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Abstract

In recent years several new LiDAR datasets for object detection were publis-
hed. All these datasets were recorded with different LiDAR setups and at
different locations. KITTI, for example, has 64 channels and was recorded
in Germany, whereas Lyft (Level 5) has only 40 channels and was recorded
in the USA. This leads to different characteristics of the LiDAR point clouds.
In this paper, we present and evaluate a way to transform KITTI BEV maps
such that they look like Lyft BEV maps. For this transformation we use the
state-of-the-art image-to-image translator CycleGAN. The transformation is
evaluated by two strategies: Firstly we test if the translated KITTI BEV maps
work better for an object detector, which is trained on Lyft. Secondly we test if
the characteristic structure of the Lyft dataset (number of channels, location of
points) is adopted from the translated point cloud. The conducted experiments
showed that after the translation the KITTI BEV maps are more similar to Lyft
BEV maps, but the detection got worse.
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1 Introduction

Especially in autonomous driving, any method used to evaluate the 3D driving
environment must be fail safe. LiDAR, RADAR and ultrasonic sensors are
used to obtain 3D information about the surrounding area. While an ultrasonic
sensor only works in short range and the 3D information of a RADAR is very
sparse, the LiDAR sensor can produce accurate information of the immediate
surroundings such as pedestrians or other vehicles.

With the KITTI dataset [1], a dataset for autonomous driving containing Li-
DAR point clouds is publicly available since 2012 and is still used as a standard
dataset. In recent years, new datasets for autonomous driving containing Li-
DAR point clouds became publicly available e.g. 2018 nuScenes [2], 2019 Lyft
Level 5 [3], 2019 Audi A2D2 [4] or 2020 Ford AV [5]. With Astyx HiRes [6]
the first dataset for autonomous driving was published, which also contains
point clouds from an high resolution RADAR in addition to LiDAR point
clouds. As Table 1 shows, all datasets use different LiDAR setups. Significant
differences between the datasets are the number of channels and the vertical
resolution, which depends on the type of LiDAR that was used. While for
most datasets one LiDAR is mounted on the top of the roof, for the Audi dataset
multiple LiDARs were used: one at the front of the roof and 4 at the corners of
the roof, with a slightly tilt. Due to the different locations of the LiDARs the
point clouds of A2D2 look different than point clouds from a single LiDAR.
The point clouds in A2D2 have a grid pattern, and not a circular pattern as in
the other datasets with one top LiDAR. Also the different LiDAR setups for
the datasets lead to a different appearance of the LiDAR point clouds (Fig. 1).
Both KITTI and Lyft have a LiDAR mounted on top of the roof and generate a
360 degree vision of the surrounding area by multiple laser channels. Because
in KITTI many laser channels scan the close area of the ego vehicle, a point
cloud from the KITTI dataset contains much more points near the ego vehicle
than a point cloud from Lyft.

1 While working on this paper only the data of the top LiDAR were available.
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Table 1: Comparison of the LiDAR setups of different datasets. Specs marked with * are taken
from the datasheet of the LiDAR manufacturer and not from the source of the dataset.
T = Top; B=Bumper; F=Front; C=Corner.

KITTI Lyft Audi A2D2 Astyx

Number of LiDARs 1 1 + 2 5 1
Range [m] 120 - 100 100
Channels 64 40/64 1 16 16

Azimuthal FOV [◦] 360 360 360 360
Vertical FOV [◦] 26.8 - 30 30

Azimuth resol. [◦] 0.08 - 0.35* 0.2 0.1-0.4 * 0.1-0.4 *
Vertical resol. [◦] 0.4* - 2 2*

Rate [Hz] 10 10 10 10
Position T T + 2 B 1 F + 4 C T
Intensity X × X X

Type HDL-64E - VLP-16 VLP-16

These LiDAR datasets are used to train and test methods e.g. for 2D and
3D object detection, segmentation, SLAM or optical flow. Wang et al. [7]
showed that an object detector trained on one dataset (source) performs worse
on another dataset (target). They concluded that a possible reason is the size
of cars in different regions of the world. They applied different strategies
that focus on the size of the cars: enlarge or shrink the bounding box and
the corresponding point clouds in the training scenes (SN), continue training
with some ground truth point clouds from the target dataset (FS) or enlarge or
shrink the predicted boxes of the detector (OT). These three methods proved
to be effective on the performance of the detector. All these methods base on
changing the detection method and not changing the target dataset.

For multiple methods, or other tasks than object detection, it could be difficult
and time consuming to modify all methods and retrain them. It would be faster
if we could transform the point clouds of the target dataset so that they look
like the source dataset on which we trained our methods. So in this paper we
will focus on the different LiDAR setups used in the datasets. Such a type of
problem is called domain adaption (Sec. 2.2). One part of domain adaptation
is unsupervised image to image translation. Methods like CycleGAN [8] or
UNIT [9] have shown promising results in the translation between images of
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Figure 1: Sample of Bird’s-Eye-View for Lyft and KITTI dataset. Both BEV maps are on
information level Position.

different domains e.g. night to day, summer to winter or simulated to real data.
While these methods work well for 2D image domains as seen in [8, 9], they
are not designed for the application on 3D point clouds, like the LiDAR point
cloud. Approaches for 3D object detection like Simon et al. [10] convert the
3D point clouds to Birds-Eye-View RGB-maps (BEV) and train a 2D object
detector on this converted data. They encoded additional information, like
height, density and intensity of the point clouds into the RGB color channels
of the BEV map.

Sallab et al. [11] and Saleh et al. [12] proposed frameworks to translate synt-
hetically BEV LiDAR maps to real BEV LiDAR maps. The simulated point
clouds were generated with the CARLA simulator [13]. Without additional
post-processing, the simulated point clouds are too smooth and miss artifacts
that are common in real LiDAR point clouds. Sallabs and Salehs approaches
used both KITTI as a real world dataset. Sallab did not state which LiDAR
setup their simulated LiDAR used and encoded the height information of the
3D point clouds into the BEV maps. But Sallab did not use any additional
information about intensity or density of the LiDAR points. The simulated
BEV maps were translated with CycleGAN and got used together with real
BEV maps from KITTI to train an object detector. Sallab improved the object
detector from 65.3 % mAP, when using KITTI point clouds with 100.000 raw
simulated point clouds to 71.5 %, when using KITTI point clouds and 100.000
translated simulated point clouds. Saleh used a simulated Velodyne HDL-64E
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LiDAR for the simulated point clouds, so they have the same type of LiDAR
as for the KITTI dataset (Tab. 1). Saleh mapped the 3D point clouds into BEV
without any additional information and used only the location of the points.
Saleh trained an object detector with several dataset combinations and tested it
on the same split from the KITTI dataset. For KITTI alone they had an AP of
57.26 %, this was improved with the addition of 6.000 simulated point clouds
to 59.16 % and with the addition of 6.000 simulated and translated point clouds
to 64.29 %. Using only the 6.000 simulated point clouds for training resulted
in an AP of 29.93 %, which could also be improved to 34.78 % by translating
point clouds. However, this also shows, that the translation alone could not
produce perfect real looking data.

We aim to make the BEV maps of two real world LiDAR datasets look more
similar. For this we will:

• carry out a translation using CycleGAN between
two real world LiDAR datasets for the first time

• use different information levels of BEV maps for the translation
(Position, Height, Height+Density, Height+Density+Intensity)

• evaluate the quality of this translation with two different strategies. Usa-
bility: test if the translated target BEV maps work better for an object de-
tector, which is trained on the source. Structure: test if the characteristic
structure of the Lyft dataset (number of channels, location of points) is
adopted from the translated BEV map.

2 Method

2.1 Datasets

We focus on the translation from KITTI to Lyft, because Lyft has a similar Li-
DAR setup as KITTI, but not totally similar. Both KITTI and Lyft have LiDAR
mounted on the roof and generate a 360 degree vision of the surrounding area
by multiple laser channels. KITTI has just one top LiDAR and we will also
only use the LiDAR point clouds of Lyft’s top LiDAR. The circular pattern of
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both LiDAR point clouds can be seen in Figure 1. A point cloud from KITTI
has much more points near the ego vehicle than a point cloud from Lyft. This
can be seen in Figure 1, as more white pixels are located around the ego vehicle
of KITTI in the bottom center than in the BEV map of Lyft. Furthermore, in
Figure 1 the effect of the different number of LiDAR channels of KITTI and
Lyft can be seen. It can be seen that the LiDAR of Lyft produces less white
circles than that of KITTI in the BEV map. This is because the LiDAR in
KITTI has more laser channels to scan the close area of the ego vehicle, while
in Lyft the lasers are such that they focus the scan on the midrange. For the
BEV maps the most significant differences between the two datasets can be
seen on parts that belong to the street, while in both examples of Figure 1 the
cars have a similar L-shape. The number of channels is 64 for KITTI’s and 40
for Lyft’s top LiDAR (Tab. 1). Hence a translation from KITTI to Lyft should
delete some of these wave lines, without destroying the L-shape of a vehicle.

2.2 Domain Adaptation

The problem of training a method on one dataset (source domain) and applying
it to another dataset (target domain), is called domain adaptation. Domain
adaptation is a type of transfer learning and aims to bridge the gap between
different domains of data [14]. A specific type of domain adaption is the image-
to-image translation. In this type an input image from the source domain can be
transformed to an image that is similar to the distribution of the target domain.
The transformation is observable as the source image adapts the "style" of
the target domain. Such a transformation can be studied in two settings: the
supervised and the unsupervised setting. In the supervised translation one,
every target image has a corresponding source image. In the unsupervised
one, no target image has a corresponding source image. As Lyft and KITTI
are recorded at different locations and different times, we do not have paired
data.

Within the scope of this work, we will use the Cycle-Consistent Adversarial
Network (CylceGAN) [8]. By taking pairs of images out of different domains
CycleGAN learns how to apply the characteristics of one domain to the images
of the other. CycleGAN consists of two generators and two discriminators:
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one generator takes images of the first domain and output images of the second
domain, the second generator vice versa. The demonstrators determine how
plausible the output of the generators are for the domains. In addition, Cycle-
GAN applies the cycle-consistency loss. So in CycleGAN adversarial losses
are combined with cycle consistency loss, i.e. evaluating also a possible back-
projection of generated data from the target domain into the source domain.

Because CycleGAN2 is designed to translate 2D data, we will convert the 3D
point clouds to 609×609 Birds-Eye-View RGB-maps. We can encode different
levels of information into the pixel color values of the BEV. The simplest way
of a BEV map (Position) uses only the location of the points and ignores the
height, such that the pixels are 255 iff there is a LiDAR point at this position
and 0 if not. See Figure 1 as an example. In the next level of information
(Height), we use the height of the points and encode this information into the
greyscale value of the pixel. If more than one point is at the same position, we
use the maximum height. In the third level of information (Height+Density)
we map the density of points that lie over each other in addition to the height
in the first two color channels of the pixel. In the last level of information
(Height+Density+Intensity), we also encode the intensity information, which
describes how good the laser beam is reflected, into the third color channel
of the pixel. If more than one point gets mapped to the same pixel, then the
maximum intensity is used.

2.3 Evaluation

We choose two ways to evaluate how good the translation of the point clouds
provided by KITTI into the structure provided by Lyft is:

• Usability: How good can be the transformed BEV maps be used for task
of autonomous driving, when the method is trained on the source dataset.

• Structure: How well does the translated BEV maps represent the
structure of the LiDAR setup from the source dataset.

2 Our CycleGAN implementation based on the implementation of Ming-Yu Liu., which can be
found on GitHub https://github.com/junyanz/CycleGAN, Jan. 2020.
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2.3.1 Usability

To have a quantitative criterion how good the translation fulfills the criterion
Usability we will use a similar strategy as [11, 12] and test the translation on
the detector ComplexYOLO [10]. Instead of retraining with additional BEV
maps, we train ComplexYOLO on Lyft and test how the detector performed on
the translated KITTI BEV map compared to the original KITTI BEV map.

ComplexYOLO is a real-time 3D object detection network operating on Li-
DAR BEV maps. It is based on the YOLO framework with the addition of
a specific Euler-Region-Proposal approach, that estimates the orientation of
objects. The determination of the orientation of an object is necessary in BEV,
since an object gets detected from above instead of the common front view and
therefore can be rotated.3

To improve the detection of objects important structures as the shape of a car
should not be destroyed after the translation, while the characteristics of the
Lyft BEV maps should be adopted from the translated KITTI BEV maps.

As metrics we will use the well known intersection over union (IoU) with a
threshold of 0.5 and the average precision (AP).

2.3.2 Structure

A criterion, which does not mostly depend on geometric properties of a scene,
and distinguishes between different LiDAR setups, is required to measure how
well the LiDAR BEV map of KITTI is translated to the characteristics of Lyft
BEV maps. For this we map the BEV map back to 3D coordinates. In the
case Position we do not have any height information. So all the height values
are set to 0 for all points. These 3D coordinates are transformed to a spherical
coordinate system. In a spherical coordinate system every point consists of
radial distance, polar angle, and azimuthal angle (r,θ ,φ). In the case that

3 Our ComplexYOLO implementation based on the unofficial implementation from Deepak
Ghimire, PhD, which can be found on GitHub https://github.com/ghimiredhikura/Complex-
YOLOv3, Jan. 2020.
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we only have one LiDAR without any tilt and the position of the LiDAR is
the origin of the spherical coordinate system the angles can be interpreted as
the angles of the laser beam during the scanning of the scene and r as the
distance between the object and the LiDAR. So the distribution of φ and θ
depends on the LiDAR setup. Because the azimuthal LiDAR setup in KITTI
and Lyft is similar, the distribution should be similar and only differ mostly
due to geometric properties of the scene. Because θ describes the polar angle
it depends on the vertical resolution and vertical FOV, besides the scene, the
distribution of θ can be used to distinguish between the LiDAR setups. The
distribution of r depends both on the scene and also the LiDAR setup. Since in
KITTI there are more points around the ego vehicle than in Lyft (see Fig. 1),
the distribution has a higher peak by lower r.

After the translation of KITTI to Lyft, the distribution of θ should be more
similar to Lyft than to the original KITTI.

As metric to measure the similarity of two distributions we use the well known
Wasserstein distance also known as earth mover’s distance [15, 16]. The Was-
serstein distance comes from the transportation theory and for histograms it can
be intuitively interpreted as cost to transform on histogram into the other.

3 Results

We train CycleGAN on a split of 7000 BEV maps for KITTI and 7000 BEV
maps for Lyft. The BEV maps are created for the four level of information
Position, Height, Height+Density and Height+Density+Intensity.

Figure 2 shows qualitative results of the translation for Position. It can be seen
that in the translated KITTI BEV maps the number of white pixels close to
the ego vehicle is decreased, like in Lyft BEV maps. Also some circle lines in
the translated BEV maps are deleted and the number of circle lines match the
number from Lyft. Further, most of the shapes are preserved for most cars, but
for some cars the number of white pixels decrease. So optically these examples
show promising results in the translation of the characteristics of the LiDAR
BEV maps.
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Figure 2: Qualitative results for the translation from KITTI to Lyft, for the information level
Position.

For quantitative results we use the described evaluation strategies Usability
and Structure (Sec. 2.3).

For Usability ComplexYOLO was trained on a Lyft split of 7000 BEV maps
for the four different BEVs information levels to detect cars. Table 2 shows
the average precision of the detector on test splits from Lyft, KITTI and the
same KITTI scenes translated. For real Lyft BEV maps the detector has a
good average precision over 0.95. For KITTI BEV maps it drops to an average
precision between 0.53 - 0.6. After translation the average precision of the
object detector gets a bit worse, probably because some shapes of cars were
destroyed. This happened, for example, when translating the BEV map (c)
in Figure 2. In the original KITTI BEV map the two cars in Figure 2 (c)
are clearly visible, in the corresponding translated map most of the car is
missing and could not be detected. Another potential problem is that after
the translation pixel with small color values occur around the LiDAR points.
These low color artifacts are barely visible to a human. In the first translated

82 Proc. 30. Workshop Computational Intelligence, Berlin, 26.-27.11.2020



Table 2: Results of the evaluation Usability. Average precision (IoU=0.5) for the class car of an
object detector that was trained on Lyft Level5 dataset and tested on Lyft Level5, KITTI
and KITTI2Lyft translated with CycleGAN.
P = Position; H = Height; D = Density; I=Intensity.

P H H+D H+D+I

Lyft 0.95 0.97 0.97 0.97
KITTI 0.53 0.6 0.54 0.53

KITTI2Lyft 0.52 0.54 0.51 0.47

Table 3: Results of the evaluation Structure. Mean Wasserstein distance between different
distribution of the spherical coordinates from the datasets.
P = Position; H = Height; D = Density; I=Intensity.

P H HD HDI

θK↔ θL 0.082 0.12 0.12 0.12
θK2L↔ θK 0.12 0.17 0.17 0.17
θK2L↔ θL 0.06 0.096 0.096 0.093
φK↔ φL 0.18 0.18 0.18 0.18

φK2L↔ φK 0.20 0.21 0.21 0.20
φK2L↔ φL 0.20 0.21 0.21 0.20

rK↔ rL 4.44 5.35 5.35 5.35
rK2L↔ rK 7.18 5.60 6.41 5.25
rK2L↔ rL 4.07 3.60 3.88 3.42

map of Figure 2 25454 pixel have a color value between 1 and 10 and 25415
pixel a color value greater than 10. This number of pixels containing small
values decreases if we encode more information in the color channels, like in
Height, Height+Density or Height+Density+Intensity, but the performance
of the detector does not increase as Tab. 2 shows. Also if we set all pixels with
a color value smaller than 50 to 0, the AP only growth only a little to 0.53 in
the case Position. So the influence of these small values can be neglected.

For the criterion Structure we translate the coordinate system such that the Li-
DAR is nearly the origin of the coordinate system and transform the coordinate
system to spherical coordinates. We compare the distribution of 100 KITTI
BEV maps, the corresponding translated BEV maps and Lyft BEV maps. The
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BEV maps are reprojected and transformed to a spherical coordinate system
and calculate the mean Wasserstein distance between the distribution of the
spherical coordinate values (Tab. 3). According to the results of Table 3 the
distribution of r for the translated KITTI BEV maps is always more similar to
Lyft than to KITTI and also closer to Lyft, than Lyft to KITTI. The distribu-
tion of φ does not significantly change after the translation. Interestingly the
addition of the information density and intensity has only little influence of the
performance.

4 Conclusions and Outlook

In this paper we analyzed the possibility of unsupervised domain adaptation
between two LiDAR datasets with different LiDAR setups. The demonstrated
method of translating LiDAR BEV maps from KITTI to the structure of the
Lyft LiDAR setup using CycleGAN showed optical promising results (Fig. 2).
With our evaluation strategy Structure we could show that the KITTI point
clouds really adopts the LiDAR setup characteristics of Lyft. Nevertheless
Usability showed that the performance of our tested car detector could not
be improved, even got a little bit worse, because some shapes of cars were
damaged during the translation process. This confirms the assumption of Wang
et al. [7] that the size of cars plays a more important role for the performance
of object detectors, than the setup of the LiDAR. To improve the performance
one has to improve the preserving of shapes that are interesting for the task,
e.g. cars L-shape. But without the additional information to enlarge or shrink
the size of cars, the performance of an object detector will likely not get much
better. To analyze the influence of different LiDAR setups on object detection
further study is needed. The CARLA [13] simulation environment can be used
for the study of the setup influence, as we can choose in CARLA the number
of channels and thus can record the same scene, with different LiDAR setups.
So the object detector can be tested on the same scenes and only the LiDAR
setup will change, hence if the setup has no influence the object detector should
perform roughly as well, whether the same LiDAR setup is selected as in the
training or a different LiDAR setup.
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Next to the application of the translation between two datasets with different
LiDAR setups, the method could also be used to transfer between different
types of sensors. With Astyx HiRes a dataset with high resolution RADAR data
is published. But since this is the only existent high resolution RADAR dataset
at the moment and contains only a few scenes, training methods like object
detection is challenging. With the demonstrated framework of translating the
BEV maps, one could try to translate between the RADAR and LiDAR sensors.
Because Astyx also provides LiDAR point clouds in addition to RADAR point
clouds, one could also use supervised domain adaption methods.
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