above ~700 °C can 

e expected for the highly deformed sheets as well and has to be 

onsidered when dealing with elevated temperatures, as in a fu- 

ion reactor. While it is difficult to compare the mentioned values 

rom wires with sheets since the grain shape is very different, from 

 technological point of view, it is quite interesting, from a techno- 

ogical point of view, that rolled sheets can reach a tensile strength 

imilar to commercially available wires. 

Coming back to rolled W sheets, another study [46] compared 

ensile properties of K-doped W (30 ppm K) and pure W plates, 

anufactured at A.L.M.T. by hot-rolling with 80% thickness reduc- 

ion and following heat treatment (900 °C for 20 min). With a sim- 

lar strain rate to our study (10 -3 s -1 ), the K-doped plate showed a

ys of around 1400 MPa at room temperature. The pure W plate 

howed brittle behaviour at room temperature, but ductile be- 

aviour at and above 200 °C, with a σys of around 750 MPa at 

00 °C and even above 800 MPa for the K-doped plate at 200 °C. 

his difference between both materials, however, is not related di- 

ectly to the effect of K-doping, but to the grain size, as the pure

 sheet in [46] had a more coarse grained structure than the K- 

oped sheet. The authors suggest that more pronounced grain re- 
8 
nement is induced during rolling by K-addition. New data from 

ur preceding study [30] however show that the grain size from 

 K sheets does not decrease more severe than the grain size from 

 pure sheets during cold-rolling, but only during warm-rolling (e.g. 

ee Fig. 4 in [30] ). The latter suggests that K-bubbles in the W 

heet do not directly enhance grain refinement during rolling, but 

nhibit growth of grains during heating of the W sheets between 

he warm-rolling steps. 

TS and σys at elevated temperatures 

A decreasing UTS and σys are observed with increasing temper- 

ture ( Fig. 3 ), as expected by the occurrence of thermally activated 

rocesses [47] . Regarding the dependence of the yield stress on 

emperature, the results are in line with the comparable tensile 

est campaign using only pure W sheets [9] . While the decreas- 

ng σys is mainly caused by an increased mobility of dislocations 

ith increasing temperature, the decrease in UTS is additionally 

e influenced by enhanced annihilation of dislocations due to dy- 

amic recovery. While the cold-rolled sheets with high degree of 

eformation seem to be more susceptible for dynamic recovery, 

he warm-rolled sheets, however, show a fairly limited decrease in 

TS between 400 °C to 800 °C, indicating that dynamic recovery 

lready occurred during warm-rolling. 

As shown by isothermal annealing experiments, the microstruc- 

ure (especially of the thinnest W sheets) starts to become unsta- 

le at around 700 °C [30] . Therefore, one should keep in mind that 

uring tensile testing at 800 °C, where the sample is kept at the 

esting temperature T t for around 45 min to guarantee a uniform 

emperature distribution before the actual tensile test, the thin W 

heets are already starting to degrade their mechanical properties 

ue to extended recovery [30] . 

all-Petch relation 

To confirm that the increasing UTS and σys with increasing de- 

ree of deformation is caused by the decreasing grain size (follow- 

ng a Hall-Petch relation), the UTS of all tensile tests from room 

emperature up to 800 °C is plotted in Fig. 6 a. Except for the 

heets with highest degree of deformation (and for sample W K (1.6) 

hich is brittle at room temperature), an increase in UTS with de- 

reasing d ND (HAB) can be observed for all T t . One deviation from 

his trend in UTS can be found between W pure (2.7) and W pure (3.3) 

sheets marked in Fig. 6 ). As discussed in the preceding study [30] ,

his pair of sheets showed no significant difference in grain size 

nd in microhardness, despite that W pure (3.3) has been separated 

rom the 350 μm thick W pure (2.7) sheet and rolled further down 

o 200 μm thickness. This effect could be caused by temporal vari- 

tions in the warm-rolling process, e.g. slightly longer warming 

p times of W pure between the warm-rolling steps and resulting 

estoration processes. 

For the thinnest sheets W K (4.6) and W pure (4.7), a severe in- 

rease in UTS can be seen in Fig. 6 a. For comparison, in the pre-

eding study [30] with the same materials, the dependence of the 

icrohardness on grain size d ND (HAB) showed a significant devi- 

tion from the Hall-Petch relation as well, but for all four sheets 

reated by cold-rolling, namely W K (3.7), W pure (3.7), W K (4.6) and 

 pure (4.7). With the alternative approach of inclusion of all types 

f boundaries in d ND (HAB + LAB), the Hall-Petch relation was fitting 

or the cold-rolled sheets as well, except for W K (4.6), where the 

icrohardness was still much higher than expected from a Hall- 

etch relation. Such a deviation from the Hall-Petch relation with 

 much higher value than expected can be observed for the UTS as 

ell, however only for both sheets with highest degree of defor- 

ation W K (4.6) and W pure (4.7) ( Fig. 6 a). Consideration of LAB in

 ND (HAB + LAB) does not cure this deviation ( Fig. 6 b). 

This raises the following questions: (1) Why do both sheets 

ith highest degree of deformation have much higher UTS than 
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Fig. 6. Dependence of ultimate tensile strength on boundary spacing in normal direction ( d ND , see Table 1 ). a) Only HABs are considered as grain boundaries in d ND (HAB). b) 

All types of boundaries are included in the boundary spacing d ND (HAB + LAB) as an alternative approach [30] . Shown are all data for tensile tests between test temperatures 

( T t ) of 20 °C to 800 °C. 
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xpected by the Hall-Petch relation? And (2) why does in case of 

icrohardness only the sheet W K (4.6) deviate from the Hall-Petch 

elation (see Fig. 10 in [30] ), while for the UTS, both sheets W K (4.6)

nd W pure (4.7) deviate to much higher values ( Fig. 6 )? 

For question (2), we repeated the microhardness measurements 

ith two other samples for each respective sheet of W K and 

 pure in order to exclude systematic errors. All results consis- 

ently agreed to the previous measurement campaign, except the 

amples for W pure (4.7), where indeed a much higher hardness of 

54 ± 11 HV0.1 has been measured in the second test campaign on 

wo samples, compared to the multiple measurements on the first 

ample, where a hardness of 711 ± 14 HV0.1 has been determined 

efore. As we can only speculate about the reasons for this differ- 

nce, we took the new hardness value for W pure (4.7) as a more re-

listic value, as the two new measurements showed similar values 

nd the image is consistent when compared to the multiple ten- 

ile tests on this sheet: The new results of the microhardness for 

 pure (4.7) are included in Fig. 7 a, together with the UTS. UTS and

icrohardness are both much higher than expected by the Hall- 

etch relation for both sheets W K (4.6) and W pure (4.7). So in both 

ases microhardness and UTS of the two plates with highest de- 

ree of deformation showed large deviations from the Hall-Petch 

elation. 

This leads back to question (1) about the reason for such a sig- 

ificant and non-linear increase of strength, but also of microhard- 

ess in the respective Hall-Petch relation ( Fig. 7 a). For the devia- 

ion in microhardness, it has been already discussed in [30] that 

he sample size is too small for conformity with DIN EN ISO 6507- 

 [48] and that this could cause an apparent softer material be- 

aviour as expected from the Hall-Petch relation. However, since 

e observe increased hardness values (and not a decrease as ex- 

ected from surface effects), we can exclude an artefact caused 

y the small sample size to be the reason for such a deviation 

n hardness. The conjunction with the correspondingly enhanced 

TS compared to the predictions of the Hall-Petch relation fur- 

her proves that the trend for higher microhardness is an inher- 

nt material property and not an artefact. The determination of 

he boundary spacing d ND (HAB + LAB) has to be considered as a 

otential source for the deviation as well. Rather small changes 
9 
n d ND (HAB + LAB) can have a huge influence due to the reciprocal 

elationship, especially for small values of d ND (HAB + LAB). As dis- 

ussed in the preceding study [30] , the chosen step size of 40 nm 

or EBSD measurements is fairly at the limit to sufficiently resolve 

he small grain size of the sheets with highest degree of deforma- 

ion. In order to exclude measurement errors, we reassessed the 

oundary spacing of W K (4.6) by additional EBSD measurements 

ith a step size of 10 nm. By that, the fractions of grains with 

mallest grain size below 40 nm were acquired sufficiently well. 

owever, the resulting new value of 95 ± 2 nm for d ND (HAB + LAB) 

s by far not small enough in order to shift the data point of 

 K (4.6) sufficiently to larger values (on the abscissa) and to gain 

 linear correlation in Fig. 7 a. Additionally, the new value is within 

he standard deviation of the old value with 105 ± 10 nm for 

 ND (HAB + LAB). Therefore, relevant errors in the measurement of 

 ND (HAB + LAB) are considered highly unlikely. 

In order to further assess the peculiar deviation of the thinnest 

 sheets in the Hall-Petch relation, we analysed the correlation 

etween microhardness and UTS. A correlation between the elas- 

ic limit and Vickers hardness (HV) was established by [49] : Steel 

nd copper samples were deformed by various amounts and there- 

fter Vickers hardness measurements performed. A representative 

lastic limit has been determined with around 8% of deformation, 

here a reasonable good proportionality was found between the 

ickers hardness and the elastic limit with a proportionality fac- 

or ( c) of around 2.9 to 3.0. Since the tungsten sheets in our study

how only very low work-hardening and the UTS is reached al- 

eady at 1% of deformation ( Fig. 2 ), the UTS should correlate with

V as well in our case: 

V = c UTS (2) 

However, this correlation should be seen more as a rule of 

humb. If we use this simple Eq. (2) for our results with Vickers 

icrohardness, we can find a good approximation for the sheets 

 pure (1.6) to W pure (3.7) and W K (2.7) to W K (3.7) with c = 3.1 as

orrelation factor ( Fig. 7 b), similar as the values found in [49] .

gain, the sheets with highest degree of deformation W pure (4.7) 

nd W K (4.6) both show a deviation from the proportionality, with 

 greater increase in UTS ( + 400 MPa and + 500 MPa respectively) 
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Fig. 7. a) Boundary spacing d ND HAB + LAB) in dependence on UTS at room temperature (red) and Vickers microhardness (green). Results of microhardness are included from 

[30] and the value of W pure (4.7) has been revised through new measurements. b) UTS versus Vickers microhardness (HV). A fitted linear regression (blue line) showed a 

good approximation with a proportionality factor of c = 3.1 relating UTS to microhardness (in GPa). 
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han predicted from microhardness in Eq. (2) ( Fig. 7 b). It has been

rgued in the preceding study [30] that the extraordinarily high 

ardness values for the thinnest sheets are valid, despite that the 

hicknesses of the thin sheets do not allow hardness measurements 

ccording to DIN EN ISO 6507-1 [48] and ASTM E92 [50] on sec- 

ions defined by the rolling and the normal direction (the hard- 

ess indents with diagonal lengths of around 17 μm are too large 

or the 50 μm thin sheets exceeding the recommended ratio of 

.5 between distance form surface and diagonal length. For such 

 sample thickness, a maximum length of the diagonals of 10 μm 

s recommended for the indent size. The too small foil thickness 

ould result in lower hardness values than predicted from Hall- 

etch compared to thicker sheets, but not in higher values as ob- 

erved here ( Fig. 7 a). For both thinnest sheets, the observed lower 

ardness values than predicted from their UTS values (using c = 3.1, 

ig. 7 b) could be caused indeed by the small foil thickness and the 

eal hardness could be even higher than the measured values of 

p to 771 HV0.1 (7.6 GPa) causing even larger deviations from the 

all-Petch relation. 

Further care has to be taken, when comparing the determined 

roportionality factor with other studies, since our study deals 

ith rolled sheets with highly anisotropic grain shape. The direc- 

ion of microhardness indentation is the transversal direction of 

he sheets and the stress field of the compression by the inden- 

er is three-dimensional, whereas the tensile test in our campaign 

oads the sample unidirectional along rolling direction. Therefore, 

he proportionality factor might change when the direction of mi- 

rohardness or tensile load changes. Nevertheless, the obtained 

actor of 3.1 is very close to literature data and since tungsten does 

ot show a strong hardening behaviour (as also seen in the σ - ε
urves in Fig. 2 ), lower values around 3 are to be expected. In com-

arison, e.g. some materials with high work-hardening rate show 

roportionality factors of more than 4 [51] . 

From these observations, the following conclusions can be 

rawn: First, the correlation of UTS to microhardness ( Fig. 7 b) in- 

icates that the rolling steps up to the second highest degree of 

eformation lead to a comparable increase in UTS and hardness, as 

he relation between both is linear and the proportionality factor 

f 3.1 is comparable to results in literature. Second, we discussed 
10 
bove the influence of errors in the boundary spacing as a possi- 

le reason for the deviation of the sheets with highest degree of 

eformation. However, this deviation is not only seen in the Hall- 

etch relations ( Fig. 7 a), but also seen in the correlation between 

TS and Vickers hardness ( Fig. 7 b), where the boundary spacing is 

ot explicitly incorporated. This further proves, that the enhanced 

ncrease in UTS and hardness with degree of deformation is not re- 

ated to a resolution problem in the determination of the boundary 

pacing, but a real property of the material. 

Up to now, we can only speculate about the reasons for this 

bservation. A contributing factor for such an increase in hardness 

nd UTS could be for example an increased dislocation density. An 

ncreasing amount of dislocation debris and forest dislocations re- 

trict the motion of other dislocations and lead to strengthening. 

herefore, measurements of dislocation density could prove use- 

ul which are, however, hard to quantify. A first qualitative hint for 

n exceptionally high dislocation density in the thinnest sheets are 

iven by the TEM images published in the preceding study (see Fig. 

1 in [30] ). 

ifferences between W pure and W K 

All investigated W K samples show slightly higher values for 

TS than their W pure counterparts ( Fig. 3 ). When the dependence 

n grain size is considered, this difference in UTS is much more 

ubtle, but still observable for experiments with T t above 300 °C 

 Fig. 6 ). 

This could be caused by a slight strengthening effect due to the 

resence of dispersed bubbles in the K-doped material and other 

mpurities introduced by the doping process itself (e.g. Al and Si), 

hich have not been removed completely during heat treatment. 

his strengthening effect is further indicated by TEM observations 

n dislocations, which are regularly found entangled around K- 

ubbles (e.g. see Fig. 13 in [30] ). However, the difference between 

he UTS of both material sets when compared at the same grain 

ize is rather small, as is the total volume of potassium bubbles 

60 ppm K) and the amount of impurities measured by chemical 

nalysis of the bulk material (below 30 ppm for Al, Si and O alto- 

ether [30] ). 
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onclusions 

In this work, the tensile properties and the brittle-to-ductile 

ransition temperatures are investigated for pure and K-doped 

ungsten sheets with five different degrees of deformation, respec- 

ively (logarithmic strains of 1.6 to 4.7). The results are compared 

o each other on the basis of the Hall-Petch relation for the depen- 

ence on grain size, leading to the following conclusions: 

• The thinnest tungsten sheets with 50 μm thickness show an 

outstanding T BDT with −80 °C (193 K) for W pure (4.7) and 

−100 °C (173 K) for W K (4.6). The sheets performance during 

tensile tests with loading along the rolling direction are out- 

standing as well. The values for UTS (2790 MPa and 2970 MPa) 

and σys (2720 MPa and 2860 MPa) are to our knowledge the 

highest values reported for rolled tungsten sheets so far. 
• The slightly lower T BDT of the cold-rolled K-doped sheets com- 

pared to the pure W sheets is related to a smaller grain size of 

the K-doped sheets. We suggest, based on observations from a 

previous study, that K-bubbles in the W matrix do not directly 

enhance grain refinement during rolling, but inhibit growth of 

grains during heating of the W sheets between rolling steps. 
• In general, the T BDT for both material sets is in a similar range 

for comparable degree of deformation, except for the thickest 

sheets. We suggest the much higher T BDT of the W K sheet com- 

pared to the W pure sheet to be provoked by several tens of μm 

thick orientation bands observed in the W K sheet, which con- 

tain solely LABs. 
• The thinnest sheets show a deviation from the Hall-Petch rela- 

tion with much higher UTS and microhardness as expected. We 

assume an increased dislocation density to be responsible for 

that. 
• The W K sheets show a slightly higher UTS compared to their 

W pure counterparts at comparable degree of deformation. This 

is related to the finer grain size of the W K sheets and can be

rationalized through the Hall-Petch relation. 

In general, these observations indicate that no disadvantage in 

ensile strength and brittle-to-ductile transition is to be expected 

hen K-doping is used to inhibit recrystallization in tungsten. Al- 

hough the thickest K-doped sheet has much higher T BDT than the 

ure W sheet, we relate this effect not to the K-doping but to ori- 

ntation bands, which should be avoided during production. How- 

ver, further investigations are needed in order to understand the 

rittle behaviour of this specific sheet. The slight strengthening ef- 

ect due to K-doping, as seen in the previous study from the micro- 

ardness, is much more subtle in tensile strength and only seen at 

est temperatures of 300 °C and above. These promising results fur- 

her encourage the use of K-doped tungsten for example in fusion 

eactor environments, where resistance to recrystallization and a 

ertain amount of structural integrity is needed. 
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