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Abstract

This dissertation focuses on three fundamental problem families in big data systems, for
which we develop communication-efficient probabilistic algorithms. In the first part, we
consider various selection problems, in the second, weighted sampling problems, and the third,
checking of basic operations in big data systems. This is motivated by a growing need for
communication efficiency as the network and its usage increasingly dominate supercomputer
system cost and energy consumption as well as running times of distributed applications.
Surprisingly few communication-efficient algorithms are known for fundamental big data
problems, and we close several of these gaps.

We first consider different selection problems, starting with selecting the element with rank 𝑘
from a large, distributed input. There, we show how this can be achieved without assuming
a random distribution of the input by redesigning the pivot selection step. Next, we show
that selection from locally sorted sequences—also known as multisequence selection—becomes
considerably easier if we allow the precise rank of the output to vary in some range. We then
describe how this can be used to construct a bulk priority queue, which we later use to construct
an algorithm for weighted reservoir sampling. Lastly, we consider finding the globally most
frequent objects as well as those whose associated values add up to the highest sums with a
sample-based approach.

In the weighted sampling chapter, we begin by giving new construction algorithms for a
classical data structure for weighted sampling, alias tables. After presenting the first linear-
time construction algorithm with only constant memory overhead, we proceed to parallelise
this algorithm for shared memory, obtaining the first parallel construction algorithm for
alias tables. We then show how to approach the problem in distributed memory with a two-
level algorithm. Next, we present an output-sensitive algorithm for weighted sampling with
replacement, meaning that it requires time linear in the number of unique items in the sample.
This algorithm works sequentially as well as in shared and distributed memory and is the first
such algorithm in all three categories. We subsequently adapt it to weighted sampling without
replacement by combining it with an estimator for the number of unique items in a sample with
replacement. Poisson sampling, a generalisation of Bernoulli sampling to weighted items, can
be reduced to integer sorting, and we show how an existing approach can be parallelised. For
sampling from data streams, we adapt a sequential approach and show how it can be parallelised
in a mini-batch model using our bulk priority queue introduced in the selection chapter. The
chapter is concluded by an extensive evaluation of our alias table construction algorithms, our
output-sensitive algorithm for weighted sampling with replacement, and our weighted reservoir
sampling algorithm.

v



Abstract

To probabilistically verify the correctness of distributed algorithms, we propose checkers for
fundamental operations of big data systems. We show that checking numerous operations can
be reduced onto two ‘core’ checkers, namely checking aggregations and whether one sequence
is a permutation of another. While multiple approaches exist for the latter and can be easily
parallelised, our sum aggregation checker is a novel application of the same data structure that
underpins counting Bloom filters and count-min sketches. We implemented both checkers
in Thrill, a big data framework. Experiments with deliberately introduced errors confirm
the detection accuracy predicted by theory, even when using real-world hash functions with
non-ideal properties. Scaling experiments on a supercomputer show that our checkers have
very little runtime overhead, in the area of 2% for near-certainty in the correctness of the result.
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Deutsche Zusammenfassung

Diese Dissertation behandelt drei grundlegende Klassen von Problemen in Big-Data-Sys-
temen, für die wir kommunikationseffiziente probabilistische Algorithmen entwickeln. Im
ersten Teil betrachten wir verschiedene Selektionsprobleme, im zweiten Teil das Ziehen gewich-
teter Stichproben (Weighted Sampling) und im dritten Teil die probabilistische Korrektheitsprü-
fung von Basisoperationen in Big-Data-Frameworks (Checking). Diese Arbeit ist durch einen
wachsenden Bedarf an Kommunikationseffizienz motiviert, der daher rührt, dass der auf das
Netzwerk und seine Nutzung zurückzuführende Anteil sowohl der Anschaffungskosten als
auch des Energieverbrauchs von Supercomputern und der Laufzeit verteilter Anwendungen
immer weiter wächst. Überraschend wenige kommunikationseffiziente Algorithmen sind für
grundlegende Big-Data-Probleme bekannt. In dieser Arbeit schließen wir einige dieser Lücken.

Zunächst betrachten wir verschiedene Selektionsprobleme, beginnend mit der verteilten
Version des klassischen Selektionsproblems, d. h. dem Auffinden des Elements von Rang 𝑘 in
einer großen verteilten Eingabe.Wir zeigen, wie dieses Problem kommunikationseffizient gelöst
werden kann, ohne anzunehmen, dass die Elemente der Eingabe zufällig verteilt seien. Hierzu
ersetzen wir die Methode zur Pivotwahl in einem schon lange bekannten Algorithmus und
zeigen, dass dies hinreichend ist. Anschließend zeigen wir, dass die Selektion aus lokal sortierten
Folgen—multisequence selection—wesentlich schneller lösbar ist, wenn der genaue Rang des
Ausgabeelements in einem gewissen Bereich variieren darf. Dies benutzenwir anschließend, um
eine verteilte Prioritätswarteschlange mit Bulk-Operationen zu konstruieren. Später werden
wir diese verwenden, um gewichtete Stichproben aus Datenströmen zu ziehen (Reservoir
Sampling). Schließlich betrachten wir das Problem, die global häufigsten Objekte sowie die,
deren zugehörige Werte die größten Summen ergeben, mit einem stichprobenbasierten Ansatz
zu identifizieren.

Im Kapitel über gewichtete Stichproben werden zunächst neue Konstruktionsalgorithmen
für eine klassische Datenstruktur für dieses Problem, sogenannte Alias-Tabellen, vorgestellt. Zu
Beginn stellen wir den ersten Linearzeit-Konstruktionsalgorithmus für diese Datenstruktur
vor, der mit konstant viel Zusatzspeicher auskommt. Anschließend parallelisieren wir diesen
Algorithmus für Shared Memory und erhalten so den ersten parallelen Konstruktionsalgorith-
mus für Aliastabellen. Hiernach zeigen wir, wie das Problem für verteilte Systeme mit einem
zweistufigen Algorithmus angegangen werden kann. Anschließend stellen wir einen ausga-
besensitiven Algorithmus für gewichtete Stichproben mit Zurücklegen vor. Ausgabesensitiv
bedeutet, dass die Laufzeit des Algorithmus sich auf die Anzahl der eindeutigen Elemente in
der Ausgabe bezieht und nicht auf die Größe der Stichprobe. Dieser Algorithmus kann sowohl
sequentiell als auch auf Shared-Memory-Maschinen und verteilten Systemen eingesetzt werden
und ist der erste derartige Algorithmus in allen drei Kategorien. Wir passen ihn anschließend
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Deutsche Zusammenfassung

an das Ziehen gewichteter Stichproben ohne Zurücklegen an, indem wir ihn mit einem Schätzer
für die Anzahl der eindeutigen Elemente in einer Stichprobe mit Zurücklegen kombinieren.
Poisson-Sampling, eine Verallgemeinerung des Bernoulli-Sampling auf gewichtete Elemente,
kann auf ganzzahlige Sortierung zurückgeführt werden, und wir zeigen, wie ein bestehen-
der Ansatz parallelisiert werden kann. Für das Sampling aus Datenströmen passen wir einen
sequentiellen Algorithmus an und zeigen, wie er in einem Mini-Batch-Modell unter Verwen-
dung unserer im Selektionskapitel eingeführten Bulk-Prioritätswarteschlange parallelisiert
werden kann. Das Kapitel endet mit einer ausführlichen Evaluierung unserer Aliastabellen-
Konstruktionsalgorithmen, unseres ausgabesensitiven Algorithmus für gewichtete Stichproben
mit Zurücklegen und unseres Algorithmus für gewichtetes Reservoir-Sampling.

Um die Korrektheit verteilter Algorithmen probabilistisch zu verifizieren, schlagen wir
Checker für grundlegende Operationen von Big-Data-Frameworks vor. Wir zeigen, dass die
Überprüfung zahlreicher Operationen auf zwei „Kern“-Checker reduziert werden kann, näm-
lich die Prüfung von Aggregationen und ob eine Folge eine Permutation einer anderen Folge
ist. Während mehrere Ansätze für letzteres Problem seit geraumer Zeit bekannt sind und sich
auch einfach parallelisieren lassen, ist unser Summenaggregations-Checker eine neuartige
Anwendung der gleichen Datenstruktur, die auch zählenden Bloom-Filtern und dem Count-
Min-Sketch zugrunde liegt. Wir haben beide Checker in Thrill, einem Big-Data-Framework,
implementiert. Experimente mit absichtlich herbeigeführten Fehlern bestätigen die von unserer
theoretischen Analyse vorhergesagte Erkennungsgenauigkeit. Dies gilt selbst dann, wenn wir
häufig verwendete schnelle Hash-Funktionen mit in der Theorie suboptimalen Eigenschaften
verwenden. Skalierungsexperimente auf einem Supercomputer zeigen, dass unsere Checker
nur sehr geringen Laufzeit-Overhead haben, welcher im Bereich von 2% liegt und dabei die
Korrektheit des Ergebnisses nahezu garantiert wird.
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1Chapter 1

Introduction andOverview

In this dissertation, we consider how to scale algorithms for three basic problem
families: selection problems, checking of fundamental operations in big data pro-
cessing systems, and random sampling. We study how to solve these problems in
distributed-memory settings with a focus on reducing the amount of communication.
To achieve this, we leverage the power of randomisation. Sometimes, this also yields
improvements over the state of the art in shared-memory parallel or even sequential
algorithms.

Before diving into these challenges in the following chapters, we introduce the reader
to our motivation and basic concepts used throughout this dissertation. We define
what makes an algorithm communication-efficient and discuss why developing such
algorithms is an important current and future research topic. The chapter concludes
with a summary of the contributions of this dissertation.

In 1965, Gordon Moore, who would go on to become co-founder and CEO of Intel Corpo-
ration, observed that the number of components in integrated circuits that yields minimum
component costs had doubled every year and predicted that this development would continue
for at least another decade [Moo65]. This was six years after the invention of the MOSFET, the
basic building block of modern electronics, at Bell Labs. At the time, the integrated circuits
that were most cost-effective to produce had around 50 components (today, that number is
measured in the billions). In a 1975 speech, he revised the future predicted growth rate to a
doubling once every two years [Moo75]. This prediction is commonly known as Moore’s Law.
Like all exponential progressions, Moore’s Law must end someday. Yet while its demise has
been predicted many times, exponential growth continues to this day.

For decades, the exponential growth in transistor densities was accompanied by similar
growth in clock speeds and instruction throughput. Unlike the former, exponential growth
in the other two has indeed ended. In 2005, Sutter claimed that this had come to an end the
previous year and that manufacturers would instead produce chips with multiple cores [Sut05].
He also (correctly) observed that ‘concurrency [would be] the next major revolution in how we
write software’.1

Hence, parallelism is now the only way to extract significant performance gains fromMoore’s
Law. Current CPUs have multiple cores that operate concurrently on shared memory. Yet still,
many theoreticians and practitioners alike continue to think sequentially. That is because
parallelism is hard [McK17], both in theory and in practice, and introduces a plethora of

1Note that concurrency is a distinct concept from parallelism, but concurrent computations may be executed in
parallel by assigning the concurrent processes to separate cores of a CPU or nodes of a cluster computer.
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1 Introduction and Overview

new challenges and pitfalls. Fifteen years after the ‘free lunch’ (Sutter 2005, Ref. [Sut05])
of exponentially improving sequential performance ended, parallelism is still treated as an
extension of (sequential) algorithmics and programming, and not the default. Still, change is
afoot: the tooling is improving, new languages are lowering the barrier of entry, and parallelism
is gaining prominence in university curricula.

But the story does not end here. With the rapid growth of data sets observed in the last
decades, even the most powerful individual parallel machines are insufficient for solving
many real-world problems. Increasingly, distributed computation is necessary to achieve the
required performance. This has multiple reasons. For one, CPUs with multiple cores must
provide a coherent view of the shared memory despite concurrent modifications from multiple
cores, requiring elaborate cache coherence protocols. With an increasing number of cores,
these require increasingly complex interconnect architectures (eg, Intel’s Mesh Interconnect
Architecture [Wikb] or AMD’s Infinity Fabric [Wika]). These automated general-purpose
implicit communication protocols have limited scalability, even though cache coherence across
several thousands of cores could still be possible [MHS12]. Additionally, producing ever-larger
chips with more and more cores is hard and costly as production yields fall with growing chip
sizes. This makes distributed computation the only way to achieve truly scalable performance.

Distributed machines—eg, cluster computers and supercomputers—are typically shared-
nothing computers, that is, there is no shared memory resource which all processors can access.
Rather, communication is explicit and occurs over an interconnection network. This differs
significantly from the implicit communication of shared-memory machines (usually, that means
multi-core CPUs).

OnNotation. Whenwe speak of parallelism, we refer to both shared-memory and distributed-
memory machines. When discussing parallelism with shared memory, we will often abbreviate
this as SM-parallel for conciseness. Algorithms targeting distributed memory without a partic-
ular focus on shared memory are referred to as distributed algorithms.

1.1 Defining Communication Efficiency
Distributed computing comes with its own set of challenges and significant complexity. Inter-
connection networks are expensive and sometimes behave in unpredictable ways. Programming
models, like the Message-Passing Interface (MPI), are at the same time considered low-level
and not very user-friendly by modern standards and require knowledge of the underlying
algorithms and technology to make efficient use of the available resources.

There are multiple sources of complexity in distributed computing. Many of those stem
from the fact that the network is typically the most under-provisioned resource in a cluster
computer. This is inevitable, as the costs of providing dedicated communication links with
a fixed bandwidth between any pair of nodes (a fully-connected network) would increase
quadratically with the size of the network, which is clearly absurd. The network topologies that
are used in real-world supercomputers, such as Clos networks [Clo53], Fat-Trees [Lei85], multi-
dimensional torus topologies, or Dragonfly networks [Kim+08], aim to provide a good balance
between the amount of simultaneous communication and cost. An overview of interconnection
network topologies, performance, and pitfalls is given by Hennessy and Patterson [HP11].
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1.1 Defining Communication Efficiency

Borkar [Bor13] argued in 2013 that in order to be cost-effective, a future exascale supercom-
puter’s communication capabilities would have to be scaled highly sublinearly with regard to
the amount of computation happening in the connected subsystems. In a 2015 presentation
on Google’s data centre networks, Vahdat [Vah15, starting at 17:12 minutes] reported that
‘typically—certainly at data centre scale—the resource that is most scarce is the network. We
tend to underprovision the network because we don’t know how to build big networks that
deliver lots of bandwidth’. Additionally, high-performance interconnects account for a signifi-
cant and growing fraction of the total power consumption of distributed systems, estimated
between 12% [Abt+10] and 27% [Ber+08, Section 7.3.8].

All this leads us to the central insight that as cluster computers become larger, the cost of
local computation is diminishing, while communication becomes more expensive. In this
dissertation, we strive to design algorithms that put this observation front and centre. This
requires limiting both the number of messages exchanged and the amount of information
transmitted by any node in the network. We obtain the following three properties that we want
parallel algorithms to fulfil.

Definition 1.1 (Efficient Parallel Algorithms)
We call a parallel algorithm efficient if the total amount of work performed by all processors is not
asymptotically larger than that of the fastest sequential algorithm.

This is the classical definition of efficiency in parallel algorithms and remains desirable
regardless of the amount of communication. Next, we impose a limitation on the amount of
information transmitted.

Definition 1.2 (Communication-Efficient Algorithms)
We call a parallel algorithm communication-efficient if every processor sends and receives a
sublinear amount of information, measured both in its local input size and the amount of local
work. Formally, let 𝑛 be the size of the entire input and 𝑝 be the number of nodes. Each node shall
haveO(𝑛/𝑝) elements in its input. Let 𝑓 be a function bounding the local work performed by
the algorithm on a given input size. Then, every processor shall send and receive no more than
o(min(𝑛/𝑝,𝑓(𝑛/𝑝)))machine words of information in total.

Unless stated otherwise, we will assume that an algorithm’s input is distributed arbitrarily
but roughly evenly across the processors, ie, out of a total of 𝑛 input items, every processor has
O(𝑛/𝑝). This is mostly done to simplify the analysis, and our algorithms are correct even if this
assumption is violated. However, their running times may suffer as an imbalance in local input
sizes will usually carry a corresponding running time penalty. We shall make no assumptions
about the distribution of the items onto the processors. Assuming a random distribution would
require redistributing the entire input in the general case where we do not know the items’
distribution, precluding communication efficiency.

A key ingredient to achieving communication efficiency is the owner computes paradigm,
which states that data should be processed where it is stored, and—conversely—a processor is
responsible for all items in its input. Avoiding data movement by moving the computation to
the data—and not the other way around—helps in our quest for communication efficiency.
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1 Introduction and Overview

Note that the term communication efficiency is also used in other research communities,
with definitions adapted to the respective problem domains. Prominently, communication
efficiency has become a focus of machine learning research, see, eg, Refs. [Sur+17; Elg+20].

Lastly, we also want the algorithms to be able to scale to extremely large machines. Limiting
the amount of information transmitted alone is insufficient, as the number of messages sent
and received cannot be allowed to grow arbitrarily.

Definition 1.3 (Highly Scalable Algorithms)
We call a parallel algorithm highly scalable if every processor is involved in at most a polyloga-
rithmic number of message exchanges, measured in the input size and the number of processors.
Formally, let 𝑛 be the input size and 𝑝 the number of processors. Then, for some positive constant 𝑐,
no processor shall send and receive more thanO((log(𝑛𝑝))𝑐)messages.

While the title of this dissertation emphasises communication efficiency, we design our
algorithms to have all three of these properties wherever possible. The reason for emphasising
communication efficiency over parallel efficiency and polylogarithmic latency is that the latter
goals are much more established in the study of parallel algorithms. Indeed, they are in some
ways the ‘default’ goals in the field (see, eg, Ref. [JáJ11] and the definition of the complexity
class NC).

1.2 MachineModels
In this section, we describe the machine models used in the following chapters. We begin by
refreshing the classical Random Access Machine (RAM) model, on which the other models
build, and the Parallel Random Access Machine (PRAM) family, before introducing our models
for distributed computing.

1.2.1 The Word Random Access Machine (Word RAM)
The word RAM [FW90] is an extension of von Neumann’s [vNeu45] Random Access Machine
(Figure 1.1 (a)) with a 𝑤-bit word size. Input items and their identifiers (pointers) are assumed
to fit into a constant number of such machine words. In addition to the features of the RAM,
such as indirect addressing, unit-time load and store operations, and unit-time elementary
operations on the contents of registers, the word RAM also permits bitwise Boolean operations
in unit time. This models the instructions available on real-world computers more closely. The
key restriction is that all operations are performed on individual machine words to prevent
abuses of the RAM model’s unit-cost assumption through excessive operand lengths [FW90].

However, the unit-cost assumption does not model real-world computers’ performance well
(any more). Due to cache hierarchies, the speed of memory accesses can vary by a factor of
around 100 [Bin18a]. Pipelining necessitates complex branch predictors, and mispredictions
cause a significant delay, on the order of tens of wasted cycles, which can have a large impact
on applications (see, eg, Refs [KS06; EW19] for the impact on sorting algorithms). A load from
an unpredictable address in memory can be 100 times more expensive than a predictable load.
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Figure 1.1: Illustrations of RAM, PRAM, and distributed machine models.

Moreover, the speed with which a machine can execute instructions on the data far exceeds
its ability to fetch data from memory even when the access pattern is predictable. Therefore,
algorithms need to be designed to account for this to be fast (see, eg, Refs. [LL99; Axt+17] for
the example of sorting). Combined with the observation that log𝑛 ≤ 50 for all but the very
largest applications, these variations in access time mean that anO(𝑛) time algorithm might
be no faster in practice than an efficientO(𝑛 log𝑛) time algorithm, even on large inputs (eg,
walking a random cyclic permutation vs. an efficient sorting algorithm).

Nevertheless, the simplicity of the (Word) RAM is appealing and makes it a good basis for
other machine models that extend it.

1.2.2 The Parallel Random Access Machine (PRAM)
The parallel random access machine (PRAM, Figure 1.1 (b)) is an early theoretical model for
shared memory machines (see, eg, Refs. [JáJ11; JáJ92]). In a PRAM, multiple independent
processors access a global shared memory. The processors themselves have the same properties
as in the RAM model. Communication between processors is possible only via the shared
memory. Access to memory is assumed to be synchronised, leading to a differentiation of
the model by how simultaneous read and write operations are handled. Either operation can
be allowed concurrently or exclusively, abbreviated C and E, respectively. This gives rise to
three variants, abbreviated EREW, CREW, and CRCW.2 Observe that the last variant, CRCW,
needs additional specification of how conflicting concurrent write operations are resolved.
Commonly, either an arbitrary processor’s value is written, or the processor with the lowest
ID is given priority. Note that while the CRCW PRAM is the most powerful, a CRCW PRAM
with 𝑝 processors can be emulated with anO(log𝑝) slowdown by an EREW PRAM with 𝑝
processors (see, eg, Ref. [JáJ11]).

Algorithms in the PRAM model are often analysed with regard to their work and span (also
called time), where the work is the total number of operations required, and the span or time is
the number of parallel steps needed if an unlimited number of processors is available.

Much like the RAM model is a very simplified view on sequential processors, the PRAM
model does not accurately represent real-world shared-memory machines. The perhaps largest
inconsistency is caused by the assumption of synchronised operation, which is contrary to
2Theoretically, an ERCW PRAM could also be defined, but the usefulness of such a machine is doubtful.
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Figure 1.2: Illustration of the parameters of our message passing model.

reality. Additionally, concurrent write accesses on a single memory location cause contention in
practice. Variants of the model address these concerns, eg, Gibbons et al.’s [GMR98] Queued
Read, Queued Write (QRQW) PRAM, but are rarely used.

1.2.3 Our Distributed Machine Model

Summary: single-ported, full-duplex point-to-point communication; 𝑝 PEs; message
startup latency 𝛼; communication time per word 𝛽; bounds are maximum over all
PEs’ critical path lengths.

Consider a distributed machine (eg, a cluster computer) with 𝑝 processing elements (PEs).
The PEs are numbered 1 to 𝑝 and connected by a network so that each PE can communicate
with any other PE (Figure 1.1 (c)). Each message has exactly one sender and one receiver
(point-to-point communication). Several messages may be exchanged simultaneously, with the
exception that each PE may only send at most one message and receive at most one message
at any time (single-ported, full-duplex communication). That is, a PE can send and receive
simultaneously, but it cannot send to or receive from multiple receivers at the same time.
Establishing the connection to another PE is assumed to take time 𝛼 independent of any notion
of distance between the PEs because this duration is dominated by (software) costs incurred
on the endpoints rather than the propagation of signals in hardware. Once such a connection
has been established, transmitting a machine word takes time 𝛽. Refer to Figure 1.2 for an
illustration of the model parameters. As a result, sending or receiving a message of size 𝑚
machine words takes time 𝛼+𝛽𝑚, regardless of which two PEs are communicating. This is very
similar to the model of Chan et al. [Cha+07] and practically identical to the model of Sanders
et al. [San+19]. Observe that in real-world cluster computers, we have 𝛼 ≫ 𝛽 ≫ 1 with all three
being orders of magnitude apart and continuing to grow apart exponentially [Cou05; Dem19].

We are interested in bottleneck running times and communication volumes, ie, themaximum
over all PEs of the length of the critical path of the computation. For example, a naïve broadcast
of data of size ℓ (where PE 1 sends the data to PE 2, which passes it on to PE 3, etc.) has
communication time (𝛽ℓ + 𝛼)(𝑝 − 1) even though each PE sends and receives at most a single
message of size ℓ. This is because the operation is completed only once the last PE has received
the data, which depends on all previous communication steps.

We treat 𝛼 and 𝛽 as variables in asymptotic analyses. This allows us to capture internal
work 𝑥, communication volume 𝑦, and latency 𝑧 separately in a single term: O(𝑥 + 𝛽𝑦 + 𝛼𝑧).
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Often, all three aspects are important, and combining them into a single expression for running
time allows us to specify them concisely.

Recalling Definitions 1.1 to 1.3, let 𝑛 be the global input size, and let each of the 𝑝 PEs
have no more thanO(𝑛/𝑝) items in its local input. No assumption shall be made about the
items’ distribution onto the PEs. Then we want algorithms’ running time to be expressible as
𝑓(O(𝑛/𝑝))+𝛽⋅o(min(𝑛/𝑝,𝑓(𝑛/𝑝)))+𝛼⋅O(polylog(𝑛𝑝)), where𝑓 describes the algorithm’s
local processing time and 𝑝 ⋅ 𝑓(O(𝑛/𝑝)) ⊆ O(𝐹(𝑛)) is asymptotically no larger than the
running time 𝐹(𝑛) of the fastest sequential algorithm.

Comparison to Other Machine Models

We introduce the above model because existing models insufficiently capture our requirements.
For example, many models only count the total number of messages exchanged, and do not
differentiate between one PE sending 𝑝messages and 𝑝 PEs sending one message each, while in
our model—and in practice—running times would differ by a factor of 𝑝. We now differentiate
our model from other parallel models of computation in more detail.

Bulk-Synchronous Parallel (BSP) Model. The BSP model [Val90] can be thought of as an
adaptation of the PRAM model, where the shared memory is replaced by local memory and
a network, and communication and synchronisation are explicit. Computation proceeds in
a series of global supersteps, each of which consists of local computations and one round of
message exchanges, followed by a barrier synchronisation. This is illustrated in Figure 1.3 (a).
A message of size𝑚 takes time𝑚𝑔 to send, where 𝑔 (‘gap’) is a property of the machine, similar
to our parameters 𝛼 and 𝛽. The running time of a superstep is the maximum amount of
local computation plus 𝑔 times ℎ, the maximum amount of incoming or outgoing data of any
processor, plus time 𝑙 (‘latency’) for the barrier synchronisation. The total running time is the
sum of all supersteps’ running times. Often, the focus is on keeping the number of supersteps
low.

Summing up the values of ℎ over all supersteps yields the bottleneck communication volume
which we consider in the definition of communication efficiency (Definition 1.2). However,
the BSP model allows arbitrarily fine-grained communication at no additional cost, in effect
assuming 𝛼 = 0 by not differentiating between sending one message of size 𝑚 and sending
𝑚messages of size 1. This does not model real-world communication networks, where 𝛼 is
typically much larger than 𝛽, which is again much larger than the unit cost of a local operation
[Cou05; Dem19]. Furthermore, we make heavy use of collective communication operations,
which are not directly represented in the BSP model. Moreover, an implementation of the
global message exchange with direct delivery, as the BSP model is typically implemented, has
startup costO(𝛼𝑝) per superstep in our model [Axt+15]. This would cause the actual value of
the latency parameter ℓ to be ℓ = 𝛼𝑝 in our model (see also Ref. [Axt+15]), which violates our
definition of scalability, Definition 1.3. Furthermore, we are not aware of any concrete results
on sublinear communication volume in the BSP model.

MapReduce. A popular early programming model for Big Data applications, MapReduce
[DG08] in its basic form takes two functions from the user. The map function transforms each
input element into zero or more key-value pairs. These pairs are then globally aggregated by
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Figure 1.3: Illustrations of selected models of distributed computation.

their keys, called the shuffle phase. The reduce function takes as input a key and the set of all
values associated with this key and outputs the result for that key. Figure 1.3 (b) illustrates the
data flow in this model. An extension of the model also allows for a combine function that
locally summarises key-value pairs output by the map function before shuffling.

The shuffling phase requires redistribution of large parts of the input, typically via distributed
sorting, and often dominates overall running time [Ull12]. In the general case, this requires
communication of the entire input. Therefore, MapReduce is not a good fit for expressing
communication efficiency.

Massive Parallel Computing (MPC) Model. The MPC model [KSV10; BKS17; GSZ11]
(sometimes also calledMRC, short forMapReduce Class) is another abstraction ofMapReduce,
Hadoop, and Spark. In it, the system is composed of 𝜇 ∈ o(𝑛)machines, each of which has
𝑆 ∈ o(𝑛) local memory. The computation proceeds in rounds, and in each round, each machine
can send and receive messages of total size up to 𝑆. Messages are received in the following
round. The input is arbitrarily distributed, and the output is provided in a distributed manner.
The goal is to construct algorithms that useO(polylog(𝑛)) rounds.

Our model shares many of the same ideas as the MPC model—arbitrary input distribution,
distributed output, fully decentralised computation—but we dislike the focus on the number of
rounds, allowing arbitrarily fine-grained communication at no additional cost (cf. our criticism
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of the BSP model above). Nor does the MPC model address communication volume directly,
making it awkward to design algorithms with the goal of communication efficiency in it.
Additionally, algorithms that make full use of the provisions of the MPC model are unlikely to
perform well in practice, as the model does not consider algorithms’ parallel efficiency, and
allows nearly quadratic total space usage [San20].

LogP Model. The LogP model [Cul+93; Cul+96] aims to provide a more accurate represen-
tation of parallel machines and to close many of the ‘loopholes’ that allow for surprisingly
fast algorithms in the PRAM model which perform poorly when implemented on real-world
machines. It is an asynchronous distributed-memory model which assumes a point-to-point
message-passing network. A machine is characterised by four parameters that give the model
its name, namely the communication delay or latency (𝐿), the overhead of sending or receiving
a message (𝑜), the communication bandwidth (represented by its inverse, the minimum gap 𝑔
between successive messages), and the number of processors (𝑃). See Figure 1.3 (c) for an
illustration.

We are in complete agreement with the goals of the LogP model. Yet its focus on accurately
modelling the behaviour of real-worldmachines forces algorithm designers to carefully consider
all possible combinations of (relative values of) its parameters. This makes the LogP model
a suitable platform for studying the most basic operations provided by, eg, a communication
library, but obscures the broader picture at higher levels. Indeed, the paper introducing the
model demonstrates this well: in its description of how to implement the broadcast operation
in the LogP model, it states that ‘the optimal broadcast tree for 𝑝 processors is unbalanced with
the fan-out at each node determined by the relative values of 𝐿, 𝑜, and 𝑔’ [Cul+93], but does
not state how. The actual running time of an optimal broadcast algorithm in the LogP model
[Kar+93] is a complicated expression, much more so than what we obtain in our model (see
below in Section 1.3.3). For our purposes, the LogP model is therefore much too detailed and
provides insufficient abstraction.

CONGEST/LOCAL Models. The CONGEST and LOCALmodels [Pel00] model the net-
work as a graph of processors (nodes) and communication links (edges), which at the same
time is also the input to the problem. Communication is possible only with a node’s neighbours
in the graph and is usually assumed to be synchronous (though asynchronous versions of
CONGEST exist). In each round, a processor can send and receive a message to/from each
of its neighbours and perform an unbounded amount of local computation. The LOCAL
model assumes that nodes have unique IDs that can be represented inO(log𝑝) bits and allows
messages to be of arbitrary size. In the CONGEST model, the message size is limited to
O(log𝑝) bits.

While interesting in theory, the assumptions of synchronicity and the encoding of the
problem into the network limit the applicability of these models in practice, and it is not
immediately clear how algorithms formulated in these models can be implemented to run
efficiently on real-world machines.

Resource-ObliviousModels. In resource-oblivious models, algorithms are specified without
any mention of machine parameters such as cache and block size [Fri+12] (cache-oblivious) or
number of PEs [Bil+16] (network-oblivious). These models require loading data items before
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they can be processed. Therefore, reading the entire input even once is the equivalent of
communicating the entire local input in our model. As a result, these models are not suitable
for adaptation to communication-efficient algorithms, and, in fact, cannot even be used to
express communication efficiency.

Parallel Memory Hierarchy Models. Similarly, models such as the parallel external memory
model [Arg+08] and the parallel hierarchical memory model [JW94] also cannot be used to
express communication-efficiency, as attaining sublinear communication volume is impossible
in models that require loading (ie, communication) of the data to allow processing.

Communication-Avoiding Algorithms. Though closely related in name and also striving
to minimise communication volume as well as latency, communication-avoiding algorithms,
eg, Refs. [Chr+13; DY14], perform data-oblivious calculations, often in a linear algebra and—
more recently—machine learning context. They apply to ‘code that looks like nested loops
accessing arrays’ [Dem19], or more precisely, nested loops with array accesses following a data-
independent affine pattern. Often, there are lower bounds for these problems that preclude
algorithms meeting our definition of communication-efficiency. Moreover, the bounds proven
in these works are most relevant for computations with work superlinear in the input size. We
go into the opposite direction, looking at problems with linear or even sublinear work.

1.2.4 Mini-Batch Model
In some cases, the input may be too large to store it even in a distributed manner. However, we
may not need to: streaming algorithms process the data as it arrives, using it to update their
(small) internal state without storing the entire input. For a long time, sequential streaming
algorithms were the main focus of research in this area; refer to Ref. [Mut05] for a survey on
results in this field. But the same motivation that led us to consider parallel and distributed
single-shot algorithms also applies to data streams. In the last decade, such distributed streaming
models have gained some popularity, and the continuous monitoring model is the most popular
choice in the algorithms community. However, as we state below, this model is full of unrealistic
assumptions that make it unsuitable for the design of communication-efficient algorithms.
Therefore, we use a mini-batch model instead, similar to models that are already widely used in
practice [Zah+13] and more rarely also in theory [TT19].

Instead of processing each item individually, we process items as a series of mini-batches
which arrive on small time intervals and in a distributed fashion: some of their items arrive at
each processing element (PE). They might, for example, be delivered over the network or be
read in blocks from a file system. Apache Spark Streaming, where this is called the discretized
streams model or sometimes micro-batch model, defines them as the set of all items that arrived
within a certain time window since the previous batch finished [Zah+13]. Because memory
is limited, the algorithm is allowed to keep some local state of limited size, but items of past
mini-batches cannot be accessed any longer. Only the items of the current mini-batch are
available in memory at each point in time.

This is a natural generalisation of multiple other models of streaming algorithms. On a
sequential machine with batches of size 1, we obtain the sequential streaming model (see,
eg, [TT19]). In a distributed model with 𝑝 sites (nodes) which exchange fixed-size messages
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Figure 1.4: Comparison of data flow in our mini-batch model and the continuous moni-
toring model. Communication bottlenecks highlighted in red.

with a coordinator, batches of a single item per site yield the continuous monitoring model
described below. In this dissertation, we use the distributed model of Section 1.2.3 as the
underlying machine model. An illustration of data flow in this combination of models is shown
in Figure 1.4 (a). We use the terms batch and mini-batch interchangeably.

Unless explicitly specified, we shall make no assumptions about the distribution of mini-
batch sizes across PEs or over time, nor about the distribution of items. In algorithm analysis, we
denote by 𝑏 the maximum number of items in the current batch at any PE. Thus, an algorithm
expressed in themini-batchmodel can handle arbitrarily imbalanced inputs without any impact
on correctness; however, load balance may suffer if the number of items per PE differs widely.

Note that the machine learning community uses the term ‘mini-batch’ in the context of
stochastic optimisation (eg, Ref. [Dek+12]), where the input is partitioned into mini-batches
which are then used for training in a randomised way. However, the term is also used outside
the context of streaming algorithms (‘online learning’) in machine learning literature. Therefore,
these uses of the term are not directly comparable.

Comparison to Other Models

As before, we compare our model to others that are popular in the literature.

Continuous Monitoring Model (CMM). In the continuous distributed streaming model or
continuous monitoring model [CMY11; Cor13], one of the PEs is designated the coordinator
and the others are called players or sites. The sites each receive a stream of items and can
communicate only with the coordinator, whose task is to continuously monitor some function
over the union of all items seen so far at any site. The goal is to minimise the number of bits
communicated between the sites and the coordinator. An illustration of data flow in this model
is shown in Figure 1.4 (b).

The model does not consider the number of messages over which these bits are spread out,
in effect assuming 𝛼 = 0 (cf. our criticism of the BSP model). Additionally, all communication
is between one of the sites and the coordinator, meaning that the bottleneck communication
volume is equal to the total communication volume. This severely limits scalability as the
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scalability of algorithms in the model is inherently limited by the load on the coordinator. Since
most algorithms in the model communicate Ω(𝑝) bits in total, they do not typically fulfil our
criteria for communication efficiency. Additionally, the assumption of per-item synchronisation
of the processors as well as synchronous operation of the network is in stark contrast to the
guarantees of real-world networks, where the cost of synchronisation is high. Hence, the huge
number of synchronisation operations required would be prohibitively expensive.

Massive Unordered Distributed (MUD) Computation. Mud algorithms [Fel+10] are a
model for MapReduce-style computations which combine MapReduce with streaming com-
putations. The reducers operate on a stream, with no random access to other items, and are
limited to polylogarithmic space. Only a single pass over the data is allowed. Feldman et al.
[Fel+10] show that every symmetric (ie, order invariant) deterministic streaming algorithm
that is defined on all inputs can be simulated by a mud algorithm in small space, although with
exponential time overhead. As with other MapReduce models, communication volume is not
addressed directly, limiting its usability for our purposes.

1.3 General Preliminaries
A brief overview of the notation that we introduced up to this point is shown in Table 1.1.

When we give time or space bounds in writing, we will sometimes omit in reference to
which quantity the bound is given if it is clear from the context. Such bounds are always upper
bounds. For example, logarithmic time usually meansO(log𝑛) for input size 𝑛, and logarithmic
latency is timeO(𝛼 log𝑝).

1.3.1 Definitions
We generally use 1-based array indexing: the elements of an array 𝑎 of size 𝑛 are 𝑎[1] to 𝑎[𝑛]
or, equivalently, 𝑎1 to 𝑎𝑛. When we wish to refer to a range {𝑎,… , 𝑏}, we often use the notation
[𝑎 .. 𝑏]. Similarly, a slice out of a sequence 𝑠 is referred to as 𝑠[𝑎 .. 𝑏] ∶= ⟨𝑠[𝑎],… , 𝑠[𝑏]⟩. For
closed real-valued intervals, we use the standard notation [𝑎, 𝑏] = {𝑥 ∈ ℝ ∣ 𝑎 ≤ 𝑥 ≤ 𝑏}, the
open interval (𝑎, 𝑏) = {𝑥 ∈ ℝ ∣ 𝑎 < 𝑥 < 𝑏}, and the half-open intervals (𝑎, 𝑏] and [𝑎, 𝑏) are
defined analogously.

A call to rand() returns a uniformly distributed random value in [0, 1) in constant time.
Throughout this dissertation, logarithms with an unspecified base are binary logarithms:

log𝑥 ∶= log2 𝑥. When we mean the natural logarithm, we write ln𝑥. Powers of logarithms are
written as log𝑐 𝑥 ∶= (log𝑥)𝑐.

1.3.2 Pseudocode
We present some of our algorithms using high-level pseudocode in a single program multiple
data (SPMD) style. This means that the same program runs on each PE, and operates on local
data, with all variables being local. Communication happens predominantly through collective
operations. We can refer to data on remote PEs using the notation 𝑥@𝑖, which refers to the value
of variable 𝑥 on PE 𝑖. Such an access implies communication. For example, ∑𝑖 𝑥@𝑖 denotes the
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Table 1.1: Summary of notation used throughout this dissertation.

Symbol Meaning

𝑛 input size
𝑝 number of PEs
𝛼 communication overhead per message
𝛽 communication cost per machine word
𝑤 machine word size
𝑏 batch size per PE (mini-batch model)

global sum of 𝑥 over all PEs, which can be computed using a sum (all-)reduction, see below. In
general, our pseudocode is very similar to that of Sanders et al. [San+19].

Our pseudocodes are optimised for clarity. As a result, they do not necessarily reflect our
actual implementations, which often comprise additional optimisations, details of which are
given as Implementation Details in the associated chapter’s evaluation section.

1.3.3 Collective Communication
Our algorithms communicate primarily through collective operations, which operate on se-
quences of one or more objects. In the following, let 𝑘 ∈ ℕ be the size of the message, measured
in machine words. A broadcast distributes a message from one PE to all others. A reduction
applies an associative operation (eg, sum, maximum, or minimum) to a sequence of objects,
returning the result at a designated PE (without loss of generality, this is usually the first PE).
An all-reduction makes the result of the reduction available at all PEs and is conceptually equal
to a reduction followed by a broadcast. A prefix-sum or scan computes∑𝑗𝑖=1 𝑥@𝑖 on PE 𝑗, where
𝑥 is a sequence of length 𝑘. The scatter operation distributes 𝑘 items onto a set of 𝑦 ≤ 𝑝 PEs
such that each PE gets a piece of size 𝑘/𝑦. Symmetrically, a gather operation collects pieces
of size 𝑘/𝑦 from 𝑦 ≤ 𝑝 PEs on a single PE. All of these operations can be performed in time
𝑇coll(𝑘) ∈ O(𝛽𝑘 + 𝛼 log𝑝) [Bal+95; SST09].

In an all-to-all personalised communication (all-to-all for short) each PE sends one message
of size 𝑘 to every other PE. This can be done in time 𝑇all-to-all(𝑘) ∈ O(𝛽𝑘𝑝 + 𝛼𝑝) using direct
point-to-point delivery or in timeO(𝛽𝑘𝑝 log𝑝 + 𝛼 log𝑝) using hypercube indirect delivery
[Lei92, Theorem 3.24]. The all-to-all broadcast (aka all-gather or gossiping operation) collects
a message of size 𝑘 from each PE and delivers all messages to all PEs. This operation can be
implemented with running timeO(𝛽𝑘𝑝 + 𝛼 log𝑝) [Kum+94].

For concrete algorithms that implement these collective operations efficiently, we refer the
reader to Chapter 13 of Ref. [San+19].

1.3.4 Search Trees
Search trees can be used to represent a sorted sequence of objects such that a number of
operations on that sequence can be performed in logarithmic time. Among these operations

13
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is inserting or removing objects as well as searching for the next-largest objects given a key.
Sometimes we will also require a split operation that given a key 𝑥 splits a search tree 𝑇 into
two search trees 𝑇1 and 𝑇2 such that 𝑇1 contains all objects of 𝑇 whose keys are at most 𝑥
and 𝑇2 contains the objects of 𝑇 whose keys are larger than 𝑥. The reverse operation, joining
two search trees 𝑇1 and 𝑇2 where all keys occurring in 𝑇1 are smaller than the smallest key of
any object in 𝑇2 into a combined tree 𝑇, is called join. Search trees can also support the select
operation, which given a rank 𝑖 returns the 𝑖-th smallest object in the tree, and rank, which
given an object 𝑥 returns how many objects’ keys are at most as large as that of 𝑥.

A B+ tree (see, eg, Ref. [San+19, Chapter 7]) is a search tree that can support all the above
operations in logarithmic time. Although based on B-trees [BM72], the inner nodes of a B+ tree
only store keys. All objects (ie, key-value pairs) are stored in the leaf nodes. Like with B-trees,
the nodes have an arbitrary but fixed maximum degree 𝑑, and—except for the root—every
node is at least half full at any point in time, ie, each inner node has at least ⌈𝑑/2⌉ children and
each leaf node stores at least ⌈𝑑/2⌉ objects. By maintaining a linked list between the leaf nodes,
advancing to the next-larger or -smaller item takes only constant time. Like B-trees, the join
and split operations can be supported in logarithmic time (see, eg, Ref. [San+19, Chapter 7.3.2]).
If we additionally keep track of subtree sizes, rank and select operations can be handled in
logarithmic time as well (eg, Ref. [San+19, Chapter 7.5.2]).

1.3.5 Concentration Inequalities

An event is said to occur with high probability (w.h.p.) if its probability of occurring can be
made arbitrarily close to 1 by increasing a certain number (which is usually clear from context).
An example of this would be an algorithm that is correct with probability 1 − 1/𝑛 for an input
size of 𝑛 items.

Chernoff Bounds. We use the following multiplicative Chernoff bounds [San+19; MU05] to
bound the probability that a sum𝑋 = 𝑋1 +… +𝑋𝑛 of 𝑛 independent random variables taking
values in {0, 1} deviates substantially from its expected value E[𝑋]. For 0 < 𝜑 < 1, we have

P[𝑋 < (1 − 𝜑) ⋅ E[𝑋]] ≤ exp(−
𝜑2

2
E[𝑋]) (1.1)

P[𝑋 > (1 + 𝜑) ⋅ E[𝑋]] ≤ exp(−
𝜑2

3
E[𝑋]) . (1.2)

Hoeffding’s Inequality. A more general bound is Hoeffding’s inequality. Let𝑋1,… ,𝑋𝑛 be
𝑛 independent random variables, where𝑋𝑖 is strictly bounded by the interval [𝑎𝑖, 𝑏𝑖], and let
𝑋 ∶= 𝑋1 +… +𝑋𝑛 be their sum. Then, for any 𝑡 > 0, by Ref. [Hoe63, Theorem 2] we have

P[∣𝑋 − E[𝑋]∣ ≥ 𝑡] ≤ 2 exp(−
2𝑡2

∑𝑛𝑖=1 (𝑏𝑖 − 𝑎𝑖)2
) . (1.3)

If the 𝑎𝑖 and 𝑏𝑖 are all equal, respectively, and 𝑐 ∶= 𝑏1 − 𝑎1, then this simplifies to 2 exp(− 2𝑡
2

𝑛𝑐2 ).
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1.4 Communication Efficiency in Big Data Challenges

‘Big Data’ is at the same time central to the continued progression of the information revolution,
and a much over-used marketing term. At the height of its hype phase, you could find the
phrase on airport billboards, advertising large companies’ supposed trend leadership and gran-
diloquently asserting their software solutions’ superior capabilities. A vast number of laypeople
have heard the phrase ‘Big Data’, yet even experts struggle to precisely define it. Instead of a
precise definition, it is often loosely characterised by three ‘V’s: (i) Volume (the quantity of data)
(ii) Velocity (the speed with which the data arrives or needs to be processed), and (iii) Variety
(the kind of data) [KM16]. Clearly, coping with high data volume and velocity is directly
related to the scalability of a system—which is sometimes also considered a characteristic of big
data—and fall under the purview of algorithmicists designing the computational foundation
of a big data processing system. As we have argued above, handling ever-larger data while
maintaining fast turn-around times—or achieving them in the first place—is only possible
by leveraging distributed computing. As a result, a variety of big data frameworks have been
developed and proved enormously popular: MapReduce [DG08] and Apache Hadoop, its most
popular implementation, marked the point where big data processing became accessible to
anyone without requiring specialist knowledge. Later, Apache Spark [Zah+10] was developed
to alleviate the strain of limitations in the MapReduce paradigm and has since surpassed it
in popularity.3 Another contender similar to Apache Spark is Thrill [Bin+16], which we use
as the platform for implementing our checkers in Chapter 4. For high-velocity (streaming)
applications, Apache Flink [Ale+14], Apache Spark Streaming [Zah+13], and Apache Storm
are widely used in industry, see, eg, Ref. [Tos+14] for an account of how Storm is (or was at the
time) used at Twitter. Both Flink and Spark Streaming show good performance, and, despite
the latter using a batched computation model (see also Section 1.2.4), low latency [Kar+18].

Historically, MPI dominated the world of distributed computing. Its origins are in High-
Performance Computing (HPC), and its interface is designed to permit efficient implementa-
tions of arbitrary algorithms. It is, therefore, an abstraction of the hardware, providing only the
fundamentals, such as collective operations (see Section 1.3.3), but not higher-level algorithms.
This makes it extremely general and highly efficient, yet also hard to use. For distributed
computing to gain popularity outside the performance-oriented world of HPC, a simpler envi-
ronment was needed. This is what MapReduce provided, and accordingly, it took the world of
practitioners by storm. Its map–shuffle–reduce cycle can be adapted to a wide range of tasks
while abstracting away the tiring details and pitfalls of the systems that preceded it. However, it
is slow and inefficient in its generality. The observation that many applications do not actually
require a full reshuffling led to the development of the next generation of big data frameworks,
with Apache Spark as the most popular among them. Their interfaces are still easy to use for the
programmer, maybe even more so than MapReduce due to a larger standard library of opera-
tions. But in their implementations, more specialised algorithms than all-to-all shuffles are used
to implement the operations, avoiding unnecessary data exchanges (a recent example of this
that has not yet been integrated into any of the popular frameworks is communication-efficient

3As measured by Google search trends: https://trends.google.com/trends/explore?date=all&q=/m/
0ndhxqz,/m/0fdjtq (accessed 18th August 2020).
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1 Introduction and Overview

sorting of strings and other non-scalar data types [BSS20]). Meanwhile, these frameworks
still handle (static) load balancing and fault tolerance automatically, letting the user focus on
solving their problems.

It is in this space that this dissertation operates, pushing operations that are used in the
algorithmic layers of these frameworks towards communication efficiency. The ultimate goal
of such work is to allow these systems to scale to ever-larger clusters to keep up with the
exponential growth of data set sizes. It is clear that algorithms in this space need to behave
robustly with respect to a range of parameters outside our control, such as input distribution.
Naturally, the systems’ scalability and performance is a major concern. Therefore, our focus is
on designing communication-efficient algorithms that perform well not just in theory, but also
in practice (cf. the methodology of Algorithm Engineering, eg, Refs. [San09; San10]). In this
dissertation, we study several elementary operations offered by or used internally in such big
data systems, for which we present highly scalable communication-efficient algorithms.

1.5 Contributions

This dissertation consists of three parts. The first part focuses on various kinds of selection
algorithms, the second part on weighted sampling in different forms, and the third part on
probabilistic checkers for common operations in big data frameworks. Table 1.2 lists our main
contributions.

Chapter 2 addresses selection problems and fittingly begins with perhaps the most common
of them: the classical selection problem in Section 2.3, where the goal is to identify the element
with rank 𝑘 in the union of all machines’ inputs. First, we consider the case where the input
is arbitrarily distributed across the machines, except for our general assumption that each of
the 𝑝 processors shall have O(𝑛/𝑝) of the 𝑛 input items. There, we show that with a small
adaptation to the process of choosing the pivots, the problem can be solved efficiently without
previous works’ assumption of randomly distributed inputs. Our algorithm requires time
O(𝑛/𝑝 + 𝛽min(√𝑝 log𝑝 𝑛, 𝑛/𝑝) + 𝛼 log𝑝) with high probability. An experimental evaluation
in Section 2.7.1 shows that this algorithm scales well. Next, we show that the problem of
selection from locally sorted sequences, also known as the multisequence selection problem,
can be solved much more efficiently if the output rank is allowed to vary by a constant factor.
For this case, we obtain an expected running time ofO(log𝑘 + 𝛼 log𝑝). When the output rank
is fixed, the expected running time is O(log2 𝑘 + 𝛼 log𝑘 log𝑝). In Section 2.4, we use these
algorithms to construct a communication-efficient bulk priority queue. Later, in Section 3.7,
we apply this to weighted reservoir sampling where our algorithm shows far better scaling than
a centralised approach. The third pillar of the selection chapter is frequent item selection, ie,
identifying the 𝑘 objects that occur most often in the input. In Section 2.5, we give several
options for different error models, including a probably approximately correct and a probably
exactly correct algorithm. For the former case, we obtain expected running time O(𝑛/𝑝 +
𝛽 ⋅ 1/𝜀 ⋅

√

log𝑝 ⋅ log(𝑛/𝛿)/𝑝 + 𝛼 log𝑛) to compute an (𝜀, 𝛿)-approximation, ie, one that is
accurate to within relative error 𝜀 with probability at least 1 − 𝛿. Experiments, presented in
Section 2.7.2, show that our fully distributed algorithms clearly outperform more centralised
ones. A generalised version of the problem, identifying the 𝑘 objects with the highest sums of
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associated values, is considered in Section 2.6. Our algorithm’s running time is only a
√

log𝑝
factor in communication volume higher than our most frequent objects algorithm.

Chapter 3 considers a multitude of weighted sampling problems. First, in Section 3.3, we
revisit construction of a classical data structure for sampling from a categorical distribution:
alias tables. We begin by solving ‘an easy exercise to the reader’, the details of which ‘are all
straightforward’4 (Vose 1991, Ref. [Vos91]), eliminating the linear memory overhead of the
fastest known construction algorithm, in Section 3.3.1. The result is a linear-time alias table
construction algorithm that requires only a constant amount of additional space. We then
parallelise this algorithm for shared memory in Section 3.3.2 by showing how its state at any
point in time can be quickly computed in advance, which allows us to cut a problem instance
into parts of equal size to utilise all processors. This algorithm has linear work and logarithmic
span in the PRAM model. Our experiments (Section 3.8.2) show that it scales well until the
memory bandwidth of the machine is saturated. We also present a variant where each processor
greedily assigns items from its input until it gets stuck, switching to our full parallel algorithm
only for the remaining items. This modification successfully keeps overhead for the parallel
algorithm low and shows excellent scaling behaviour on non-adversarial inputs. Lastly, we show
how the algorithm’s memory overhead can be reduced to a sublinear term by using coarser
prefix sums in the splitting procedure. More precisely, we show howΘ(𝑛/ log𝑛) auxiliary space
can be achieved without an increase in asymptotic work or span. Section 3.3.3 shows how the
problem can be solved efficiently on distributed-memory machines using a two-level approach.
Constructing this data structure takes timeO(𝑛/𝑝 + 𝛼 log𝑝) and the time to sample a single
item is O(𝛼). Replicating the top-level data structure simplifies the query process at a cost
of O(𝛽𝑝) additional preprocessing time. This variant can also be used on shared-memory
machines—using any sequential alias table construction algorithm at the bottom level—to
achieve extremely fast preprocessing, though this comes at the cost of 50% slower queries due
to the additional indirection (Section 3.8.3). It is also of note that this method scales far better
when using our new sequential alias table construction algorithm as its base case because the
memory overhead of Vose’s classical construction algorithm limits scalability.

The second main contribution in Chapter 3 is our output-sensitive algorithm for weighted
sampling with replacement. Output-sensitive here means that its running time depends only on
the number of unique items in the sample, in which it is linear, and not the number of samples
drawn. These may be an exponential factor apart if the input distribution is very skewed (eg, a
power-law distribution). To the best of our knowledge, the algorithm we give in Section 3.4 is
the first parallel as well as the first sequential algorithm for weighted sampling with replacement
with this property. It is based on integer sorting and reduction trees. Computing the necessary
data structure takes linear work and logarithmic span on top of (parallel) integer sorting of the
input into𝑢 buckets, where𝑢 is the logarithmof the quotient between the largest and the smallest
weight in the input. This is generally possible with linear work and logarithmic span on many
machine models. Sampling then has near-optimal workO(𝑠 + log𝑛) and spanO(log𝑛) on a
CREWPRAM, where 𝑠 is the number of unique items in the output. In a distributed setting with
randomly allocated items, construction takes timeO(𝑛/𝑝+𝛼 log𝑝) and queriesO(𝑠/𝑝+ log𝑝).

4That no solution to this exercise has been published or implemented to date to the best of our knowledge gives us
the impression that the exercise might not have been as easy to others as it was to Mr Vose.
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Experiments in Section 3.8 show good scalability, although the speedups for data structure
construction are limited by the available memory bandwidth. Nonetheless, queries—while
significantly more complex than for alias tables—benefit from the data structure’s memory
locality, and consistently outperform the two-level method on all inputs. On inputs that yield
many duplicate samples, the algorithm is much faster than sampling from an alias table. A
slightly relaxed version of the algorithm outperforms alias tables in query speed even when the
input weights are uniformly random, making it the consistently fastest algorithm for sampling
with replacement.

In Section 3.5, we construct a truthful estimator for the number of unique items in a sample
with replacement, which we then apply ‘in reverse’ to determine how large the sample should be
so that it contains at least 𝑘 unique items with sufficient probability. This allows us to efficiently
sample without replacement using the above algorithm for sampling with replacement and
some post-processing. We achieve expected workO(𝑘+ log𝑛) and spanO(𝑙𝑜𝑔𝑛) for sampling
on a CREW PRAM. In a distributed setting with randomly allocated items, the expected query
time isO(𝑘/𝑝 + 𝛼 log𝑛 log𝑝). The running time of construction is the same as for sampling
with replacement in both cases.

Poisson sampling is a generalisation of Bernoulli sampling to weighted items, where each
item’s weight specifies its probability of being included in the sample. Our algorithm for Poisson
sampling, described in Section 3.6, is in effect another application of integer sorting with
suitably constructed keys. We achieve linear work and logarithmic span for preprocessing.
The work for sampling is linear in the sample size, and its span is logarithmic as well. In a
distributed setting, the algorithm is communication-free.

Last among our algorithms for weighted sampling, Section 3.7 considers the problem of
sampling without replacement from distributed data streams, presented as a series of mini-
batches of new items. Using the bulk priority queue from the selection chapter, augmented
search trees, and an adaptation of an existing sequential algorithm, we describe an efficient
algorithm. Processing a batch consisting of up to 𝑏 items per processor takes expected time
O((𝑏 + 1) log(𝑏 + 𝑘) + 𝛼 log𝑘 log𝑝), although the latency can be reduced to 𝛼 log𝑝 if the
sample size is allowed to vary. Our evaluation (Section 3.8.4) shows that this fully decentralised
algorithm handily beats a centralised version in almost all cases. The main contribution here
is to demonstrate that fully decentralised streaming algorithms are possible and can be much
more efficient than what is achievable with the centralised models that are almost universally
used in the distributed streaming literature.

In Chapter 4 we turn to the problem of checking the correctness of big data frameworks’
basic operations at runtime. The goal is to detect incorrect results caused by software bugs as
well as errors introduced through hardware failures, such as cosmic rays triggering bit flips in
the CPU ormemory, or defective memory locations. We show that a large number of operations
can be checked using reductions to checkers for two central problems: permutation and (sum)
aggregation. While many (folklore) results exist for the former problem, we formally prove
their accuracy and determine their communication cost in Section 4.4.

The aggregation checker presented in Section 4.3 is a novel application of the data structure
underpinning counting Bloom filters and count-min sketches. By reducing the key space
dramatically through hashing and aggregating the result modulo a randomly chosen num-
ber, we obtain a small fingerprint of the data. These fingerprints are designed to be invariant
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under aggregation for certain classes of operations such as sum reductions. Thus, by ap-
plying this procedure to both the input and the output, we can compare their fingerprints
and be fairly certain that the aggregation was performed correctly if the fingerprints match.
A theoretical analysis of the false positive probability of our checker promises excellent ac-
curacy with very low communication cost: a false positive probability below 10−20 can be
achieved with a message size of only 960 bits, ie, 15 machine words on a 64-bit machine.5
We obtain running times of O((𝑛/𝑝 + 𝛽) log(1/𝛿) + 𝛼 log𝑝) for aggregation checking and
O((𝑛/(𝑝𝑤) + 𝛽) log(1/𝛿) + 𝛼 log𝑝) for our permutation checker, where 𝑤 is the machine’s
word size. In both cases, 𝛿 is the maximum allowed false positive rate, ie, an incorrect result is
detected with probability at least 1 − 𝛿.

Scaling experiments with an implementation in Thrill, a big data processing framework,
in Section 4.6 show that as a result of our careful engineering, our checkers have negligible
overhead in practice. An extensive experimental evaluation with deliberately introduced errors
in low-accuracy configurations further shows that both of our checkers achieve or even exceed
the claimed accuracy. They achieve this despite (and in some cases likely because of) the non-
ideal behaviour of the real-world hash functions used in place of the random hash functions
assumed in the analysis.

5That is roughly half the space occupied by an ASCII encoding of the sentence preceding this footnote.
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Table 1.2: Our main contributions. Parameters (see also Table 1.1): input size 𝑛; output
size or rank 𝑘; unique items in output 𝑠, number of PEs 𝑝, machine word size𝑤, logarithm
of maximum input weight span 𝑢 = log(𝑤max/𝑤min), here assuming 𝑢 ≤ 𝑛/𝑝. Parallel
sorting of 𝑛 integers from [0 .. 𝑢] takes time isort𝑢(𝑛). Error bounds: relative error ≤ 𝜀
with failure probability ≤ 𝛿.

Problem Section (Expected) Running Time,O(⋅)

unsorted selection 2.3.1 𝑛
𝑝 + 𝛽min(√𝑝 log 𝑛log𝑝 ,

𝑛
𝑝) + 𝛼 log𝑝

sorted selection, bulk PQ
insert* + deleteMin*

2.3.2,
2.4

log𝑘 + 𝛼 log𝑝 (flexible 𝑘),
log2 𝑘 + 𝛼 log𝑘 log𝑝 (fixed 𝑘)

most frequent objects 2.5 𝑛
𝑝 + 𝛽
1
𝜀

√
log𝑝
𝑝 log 𝑛𝛿 + 𝛼 log𝑛

top-𝑘 sum aggregation 2.6 𝑛
𝑝 + 𝛽

log𝑝
𝜀

√
1
𝑝 log
𝑛
𝛿 + 𝛼 log𝑛

alias table construction (PRAM) 3.3.2 workO(𝑛), spanO(log𝑛)

2-level alias table (distributed) 3.3.3 constructionO( 𝑛𝑝 + 𝛼 log𝑝), queryO(𝛼)

sampling w&w/o replacement,
precomputation (PRAM)

3.4,
3.5

workO(𝑛 + isort𝑢(𝑛)),
spanO(log𝑛 + isort𝑢(𝑛))

sampling w&w/o replacement,
precomputation (distributed)

3.4.1,
3.5.1

𝑛
𝑝 + 𝛼 log𝑝

sampling w&w/o replacement,
query (PRAM)

3.4,
3.5

workO(𝑠 + log𝑛) &O(𝑘 + log𝑛), resp.,
spanO(log𝑛)

sampling with replacement,
query (distributed) 3.4.1 𝑠

𝑝 + log𝑝 (randomly distributed items)*

sampling without replacement,
query (distributed) 3.5.1 𝑘

𝑝 + 𝛼 log
2 𝑛 (randomly distributed items)*

reservoir sampling, mini-batch
of ≤ 𝑏 items per PE 3.7 (𝑏 + 1) log(𝑏 + 𝑘) + 𝛼 log𝑘 log𝑝

sum/count aggregation checking
(average, median) 4.3 (

𝑛
𝑝 + 𝛽) log

1
𝛿 + 𝛼 log𝑝

permutation checking (sort,
union, merge, zip, …) 4.4 (

𝑛
𝑝𝑤 + 𝛽) log

1
𝛿 + 𝛼 log𝑝

* This only serves to make bounds easily presentable here, the algorithm makes no such assumption.
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2Chapter 2

Selection Problems

We present scalable parallel algorithms with sublinear per-processor communication
volume and low latency for several fundamental problems related to finding the most
relevant elements in a set, for various notions of relevance. We begin with the classical
selection problem with unsorted input, and subsequently present generalisations with
locally sorted inputs and dynamic content (bulk-parallel priority queues). Then we
move on to finding frequent objects and top-𝑘 sum aggregation.

Motivation. Selection problems are among the most fundamental algorithmic problems.
Finding the median and other quantiles is a basic problem in statistics. As we will see later,
finding the element of rank 𝑘 from the union of 𝑝 sorted sequences is ideally suited for imple-
menting distributed priority queues, which have numerous applications themselves, such as
(best-first) branch-and-bound methods (see, eg, Refs. [KZ93; San98]). In data mining, we often
have to find the globally most frequent items from a large distributed data set, or those whose
associated values add up to the highest sums. Common to all of these problems is that they have
a large input and a relatively small output. More precisely, we consider problems that ask for
the 𝑘most ‘relevant’ results from a large set of possibilities and devise communication-efficient
algorithms for them.

References. This chapter is based on a conference paper [HS16] published jointly with Peter
Sanders. The sections included in this dissertation are mainly the work of the author of this
dissertation. Sections of the paper on multicriteria top-𝑘 and item redistribution that are
largely due to Peter Sanders are not included in this dissertation. The analyses in Sections 2.3.1
and 2.3.2.b) are originally due to Peter Sanders and were significantly extended by the author
of this dissertation for inclusion in the present work. Large parts of this chapter were copied
verbatim from the paper and the corresponding technical report [HSM15], which contains
additional proofs that had to be omitted in the conference version. The author of this dissertation
is also the author of all implementations and conducted all evaluations.

Overview. In the simplest case, our input consists of totally ordered elements, and we ask
for the 𝑘 smallest of them—the classical selection problem. Several variants of this problem
are studied in Section 2.3. For the classical variant with unsorted inputs, a careful analysis
of a known algorithm [San98] shows that the previously assumed random allocation of the
inputs is not actually necessary, and we get running timeO(𝑛/𝑝 + log𝑝). For locally sorted
inputs, we obtain a latency ofO(log2 𝑘𝑝) communication startups, ie, messages. Interestingly,
we can return to log𝑝 latency if we are willing to relax the output size 𝑘 by a constant factor.
This uses a new technique for obtaining a pivot element with a given rank that is much simpler
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Table 2.1: Summary of notation used in this chapter.

Symbol Meaning

𝑀, 𝑛 input multiset and its size 𝑛 ∶= ∣𝑀∣
𝑘 rank of desired output item
𝜀 relative error bound
𝛿 maximum permitted failure probability
𝜌 sampling rate (Bernoulli sampling)
𝑝 number of PEs
𝛼, 𝛽 communication characteristics of the machine model, see Section 1.2.3

than the previously proposed techniques based on sorting. When used with exact bounds, this
algorithm has latencyO(log𝑘 log𝑝).

Bulk-parallel priority queues are a data structure generalisation of the selection problem.
Previous parallel priority queues are not communication efficient in the sense that they move
the elements around, either by sorting [DP92] or by random allocation [San98]. Section 2.4
generalises the results on selection from Section 2.3. The key to making this work is to use an
appropriately augmented search tree data structure that efficiently supports insertion, splitting,
and the operations required by the parallel selection algorithm.

A fundamental problem in data mining is finding the most frequently occurring objects.
This is challenging in a distributed setting since the globally most frequent elements do not
have to be locally frequent in any particular PE’s local input. In Section 2.5, we develop very fast
sampling-based algorithms that find an (𝜀, 𝛿)-approximation or probably approximately correct
answer, ie, with probability at least 1 − 𝛿 the output is correct within 𝜀𝑛. The communication
volume and latency of the algorithms are logarithmic in 𝑛, 𝑝, and 1/𝛿. From a simple algorithm
with running time factor 1/𝜀2 we go to more sophisticated ones with factor 1/𝜀. We also show
how to compute the exact result with probability at least 1−𝛿 if the elements are non-uniformly
distributed.

Subsequently, we generalise these results to sum aggregation, where object occurrences are
associated with a value. In Section 2.6, we are thus looking for the objects whose values add
up to the largest sums. By aggregating the objects locally before sampling, we can handle this
problem efficiently with an adaptation of our most frequent objects algorithm.

All of the above algorithms have the unavoidable limitation that the output may be unevenly
distributed over the PEs for general distributions of the input objects. This can lead to load
imbalance affecting the efficiency of the overall application. Offsetting this imbalance will
require communication so that one might argue that striving for communication efficiency
in the selection process is in vain. However, our methods have several advantages over non-
communication-efficient selection algorithms. First of all, priorities can be ignored during
redistribution since all selected elements are relevant. Hence, we can employ any data redistri-
bution algorithm we want. In particular, we can use an adaptive algorithm that only moves
data when truly necessary. In Ref. [HSM15], we give one such algorithm that combines prefix
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Table 2.2:Our main results. Parameters as in Table 2.1: input size 𝑛; output size 𝑘; number
of PEs 𝑝; message startup overhead 𝛼; communication cost per machine word 𝛽; relative
error 𝜀; failure probability 𝛿.

Problem Asymptotic running time in our modelO(⋅)
old new

unsorted selection Ω(𝛽 𝑛𝑝) + 𝛼 log𝑝 [San98]
𝑛
𝑝 + 𝛽min(√𝑝 log 𝑛log𝑝 ,

𝑛
𝑝) + 𝛼 log𝑝

sorted selection Ω(𝑘 log𝑛) (seq.) [Var+91] log2 𝑘 + 𝛼 log𝑘 log𝑝 (fixed 𝑘)
log𝑘 + 𝛼 log𝑝 (flexible 𝑘)

bulk PQ insert∗

+ deleteMin∗ log 𝑛𝑘 + 𝛼(
𝑘
𝑝 + log𝑝) [San98] log2 𝑘 + 𝛼 log𝑘 log𝑝 (fixed 𝑘)

log𝑘 + 𝛼 log𝑝 (flexible 𝑘)

heavy hitters 𝑛
𝑝 + 𝛼

√𝑝
𝜀 log𝑛 ⋅ log log 𝑛

𝛿𝜖 [HYZ19] † cf. top-𝑘most frequent items

top-𝑘most
frequent items Ω( 𝑛𝑝 + 𝛽

𝑘
𝜀 + 𝛼
1
𝜀) [BO03] † 𝑛

𝑝 + 𝛽
1
𝜀

√
log𝑝
𝑝 log 𝑛𝛿 + 𝛼 log𝑛

top-𝑘 sum
aggregation

𝑛
𝑝 + 𝛽
1
𝜀

√

𝑝 log 𝑛𝛿 + 𝛼𝑝 (centralised)
𝑛
𝑝 + 𝛽

log𝑝
𝜀

√
1
𝑝 log
𝑛
𝛿 + 𝛼 log𝑛

† Monitoring query that continuously updates the result

sums and merging to minimise data movement and incurs only logarithmic additional delay.1
Delegating data movement to the responsibility of the application also has the advantage that we
can exploit properties of the application that general selection algorithms cannot. For example,
by randomising the necessary data migrations of the priority queue in best-first branch-and-
bound applications [KZ93; San98], we can try to steer the system away from situations with bad
data distribution. Our approach requires redistribution of the data only when load imbalance
has been detected, and not proactively as in prior implementations.

Notation. Refer to Table 2.1 for a summary of the notation used in this chapter. Our input
usually consists of a multiset or sequence𝑀 of ∣𝑀∣ = 𝑛 objects, each represented by a single
machine word. If these objects are ordered, we assume that their total ordering is unique. This
is without loss of generality since we can make the value 𝑣 of object 𝑥 unique by replacing it by
the pair (𝑣, 𝑥) for tie-breaking.

Results. Our main results in this chapter are listed in Table 2.2. Refer to Section 2.2.1 for
further discussion and proofs of the running times of existing algorithms in our model.

1This algorithm is primarily the work of Peter Sanders and is therefore not included in this dissertation.
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2 Selection Problems

2.1 Preliminaries

Fast Inefficient Sorting. Using a brute force algorithm that performs all pairwise object
comparisons in parallel (see, eg, Ref. [Axt+15]),O(√𝑝) randomly distributed objects can be
sorted in timeO(𝛼 log𝑝).

Bernoulli Sampling. A simple way to obtain a sample of a set𝑀 of objects is to select each
object with probability 𝜌 independent of the other objects. The resulting sample has size 𝜌 ∣𝑀∣ in
expectation and is at most a constant factor larger or smaller with high probability. This follows
directly from theChernoff bounds of Equations (1.1) and (1.2). For small sampling probability𝜌,
the naïve sampling process can be significantly accelerated from timeO(∣𝑀∣) to timeO(𝜌 ∣𝑀∣)
with high probability by using skip values. A skip value of 𝑥 indicates that the following 𝑥 − 1
elements are skipped, and the 𝑥-th element is sampled. These skip values are geometrically
distributed with parameter 𝜌 and can be generated in constant time as ⌊ln(rand())/ ln(1 − 𝜌)⌋.
This formula is obtained by the inversion method using the geometric distribution’s continuous
analogue, the exponential distribution (see, eg, Ref. [Dev86, Chapter III.2]).

Zipf ’s Law. In its simplest form, Zipf ’s Law states that the frequency of an object from a
multiset𝑀 with ∣𝑀∣ = 𝑛 is inversely proportional to its rank among the objects ordered by
frequency. These values are very concentrated andmodel word frequencies in natural languages,
city population sizes, and many other rankings well [Aue13; Zip65]. In this distribution, the
most frequent element is 𝑗-times more frequent than that of rank 𝑗. Here, we consider the
general case with exponent parameter 𝑠, ie, 𝑥𝑖 = 𝑛𝑖−𝑠𝐻−1𝑛,𝑠, where 𝐻𝑛,𝑠 = ∑

𝑛
𝑖=1 𝑖

−𝑠 is the 𝑛-th
generalised harmonic number.

2.2 RelatedWork

Distributed Selection. Floyd and Rivest [FR75] developed a modification of quickselect
[Hoa61] using two pivots to achieve a number of comparisons that is close to the lower bound.
This algorithm, FR-select, can be adapted to a distributed memory parallel setting [San98] (very
similar algorithms are also described in Refs. [Rei85; Raj90]). FR-select picks the pivots based
on sorting a random sample 𝑆 ofO(√𝑝) objects, which can easily be done in logarithmic time
if the sample is randomly distributed (see Section 2.1). Pivots ℓ and 𝑟 are chosen as the sample
objects with ranks 𝑘 ∣𝑆∣ /𝑛 ±Δ where Δ = 𝑝1/4+𝛿 for some small constant 𝛿 > 0. For the analysis,
one can choose 𝛿 = 1/6, which ensures that with high probability, the range of possible values
shrinks by a factor Θ(𝑝1/3) in every level of recursion.

Sanders [San98] proves that a constant number of recursion levels suffice if 𝑛 ∈ O(𝑝 log𝑝)
and if the objects are distributed randomly. Note that the latter assumption prevents the
algorithm from being communication-efficient because it requires moving all objects to random
PEs for general inputs.

Plaxton [Pla89] shows a superlogarithmic lower bound for selection on a large class of
interconnection networks. This bound does not apply to our model since we assume a more
powerful network.
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2.2 Related Work

(Bulk) Parallel Priority Queues. There has been intensive work on parallel priority queues.
The most scalable solutions are Sanders’s [San98] randomised priority queue and Deo and
Prasad’s [DP92] parallel heap. Refer to Refs. [Wim+15a; Wim+15b] for a recent overview
of further approaches, most of which target shared memory architectures and operate on
centralised data structures with limited scalability.

A natural way to parallelise priority queues is to use bulk operations. In particular, operation
deleteMin∗ supports deletion of the 𝑘 smallest objects of the queue. Such a data structure can
be based on a heap where nodes store sorted sequences rather than objects [DP92]. However,
an even faster and simpler randomised way is to use multiple sequential priority queues, one on
each PE [San98]. This data structure adopts the idea of Karp and Zhang [KZ93] to give every PE
a representative approximate view of the global situation by sending inserted objects to random
queues. However, in contrast to Karp and Zhang [KZ93], Sanders [San98] implements an exact
deleteMin∗ using parallel selection and a few further tricks. Note that the random insertions
prevent communication efficiency in this case.

Most FrequentObjects, SumAggregation. Considerable work has been done on distributed
top-𝑘 computations in wide area networks, sensor networks, and for distributed streaming
models [BO03; YZ13; HYZ19]. However, these papers use a server–helper approach where
all communication has to go over a coordinator node (cf. Section 1.2.4). This implies up to
𝑝 times higher bottleneck communication volume compared to our results. Only rarely do
randomised versions with better running times exist. Nevertheless, communication volume at
the coordinator node still increases with√𝑝 [HYZ19]. Furthermore, the top-𝑘most frequent
objects problem has received little attention in distributed streaming algorithms. The only work
we could find requires O(𝑁𝑝) working memory at the coordinator node, where𝑁 ∈ O(𝑛)
is the number of distinct objects in the union of the streams [BO03]. The majority of papers
instead considers the significantly easier problem of identifying the heavy hitters, ie, those
objects whose occurrences account for more than a fixed proportion of the input, or frequency
tracking, which tracks the approximate frequencies of all items but requires an additional
selection step to obtain the most frequent ones [HYZ19; YZ13; Man+05].

Much work has been done on aggregation in parallel settings, eg, in the database community
[CR07; Li+13; Mül+15]. However, these papers all ask for exact results for all objects, not
approximations of the 𝑘 most important ones. We do not believe that exact queries can be
answered in a communication-efficient manner. The multicriteria top-𝑘 selection problem,
where the items are pre-aggregated and sorted by local aggregate value, and we seek the 𝑘 items
with the highest aggregate values, is somewhat related. However, in addition to the issues listed
above, results on the multicriteria top-𝑘 selection problem such as Refs. [CW04; MTW05] have
severely limited scalability, as the number of PEs cannot exceed the number of criteria.

2.2.1 Running Times of Existing Algorithms
We now prove or give references for the running times given for previous works in Table 2.2.

Unsorted Selection. Previous algorithms, see Ref. [San98], rely on randomly distributed
input data or explicitly redistribute the data. Thus, they have to moveΩ(𝑛/𝑝) elements in the
worst case.
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2 Selection Problems

Sorted Selection. We could not find any prior results on distributed selection from sorted
sequences and thus list a sequential result of Varman et al. [Var+91].

Bulk Parallel Priority Queue. The result in Ref. [San98] relies on randomly distributed input
data. Therefore, in operation insert∗, each PE needs to send itsO(𝑘/𝑝) elements to random
PEs, costingO(𝛼𝑘/𝑝) time. Then, operation deleteMin∗ is fairly straight-forward and mostly
amounts to a selection. The deterministic parallel heap [DP92] needs to sort inserted elements,
and then they travel through log(𝑛/𝑝) levels of the data structure, which is allocated to different
PEs. This alone implies communication costΩ(𝛽𝑘/𝑝 ⋅ log𝑝).

Heavy Hitters Monitoring. Huang et al. [HYZ19] give a randomised algorithm for monitor-
ing the heavy hitters that requires timeO( 𝑛𝑝 + 𝛼

√𝑝
𝜀 log𝑛 ⋅ log log 𝑛

𝛿𝜀 ) in our model.

Proof. All communication is between the controller node and a monitor node. Thus, the
maximum amount of communication is at the controller node. Each update, which consists
of a constant number of words, is transmitted separately. Hence, the communication term
given by the authors transfers directly into our model. Making the algorithm correct for all
time instances and increasing the success probability to arbitrary values of 𝛿 accounts for the
log(log𝑛/(𝛿𝜖)) factor [HYZ19]. ◻

Top-𝑘 Frequent Objects Monitoring. Monitoring Query 1 of Ref. [BO03] performs top-𝑘
most frequent object monitoring inΩ(𝑛/𝑝 + 𝛽 ⋅ 𝑘/𝜀 + 𝛼 ⋅ 1/𝜀) time for relative error bound 𝜀,
ie, no unreported element has more than 𝜀𝑛more occurrences than a (mistakenly) reported
element (in the notation of Ref. [BO03], 𝜀 is the absolute error and corresponds to 𝜀𝑛 in our
notation). This algorithm also has further restrictions: it does not provide approximate counts
of the objects in the top-𝑘 set. It can only handle a small number𝑁 of distinct objects, all of
which must be known in advance. It requires Θ(𝑁𝑝)memory on the coordinator node, which
is prohibitive if𝑁 and 𝑝 are large. It must also be initialised with a top-𝑘 set for the beginning
of the streams, using an algorithm such as TA [FLN03]. We now present a family of inputs for
which the algorithm uses the claimed amount of communication.

Initialise with𝑁 = 𝑘+2 items𝑂1,… ,𝑂𝑘+2 that all have the same frequency. Thus, the initial
top-𝑘 set comprises an arbitrary subset of 𝑘 of these. Choose one of the two objects that are
not in the top-𝑘 set—refer to this object as 𝑂𝑠—and pick a peer (PE)𝑁𝑓. Now, we send 𝑂𝑠
to𝑁𝑓 repeatedly, and all other items to all other peers in an evenly distributed manner (each
peer receives around the same number of occurrences of each object). After at most 2𝜀𝑛 steps,
the top-𝑘 set has become invalid and an expensive full resolution step is required.2 Per the
instructions of Ref. [BO03], we choose 𝐹0 = 0 and 𝐹𝑗 = 1/(𝑝 − 1) for 𝑗 > 0. We can repeat this
cycle to obtain an instance of the example family for any input size 𝑛. Note that the number
of ‘cheap’ resolution steps during this cycle depends on the choice of the 𝐹𝑗 values, for which
Babcock and Olston give rough guidelines of what might constitute a good choice, but do not
present a theoretical analysis of how it influences communication. Here, we ignore their cost
and focus solely on the cost of ‘expensive’ resolutions.

2This actually happens much earlier, the first ‘expensive’ resolution is required after only O(𝜀𝑛/𝑝) steps. This
number increases, but will never exceed ∑∞𝑖=0 𝜀𝑛(𝑘 + 1)

−𝑖 ≤ 2𝜀𝑛.
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2.3 Selection

By the above, at least one ‘expensive’ resolution round is required for everyO(𝑝𝑛𝜀) items in
the input. Since the resolution set contains 𝑘+1 objects (the top-𝑘 set plus the non-top-𝑘 object
with a constraint violation), each ‘expensive’ resolution has communication cost Θ(𝛽𝑘𝑝 + 𝛼𝑝).
Thus, we obtain communication cost for expensive resolutions of Ω((𝛽𝑘𝑝 + 𝛼𝑝)/(𝑝𝜀)) =
Ω(𝛽 ⋅ 𝑘/𝜀 + 𝛼 ⋅ 1/𝜀), for a given relative error bound 𝜀. Additionally, each item requires at
least constant time in local processing, accounting for the additive Ω(𝑛/𝑝) term. The actual
worst-case communication cost is likely even higher, but this example suffices to show that the
approach of Babcock and Olston [BO03] is not communication-efficient in our model.

2.3 Selection
We consider the problem of identifying the element of rank 𝑘 from a set of 𝑛 objects which
is distributed over 𝑝 processors. First, we analyse the classical problem with unsorted input,
before turning to locally sorted input in Section 2.3.2.

2.3.1 Selection from Unsorted Sequences
Our first result is that using some minor adaptations and careful analysis, the parallel FR-
select algorithm of Section 2.2 does not actually need randomly distributed data. We replace
the sampling process used in the algorithm of Sanders [San98] with Bernoulli sampling and
sample redistribution based on indirect delivery in a hypercube. Algorithm 2.1 gives high-level
pseudocode for our selection algorithm.

Theorem 2.1 (Selection from Unsorted Sequences)
Consider 𝑛 elements distributed over 𝑝 PEs such that each PE holdsO(𝑛/𝑝) elements. With high
probability, the globally 𝑘-th smallest of these elements can be identified in time

O(
𝑛
𝑝
+ 𝛽min(

√
𝑝 log𝑝 𝑛,

𝑛
𝑝
) + 𝛼 log𝑛) .

Proof. Our base case is 𝑘 = 1, ie, searching for the global minimum, which is handled accord-
ingly with a minimum reduction. The time for this is scanning (what remains of) the local
input plus one collective operation. This is clearly bounded byO(𝑛/𝑝 + 𝛼 log𝑝). Otherwise,
we pick two pivots and partition the input into three groups. Partitioning takes time linear in
the size of what remains of the local input. Determining the total sizes of these groups across
all PEs is a sum all-reduction. We then recurse on the group that contains the target item.

The main difficulty is in picking the right pivots (function pickPivots). We adopt the mathe-
matical aspects of pivot selection—which ranks in the sample to choose—from Ref. [San98]
(see Section 2.2). The algorithmic parts, however, are somewhat different. Sanders’s [San98]
algorithm computes the pivots based on a sample of size O(√𝑝). There, this is easy since
the objects are randomly distributed in all levels of recursion. Here we can make no such
assumption and rather assume Bernoulli sampling with probability√𝑝/∑𝑖 ∣𝑠@𝑖∣. The resulting
sample has expected size√𝑝, but its exact size varies (though not bymore than a constant factor
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Algorithm 2.1 : Communication-efficient selection from unsorted sequences.
Input : 𝑠 = ⟨𝑠1,…⟩ a local sequence of objects, 𝑘 ∈ ℕ the target rank
Output : The 𝑘-th smallest object in 𝑠

1 Function select(𝑠, 𝑘)
2 if 𝑘 = 1 then return min𝑖(min𝑗 𝑠[𝑗])@𝑖 —base case: return global minimum
3 (ℓ, 𝑟) ∶= pickPivots(𝑠, 𝑘)
4 𝑎 ∶= ⟨𝑒 ∈ 𝑠 ∣ 𝑒 < ℓ⟩
5 𝑏 ∶= ⟨𝑒 ∈ 𝑠 ∣ ℓ ≤ 𝑒 ≤ 𝑟⟩
6 𝑐 ∶= ⟨𝑒 ∈ 𝑠 ∣ 𝑒 > 𝑟⟩ —partition
7 𝑛𝑎 ∶= ∑𝑖 ∣𝑎∣@𝑖, 𝑛𝑏 ∶= ∑𝑖 ∣𝑏∣@𝑖 —reduction
8 if 𝑛𝑎 ≥ 𝑘 then return select(𝑎, 𝑘)
9 if 𝑛𝑎 + 𝑛𝑏 < 𝑘 then return select(𝑐, 𝑘 − 𝑛𝑎 − 𝑛𝑏)

10 return select(𝑏, 𝑘 − 𝑛𝑎)

Input : 𝑠, 𝑘 as in select, 𝛿 a parameter in (0, 1/4) chosen freely
Output : ℓ, 𝑟, two pivots to use for selecting rank 𝑘

11 Function pickPivots(𝑠, 𝑘)
12 𝑛 ∶= ∑𝑖 ∣𝑠@𝑖∣ —global number of objects
13 Perform Bernoulli sampling with success probability 𝜌 =√𝑝/𝑛.
14 Spread samples uniformly over the PEs using hypercube routing with random targets.
15 Sort samples so that 𝑡𝑖 denote the 𝑖-th smallest sample —use fast inefficient sorting
16 (let 𝑡𝑖 = −∞ for 𝑖 ≤ 0, 𝑡𝑖 =∞ for 𝑖 > #samples).
17 𝑅 ∶= 𝑘/𝑛 ⋅ #samples —base rank for pivot choice, E[𝑅] = 𝑘√𝑝/𝑛
18 Δ ∶= #samples1/2+2𝛿 —distance between the samples chosen as pivots, E[Δ] = 𝑝1/4+𝛿
19 return (𝑡𝑅−Δ, 𝑡𝑅+Δ) —lower and upper pivot

with high probability). Although this can be done in time proportional to the local sample size
(see Section 2.1), we have to be careful because we have no guarantees on load balance in the
deeper levels of recursion. Since the items are arbitrarily distributed, what remains of the input
in some level of recursion might be so imbalanced that most samples come from the same
processor. To alleviate this, we spread the sample evenly over the PEs. On the spread sample,
we then use the fast inefficient sorting algorithm of Section 2.1, which runs in timeO(𝛼 log𝑝).

To spread the sample, we construct a hypercube over the 𝑝 PEs (adaptations for values of 𝑝
that are not powers of two exist, see, eg, Ref. [Kat88]) and determine a target PE for each sample
item uniformly at random. Then we route the items to their destination in log𝑝 steps with a
bit-fixing algorithm (see, eg, Ref. [MU17, Chapter 4.6.1]). This takes timeO(𝛽√𝑝 + 𝛼 log𝑝)
w.h.p. because items always make progress towards their target, and thus no PE can ever send
or receive more items than are in the sample, ie, more thanO(√𝑝) w.h.p.

By Section 2.2 and Ref. [San98], choosing 𝛿 = 1/6 ensures that the total problem size shrinks
by a factor ofΩ(𝑝1/3) in each level of recursion with high probability. Hence, after iteration 𝑖,
the local problem size is bounded by min(𝑛/𝑝, 𝑛/𝑝𝑖Ω(𝑝

1/3)
). Summing this over all iterations,
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2.3 Selection

we getO(𝑛/𝑝) work on each PE and logΩ(𝑝1/3)(𝑛/𝑝) ⊆ O(log𝑝 𝑛) levels of recursion with high
probability.

Of course, the boundO(𝛽𝑛/𝑝) also applies to communication volume. However, we also
know that even if all samples come from a single PE, the communication volume per level of
recursion is bounded by the sample size, which isO(√𝑝) w.h.p.

Finally, the number of startups can be limited toO(log𝑝) per level of recursion. Spreading
and sorting the sample both haveO(log𝑝) latency per level of recursion, as do the collective op-
erations used in the selection. Thus, we obtain a total latency ofO(log𝑝 log𝑝 𝑛) = O(log𝑛). ◻

Corollary 2.2 (Selection from Unsorted Sequences with Random Allocation)
If the elements are randomly distributed across the PEs, Algorithm 2.1 can be adapted to run in
timeO(𝑛/𝑝 + 𝛼 log𝑛) w.h.p.

Proof. The adaptation consists of removing the spreading of samples. All other steps commu-
nicate only a number of machine words that is subsumed by their latencies. ◻

Corollary 2.3 (Simplified Formula for Theorem 2.1)
If 𝛼 and 𝛽 are viewed as constants, the bound fromTheorem 2.1 reduces toO(𝑛/𝑝 + log𝑝).

Proof. The bound from Theorem 2.1 immediately reduces toO(𝑛/𝑝 + log𝑛) for constant 𝛼
and 𝛽. We can further simplify this by observing that when the log𝑛 term dominates 𝑛/𝑝,
then log𝑛 ∈ O(log𝑝). ◻

2.3.2 Selection from Locally Sorted Sequences
Selection on locally sorted input is easier than the unsorted problem from Section 2.3.1 since
we only have to consider the locally smallest objects and can locate keys in logarithmic time.
Indeed, this problemhas been studied as themultisequence selection problem [Var+91; SSP07]. A
particularly simple and intuitivemethod is based on an adaptation of thewell-known quickselect
algorithm [Hoa61; San+19]. Axtmann et al. [Axt+15, Section 4.1] also describe this algorithm
and state that ‘[t]his algorithm may be folklore’, and it has been on the slides of Sanders’ lecture
on parallel algorithms since at least 2008 [San08]. For self-containedness, we also give that
algorithm in Section 2.3.2.a), slightly adapting it to the needs of this dissertation. Subsequently,
in Section 2.3.2.b), we describe an algorithm that converges much faster if there is some
flexibility in the output rank, ie, the precise value of 𝑘 is allowed to vary in some range.

2.3.2.a) Multisequence Selection [Axt+15]

This algorithm needs running timeO(𝛼 log2 𝑘𝑝). It can be seen as a step backwards compared
to our algorithm from Section 2.3.1 as using a single random pivot forces us to do a deeper
recursion. We do that because it makes it easy to tolerate unbalanced input sizes in the deeper
recursion levels. However, it is possible to reduce the recursion depth to some extent by
choosing pivots more carefully and by using multiple pivots at once. We study this below for
a variant of the selection problem where we are flexible about the number 𝑘 of objects to be
selected.
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Algorithm 2.2 : Multisequence selection [Axt+15].
Input : 𝑠 = ⟨𝑠1,…⟩ a locally sorted sequence of objects, 𝑘 ∈ ℕ the target rank
Output : The 𝑘-th smallest object in the union of all PEs’ sequences 𝑠

1 Function msSelect(𝑠, 𝑘)
2 if ∑1≤𝑖≤𝑝 ∣𝑠@𝑖∣ = 1 then —base case
3 return the only nonempty object.
4 Jointly select a pivot 𝑣 uniformly at random.
5 Find 𝑗 so that 𝑠[1 .. 𝑗] < 𝑣 and 𝑠[𝑗 + 1 .. ∣𝑠∣] ≥ 𝑣. —eg, binary search on 𝑠[1 ..min(𝑘, ∣𝑠∣)]
6 if ∑1≤𝑖≤𝑝 ∣𝑗@𝑖∣ ≥ 𝑘 then
7 return msSelect(𝑠[1 .. 𝑗]], 𝑘)
8 else
9 return msSelect(𝑠[𝑗 + 1 .. ∣𝑠∣], 𝑘 −∑1≤𝑖≤𝑝 ∣𝑗@𝑖∣)

Algorithm 2.2 gives high-level pseudocode. The base case occurs if there is only a single
object (and 𝑘 = 1). We can also restrict the search to the first 𝑘 objects of each local sequence.
A random object is selected as a pivot. This can be done in parallel by choosing the same
random number between 1 and ∑𝑖 ∣𝑠@𝑖∣ on all PEs (eg, by agreeing on a common seed for
a pseudorandom number generator beforehand). Using a prefix sum over the sizes of the
sequences, this object can be located in time O(𝛼 log𝑝). Where ordinary quickselect has
to partition the input doing linear work, we can exploit the sortedness of the sequences to
obtain the same information in timeO(log𝜎) with 𝜎 ∶= max𝑖 ∣𝑠@𝑖∣ by doing binary search in
parallel on each PE. If items are evenly distributed, we have 𝜎 = Θ(min(𝑘, 𝑛/𝑝)), and thus
only timeO(logmin(𝑘, 𝑛/𝑝)) for the search, which partitions all the sequences into two parts.
Deciding whether we have to continue searching in the left or the right parts needs a global
reduction operation taking timeO(𝛼 log𝑝). As in ordinary quickselect, the expected depth
of the recursion is logarithmic in the number of total candidates, ie,O(log∑𝑖 ∣𝑠[1 .. 𝑘]@𝑖∣) ⊆
O(logmin(𝑘𝑝, 𝑛)). We obtain the following result.

Theorem 2.4 (Selection from Locally Sorted Sequences (msSelect) [Axt+15])
Algorithm 2.2 can be implemented to run in expected time

O((𝛼 log𝑝 + logmin(𝑛/𝑝, 𝑘)) ⋅ logmin(𝑘𝑝, 𝑛)) ⊆ O(𝛼 log2 𝑘𝑝) .

2.3.2.b) Selection from Locally Sorted Sequences with Flexible 𝑘

TheO(log2 𝑘𝑝) startups incurred in Theorem 2.4 can be reduced toO(log𝑝) if we are willing
to give up some control over the number of objects that are returned. We now accept two input
parameters 𝑘 and 𝑘, and the algorithm returns the 𝑘 smallest objects with 𝑘 ≤ 𝑘 ≤ 𝑘. We begin
with a simple algorithm that runs in logarithmic time if 𝑘 − 𝑘 ∈ Ω(𝑘) and then explain how to
refine that for the case 𝑘 − 𝑘 ∈ o(𝑘).
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(a) Step 1: Bernoulli sample of the input (in
blue), red box marks globally smallest sample.
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(b) Step 2: Fewer than 𝑘 elements—marked
in red—are smaller than the pivot.

Figure 2.1: Example of amsSelect showing a single level of the recursion. The algorithm
proceeds with a recursive call on the elements larger than the pivot, with 𝑘 and 𝑘 reduced
by the number of elements excluded from consideration.

The basic idea for the simple algorithm is to take a Bernoulli sample of the input using
a success probability of 1/𝑥 for some 𝑥 ∈ [𝑘 .. 𝑘] (Figure 2.1 (a)). Then, the expected rank
of the smallest sample object is 𝑥, ie, we have a truthful estimator for an object with the de-
sired rank. Moreover, this object can be computed efficiently if working with locally sorted
data: the local rank of the smallest local sample is geometrically distributed with parame-
ter 1/𝑥. Such a number can be generated in constant time (see Section 2.1). By computing the
global minimum of these locally smallest samples, we can get the globally smallest sample 𝑣
in timeO(𝛼 log𝑝). We can also count the exact number 𝑘 of input objects bounded by this
estimate in time O(log𝑘 + 𝛼 log𝑝)—we locate 𝑣 in each local data set in time O(log𝑘) and
then sum the found positions (Figure 2.1 (b)). If 𝑘 ∈ [𝑘 .. 𝑘], we are done. Otherwise, we can
use the acquired information as in any variant of quickselect.

At least in the recursive calls, 𝑘 can be close to the total (remaining) input size. Then it is a
better strategy to use a dual algorithm based on computing a global maximum of a Bernoulli
sample. In Algorithm 2.3 we give pseudocode for a combined algorithm which dynamically
chooses between these two cases. It is an interesting problemwhich value should be chosen for𝑥.
The formula used in Algorithm 2.3 maximises the probability that 𝑘 ∈ [𝑘 .. 𝑘]. Interestingly,
𝑥 ≠ 2/(𝑘 + 𝑘), ie, it is not optimal to aim for E[𝑘] = (𝑘 + 𝑘)/2. While the actual value, whose
derivation we give below, is close to the arithmetic mean when 𝑘/𝑘 ≈ 1, it is significantly smaller
otherwise. The reason for this asymmetry is that larger sampling rates decrease the variance of
the geometric distribution.

Theorem 2.5 (Approximate Selection from Locally Sorted Sequences (amsSelect))
If 𝑘 − 𝑘 ∈ Ω(𝑘), then amsSelect from Algorithm 2.3 finds the 𝑘 smallest elements with 𝑘 ≤ 𝑘 ≤ 𝑘
in expected timeO(log𝑘 + 𝛼 log𝑝).
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Algorithm 2.3 : Approximate multisequence selection.

Input : 𝑠 = ⟨𝑠1,…⟩ a locally sorted sequence of objects; 𝑘, 𝑘 ∈ ℕ upper and lower bounds
on the number of selected objects; 𝑛 = ∑𝑝𝑖=1 ∣𝑠@𝑖∣ ∈ ℕ the global input size

Output : The local part of the 𝑘 globally smallest objects for some 𝑘 ∈ ℕ with 𝑘 ≤ 𝑘 ≤ 𝑘
1 Function amsSelect(𝑠, 𝑘, 𝑘, 𝑛)
2 if 𝑘 < 𝑛 − 𝑘 then —min-based estimator

3 𝑥 ∶= ⌊(𝑘 − 𝑘 + 1) ln(rand())
ln((𝑘−1)/(𝑘))⌋ —𝑥 ∼ Geo(1 − ( 𝑘−1

𝑘
)

1
𝑘−𝑘+1
)

4 if 𝑥 > ∣𝑠∣ then 𝑣 ∶=∞ else 𝑣 ∶= 𝑠[𝑥]
5 𝑣 ∶= min1≤𝑖≤𝑝 𝑣@𝑖 —minimum reduction
6 else —max-based estimator

7 𝑥 ∶= ⌊(𝑘 − 𝑘 + 1) ln(rand())
ln((𝑛−𝑘)/(𝑛−𝑘+1))⌋ —𝑥 ∼ Geo(1 − ( 𝑛−𝑘𝑛−𝑘+1)

1
𝑘−𝑘+1
)

8 if 𝑥 > ∣𝑠∣ then 𝑣 ∶= −∞ else 𝑣 ∶= 𝑠[∣𝑠∣ − 𝑥 + 1]
9 𝑣 ∶= max1≤𝑖≤𝑝 𝑣@𝑖 —maximum reduction

10 Find 𝑗 so that 𝑠[1 .. 𝑗] ≤ 𝑣 and 𝑠[𝑗 + 1 .. ∣𝑠∣] > 𝑣. —eg, binary search on 𝑠[1 ..min(𝑘, ∣𝑠∣)]
11 𝑘 ∶= ∑1≤𝑖≤𝑝 ∣𝑗@𝑖∣ —sum all-reduction
12 if 𝑘 < 𝑘 then —recursion on larger elements
13 return 𝑠[1 .. 𝑗] ∪ amsSelect(𝑠[𝑗 + 1 .. ∣𝑠∣], 𝑘 − 𝑘, 𝑘 − 𝑘, 𝑛 − 𝑘)

14 else if 𝑘 > 𝑘 then —recursion on smaller elements
15 return amsSelect(𝑠[1 .. 𝑗], 𝑘, 𝑘, 𝑘)
16 else
17 return 𝑠[1 .. 𝑗]

Proof. One level of recursion takes timeO(𝛼 log𝑝) for collective communication operations
(min or max and sum reduction) and time O(log𝑘) with high probability for locating the
pivot 𝑣 using exponential search, as it is among the firstO(𝑘) items in each local list with high
probability. It remains to show that the expected recursion depth is constant.

We actually analyse a weaker algorithm that keeps retrying with the same parameters rather
than using recursion and that uses probe 𝑥 = 𝑘. We show that, nevertheless, there is a constant
success probability (ie, 𝑘 ≤ 𝑘 ≤ 𝑘 with constant probability). The rank of 𝑣 is geometrically
distributed with parameter 1/𝑥. The success probability becomes

P[𝑘 ≤ 𝑘 ≤ 𝑘] = (1 −
1
𝑘
)

𝑘−1
− (1 −
1
𝑘
)

𝑘

=
𝑘
𝑘 − 1

(1 −
1
𝑘
)

𝑘

− (1 −
1
𝑘
)

𝑘⋅ 𝑘𝑘
≈
1
𝑒
− 𝑒−

𝑘
𝑘 .

This is a positive constant if 𝑘 − 𝑘 ∈ Ω(𝑘), and the last simplification follows from the classic
formula 𝑒𝑥 = lim𝑛→∞ (1 + 1𝑛)

𝑛𝑥
. Since the actual value of 𝑥 is chosen to maximise the proba-
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bility that 𝑘 ≤ 𝑘 ≤ 𝑘 (see derivation below), our actual algorithm converges at least as fast as the
version analysed above. Thus, the expected recursion depth is constant. ◻

We now show the derivation of the formula used in Algorithm 2.3. Observe that 𝑘 ∈ [𝑘 .. 𝑘]
if and only if the rank of the first item in a Bernoulli sample with some success probability 𝜌 is
between 𝑘 and 𝑘. This rank follows a geometric distribution with parameter 𝜌, and therefore,
P[𝑘 ≤ 𝑎] = 1 − (1 − 𝜌)𝑎 for any 𝑎 ∈ ℕ. Thus, we obtain:

P[𝑘 ≤ 𝑘 ≤ 𝑘] = P[𝑘 ≤ 𝑘] − P[𝑘 < 𝑘]

= (1 − 𝜌)𝑘−1 − (1 − 𝜌)𝑘,

which we wish to maximise. Hence, we must set its derivative equal to zero and solve for 𝜌:

𝜕P[𝑘 ≤ 𝑘 ≤ 𝑘]
𝜕𝜌

= 𝑘(1 − 𝜌)𝑘−1 − (𝑘 − 1)(1 − 𝜌)𝑘−2 != 0

⇔ (1 − 𝜌)𝑘−2 (𝑘(1 − 𝜌)𝑘−𝑘+1 − 𝑘 + 1) = 0

⇔ (1 − 𝜌)𝑘−𝑘+1 =
𝑘 − 1
𝑘

⇔ 𝜌 = 1 − (
𝑘 − 1
𝑘
)

1
𝑘−𝑘+1
.

The second case follows analogously.

Additional Improvement: Multiple Concurrent Trials

Therunning time of Algorithm 2.3 is dominated by the logarithmic number of startup overheads
for the two reduction operations it uses. We can exploit that reductions can process multiple
items using little additional time. The idea is to execute 𝑑 copies of the pivot selection process
simultaneously, ie, taking 𝑑 Bernoulli samples of the input and computing 𝑑 estimates for an
object of rank 𝑥. If the rank of any of these estimates turns out to be between 𝑘 and 𝑘, the
recursion can be stopped. Otherwise, we solve a recursive instance consisting of those objects
enclosed by the largest underestimate and the smallest overestimate found.

Theorem 2.6 (amsSelect with Multiple Concurrent Trials)
If 𝑘 − 𝑘 ∈ Ω(𝑘/𝑑), an algorithm processing batches of 𝑑 Bernoulli samples can be implemented to
run in expected timeO(𝑑 log𝑘 + 𝛽𝑑 + 𝛼 log𝑝).

Proof. A single level of recursion takes expected time O(𝑑 log𝑘 + 𝛽𝑑 + 𝛼 log𝑝) for taking
𝑑 samples and two reductions on vectors of length 𝑑. The success probability for any single
sample isΩ(1/𝑑) analogous to the proof of Theorem 2.5: P[𝑘 ≤ 𝑘 ≤ 𝑘] ≈ 1/𝑒− exp(−𝑘/𝑘) is in
Ω(1/𝑑) for each sample if 𝑘 − 𝑘 ∈ Ω(𝑘/𝑑). Therefore, the probability that at least one of the 𝑑
independent samples is successful is a positive constant. The remainder of the analysis proceeds
as in Theorem 2.5, again retrying with the same parameters rather than using recursion. ◻

For example, setting 𝑑 = Θ(log𝑝), we obtain a total running time ofO(log𝑘 log𝑝 + 𝛼 log𝑝)
in expectation for an allowed variation of 𝑑 in the output rank.
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2.3.2.c) Adaptations for Exact Output Rank

In Section 2.3.2.a), we noted that the pivot choice in algorithm msSelect could be improved
to reduce the expected recursion depth. One possibility to construct such an algorithm is
setting 𝑘 = 𝑘 = 𝑘 in algorithm amsSelect, which we analyse in the following. We directly
observe that setting 𝑘 = 𝑘 simplifies the pivot choice formulae in Lines 3 and 7 of Algorithm 2.3
to 𝑥 ∶= ⌊ln(rand())/ ln(1 − 1/𝑘)⌋ and 𝑥 ∶= ⌊ln(rand())/ ln(1 − 1/(𝑛 − 𝑘 + 1))⌋, respectively.
These are geometrically distributed with parameters 1/𝑘 and 1/(𝑛 − 𝑘 + 1). The expected rank
of the smallest (or largest, respectively) sample is thus the target rank 𝑘. However, our previous
analysis, which computes the probability of hitting a rank between 𝑘 and 𝑘 without taking
recursion into account, is of no help if 𝑘 = 𝑘. Therefore, we now provide an analysis of amsSelect
for exact output rank.

Theorem 2.7 (amsSelect with Exact Output Rank)
When using amsSelect with 𝑘 = 𝑘 = 𝑘, its running time isO(log2 𝑘+𝛼 log𝑘 log𝑝) in expectation.

Proof. As observed above, the success probability of the sampling process becomes 1/𝑘 (with-
out loss of generality, we assume the min-based case for the remainder of the proof, and the
max-based case, where the success probability is 1/(𝑛 − 𝑘 + 1), follows symmetrically). Then
the expected rank of the smallest sample is 𝑘. Moreover, there is a constant probability that its
rank is larger than 𝑘 by a constant factor. Let𝑋 be the random variable describing the pivot’s
rank. Using the geometric distribution function’s cumulative distribution function, we obtain
that this probability is

P[𝑘 < 𝑋 ≤ 𝑐 ⋅ 𝑘] = P[𝑋 ≤ 𝑐 ⋅ 𝑘] − P[𝑋 ≤ 𝑘]

= (1 − 1/𝑘)𝑘 − (1 − 1/𝑘)𝑐⋅𝑘

≥ 𝑒−1 − 𝑒−𝑐 .

This is a positive constant for all 𝑐 > 1. Therefore, within a constant number of recursion levels
(or using a constant number of concurrent trials), we expect to have found a pivot that reduces
the problem size from 𝑛 to Θ(𝑘).

We also have a constant probability of the pivot’s rank being between 𝑞 ⋅ 𝑘 and 𝑘 for some
positive constant 𝑞. We can again use the geometric distribution’s cumulative distribution
function to compute the probability that the pivot’s rank is only a constant factor smaller
than 𝑘. Let 𝑞 ∈ (0, 1). Then P[𝑞 ⋅ 𝑘 < 𝑋 ≤ 𝑘] ≥ 𝑒−𝑞 − 𝑒−1 by the same derivation as above. This
probability is also a positive constant for all 𝑞 ∈ (0, 1). Therefore, we also expect the lower
bound to shrink by a constant factor within a constant number of recursive calls.

Thus, within an expected O(log𝑘) further levels of recursion, we will have solved the
problem completely. In total, the expected recursion depth is O(1 + log𝑘). Since the local
work per recursive call is bounded by O(log𝑘 + 𝛼 log𝑝) (Theorem 2.5), the claimed bound
follows. ◻

Of course, we can again use multiple concurrent trials to reduce the expected recursion
depth further.
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2.4 Application: Bulk Parallel Priority Queues
We build a global bulk-parallel priority queue from local sequential priority queues as in
Refs. [KZ93; San98], but never actually move elements. This immediately implies that insertions
simply go to the local queue and thus require onlyO(log𝑛) time without any communication.
Of course, this complicates operation deleteMin∗. The number of elements to be retrieved from
the individual local queues can vary arbitrarily, and the set of elements stored locally is not at
all representative for the global content of the queue. We can not even afford to individually
remove the objects returned by deleteMin∗ from their local queues.

To fulfil these requirements, we replace the ordinary priority queues used by Sanders [San98]
with search tree data structures that support insertion, deletion, selection and ranking of objects
as well as splitting and joining trees in logarithmic time (see also Section 1.3.4). To become
independent of the actual tree size of up to 𝑛, we furthermore augment the trees with two arrays
storing the path to the smallest and largest object respectively. To access an element with rank
𝑖 ≤ 𝑛/2, we thus jump directly to position ⌈log𝑛⌉ − ⌈log 𝑖⌉ of the former path (for 𝑖 > 𝑛/2, jump
to position ⌈log𝑛⌉ − ⌈log(𝑛 − 𝑖)⌉ of the latter path). This allows us to skip the search for the
leftmost (rightmost) subtree in which the item is located. Thus, we can restrict the search to
a subtree of height O(logmin(𝑖, 𝑛 − 𝑖)) in constant time. Because we only require access to
items with rank up to 𝑘 here, this way, all required operations can be implemented to run in
time O(logmin(𝑘, 𝑛 − 𝑘)) rather than O(log𝑛) (without loss of generality, we shall assume
𝑘 < 𝑛 − 𝑘 for the remainder of this section).

Operation deleteMin∗ now becomes very similar to the multi-sequence selection algorithms
from Section 2.3.2. The only difference is that instead of sorted arrays, we are now working
on search trees. This implies that selecting a local object with specified local rank (during
sampling) now takes timeO(log𝑘) rather than constant time. However, asymptotically, this
makes no difference since, for any such selection step, we also perform a ranking step, which
takes timeO(log𝑘) anyway in both representations.

One way to implement the recursion in the selection algorithms is via splitting. Since the
split operation is destructive, after returning from the recursion, we have to reassemble the
previous state using a join operation. This allows us to keep the description simple. Another way
that is faster and simpler to implement in practice is to represent a subsequence of 𝑠 by 𝑠 itself
plus cursor information specifying rank and key of the first and last object of the subsequence.

Now, we obtain the following by applying our results on selection from Section 2.3.2.

Corollary 2.8 (Bulk Deletion from Parallel Priority Queues)
Operation deleteMin∗ can be implemented to run in the following expected times. With fixed
batch size 𝑘, expected time O(log2 𝑘 + 𝛼 log𝑘 log𝑝) suffices. For flexible batch sizes in [𝑘 .. 𝑘]
with 𝑘− 𝑘 ∈ Ω(𝑘), we need expected timeO(log𝑘+𝛼 log𝑝). For 𝑘− 𝑘 ∈ Ω(𝑘/𝑑), expected time
O(𝑑 log𝑘 + 𝛽𝑑 + 𝛼 log𝑝) is sufficient.

Note that flexible batch sizes might be adequate for many applications. For example, the
parallel branch-and-bound algorithm from Ref. [San98] can easily be adapted: in iteration 𝑖 of
its main loop, it deletes the smallest 𝑘𝑖 ∈ O(𝑝) elements (tree nodes) from the queue, expands
these nodes in parallel, and inserts newly generated elements (child nodes of the processed
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nodes). Let 𝐾 = ∑𝑖 𝑘𝑖 denote the total number of nodes expanded by the parallel algorithm,
define 𝑚 as the number of nodes expanded by a sequential best first algorithm, and let ℎ be
the length of the path from the root to the optimal solution. The original algorithm, deleting
exactly 𝑝 elements in each iteration, needs at most𝑚/𝑝+ℎ iterations. This bound also holds for
our algorithm: because we never expand fewer nodes than the original algorithm, we require
at most as many iterations. Therefore, we obtain a bound of 𝐾 = 𝑚 +O(ℎ𝑝) on the number of
nodes expanded by our adaptation. Note also that a typical branch-and-bound computation
will insert significantly more nodes than it removes—the remaining queue is discarded after
the optimal solutions are found. Hence, the local insertions of our communication-efficient
queue are a big advantage over previous algorithms, which move all nodes [KZ93; San98].

In Section 3.7, we use this bulk-parallel priority queue to construct an efficient distributed
reservoir sampling for uniform and weighted inputs.

2.5 Top-𝑘Most Frequent Objects
We describe two probably approximately correct (PAC) algorithms to compute the top-𝑘most
frequent objects of a multiset𝑀 with ∣𝑀∣ = 𝑛, followed by a probably exactly correct (PEC)
algorithm for suitable inputs. Sublinear communication is achieved by transmitting only a
small random sample of the input. For bound readability, we assume that𝑀 is distributed
over the 𝑝 PEs such that no PE has more thanO(𝑛/𝑝) objects. This is not restricting, as the
algorithms’ running times scale linearly with the maximum fraction of the input concentrated
at one PE.

We express the algorithms’ error relative to the total input size 𝑛. This is reasonable—
consider a large input where 𝑘 objects occur twice, and all others once. If we expressed the
error relative to the objects’ frequencies, the problem could not be solved in a communication-
efficient way for such inputs. Thus, we refer to the algorithms’ absolute error as 𝐸, which we
define as the count of the most frequent object that was missed by the algorithm minus that of
the least frequent object that was erroneously output. If the result is exact, then 𝐸 = 0. With
this definition, the relative error 𝑒 becomes 𝐸/𝑛. Let 𝛿 limit the probability that the output
exceeds bound 𝜀, ie, P[𝑒 > 𝜀] ≤ 𝛿. We then refer to the result as an (𝜀, 𝛿)-approximation.

2.5.1 Basic Approximation Algorithm
First, we take a Bernoulli sample of the input. Sampling is done locally. The frequencies of the
sampled objects are counted using distributed hashing—a local object count with key 𝑘 is sent to
PE ℎ(𝑘) for a hash function ℎ that we here expect to behave like an idealised random function.
Sending uses a specialised all-to-all collective communication operation. We then select the 𝑘
most frequently sampled objects using the unsorted selection algorithm from Section 2.3.1. An
example is illustrated in Figure 2.2.

Theorem 2.9 (Most Frequent Objects, Probably Approximately Correct Algorithm)
AlgorithmPAC can be implemented to compute an (𝜀, 𝛿)-approximation of the top-𝑘most frequent
objects in expected timeO(𝛽 log𝑝𝑝𝜀2 log 𝑘𝛿 + 𝛼 log𝑛).
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Figure 2.2: Example for our PAC top-𝑘most frequent objects algorithm. Top: input dis-
tributed over four PEs, sampled elements (𝜌 = 0.3) highlighted in red. Bottom: distributed
hash table counting the samples. The 𝑘 = 5most frequent objects, highlighted in red, are
to be returned after scaling with 1/𝜌. Estimated result: (𝐸, 17), (𝐴, 13), (𝑇, 10), (𝐼, 10),
(𝑂, 10). Exact result: (𝐸, 16), (𝐴, 10), (𝑇, 10), (𝐼, 9), (𝐷, 8). Object 𝐷 was missed, in-
stead 𝑂 (count 7) was returned. Thus, the algorithm’s error is 8 − 7 = 1 here.

To prove this theorem, we first consider a fixed sampling probability, and show the resulting
running time in Lemma 2.10 and error in Lemma 2.11. By solving the error formula for the
required sample size, we obtain the final piece of the puzzle.

Lemma 2.10 (Most Frequent Objects, Algorithm PAC Running Time)
For sampling probability 𝜌, Algorithm PAC runs inO(𝛽 𝑛𝜌𝑝 log𝑝 + 𝛼 log𝑛) time in expectation.

Proof. Bernoulli sampling is done in timeO(𝑛𝜌/𝑝) with high probability by generating skip
values with a geometric distribution using success probability 𝜌 (see Section 2.1). Since the
number of sample elements in a Bernoulli sample is a random variable, so is the running time.
Each PE’s local sample has sizeO(𝑛𝜌/𝑝) with high probability by a simple application of the
Chernoff bound of Equation (1.2).3

To count the sampled objects, each PE aggregates its local samples in a hash table, counting
the occurrence of each sample object during the sampling process. It inserts its share of the
sample into a distributed hash table [SM13] whose hash function we assume to behave like

3We can also bound the maximum size of any PE to at mostO(𝑛𝜌/𝑝 + log𝑝) with high probability. To obtain
this bound, apply a Normal approximation to the per-PE sample sizes, which are binomially distributed. Then
we can apply a bound on the maximum of 𝑝 i.i.d. Normal random variables, similar to the process used in the
proof of Theorem 3.18.
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a random function, thus distributing the objects randomly among the PEs. The elements are
communicated using indirect delivery to maintain logarithmic latency. To reduce communi-
cation volume, the incoming sample counts are merged with a hash table in each step of the
reduction. Because each item’s destination is random, this ensures that every item’s occurrences
are aggregated directly. This keeps the expected size of these messages toO(𝑛𝜌/𝑝). Therefore,
the entire distributed hash table insertion process takes time O(𝛽𝑛𝜌/𝑝 ⋅ log𝑝 + 𝛼 log𝑝) in
expectation.

From this hash table, we select the object with rank 𝑘 using Algorithm 2.1 in expected time
O(𝛽𝑛𝜌/𝑝 + 𝛼 log𝑛𝜌). This pivot is broadcast to all PEs, which then determine their subset of
at least as frequent sample objects in expected time O(𝑛𝜌/𝑝 + 𝛼 log𝑝). These elements are
returned. Overall, the claimed time complexity follows using the estimates 𝑝 ≤ 𝑛 and 𝑛𝜌 ≤ 𝑛 to
simplify the 𝛼-term. ◻

Lemma 2.11 (Most Frequent Objects, Algorithm PAC Error Bounds)
Let 𝜌 ∈ (0, 1) be the sampling probability. Then, Algorithm PAC’s absolute error 𝐸 exceeds a
value of Δ with probability

P[𝐸 ≥ Δ] ≤ 𝑛 ⋅ exp(−
Δ2𝜌𝑘
12𝑛
) + 𝑘 ⋅ exp(−

Δ2𝜌
8𝑛
).

Proof. We bound the error probability as follows: the probability that the absolute error 𝐸
exceeds some value Δ is at most 𝑛 times the probability that a single object’s value estimate
deviates from its true value by more than Δ/2 in either direction. For non-top-𝑘 objects,
our concern is the possibility of overestimation, while for top-𝑘 objects, underestimation is
interesting. These probabilities can be bounded using Chernoff bounds. We denote the count
of element 𝑗 in the input by 𝑥𝑗 and in the sample by 𝑠𝑗. Further, let 𝐹𝑗 be the probability that
the error for element 𝑗 exceeds Δ/2 in either direction. Let 𝑗 ≥ 𝑘, and observe that 𝑥𝑗 ≤ 𝑛/𝑘.
Using Equation (1.2) with𝑋 = 𝑠𝑗, E[𝑋] = 𝜌𝑥𝑗, and 𝜑 = Δ2𝑥𝑗 , we obtain:

𝐹𝑗 ≤ P[𝑠𝑗 ≥ 𝜌(𝑥𝑗 +
Δ
2
)] ≤ exp(−

Δ2𝜌𝑘
12𝑛
)

This leaves us with the most frequent 𝑘−1 elements, whose counts can be bounded as 𝑥𝑗 ≤ 𝑛.
As overestimating them is not a concern, we apply the Chernoff bound in Equation (1.1) and
obtain P[𝑠𝑗 ≤ 𝜌 (𝑥𝑗 − Δ2 )] ≤ exp(−

Δ2𝜌
8𝑛 ). In sum, all error probabilities add up to the claimed

value. ◻

We bound this result by an error probability 𝛿. This allows us to calculate the minimum
required sampling probability given 𝛿 and Δ = 𝜀𝑛. Solving the above equation for 𝜌 yields

𝜌𝑛 ≥
4
𝜀2
⋅max(
3
𝑘

ln
2𝑛
𝛿
, 2 ln
2𝑘
𝛿
), (2.1)

which is dominated by the latter term in most cases and yields 𝜌𝑛 ≥ 8𝜀2 ln
2𝑘
𝛿 for the expected

sample size.
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Proof (Theorem 2.9). Equation (2.1) yields 𝜌𝑛 = O( 1𝜀2 log
𝑘
𝛿). The claimed running time

bound then follows from Lemma 2.10. ◻

Note that if we can afford to aggregate the local input, we can also use the Sum Aggregation
algorithm from Section 2.6 and associate a value of 1 with each object.

2.5.2 Increasing Communication Efficiency
Sample sizes proportional to 1/𝜀2 quickly become unacceptably large as 𝜀 decreases. To remedy
this, we iterate over the local input a second time and count themost frequently sampled objects’
occurrences exactly. This allows us to reduce the sample size and improve communication
efficiency at the cost of increased local computation. We call this Algorithm EC for exact
counting. Again, we begin by taking a Bernoulli sample. Then we find the 𝑘∗ ≥ 𝑘 globally most
frequent objects in the sample using the unsorted selection algorithm from Section 2.3.1, and
count their frequency in the overall input exactly. The identity of these objects is broadcast to
all PEs using an all-gather (gossiping, all-to-all broadcast) collective communication operation.
After local counting, a global reduction sums up the local counts to exact global values. The 𝑘
most frequent of these are then returned.

Lemma 2.12 (Most Frequent Objects, Exact Counting Size)
When counting the 𝑘′ most frequently sampled objects’ occurrences exactly, choosing 𝜌 for an
expected sample size of 𝑛𝜌 = 2𝜀2𝑘′ ln

𝑛
𝛿 suffices to ensure that the result of Algorithm EC is an (𝜀, 𝛿)-

approximation of the top-𝑘most frequent objects.

Proof. With the given error bounds, we can derive the required sampling probability 𝜌 simil-
arly as in Lemma 2.11. However, we need not consider overestimation of the 𝑘′ most frequent
objects, as their counts are known exactly. We can also allow the full margin of error towards
underestimating their frequency (Δ instead of Δ/2) and can ignore overestimation. This way,
we obtain a total expected sample size of 𝜌𝑛 ≥ 2/(𝜀2𝑘′) ⋅ ln(𝑛/𝛿). ◻

We can now calculate the value of 𝑘′ that minimises the total communication volume
and obtain 𝑘∗ = max(𝑘, 1𝜀

√
2 log𝑝
𝑝 ln 𝑛𝛿 ). Substituting this into the sample size equation of

Lemma 2.12 and adapting the running time bound of Lemma 2.10 then yields the following
theorem.

Theorem 2.13 (Most Frequent Objects, Exact Counting Algorithm)
Algorithm EC can be implemented to compute an (𝜀, 𝛿)-approximation of the top-𝑘most frequent
objects inO( 𝑛𝑝 + 𝛽

1
𝜀

√
log𝑝
𝑝 ⋅ log

𝑛
𝛿 + 𝛼 log𝑛) time in expectation.

Proof. Sampling and hashing are done as in Algorithm PAC (Section 2.5.1), with the sampling
probability of Lemma 2.12 and 𝑘′ = 𝑘∗. From the resulting distributed hash table, we select
the object with rank 𝑘∗ = max (𝑘, 1𝜀

√
2 log𝑝
𝑝 ln 𝑛𝛿) as a pivot. This requires expected time

O(𝛽 𝑛𝜌𝑝 + 𝛼 log𝑛𝜌) using Algorithm 2.1. The pivot is broadcast to all PEs, which then determine

39



2 Selection Problems

their subset of at least as frequent sample objects usingO(𝑛𝜌/𝑝 + 𝛼 log𝑝) time in expectation.
Next, these 𝑘∗ most frequently sampled objects are distributed to all PEs using an all-gather
operation in timeO(𝛽𝑘∗ + 𝛼 log𝑝). Now, the PEs count the received objects’ occurrences in
their local input, which takesO(𝑛/𝑝) time. These counts are summed up using a vector-valued
reduction, again requiringO(𝛽𝑘∗ + 𝛼 log𝑝) time. We then apply Algorithm 2.1 a second time
to determine the 𝑘most frequent of these objects. Overall, the claimed time complexity follows
by substituting 𝑘∗ for 𝑘′ in the sampling probability from Lemma 2.12. ◻

Substituting the value of 𝑘∗ from before then yields 𝜌𝑛 = 1/𝜀 ⋅
√

𝑝/ log𝑝 ⋅ ln(𝑛/𝛿) for the
total required sample size of Algorithm EC. Note that this term grows with 1/𝜀 instead of 1/𝜀2,
reducing per-PE communication volume toO( 1𝜀

√
log𝑝
𝑝 log 𝑛𝛿)machine words in expectation.

To continue the example from Figure 2.2, we may set 𝑘∗ = 8. Then, the 𝑘∗ most frequently
sampled objects (𝐸,𝐴,𝑇, 𝐼,𝑂,𝐷,𝐻, 𝑆) with (16, 10, 10, 9, 7, 8, 7, 6) occurrences, respectively,
will be counted exactly. The result would now be correct.

Note that Algorithm EC can be less communication-efficient than Algorithm PAC if 𝜀 is
large, ie, the result is very approximate. Then, 𝑘∗ can be prohibitively large, and the necessity to
communicate the identity of the objects to be counted exactly, requiring timeO(𝛽𝑘∗ + 𝛼 log𝑝),
can cause a loss in communication efficiency.

2.5.3 Probably Exactly Correct Algorithm
Up until now, our algorithms are independent of the characteristics of the input. However, this
makes it hard to design communication-efficient algorithms that are probably exactly correct,
ie, algorithms that are exactly correct with probability at least 1 − 𝛿 for some 𝛿 > 0. This is
because there might be numerous items with very similar counts, and distinguishing them with
a sample-based approach would require excessive sample sizes to give good guarantees. We can
work around this if we can assume that the frequency distribution of the objects has some kind
of gap (see Figure 2.3 for an illustration). Then, there is a limited number of relevant objects,
which we can identify in the sample, and on which we can then perform exact counting to
obtain a probably exactly correct result. Thus, choose 𝑘∗ to ensure that the top-𝑘most frequent
objects in the input are among the top-𝑘∗ most frequent objects in the sample with probability
at least 1 − 𝛿.

A probably exactly correct (PEC) algorithm to compute the top-𝑘most frequent objects of a
multiset whose frequency distribution has a sufficient gap can therefore be formulated as follows.
Take a small sample with sampling probability 𝜌0, the value of which we will consider later.
From this small sample, we deduce the required value of 𝑘∗ to fulfil the above requirements.
Now, we apply Algorithm EC using this value of 𝑘∗. Let 𝑥𝑖 be the object of rank 𝑖 in the input,
and ̂𝑠𝑗 that of rank 𝑗 in the small sample.

Lemma 2.14 (Most Frequent Objects, Algorithm PEC Parameter Choice)
It suffices to choose 𝑘∗ in such a way that ̂𝑠𝑘∗ ≤ 𝜌0𝑥𝑘 −

√

2𝜌0𝑥𝑘 ln 𝑘𝛿 = E[ ̂𝑠𝑘] −
√

2E[ ̂𝑠𝑘] ln 𝑘𝛿 to
ensure that the result of Algorithm PEC is correct with probability at least 1 − 𝛿.
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Figure 2.3: Example of a distribution with a gap. The dashed lines indicate the upper and
lower high-probability bounds on 𝑥𝑖 estimated from the sample.

Proof. For the result to be incorrect, a top-𝑘 object must not be part of the top-𝑘∗ objects
of the sample, causing it to be eliminated before exact counting. We use the Chernoff bound
of Equation (1.1) to bound the probability that this happens. Define ̂𝑠(𝑥𝑖) as the number of
samples of the object with input rank 𝑖 in the first sample, and 𝑥( ̂𝑠𝑗) to be the exact number
of occurrences in the input of the object with rank 𝑗 in the first sample. Using 𝑋 = ̂𝑠(𝑥𝑘),
E[𝑋] = 𝜌0𝑥𝑘, and 𝜑 = 1 − ̂𝑠𝑘∗/(𝜌0𝑥𝑘), we obtain

𝑘
∑
𝑗=1

P[ ̂𝑠(𝑥𝑗) ≤ ̂𝑠𝑘∗] ≤ 𝑘 ⋅ P[ ̂𝑠(𝑥𝑘) ≤ ̂𝑠𝑘∗]

≤ 𝑘 ⋅ exp
⎛

⎝

−(1 −
̂𝑠𝑘∗
𝜌0𝑥𝑘

)

2 𝜌0𝑥𝑘
2
⎞

⎠

.

We bound this value by the algorithm’s error probability 𝛿 and solve for ̂𝑠𝑘∗ , which yields the
claimed value. ◻

This only works for distributions with a sufficient gap, as otherwise, 𝑘∗ ≫ 𝑘 would be
necessary. Furthermore, the choice of 𝜌0 presents a trade-off between the time and commu-
nication spent on the first sample and the exactness of 𝑘∗, which we have to estimate more
conservatively if the first sample is small. This is due to less precise estimations of E[ ̂𝑠𝑘] = 𝜌0𝑥𝑘
if 𝜌0 is small. To keep things simple, we can choose a relative error bound 𝜀0 and use the sample
size from our PAC algorithm of Theorem 2.9. The value of 𝜀0—and thus, 𝜌0—that minimises
the communication volume depends on the distribution of the input data.

Theorem 2.15 (Most Frequent Objects, Probably Exactly Correct Algorithm)
If the value of 𝑘∗ computed from Lemma 2.14 satisfies 𝑘∗ ∈ O(𝑘), then Algorithm PEC requires
time asymptotically equal to the sum of the running times of algorithms PAC and EC from
Theorems 2.9 and 2.13.

Proof. In the first sampling step, we are free to choose an arbitrary relative error tolerance 𝜀0.
The running time of this stage isO(𝛽 log(𝑝)/(𝑝𝜀20) ⋅ log(𝑛/𝛿) + 𝛼 log𝑛) by Theorem 2.9. We
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then estimate 𝑘∗ by substituting the high-probability bound E[ ̂𝑠𝑘] ≥ ̂𝑠𝑘 −
√

2 ̂𝑠𝑘 ln(1/𝛿) (w.h.p.)
for its expected value in Lemma 2.14 (note that as ̂𝑠𝑘 increases with growing sample size and
thus grows with falling 𝜀0, the precision of this bound increases). In the second stage, we
can calculate the required value of 𝜀 from 𝑘∗ by solving the expression for 𝑘∗ in the proof
of Theorem 2.13 for 𝜀, and obtain 𝜀 = 1/𝑘∗ ⋅

√

2 log(𝑝)/𝑝 ⋅ log(𝑛/𝛿). Since 𝑘∗ ∈ O(𝑘) by
assumption, the second stage’s running time is as in Theorem 2.13. In sum, the algorithm
requires the claimed running time. ◻

Zipfian Inputs. Wenowconsider a concrete distribution, namely inputs distributed according
to Zipf ’s law (see Section 2.1). The objects in such an input have a power-law frequency
distribution and fulfil the gap requirements above. We obtain the following result:

Theorem 2.16 (Most Frequent Objects, Algorithm PEC for Power-Law Inputs)
For inputs distributed according to Zipf ’s law with exponent 𝑠, a sample size of 𝜌𝑛 = 4𝑘𝑠𝐻𝑛,𝑠 ln 𝑘𝛿
is sufficient to compute a probably exactly correct result. Algorithm PEC then requires expected
timeO( 𝑛𝑝 + 𝛽

log𝑝
𝑝 𝑘
𝑠𝐻𝑛,𝑠 log 𝑘𝛿 + 𝛼 log𝑛) to compute the 𝑘most frequent objects with probability

at least 1 − 𝛿.

Proof. Knowing the value distribution, we do not need to take the first sample. Instead, we
can calculate the expected value of 𝑘∗ directly from the proof of Lemma 2.14 and obtain

E[𝑘∗] = 𝑘
⎛

⎜

⎝

1 −

¿

Á
ÁÀ
2 ln 𝑘𝛿
𝜌𝑥𝑘

⎞

⎟

⎠

−1/𝑠

.

This immediately yields 𝜌 > 2𝑥𝑘 ln
𝑘
𝛿 , and we choose 𝜌 = 4𝑥𝑘 ln

𝑘
𝛿 = 4

𝑘𝑠𝐻𝑛,𝑠
𝑛 ln 𝑘𝛿 , ie, twice the

required minimum value. This gives us the claimed sample size. Now, we obtain E[𝑘∗] =
𝑘 (2 +

√

2)1/𝑠. In particular, 𝑘∗ is only a constant factor away from 𝑘. Plugging the above
sampling probability into the running time formula for our algorithm using exact counting,
we obtain the exact top-𝑘most frequent objects with probability at least 1 − 𝛿 in the claimed
running time. ◻

Note that the number of frequent objects decreases sharply with 𝑠 > 1, as the 𝑘-th most
frequent one has a relative frequency of onlyO(𝑘−𝑠). The 𝑘𝑠𝐻𝑛,𝑠 term in the communication
volume is thus small in practice, and, in fact, unavoidable in a sampling-based algorithm. We
can easily convince ourselves of this by observing that this factor is the reciprocal of the 𝑘-th
most frequent object’s relative frequency. This object needs at least one occurrence in the sample
for the algorithm to be able to find it. Thus, the sample size must be in Ω(𝑘𝑠𝐻𝑛,𝑠).

2.5.4 Refinements
We now discuss potential refinements that might prove worthwhile when implementing such
an algorithm in practice.
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Choice of 𝑘∗. In practice, the choice of 𝑘∗ in Section 2.5.2 depends on the communication
channel’s characteristics 𝛽, and, to a lesser extent, 𝛼, in addition to the problem parameters.
Thus, an optimised implementation should take them into account when determining the
number of objects to be counted exactly. However, this will likely have to be done empirically.

Using Distributed Bloom Filters. Communication efficiency of the algorithm using exact
counting could be improved further by counting sample elements with a distributed single-shot
bloom filter (dSBF) [SM13] instead of a distributed hash table. We transmit their hash values
and locally aggregated counts. As multiple keys might be assigned the same hash value, we
need to determine the element of rank 𝑘∗ + 𝜅 instead of 𝑘∗, for some safety margin 𝜅 > 0. We
request the keys of all elements with higher rank, and replace the (hash, value) pairs with (key,
value) pairs, splitting them where hash collisions occurred. Now, we need to determine the
element of rank 𝑘∗ among the 𝑘∗ + 𝜅 +#collisions elements so obtained. If an element whose
rank is at most 𝑘∗ was part of the original 𝑘∗ + 𝜅 elements, we are finished. Otherwise, we
have to increase 𝜅 to determine the missing elements. Observe that if the frequent objects are
dominated by hash collisions, this implies that the input distribution is flat and that numerous
nearly equally frequent elements exist. Thus, we may not need to count additional elements in
this case.

2.6 Top-𝑘 SumAggregation

Generalising from Section 2.5, we now consider an input multiset of keys with associated
non-negative counts and ask for the 𝑘 keys whose counts have the largest sums. Again, the
input𝑀 is assumed to be spread over the 𝑝 PEs such that no PE has more thanO(𝑛/𝑝) objects.
Define 𝑚 ∶= ∑(𝑘,𝑣)∈𝑀 𝑣 as the sum of all counts, and let no PE’s local sum exceed O(𝑚/𝑝).4
Errors are now expressed relative to 𝑚. We additionally assume that the local input and a
key-aggregation thereof—eg, a hash table mapping keys to their local sums—fit into RAM at
every PE.

It is easy to see that except for the sampling process, the algorithms of Section 2.5 carry over
directly, but a different approach is required in the analysis.

Pseudo-Sampling. Since the items now have weights, the Bernoulli sampling approach used
in Section 2.5 is no longer viable. However, we do not use its weighted equivalent, Poisson
sampling (see Section 3.6, because it would make bounding the algorithm’s error much harder.
Instead, we use a ‘pseudo-sampling’ technique that ensures that the difference between an item’s
expected and actual sample count is bounded in a certain way.

Let 𝑠 be the desired size of the sample and define 𝑣avg ∶= 𝑚/𝑠 as the expected count required
to yield a sample. When sampling an object (𝑘, 𝑣), its expected sample count is thus 𝑣/𝑣avg. To

4This assumption is not strictly necessary, and the algorithm would still be communication-efficient without it.
However, making this assumption allows us to limit the expected number of samples transmitted by each PE as
O(𝑠/𝑝) for global sample size 𝑠. To violate this criterion, a small number of PEs would have to hold Ω(𝑠/𝑝)
elements that are likely to yield at least one sample, making up for a large part of the global sample size without
contributing to the result. In such a rare setting, we would incur up to a factor of 𝑝 in communication volume
and obtain running timeO( 𝑛𝑝 + 𝛽

log𝑝
𝜀

√

𝑝 log 𝑛𝛿 + 𝛼 log𝑛).
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retain constant time per object, we add ⌊𝑣/𝑣avg⌋ pseudo-samples directly, and one additional
sample with probability 𝜌 = 𝑣/𝑣avg − ⌊𝑣/𝑣avg⌋ using a Bernoulli trial. Previously, we used a
geometric distribution to reduce the number of calls to the random number generator. Now, we
need to use its continuous analogue, the exponential distribution, which describes the distance
between events occurring independently at a certain fixed rate (in this case, 𝑣avg). Thus, because
the 𝜌 are already normalised, the total amount of residual sample probability, ie, how much of
the value of the 𝜌, to be skipped before an item is sampled can be computed as − ln(rand()).

To improve accuracy and speed up exact counting, we aggregate the local input in a hash
table and sample the aggregate counts. This allows us to analyse the algorithms’ error indepen-
dent of the input objects’ distribution. A direct consequence is that for each key and PE, the
number of samples deviates from its expected value by at most 1, and the overall deviation per
key ∣𝑠𝑖 − E[𝑠𝑖]∣ is at most 𝑝.

Probably Approximately Correct Algorithms. Sampling is done using local aggregation as
described in the paragraph above. From then on, we proceed exactly as in Algorithm PAC from
Section 2.5.1. We obtain the following theorem:

Theorem 2.17 (Sum Aggregation, Probably Approximately Correct Algorithm)
We can compute an (𝜀, 𝛿)-approximation of the top-𝑘 highest summing items in expected time
O(
𝑛
𝑝 + 𝛽

log𝑝
𝜀

√
1
𝑝 log
𝑛
𝛿 + 𝛼 log𝑛).

Proof. The part of an element’s sample count that is determined by sampling is the sum of
up to 𝑝 Bernoulli trials𝑋1,… ,𝑋𝑝 with differing success probabilities. Therefore, its expected
value 𝜇 is the sum of the probabilities, and we can use Hoeffding’s inequality (Equation (1.3))
to bound the probability of significant deviations from this value. Let𝑋 ∶= ∑𝑝𝑖=1𝑋𝑖. Then,

P[∣𝑋 − 𝜇∣ ≥ 𝑡] ≤ 2𝑒−
2𝑡2
𝑝 . (2.2)

We now use this to bound the likelihood that an object has been verymis-sampled. Consider
an element 𝑗 with exact sum 𝑥(𝑗) and sample sum 𝑠𝑗. For some threshold Δ, consider the
element mis-sampled if ∣𝑥(𝑗) − 𝑠𝑗𝑣avg∣ ≥ Δ/2, ie, its estimated sum deviates from the true value
by more than Δ/2 in either direction. Thus, we substitute 𝑡 = Δ/(2𝑣avg) into Equation (2.2)
and bound the result by 𝛿/𝑛 to account for all elements. Solving for the expected sample size
𝑠 = 𝑚/𝑣avg, we obtain 𝑠 ≥ 𝜀−1

√

2𝑝 ln(2𝑛/𝛿).
In total, we require timeO(𝑛/𝑝) for sampling,O(𝛽𝑠/𝑝 ⋅ log𝑝 + 𝛼 log𝑝) for insertion (as

no PE’s local sum exceedsO(𝑚/𝑝), none will yield more thanO(𝑠/𝑝) samples in expectation),
andO(𝛽𝑠/𝑝 + 𝛼 log𝑛) for selection. We then obtain the claimed bound as the sum of these
components. ◻

As in Section 2.5, we can use exact summation to obtain a more precise answer. We do
not go into details here, as the procedure is nearly identical. The main difference is that a
lookup in the local aggregation result now suffices to obtain exact local sums without requiring
consultation of the input.
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Figure 2.4: Example of the Zipf ’s law input distribution used for selection for five PEs
using 100 object keys and 𝑛 = 1000.

2.7 Experimental Evaluation
We now present an experimental evaluation of the unsorted selection from Section 2.3.1 and
the top-𝑘most frequent objects algorithms from Section 2.5.

Experimental Setup. All algorithms were implemented in C++11 using OpenMPI 1.8 and
Boost.MPI 1.59 for inter-process communication. Additionally, Intel’s Math Kernel Library
in version 11.2 was used for random number generation. All code was compiled with the
clang++ compiler in version 3.7 using optimisation level -Ofast -march=sandybridge. The
experiments were conducted on InstitutsCluster II at Karlsruhe Institute of Technology, a
distributed system consisting of 480 computation nodes, of which 128 were available to us.
Each node is equipped with two Intel Xeon E5-2670 processors for a total of 16 cores with a
nominal frequency of 2.6 GHz, and 64GiB of main memory. In total, 2048 cores were available
to us. An InfiniBand 4X QDR interconnect provides networking between the nodes.

Methodology. We run weak scaling benchmarks, which show how wall-time develops for
fixed per-PE problem size 𝑛/𝑝 as 𝑝 increases. We consider 𝑝 = 1 to 2048 PEs, doubling 𝑝 in
each step. Each PE is mapped to one physical core in the cluster.

2.7.1 Unsorted Selection
Input Generation. Per PE, we consider 224, 226, and 228 integer elements. To construct
hard instances, we select the 𝑘 largest—ie, least likely—elements from Zipf distributions (see
Section 2.1). To simulate non-randomly distributed data, we use slightly different parameters
for the distributions at each PE. At the same time, we limit these differences to ensure that
the selection does not become a local operation at any one PE. The number of object keys
lies between 220 − 216 and 220 elements, with each PE’s value chosen uniformly at random.
Similarly, the exponent 𝑠 is uniformly distributed between 1 and 1.2. This ensures that several

45



2 Selection Problems

2−1 20 21 22 23 24 25 26 27 28 29 210 211 212
0

2

4

6

Number of PEs

Av
g
se

le
ct
io

n
tim

e
in

se
co

nd
s 𝑘 = 210

𝑘 = 220

𝑘 = 226

Figure 2.5: Weak scaling plot for selecting the 𝑘-th largest object for different values of 𝑘.
Input size per PE 𝑛/𝑝 = 228, Zipf distribution.

PEs contribute to the result, so that the distribution is asymmetric, without the computation
becoming a local operation at one PE, which has all the largest elements. Figure 2.4 shows an
example for 𝑝 = 5 and the first 100 object keys. We used several values of 𝑘, namely 1024, 220,
and 226.

Results. Figure 2.5 shows the results for selecting the 𝑘-th largest values from the input, for
the above values of 𝑘. We can see that in most cases, the algorithm scales even better than
the bounds lead us to expect—running time decreases as more PEs are added. This might be
caused by decreasing local sample sizes. The effect is especially prominent when selecting an
element of high rank (𝑘 = 226 in Figure 2.5). The majority of the time is spent in partitioning,
ie, local work, dominating the time spent on communication. This underlines the effect of
communication efficiency.

2.7.2 Top-𝑘Most Frequent Objects
As we could not find any competitors to compare our methods against, we use two naïve
centralised algorithms as a baseline. The first algorithm, Naïve, samples the input with the
same probability as algorithm PAC, but instead of using a distributed hash table and distributed
selection, each PE sends its aggregated local sample to a coordinator. The coordinator then
uses quickselect to determine the elements of rank [1 .. 𝑘] in the global sample, which it returns.
AlgorithmNaïve Tree proceeds similarly but uses a merging tree reduction to send the elements
to the coordinator to reduce latency. Similar to Algorithm PAC’s hash table insertion operation,
this reduction aggregates the counts by key in each step to keep communication volume low.

Input Generation. We consider 224, 226 and 228 elements per PE, which are generated accord-
ing to different randomdistributions. First, we consider elements distributed according to Zipf ’s
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Figure 2.6: Example of the negative binomial distribution used for top-𝑘most frequent
items experiments. Each point represents 10 consecutive objects. Distribution parameters:
𝑟 = 1000, 𝑝 = 0.05. Sample of 𝑛 = 224 items.

Law with 220 possible values. Next, we study a negative binomial distribution with 𝑟 = 1000
and success probability 𝑝 = 0.05. A scatter plot of the true frequency of items in an input of
224 items is shown in Figure 2.6. This distribution has a rather wide plateau, resulting in the
most frequent objects and their surrounding elements all being of very similar frequency. For
simplicity, each PE generates objects according to the same distribution, as the distributed
hash table into which the sample is inserted distributes elements randomly. Thus, tests with
non-uniformly distributed data would not add substantially to the evaluation.

Approximation Quality. To evaluate different accuracy levels, we consider the (𝜀, 𝛿) pairs
(3 ⋅ 10−4, 10−4) and (10−6, 10−8). Recall that this requires the result to be within a relative error
of 𝜀 with probability at least 1 − 𝛿. This allows us to evaluate running time under different
accuracy requirements.

We then select the 𝑘 = 32most frequent elements from the input according to the above
requirements. We do not vary the parameter 𝑘 here, as it has very little impact on overall
performance. Instead, we refer to Section 2.7.1 for experiments on unsorted selection, which is
the only subroutine affected by increasing 𝑘 and shows no increase up to 𝑘 = 220.

Results. Figure 2.7 shows the results for 228 elements per PE using 𝜀 = 3 ⋅ 10−4 and 𝛿 =
10−4. We can clearly see that Algorithm Naïve does not scale beyond two nodes at all (𝑝 >
32). Its running time is directly proportional to 𝑝, which is consistent with the coordinator
receiving 𝑝 − 1messages—every other PE sends its key-aggregated sample to the coordinator.
Algorithm Naïve Tree fares better and actually improves as more PEs are added. This is easily
explained by the reduced sample size per PE as 𝑝 increases, decreasing sampling time. However,
communication time begins to dominate, as the decrease in overall running time is nowhere
near as strong as the decrease in local sample size. This becomes clear when comparing it to
Algorithm PAC, which outperforms Naïve Tree for any number of PEs. We can see that it scales
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Figure 2.7: Weak scaling plot for computing the 32 most frequent objects with error
parameters 𝜀 = 3 ⋅ 10−4, 𝛿 = 10−4 and per-PE input size 𝑛/𝑝 = 226 (top) and 𝑛/𝑝 = 228
(bottom). EC suffers from constant overhead for exact counting.

nearly perfectly—doubling the number of PEs (and thereby total input size) roughly halves
running time. Since these three algorithms all use the same sampling rate, any differences in
running time are entirely due to time spent on communication.

Lastly, let us consider Algorithm EC (exact counting, see Section 2.5.2). In the beginning, it
benefits from its much smaller sample size, but as 𝑝 grows, the local work for exact counting
clearly dominates overall running time, and Algorithm EC is no longer competitive. Since local
work remains constant with increasing 𝑝, we see nearly no change in overall running time. To
see the benefits of Algorithm EC, we need to consider stricter accuracy requirements.

In Figure 2.8, we consider approximation bounds 𝜀 = 10−6 and 𝛿 = 10−8. For Algorithms
PAC, Naïve, and Naïve Tree, this requires considering the entire input for any number of PEs,
as the sample size is proportional to 1/𝜀2, which the other terms cannot offset here. Conversely,
Algorithm EC’s sample size depends only linearly on 𝜀, resulting in sample sizes orders of
magnitude below those of the other algorithms.

Again, we can see that Algorithm Naïve does not scale at all. Algorithm Naïve Tree performs
much better, with running times remaining roughly constant at around 6.5 seconds as soon
as multiple nodes are used. This is the case as objects are aggregated by key in each level
of the reduction tree, keeping the amount of data per level approximately constant, as each
PE observes most objects with high probability. Algorithm PAC suffers a similar fate but is
slightly faster at 6.2 seconds. This difference stems from reduced communication volume by
not concentrating the entire sample at one PE. Instead, it is spread equally over all PEs by using
a distributed hash table. However, both are dominated by the time spent on locally aggregating
the input. Lastly, Algorithm EC is consistently fastest, requiring 4.1 seconds, of which 3.7
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Figure 2.8: Weak scaling plot for computing the 32 most frequent objects, 𝑛/𝑝 = 228,
𝜀 = 10−6, 𝛿 = 10−8. Only EC can use sampling, other methods must consider all objects.

seconds are spent on exact counting.5 This clearly demonstrates that Algorithm EC is superior
for small 𝜀.

Smaller local input sizes do not yield significant differences, and preliminary experiments
with elements distributed according to a negative binomial distribution proved unspectacular
and of little informational value, as the aggregated samples have much fewer elements than in a
Zipfian distribution—an easy case for selection. Surprisingly, Zipfian distributions represent
hard inputs do to their long tail.

2.8 Conclusions

We have demonstrated that a variety of top-𝑘 selection problems can be solved communication-
efficiently and in a highly scalable manner. The basic methods are simple and versatile: the
owner-computes rule, collective communication, and sampling. Considering the significant
previous work on some of these problems, it is a bit surprising that such simple algorithms give
improved results for such fundamental problems. However, it seems that the combination of
communication efficiency and parallel scalability has been neglected for many problems. Our
methods might have a particular impact on applications where previous work has concentrated
on methods with a pure server–helper scheme.

5When not all cores are used, memory bandwidth per core is higher. This allows faster exact counting for 𝑝 = 1 to
8 cores on a single node. Local aggregation in the other algorithms similarly benefits from this.
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There are also some open questions. For example, for the sorted selection problem of
Section 2.3.2, it would be interesting to see whether there is a scalable parallel algorithm
that makes an information-theoretically optimal number of comparisons as in the sequential
algorithm of Varman et al. [Var+91]. It could also be interesting to analyse our algorithm for
the case where 𝑘 − 𝑘 = o(𝑘), which we have ignored in this dissertation.
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3Chapter 3

Weighted Sampling

Data structures for efficient sampling from a set of weighted items are an important
building block of many applications. However, few parallel solutions are known. We
close many of these gaps both for shared-memory and distributed-memory machines.
We give efficient, fast, and practicable algorithms for sampling single items, 𝑘 items
with/without replacement, subsets (Poisson sampling), and data streams (reservoir
sampling). We also give improved sequential algorithms for alias table construction
and sampling with replacement. Experiments on shared-memory parallel machines
with up to 158 threads show near-linear speedups both for construction and queries.
A distributed-memory evaluation of weighted reservoir sampling on up to 256 nodes
(5120 processors) also shows good speedups.

Motivation. Weighted random sampling (WRS) asks for sampling items (elements) from a set
such that the probability of sampling item 𝑖 is proportional to a given weight𝑤𝑖. Several variants
of this fundamental computational task appear in a wide range of applications in statistics and
computer science, eg, for computer simulations, data analysis, database systems, and online ad
auctions (see, eg, Refs. [MR95; OR95]). Continually growing data volumes (‘Big Data’) imply
that the input sets and even the sample itself can become large. Since the application processing
the sample is often fast, sampling algorithms can easily become a performance bottleneck.
Given the developments described in the introduction, we require parallel algorithms in shared
and distributed memory. In streaming algorithms, the input may even become so large that each
input element can be inspected only once and cannot be stored for later processing. However,
there has been surprisingly little work on parallel weighted sampling. Here, we close many of
these gaps.

References. This chapter is based on two conference papers [HS19d; HS20a] and a journal
paper [HS20b] published jointly with Peter Sanders. The papers were mainly written by the
author of this dissertation, save for the section on weighted random permutations, which is the
work of Peter Sanders and not included in this dissertation. The proof of Lemma 3.7 is also
due to Peter Sanders and included here for self-containedness. Large parts of this chapter were
copied verbatim from the conference papers and the corresponding technical reports [HS19c;
HS19a], which contain additional detail not present in the conference versions. The graph
generation application in Section 3.9 is partially copied verbatim from the journal paper on this
topic, Ref. [HS20b]. The author of this dissertation is also the author of all implementations
and conducted all evaluations.

Problems Considered. Without loss of generality, let the input 𝐴 consist of the items [1 .. 𝑛].
Item 𝑖 has weight 𝑤𝑖 ∈ ℝ+, and define 𝑊 ∶= ∑𝑛𝑖=1𝑤𝑖 as the sum of all items’ weights. An
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3 Weighted Sampling

Table 3.1: Summary of notation used in this chapter.

Symbol Meaning

𝐴, 𝑛 input 𝐴 = [1 .. 𝑛] of size 𝑛
𝑘 sample size
𝑠 number of unique items in a sample with replacement
𝑤𝑖 weight of item 𝑖
𝑊 total weight𝑊 ∶= ∑𝑛𝑖=1𝑤𝑖
𝑤min, 𝑤max smallest and largest weight in the input
𝑈,𝑢 range of weights 𝑈 ∶= 𝑤max/𝑤min and 𝑢 ∶= log𝑈
𝑏 batch size per PE (reservoir sampling)
𝑝 number of PEs
𝛼, 𝛽 communication characteristics of the machine model, see Section 1.2.3

item’s relative weight is its share of the total weight, 𝑤𝑖/𝑊. The notation used in this chapter is
summarised in Table 3.1. We consider the following weighted sampling problems:
WRS–1: Weighted sampling of one item 𝑋 from a categorical (or multinoulli) distribution

(equivalent to WRS–R and WRS–N for 𝑘 = 1), ie, P[𝑋 = 𝑖] = 𝑤𝑖/𝑊.

WRS–R: Sample 𝑘 items from 𝐴 with replacement, ie, the samples are independent and, for
each sample𝑋, P[𝑋 = 𝑖] = 𝑤𝑖/𝑊. Let 𝑠 ≤ 𝑘 denote the number of different items in the
sample 𝑆. Note that we may have 𝑠 ≪ 𝑘 for skewed input distributions.

WRS–N: Sample 𝑘 pairwise unequal items 𝑠1 ≠ ⋯ ≠ 𝑠𝑘 without replacement such that for any
sample index 𝑗 ∈ [1 .. 𝑘] and item 𝑖 ∉ {𝑠ℓ ∣ ℓ < 𝑗}, P[𝑠𝑗 = 𝑖] = 𝑤𝑖/(𝑊 −∑ℓ<𝑗𝑤𝑠ℓ).

1

WRP: Permute the elements with the same process as forWRS–Nusing 𝑘 = 𝑛 (in Ref. [HS19d]).

WRS–P: Sample a subset 𝑆 ⊆ 𝐴 where P[𝑖 ∈ 𝑆] = 𝑤𝑖 ≤ 1. Also known as Poisson sampling.

WRS–B: Batched reservoir sampling. Repeatedly solve WRS–N when batches of new items
arrive. Only the current sample and batch may be stored. Let 𝑏 denote the batch size.

Results. Table 3.2 summaries our results when we process the input set on 𝑝 processing
elements (PEs). When applicable, our algorithms build a data structure once which is later used
to support fast sampling queries. In a nutshell, the results say that we can solve the problems
with (optimal) linear work and logarithmic (or even constant) latency. The exact bounds
depend on the specific machine model used; see Section 3.1.1 for details. More complicated
1Observe that some publications use a different definition of WRS–N where the items’ relative weights determine
their probabilities of being included in the sample, rather than those of being chosen in some step. Using that
definition, items with relative weight 𝑤𝑖/𝑊 > 1/𝑘 are infeasible because their probability of being included in
the sample exceeds one, and such items require special consideration (see, eg, Ref. [Efr15, Example 2]). We
henceforth refer to this definition as weighted sampling with defined probabilities. The definition we use here
does not suffer from this problem.
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3 Weighted Sampling

formulae stem from the fact that some of the results reduce subproblems to sorting sets of
integers. Integer sorting can be solved with near-linear work and near logarithmic latency.
However, the bounds now also depend on the range of the involved keys. This range, in turn,
depends on the range of occurring item weights. To quantify that, we define 𝑢 ∶= log𝑈 where
𝑈 ∶= 𝑤max/𝑤min ∶= max𝑖𝑤𝑖/min𝑖𝑤𝑖. We abstract from the machine model by using black-box
formulae for the complexity of integer sorting. Neither competitive parallel algorithms nor
more efficient sequential algorithms were previously known. The distributed algorithms are
refinements of the shared-memory algorithms with the goal of reducing communication costs
compared to direct distributed implementations. As a consequence, each PE mostly works on
its local data (the owner-computes approach). Communication—if at all—is only performed
to coordinate the PEs and is sublinear in the local work except for extreme corner cases. The
owner-computes approach introduces the complication that differences in local work introduce
additional parameters into the analysis that characterise the local work in different situations.
Therefore, the distributed part of Table 3.2 covers the case when items are randomly assigned
to PEs. This simplifies the exposition and is an approach that one can sometimes also take in
practice.

We strive to describe our parallel algorithms in a model-agnostic way, ie, we largely describe
them in terms of standard operations such as prefix sums for which efficient parallel algorithms
are known on various models of computation. We analyse the algorithms for two simple
models of computation, the CREW PRAM and our distributed message-passing model (see
Section 1.2).

Overview. First, in Section 3.1, we review some known techniques that we are building
on. We discuss additional related work in Section 3.2. In Section 3.3, we consider problem
WRS–1. We first give an improved sequential algorithm for constructing alias tables, the most
widely used data structure for problem WRS–1 that allows sampling in constant time. Then we
parallelise that algorithm for shared memory and describe adaptations for distributed memory.

Sampling 𝑘 items with replacement (problem WRS–R) seems to be trivially parallelisable
with an alias table. However, using a distributed alias table does not lead to a communication-
efficient distributed algorithm. For skewed input distributions where the number of distinct
output elements 𝑠 can be much smaller than 𝑘, we can generally do better than repeatedly
sampling a single item. Section 3.4 develops such an algorithm which is interesting both as
a parallel and as a sequential algorithm. The algorithm combines three previous techniques
and requires a nontrivial analysis. In Section 3.4.1, we show how communication-efficient
construction and communication-free queries can be achieved in distributed memory.

Section 3.5 employs the algorithm for problem WRS–R to solve problem WRS–N. The main
difficulty here is to estimate the right number of samples with replacement to obtain a sufficient
number of distinct samples. Then an algorithm for WRS–N without preprocessing is used to
reduce the ‘weighted oversample’ to the desired exact output size.

For subset sampling (problem WRS–P), we parallelise the approach of Bringmann and
Panagiotou [BP17] in Section 3.6. Once more, the preprocessing requires integer sorting.
However, only O(log𝑛) different keys are needed so that linear work sorting works with
logarithmic latency even deterministically on an EREW PRAM.
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In Section 3.7, we adapt the sequential streaming algorithm of Efraimidis and Spirakis
[ES06] to a distributed setting where items are processed in small batches. This can be done in
a communication-efficient way using our previous work on bulk-parallel priority queues in
Section 2.4.

Section 3.8 gives a detailed experimental evaluation of our algorithms for WRS–1 and
WRS–R. Section 3.10 summarises the results and discusses possible future directions.

3.1 Preliminaries
We quickly (re-)state the most important pieces of notation used in this chapter (see also
Table 3.1). The input is a finite set 𝐴 of 𝑛 items with associated positive weights 𝑤1,… ,𝑤𝑛.
Without loss of generality we will assume 𝐴 = [1 .. 𝑛]. Define𝑊 ∶= ∑𝑛𝑖=1𝑤𝑖 as the sum of all
weights. If the weights define a categorical probability distribution, we will have𝑊 = 1. Let
𝑤max ∶= max𝑖𝑤𝑖 and 𝑤min ∶= min𝑖𝑤𝑖. Then 𝑈 ∶= 𝑤max/𝑤min is the maximum ratio between
any two weights, and define 𝑢 ∶= log𝑈.

3.1.1 Parallel Integer Sorting
We need one basic toolbox operation where the concrete machine model has some impact on
the complexity. Sorting 𝑛 items with integer keys from [1 ..𝐾] can be done with linear work in
many relevant cases. Sequentially, this is possible if 𝐾 is polynomial in 𝑛 (radix sort). Radix
sort can be parallelised even on a distributed-memory machine with linear work and span 𝑛𝜀
for any constant 𝜀 > 0 (eg, Ref. [BD18]). Logarithmic span is possible for𝐾 ∈ O(log𝑐 𝑛) for any
constant 𝑐, even on an EREW PRAM [RR89, Lemma 3.1]. For a CRCW PRAM, linear work
and logarithmic span can be achieved with high probability when𝐾 ∈ O(𝑛 log𝑐 𝑛) [RR89] (the
paper gives the constraint 𝐾 = 𝑛 in its Theorem 3.1 but the generalisation is already implicitly
proven in the paper: simply increase the number of most significant bits sorted by Fine_Sort
from 3 log log𝑛 to (3 + 𝑐 + o(1)) log log𝑛, which does not change the algorithm’s asymptotic
running time [RR89, Lemma 3.3]). Resorting to comparison-based algorithms, we get work
O(𝑛 log𝑛) andO(log𝑛) span on an EREW PRAM [Col88].

3.1.2 Bucket-Based Sampling
The basic idea behind several solutions to problem WRS–1 is to build a table of 𝑚 ∈ Θ(𝑛)
buckets where each bucket represents a total weight of𝑊/𝑚. Sampling then selects a random
bucket uniformly at random and uses the information stored in the bucket to determine the
actual item. If item weights differ only by a constant factor, we can simply store one item per
bucket and use rejection sampling to obtain constant expected query time (see, eg, Refs. [Dev86;
OR95]).

Deterministic sampling with only a single memory probe is possible using Walker’s alias
table method [Wal77], and its improved construction due to Vose [Vos91]. An alias table
consists of𝑚 ∶= 𝑛 buckets of size𝑊/𝑛 where bucket 𝑏[𝑖] represents some part 𝑤′𝑖 of the weight
of item 𝑖. The remaining weight of the heavier items is distributed to the remaining capacity of
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Algorithm 3.1 : Classical construction of alias tables similar to Vose’s approach [Vos91].
Input : ⟨𝑤1,… ,𝑤𝑛⟩ ∈ ℝ𝑛 the weights of the 𝑛 input items
Output : 𝑏, an alias table consisting of 𝑛 pairs (𝑤, 𝑎) of (partial) weight 𝑤 and alias 𝑎

1 Function voseAliasTable(⟨𝑤1,… ,𝑤𝑛⟩)
2 𝑊 ∶= ∑𝑛𝑖=1𝑤𝑖 —total weight
3 ℎ ∶= {𝑖 ∈ [1 .. 𝑛] ∣ 𝑤𝑖 >𝑊/𝑛} as stack —heavy items
4 ℓ ∶= {𝑖 ∈ [1 .. 𝑛] ∣ 𝑤𝑖 ≤ 𝑊/𝑛} as stack —light items
5 𝑏 ∶= ⟨(𝑤1, ⊥), (𝑤2, ⊥),… , (𝑤𝑛, ⊥)⟩ —init table with item weights, dummy aliases
6 while ℎ ≠ ∅ do —consume heavy items
7 𝑗 ∶= ℎ.pop() —get a light item
8 while 𝑏[𝑗].𝑤 >𝑊/𝑛 do —still heavy
9 𝑖 ∶= ℓ.pop() —get a light item

10 𝑏[𝑖].𝑎 ∶= 𝑗 —Fill bucket 𝑏[𝑖] with a…
11 𝑏[𝑗].𝑤 ∶= (𝑏[𝑗].𝑤 + 𝑏[𝑖].𝑤) −𝑊/𝑛 —…piece of item 𝑗.
12 ℓ.push(𝑗) —Item 𝑗 is light now
13 return 𝑏

the buckets such that each bucket only represents one other item (the alias 𝑎𝑖). Algorithm 3.1
gives high-level pseudocode for the approach proposed by Vose, storing 𝑤′𝑖 and 𝑎𝑖 as 𝑏[𝑖].𝑤
and 𝑏[𝑖].𝑎, respectively. The items are first classified into light and heavy items. Then the heavy
items are distributed over light items until their residual weight drops below𝑊/𝑛. They are
then treated in the same way as light items.

To sample an item from an alias table, pick a bucket index 𝑟 uniformly at random, toss a
biased coin that comes up heads with probability 𝑤′𝑟 ⋅ 𝑛/𝑊, and return item 𝑟 for heads or its
alias 𝑎𝑟 for tails.

3.1.3 Weighted Sampling using Exponential Variates
It is well-known that a uniform sample without replacement of size 𝑘 out of 𝑛 items [1 .. 𝑛] can be
obtained by associating with each item a uniform variate from the interval (0, 1], 𝑣𝑖 ∶= rand(),
and selecting the 𝑘 items with the smallest associated variates 𝑣𝑖 (eg, Refs. [Sun77; FMR62]).
This method can be generalised to generate a weighted sample without replacement by raising
uniform variates to the power of the inverse of the items’ weights, that is, 𝑣𝑖 ∶= rand()1/𝑤𝑖 , and
selecting the 𝑘 items with the largest associated values 𝑣𝑖 [ES99; ES06; Efr15]. Equivalently,
one can generate exponentially distributed random variates with the items’ weights as the
distribution’s rate parameter, 𝑣𝑖 ∶= − ln(rand())/𝑤𝑖, and select the 𝑘 items with the smallest
associated 𝑣𝑖 [Arr02] (sometimes called the ‘exponential clocksmethod’). The difference between
the two is a simple 𝑥 ↦ − ln(𝑥)mapping, with the sign inversion necessitating the switch from
selecting the largest values to the smallest ones. Since generating exponential random variates
is numerically more stable than computing arbitrary powers, as well as being easier to generate
in a vectorised fashion, the latter method should be preferred over the former.
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3.1.4 Divide-and-Conquer Sampling

Uniform sampling with and without replacement can be done using a divide-and-conquer
algorithm [San+18]. To sample 𝑘 out of 𝑛 items uniformly and with replacement, split the
set into two subsets with 𝑛′ (left) and 𝑛 − 𝑛′ (right) items, respectively. Then the number of
items 𝑘′ to be sampled from the left has a binomial distribution (𝑘 Bernoulli trials, each with
success probability 𝑛′/𝑛) for sampling with replacement, and a hypergeometric one (num-
ber of successes in 𝑘 draws without replacement from a population of size 𝑛 with 𝑛′ success
states) for sampling without replacement. We can generate 𝑘′ accordingly and then recursively
sample 𝑘′ items from the left and 𝑘 − 𝑘′ items from the right. This can be used to construct
a communication-free parallel sampling algorithm. We have a tree with 𝑝 leaves. Each leaf
represents a subproblem of size about 𝑛/𝑝, ie, a PE’s local items. Each PE descends this tree to
the leaf assigned to it (timeO(log𝑝)) and then generates the resulting number of samples (time
O(𝑘/𝑝 + log𝑝) with high probability). Different PEs have to draw the same random variates
for the same interior node of the tree. This can be achieved by seeding a pseudo-random
number generator with an ID of this node.

3.1.5 Selection from Sorted Sequences, Again

Our reservoir sampling algorithm relies on selection from the union of sorted sequences stored
locally at the PEs. We describe several algorithms for this problem in Section 2.3.2. However,
in the specific setting used in this chapter, other approaches may be useful as well. Hence, we
provide a quick recapitulation of the most relevant options. In the remainder of this chapter,
we will use 𝑇sel as a placeholder for the running time of an appropriate selection operation as
defined below for various cases. Let each PE hold a sorted sequence of items, and let 𝑔 be an
upper bound on the number of local items at any of the 𝑝 PEs. We wish to select the item with
global rank 𝑟 (ie, the item with the globally 𝑟-th smallest key).

If the output rank 𝑟 is allowed to vary in some range [𝑟 .. 𝑟], we can use algorithm amsSelect
of Section 2.3.2.b). This takes time 𝑇sel ∈ O(𝑑 logmin(𝑔, 𝑟) + 𝛽𝑑 + 𝛼 log𝑝) in expectation for
a tuning parameter 𝑑 ∈ ℕ if 𝑟 and 𝑟 are far enough apart. Specifically, it requires 𝑟− 𝑟 ∈ Ω(𝑟/𝑑)
(see Theorems 2.5 and 2.6).

If the output rank is fixed, we can still use amsSelect by supplying it with exact bounds, ie,
𝑟 = 𝑟 = 𝑟. This case is analysed in Section 2.3.2.c), and Theorem 2.7 shows that in expectation,
we have 𝑇sel ∈ O(log2 𝑟 + 𝛼 log 𝑟 log𝑝). Of course, it is also possible to adapt a selection
algorithm for unsorted inputs. With high probability, the algorithm of Section 2.3.1 runs
in time 𝑇sel ∈ O(log2 𝑔/ log𝑝 + 𝛽min(𝑔, √𝑝(1 + log𝑝 𝑔)) + 𝛼 log(𝑔𝑝)) when executed on
sorted sequences (the local work improvement over Theorem 2.1 comes from the fact that
partitioning is now selection on the local sequences, which takesO(log𝑔) time in each of the
O(log𝑝(𝑔)) levels of recursion). If the input is randomly distributed (eg, if all input items are
independently drawn from a common distribution), then its communication volume improves
because we no longer need to spread the sample (Corollary 2.2). Thus, we obtain running time
𝑇sel ∈ O(log2 𝑔/ log𝑝 + 𝛼 log(𝑔𝑝)) w.h.p. for this case.
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3 Weighted Sampling

3.2 RelatedWork

Weighted sampling is related to the more general field of sampling with unequal probabilities,
much of which focuses on statistical estimation rather than sampling from categorical distri-
butions. For a comprehensive overview of the mathematical side and sequential algorithms
for numerous problems related to sampling with unequal probabilities, we refer to the mono-
graphs of Brewer and Hanif [BH83] and Tillé [Til06]. For the most part, the methods surveyed
therein focus on estimating the total of a measure that is assumed to correlate with the items’
weights. Among the most prominent results in this area are Refs. [HH43; HT52], and early
algorithms for computing weighted samples with defined probabilities (see footnote on page 52),
eg, Refs. [HR62; RHC62] are based on this line of research. Here, we focus on the literature on
(efficiently) computing various kinds of samples from categorical distributions.

Sampling one Item (ProblemWRS–1). Extensive work has been done on generating discrete
random variates from a fixed categorical distribution [Wal77; Vos91; MTW04; Dev86; BP17].
All these approaches use preprocessing to construct a data structure that subsequently supports
very fast (constant time) sampling of a single item. The best-known approach is the alias
method [Wal77; Vos91], which computes in linear time a data structure that allows solving
problem WRS–1 in constant time, cf. Section 3.1.2. Another well-known approach, which
does not require precomputation beyond finding the weight of the heaviest item, is to use an
acceptance/rejection method [OR95; Rub81]. This works well as long as the weights are not
too different, ie, 𝑈 is small, or the distribution has to be updated very frequently. Otherwise,
the trade-off of constant update time at the cost of expected timeO(𝑈) for sampling an item is
unfavourable. Bringmann and Larsen [BL13] explain how to achieve expected time 𝑟 using
only O(𝑛/𝑟) bits of space beyond the input distribution itself. The theoretical literature on
generating discrete random variables culminates in two papers on maintaining data structures
that allow both sampling single item and updating items’ weights in constant time [HMM93;
MVN03], which subsumes both WRS–R and WRS–N. In the case of polynomially bounded
integer weights, Hagerup et al. [HMM93] achieve constant worst-case time for both operations.
Recently, Berenbrink et al. [Ber+20] presented dynamic alias tables, an engineered data structure
that allows efficient weight updates for integer weights.

Sampling Without Replacement (Problem WRS–N). The exponential clocks method, de-
scribed in Section 3.1.3 (see also [ES99; ES06; Efr15; Arr02; CK07]), is a simpleO(𝑛) algorithm
for problem WRS–N. This approach also lends itself towards use in streaming settings (reservoir
sampling) and can be combined with a skip value distribution to reduce the number of required
random variates fromO(𝑛) toO(𝑘 log 𝑛𝑘) in expectation [ES06]. Cohen and Kaplan [CK07]
mention that this approach can also be used in the model of bottom-𝑘 sketches. A related
algorithm for WRS–N with given inclusion probabilities instead of relative weights is described
by Chao [Cha82]. Braverman et al. [BOV15] present another sequential algorithm using a
reduction to sampling with replacement (cascade sampling).

More efficient algorithms for WRS–N repeatedly sample an item and remove it from the
distribution using a dynamic data structure [WE80; OR95; HMM93; MVN03]. With the most
efficient such algorithms [HMM93; MVN03] we achieve timeO(𝑘), albeit at the price of an
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inherently sequential and rather complicated algorithm that might have considerable hidden
constant factors.

It is also possible to combine techniques for sampling with replacement with a rejection
method. However, the performance of these methods depends heavily on 𝑈, the ratio between
the largest and smallest weight in the input, as the rejection probability rises steeply once the
heaviest items are removed. Lang [Lan14] gives an analysis and experimental evaluation of such
methods for the case of 𝑘 = 𝑛. A recent practical evaluation of approaches that lend themselves
towards efficient implementation is due to Müller [Mül16].

Poisson Sampling (Problem WRS–P). Poisson sampling [Háj64] is often used in statistical
estimation, eg, the U.S. Census Bureau’s Annual Survey of Manufactures [US 20]. It also has
applications in graph generation, such as generating Chung-Lu random graphs [CL03]. Refer
to Ref. [Til06] for an overview of methods used for statistical purposes. Tsai et al. [Tsa+10]
present a sequential algorithm with suboptimal query time, which Bringmann and Panagiotou
[BP17] improve upon to give an optimal sequential algorithm by a reduction to integer sorting.
In computer science literature, Poisson sampling is sometimes also called subset sampling, with
equivalent definitions.

Parallel Sampling. There is surprisingly little work on parallel sampling. Even uniform
(unweighted) sampling had many loose ends until recently [San+18]. Efraimidis and Spirakis
[ES99] note that WRS–N can be solved in parallel with spanO(log𝑛) and workO(𝑛 log𝑛).
They also note that solving the selection problem suffices if the output need not be sorted. The
optimal dynamic data structure for WRS–1 [MVN03] admits a parallel bulk update in the
(somewhat exotic) combining-CRCW-PRAM model, where concurrent write operations are
combined in a Fetch&Add step [Got+83]. This step adds all concurrently written values to the
existing contents of the memory location and also records all prefix sums that would occur if
this process was to be executed sequentially. Even so, this does not help with problem WRS–N
since batch sizes are one.

Some results, however, may be viewed as folklore. For example, once we have a data structure
like the alias table (see Section 3.1.2), we can solve problem WRS–R by sampling from this data
structure in parallel until the desired sample size has been reached.

UniformReservoir Sampling. Sampling from a stream of data has been studied since at least
the early 1960s [FMR62] and several asymptotically optimal algorithms are known, see, eg,
Refs. [Vit85; Li94]. The key insight of these algorithms is that it is possible to determine in
constant time how many items to skip before a new item enters the reservoir by computing a
random variate from a suitably parametrised geometric distribution [Dev86; Li94].

Sampling from the union of multiple data streams was only studied much more recently
[CTW16; Cor+12; TW11; Cor+10]. However, these publications use the continuous moni-
toring model (see Introduction), and are thus inherently limited in their scalability. Recently,
Tangwongsan and Tirthapura [TT19] presented a shared-memory parallel uniform reservoir
sampling algorithm in a mini-batch model. Birler et al. [BRN20] propose an engineered version
of using synchronised access to a shared source of skip values, based on Li’s [Li94] Algorithm L.
Their approach is geared towards the specific use case of maintaining a sample of a relation in a
database management system to aid query optimisation.
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Weighted Reservoir Sampling. Sampling from a stream of weighted items has received signi-
ficantly less attention in the literature. Chao [Cha82] presents a simple and elegant algorithm for
weighted reservoir samplingwith defined probabilities (see footnote on page 52). Efraimidis and
Spirakis give an algorithm based on associating a suitably computed key with each item, so that
the 𝑘 items with the largest keys form the desired sample, and also show how to compute skip
distances (which they call exponential jumps) in constant time [ES06; Efr15]. Braverman et al.
[BOV15] present an approach they call Cascade Sampling that is not affected by the numerical
inaccuracies of floating-point representation in computers by giving an exact reduction to
sampling with replacement.

The first—and, to the best of our knowledge, only—distributed streaming algorithm for
weighted reservoir sampling was published only recently by Jayaram et al. [Jay+19]. Their algo-
rithm is given in the continuous monitoring model, resulting in complex algorithmic challenges
and requiring a level set construction grouping the items by their weights, withholding level
sets with too few items to work around issues with extreme heavy hitters, and a process that
maintains correctness in the face of withheld items.

3.3 Alias Table Construction (ProblemWRS–1)

In this section, we describe algorithms for sequential (Section 3.3.1), shared-memory parallel
(Section 3.3.2), and distributed-memory (Section 3.3.3) construction of alias tables.

3.3.1 Improved Sequential Alias Tables

Before discussing parallel alias table construction, we discuss a simpler, faster and more space-
efficient sequential algorithm that is a better basis for parallelisation. Previous algorithms
need auxiliary arrays/queues of size Θ(𝑛) to decide in which order the buckets are filled. Vose
[Vos91] mentions that this can be avoided but does not give a concrete algorithm. We now
describe an algorithm with this property.

The idea of the algorithm is that two indices 𝑖 and 𝑗 sweep the input array for light and
heavy items, respectively. The loop invariant is that the weight of items corresponding to light
(heavy) items preceding 𝑖 (𝑗) has already been distributed over some buckets and that their
corresponding buckets have already been constructed. Variable 𝑤 stores the weight of the part
of item 𝑗 that has not yet been assigned to buckets. Each iteration of the main loop advances
one of the indices and initialises one bucket. When the residual weight 𝑤 exceeds𝑊/𝑛, item 𝑗
is used to fill bucket 𝑖, the residual weight 𝑤 is reduced by𝑊/𝑛 −𝑤𝑖, and index 𝑖 is advanced
to the next light item. Otherwise, the remaining weight of heavy item 𝑗 fits into bucket 𝑗 and
the remaining capacity of bucket 𝑗 is filled with the next heavy item. Algorithm 3.2 gives
pseudocode that emphasises the high degree of symmetry between these two cases. Figure 3.1
gives an example, where Figure 3.1 (a) shows a snapshot of the state of the algorithm after
processing 7 of 13 items, and Figure 3.1 (b) shows the resulting alias table.
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Algorithm 3.2 : A sweeping algorithm for constructing alias tables.
Input : ⟨𝑤1,… ,𝑤𝑛⟩ ∈ ℝ𝑛 the weights of the 𝑛 input items
Output : 𝑏, an alias table consisting of 𝑛 pairs (𝑤, 𝑎) of (partial) weight 𝑤 and alias 𝑎

1 Function sweepingAliasTable(⟨𝑤1,… ,𝑤𝑛⟩)
2 𝑊 ∶= ∑𝑛𝑖=1𝑤𝑖 —total weight
3 𝑖 ∶= min{𝑘 > 0 ∣ 𝑤𝑘 ≤ 𝑊/𝑛} —first light item
4 𝑗 ∶= min{𝑘 > 0 ∣ 𝑤𝑘 >𝑊/𝑛} —first heavy item
5 while 𝑗 ≤ 𝑛 do
6 if 𝑤 >𝑊/𝑛 then —Pack a light bucket.
7 𝑏[𝑖].𝑤 ∶= 𝑤𝑖 —Item 𝑖 completely fits here.
8 𝑏[𝑖].𝑎 ∶= 𝑗 —Item 𝑗 fills the remainder of bucket 𝑖.
9 𝑤 ∶= (𝑤 +𝑤𝑖) −𝑊/𝑛 —Update residual weight of item 𝑗.

10 𝑖 ∶= min{𝑘 > 𝑖 ∣ 𝑤𝑘 ≤ 𝑊/𝑛} —next light item, assume 𝑤𝑛+2 = 0
11 else —Pack a heavy bucket.
12 𝑏[𝑗].𝑤 ∶= 𝑤 —Now item 𝑗 completely fits here.
13 𝑗′ ∶= min{𝑘 > 𝑗 ∣ 𝑤𝑘 >𝑊/𝑛} —next heavy item, assume 𝑤𝑛+1 =∞
14 𝑗 ∶= 𝑏[𝑗].𝑎 ∶= 𝑗′ —Proceed with item 𝑗′
15 𝑤 ∶= (𝑤 +𝑤𝑗′) −𝑊/𝑛 —Compute residual weight

3.3.2 Parallel Alias Table Construction

The basic idea behind our splitting-based algorithm is to parallelise the sequential algorithm of
the previous subsection by determining its state at carefully selected points during its execution.2
In the example of Figure 3.1, splitting the computation roughly in half means reconstructing
the state of Figure 3.1 (a) without actually executing the sequential algorithm. This state-
reconstruction can be done in parallel for 𝑝 − 1 positions in logarithmic time, splitting the
work into 𝑝 packets of equal size, one for each PE. The splitting positions are chosen in such a
way that the work performed by the sequential algorithm between two subsequent positions
is a 1/𝑝 share of the total work. This work represents a subproblem that is assigned to one
PE. A state is defined by the indices of the next heavy and light element and by how much
of the current heavy element remains to be assigned. The resulting subproblems consist of
consecutive subsets of light and heavy elements, potentially along with a piece of a heavy item
from a preceding subproblem, and/or with a piece of the last heavy item earmarked for one
or more subsequent subproblems. The items of these subproblems can be allocated precisely
within their respective buckets. We can thus handle the subproblems completely independently
in parallel, requiring no further synchronisation or communication. The splitting of a heavy
item over two or more subproblems does not complicate this beyond the sequential algorithm:

2Since this requires information about all items, this algorithm is primarily targeted at shared-memory machines,
and distributed memory is discussed later in Section 3.3.3.
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(a) State of the algorithm after packing 7 of 13 buckets.
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(b) The finished alias table.

Figure 3.1: Example of alias table construction. Items’ weights are given by their boxes’
heights, colours are for illustration purposes only. Each bucket contains a piece of its item,
aligned to the left in the bucket, and optionally an alias, aligned right and marked with an
arrow from its item for illustration.

pieces of it are assigned as aliases of light items in all but the last subproblem where it occurs.
Thus, the resulting data structure is still an alias table.

We first explain how to split 𝑛 items into two subsets of size 𝑛′ and 𝑛 − 𝑛′. Similar to Vose’s
algorithm, we first compute arrays ℓ and ℎ containing the indices of the light and heavy items,
respectively. We then determine indices 𝑖 and 𝑗 such that 𝑖 + 𝑗 = 𝑛′ and

𝜎 ∶= ∑
𝑥≤𝑖
𝑤ℓ[𝑥] + ∑

𝑥≤𝑗
𝑤ℎ[𝑥] ≤ 𝑛′𝑊/𝑛 and 𝜎 +𝑤ℎ[𝑗+1] > 𝑛′𝑊/𝑛 .

These values can be determined by binary search over the value of 𝑗. By precomputing prefix
sums of the weights of the items in ℓ and ℎ, each iteration of the binary search takes constant
time. The resulting subproblem then consists of the light items ℓ[1 .. 𝑖], the heavy items ℎ[1 .. 𝑗],
and a piece of size 𝑛′𝑊/𝑛 − 𝜎 of item ℎ[𝑗 + 1]. See Figure 3.2 for a continuation of the example
of Figure 3.1.

To split the input into 𝑝 independent subproblems of near-equal size, we perform the above
two-way-split for the values 𝑛′𝑘 = ⌈𝑛𝑘/𝑝⌉ for 𝑘 ∈ [1 .. 𝑝 − 1]. PE 𝑘 is then responsible for filling
a set of buckets corresponding to sets of light and heavy items, each represented by a range
of indices into ℓ and ℎ. A piece of a further heavy item may be used to make the calculation
work out. Note that a subproblem might contain an empty set of light or heavy items and that
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Figure 3.2: Parallel alias table construction: splitting 𝑛 = 13 items into two parts of size
𝑛′ = 7 and 𝑛 − 𝑛′ = 6. Continuation of the example of Figure 3.1.

a single heavy item 𝑗may be assigned partially to multiple subproblems, but only the last PE
using a heavy item will fill its bucket.

Algorithm 3.3 gives detailed pseudocode. It uses function split to compute 𝑝 − 1 different
splits in parallel. The result triple (𝑖, 𝑗, 𝑠) of split specifies that buckets ℓ[1]⋯ℓ[𝑖] and ℎ[1]⋯ℎ[𝑗]
shall be filled using the left subproblem. Moreover, total weight 𝑠 of item ℎ[𝑗 + 1] is not used
on the left side, ie, spilt over to the right side.

This splitting information is then used to make 𝑝 parallel calls to procedure pack, giving each
PE the task to fill up to ⌈𝑛/𝑝⌉ buckets. Pack has input parameters specifying ranges of heavy and
light items it should use. The parameter spill determines how much weight of item ℎ[𝑗min − 1]
can be used for that. Pack works similar to the sweeping algorithm from Algorithm 3.2. If the
residual weight of item ℎ[𝑗min − 1] drops below𝑊/𝑛, this item is also packed in this call. The
body of the main loop is dominated by one if-then-else case distinction. When the residual
weight of the current heavy item falls below𝑊/𝑛, its bucket is filled using the next heavy item.
Otherwise, its weight is used to fill the current light item.

Theorem 3.1 (Parallel Alias Table Construction)
We can construct an alias table with work Θ(𝑛) and span Θ(log𝑛) on a CREW PRAM.

Proof. The algorithm requires linear work and logarithmic span for identifying light and
heavy items and for computing prefix sums [Ble89] over them. Splitting works in logarithmic
time. Then each PE needs timeO(𝑛/𝑝) to fill the buckets assigned to its subproblem. ◻

3.3.2.a) Performance Optimisation in Practice

Observe that we can improve the practical performance of this algorithm by greedily assigning
ranges of items to the PEs before we begin the splitting, with each PE stopping when it runs out
of either light or heavy items in its allotment and applying the above construction only to those
items that could not be assigned. By directly assigning some items, the number of items for
which the auxiliary data structures of Algorithm 3.3 have to be computed is reduced. However,
the number of items that can be handled this way is dependent on the input distribution and
may be arbitrarily small. As a result, we must assume thatO(𝑛) items remain. Nonetheless,
this optimisation can yield significant improvements for typical inputs (see experiments in
Section 3.8.2, where this method is labelled PSA+).
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Algorithm 3.3 : SM-parallel splitting-based alias table construction (PSA).
Input : ⟨𝑤1,… ,𝑤𝑛⟩ ∈ ℝ𝑛 the weights of the 𝑛 input items
Output : 𝑏, an alias table consisting of 𝑛 pairs (𝑤, 𝑎) of (partial) weight 𝑤 and alias 𝑎

1 Function psaAliasTable(⟨𝑤1,… ,𝑤𝑛⟩)
2 𝑊 ∶= ∑𝑛𝑖=1𝑤𝑖 —total weight
3 ℎ ∶= ⟨𝑖 ∈ [1 .. 𝑛] ∣ 𝑤𝑖 >𝑊/𝑛⟩ —parallel traversal finds heavy items…
4 ℓ ∶= ⟨𝑖 ∈ [1 .. 𝑛] ∣ 𝑤𝑖 ≤ 𝑊/𝑛⟩ —…and light items
5 for 𝑘 ∶= 1 to 𝑝 − 1 dopar
6 (𝑖𝑘, 𝑗𝑘, spill𝑘) ∶= split(⌈𝑛𝑘/𝑝⌉) —split into 𝑝 pieces
7 (𝑖0, 𝑗0, spill0) ∶= (0, 0, 0.0); (𝑖𝑝, 𝑗𝑝) ∶= (𝑛, 𝑛) —cover boundaries
8 for 𝑘 ∶= 1 to 𝑝 dopar pack(𝑖𝑘−1 + 1, 𝑖𝑘, 𝑗𝑘−1 + 1, 𝑗𝑘, spill𝑘−1)

Input : 𝑛′ ∈ ℕ, the number of buckets to be filled by the left subproblem
Output : 𝑖, 𝑗 ∈ ℕ, the last light and heavy items to be filled in the left subproblem; 𝑠 ∈ ℝ

the partial weight of heavy item 𝑗 + 1 not to be used by the left subproblem
9 Function split(𝑛′)
10 𝑎 ∶= 1; 𝑏 ∶= min(𝑛, ∣ℎ∣) — [𝑎 .. 𝑏] is the search range for 𝑗
11 loop —binary search
12 𝑗 ∶= ⌊(𝑎 + 𝑏)/2⌋ —bisect search range
13 𝑖 ∶= 𝑛′ − 𝑗 —Establish the invariant 𝑖 + 𝑗 = 𝑛′
14 𝜎 ∶= ∑𝑥≤𝑖𝑤ℓ[𝑥] +∑𝑥≤𝑗𝑤ℎ[𝑥] —work to the left; use precomputed prefix sums
15 if 𝜎 ≤ 𝑛′𝑊/𝑛 and 𝜎 +𝑤ℎ[𝑗+1] > 𝑛′𝑊/𝑛 then
16 return (𝑖, 𝑗,𝑤ℎ[𝑗+1] + 𝜎 − 𝑛′𝑊/𝑛)

17 if 𝜎 ≤ 𝑛′𝑊/𝑛 then 𝑎 ∶= 𝑗 + 1 else 𝑏 ∶= 𝑗 − 1 —narrow search range

Input : [𝑖min .. 𝑖max] the range of light items to assign; [𝑗min .. 𝑗max] the range of heavy items
to assign; spill the maximum amount of heavy item 𝑗min − 1 to use

18 Procedure pack(𝑖min, 𝑖max, 𝑗min, 𝑗max, spill)
19 𝑖 ∶= 𝑖min; 𝑗 ∶= 𝑗min − 1 — ℓ[𝑖] and ℎ[𝑗] are the current light/heavy items,
20 𝑤 ∶= spill — spill is the part of the current heavy item still to be assigned
21 if spill = 0 then 𝑗++; 𝑤 ∶= 𝑤ℎ[𝑗]
22 loop
23 if 𝑤 ≤ 𝑊/𝑛 then —pack a heavy bucket
24 if 𝑗 > 𝑗max then return
25 𝑏[ℎ[𝑗]] ∶= (𝑤, ℎ[𝑗 + 1])
26 𝑤 ∶= (𝑤 +𝑤ℎ[𝑗+1]) −𝑊/𝑛; 𝑗++

27 else —pack a light bucket
28 if 𝑖 > 𝑖max then return
29 𝑏[ℓ[𝑖] ∶= (𝑤ℓ[𝑖], ℎ[𝑗])
30 𝑤 ∶= (𝑤 +𝑤ℓ[𝑖]) −𝑊/𝑛; 𝑖++
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More concretely, in a first step, PE 𝑖 handles items (𝑖 − 1)/𝑝 + 1 to 𝑖/𝑝. In this step, the PEs
run the sequential assignment algorithms on their subset of the input, stopping once the next
light or heavy item would be beyond their part of the input (ie, the item’s index is larger than
𝑖/𝑝). Algorithm 3.3 is then only executed on these remaining items. To do so, each PE records
the index of the first item that could not be assigned greedily and the number of items in its
allotment that was not assigned. The PEs then compute a prefix sum over the latter value. This
allows them to compute the global rank of their unfinished items among all unfinished items.
This information is required in the index calculations (arrays ℎ and ℓ). Algorithm 3.3 then
proceeds normally on these items.

3.3.2.b) Using Block-Wise Prefix Sums

We can further optimise memory usage by employing block-wise prefix sums in our parallel alias
table construction algorithm. The idea is for each block to represent logarithmically many—ie,
log(𝑛)—items for prefix sum computation, resulting in a prefix sum with 𝑛/ log(𝑛) entries. We
augment this with a prefix sum over the number of heavy items in the blocks. This allows us to
replace both the ℓ and ℎ arrays and the full prefix sums over the weight of the light and heavy
items. Algorithm 3.4 gives pseudocode for the computation of the required data structures and
overall control flow, and Algorithm 3.5 gives pseudocode for splitting the computation. Both
use a generalised block size 𝐵 for clarity.

Consider first the aforementioned prefix sums, which are used to split the input into sub-
problems. We can now use this coarse prefix sum until we found the block containing the
heavy item that is the true splitter. To do this without having to extract blocks, we use a double

Algorithm 3.4 : Parallel alias table construction with block-wise prefix sums.
Input : ⟨𝑤1,… ,𝑤𝑛⟩ ∈ ℝ𝑛 the weights of the 𝑛 input items
Output : 𝑏, an alias table consisting of 𝑛 pairs (𝑤, 𝑎) of (partial) weight 𝑤 and alias 𝑎

1 Function blockAliasTable(⟨𝑤1,… ,𝑤𝑛⟩)
2 𝑊 ∶= ∑𝑛𝑖=1𝑤𝑖 —total weight
3 for 𝑖 ∶= 1 to ⌈𝑛/𝐵⌉ dopar
4 𝑚 ∶= (𝑖 − 1)𝐵 + 1; 𝑀 ∶= min(𝑖𝐵, 𝑛) —boundaries of block 𝑖
5 ℎ𝑖 ∶= ∣{𝑗 ∈ [𝑚..𝑀] ∣ 𝑤𝑗 >𝑊/𝑛}∣ —number of heavy items in block 𝑖
6 𝑊ℓ,𝑖 = ∑{𝑤𝑗 ∣ 𝑗 ∈ [𝑚..𝑀] ∧ 𝑤𝑗 ≤ 𝑊/𝑛} —total weight of light items of block 𝑖
7 𝑊ℎ,𝑖 = ∑{𝑤𝑗 ∣ 𝑗 ∈ [𝑚..𝑀] ∧ 𝑤𝑗 >𝑊/𝑛} —total weight of heavy items of block 𝑖
8 Compute prefix sums of ℎ𝑖,𝑊ℓ,𝑖, and𝑊ℎ,𝑖 in parallel.
9 for 𝑘 ∶= 1 to 𝑝 − 1 dopar
10 (𝑖𝑘, 𝑗𝑘, spill𝑘) ∶= splitBlock(⌈𝑛𝑘/𝑝⌉) —split into 𝑝 pieces, see Algorithm 3.5
11 (𝑖0, 𝑗0, spill0) ∶= (0, 0, 0) ∈ ℕ ×ℕ×ℝ —cover boundaries
12 (𝑖𝑝, 𝑗𝑝) ∶= (𝑛, 𝑛) ∈ ℕ ×ℕ
13 for 𝑘 ∶= 1 to 𝑝 dopar pack(𝑖𝑘−1 + 1, 𝑖𝑘, 𝑗𝑘−1 + 1, 𝑗𝑘, spill𝑘−1)
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Algorithm 3.5 : Block-wise parallel alias table construction: splitting.

Input : 𝑛′ ∈ ℕ, the number of buckets to be filled by the left subproblem, as well as𝑊 and
the arrays ℎ,𝑊ℓ, and𝑊ℎ as computed in Algorithm 3.4; block size 𝐵

Output : 𝑖, 𝑗 ∈ ℕ, the last light and heavy items to be filled in the left subproblem; 𝑠 ∈ ℝ
the partial weight of heavy item 𝑗 + 1 not to be used by the left subproblem

1 Function splitBlock(𝑛′)
2 𝑖min ∶= 𝑗min ∶= 1; 𝑖max ∶= 𝑗max ∶= ⌈𝑛/𝐵⌉ —block ranges to search
3 while 𝑖min + 1 < 𝑖max and 𝑗min + 1 < 𝑗max do —double binary search on blocks
4 invariant: desired light item is in one of blocks [𝑖min .. 𝑖max], heavy in [𝑗min .. 𝑗max].
5 𝑖 ∶= ⌊(𝑖min + 𝑖max)/2⌋; 𝑗 ∶= ⌊(𝑗min + 𝑗max)/2⌋ —bisect search range
6 Now considering light items from blocks [1 .. 𝑖] and heavy items from blocks [1 .. 𝑗].
7 𝑐ℎ ∶= ℎ[𝑗] —number of heavy items up to and including block 𝑗
8 𝑐ℓ ∶= 𝑖𝐵 − ℎ[𝑖] —number of light items up to and including block 𝑖
9 𝑅𝑐 ∶= (𝑐ℓ + 𝑐ℎ)/𝑛′ —fraction of item count satisfied

10 𝑅𝑤 ∶= (𝑊ℓ, 𝑖 +𝑊ℎ,𝑗)/(𝑛′𝑊/𝑛) —fraction of target weight satisfied
11 if 𝑅𝑐 = 1 and 𝑅𝑤 = 1 then return (𝑖𝐵, 𝑗𝐵, 0)
12 if 𝑅𝑤 ≥ 1 and 𝑅𝑐 ≤ 1 then 𝑗max ∶= 𝑗 − 1 —too much weight with too few items
13 if 𝑅𝑤 ≤ 1 and 𝑅𝑐 ≥ 1 then 𝑗min ∶= 𝑗 + 1 —too many items with too little weight
14 if 1 ≥ 𝑅𝑤 ≥ 𝑅𝑐 then—count deficit that cannot be fixed with more heavy items alone
15 𝑖min ∶= 𝑖 ⇒ need at least as many light items
16 if 1 ≥ 𝑅𝑐 ≥ 𝑅𝑤 then —weight deficit that cannot be fixed by more light items alone
17 𝑗min ∶= 𝑗 ⇒ need at least as many heavy items
18 if 1 ≤ 𝑅𝑤 ≤ 𝑅𝑐 then —count surplus that cannot be fixed by fewer heavy items alone
19 𝑖max ∶= 𝑖 ⇒ need at most as many light items
20 if 1 ≤ 𝑅𝑐 ≤ 𝑅𝑤 then —weight surplus that cannot be fixed by fewer light items alone
21 𝑗max ∶= 𝑗 ⇒ need at most as many heavy items

22 Compute prefix sum of weights of light items in blocks [𝑖min .. 𝑖max] with virtual 0th
item of weight𝑊ℓ, 𝑖min−1; same for heavy items in blocks [𝑗min .. 𝑗max] and𝑊ℎ,𝑗min−1.

23 Continue search as in split of Algorithm 3.3 with 𝑎 ∶= (𝑗min − 1)𝐵 + 1 and 𝑏 ∶= 𝑗𝐵,
where 𝑖 is guaranteed to be in blocks [𝑖min .. 𝑖max] and 𝑗 is constrained to blocks
[𝑗min .. 𝑗max] by choice of 𝑎, 𝑏. Use prefix sums computed above to calculate 𝜎. Use
binary search on ℎ array to find the block containing the next heavy item in line 15.

binary search that simultaneously limits the range of possible buckets for light and heavy items.
This ensures that in each iteration of the binary search, we can reduce at least one search range,
thereby ensuring logarithmic search depth.

The search terminates oncewe have limited both the number of heavy and light buckets under
consideration to at most two. We can therefore ‘extract’ these blocks, computing their items’
prefix sums, and continue the search there using the regular splitting function of Algorithm 3.3.
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Theorem 3.2 (Parallel Alias Table Construction with Block-Wise Prefix Sums)
We can construct an alias table with work Θ(𝑛) and span Θ(log𝑛) on a CREW PRAM with
Θ(𝑛/ log𝑛) words of auxiliary memory.

Proof. Algorithm 3.4 is expressed with a general block size 𝐵, and we shall see that choosing
𝐵 ∶= log𝑛 results in the claimed bounds. Computing the auxiliary data structures (lines 3–8
of Algorithm 3.4) can be done with linear work and logarithmic span in Θ(𝑛/𝐵) words of
memory. The remainder of the algorithm uses only constant additional space. Thus, the amount
of auxiliary memory used by the algorithm is Θ(𝑛/𝐵) words.

Consider now the running time of function splitBlock of Algorithm 3.5. In each iteration of
the loop, it considers the midpoint of both search ranges and reduces the search range for one of
the intervals from (without loss of generality) 𝑖max − 𝑖min + 1 to at most 𝑖max − ⌊(𝑖max − 𝑖min)/2⌋.
Therefore, after at most a logarithmic number of iterations, both intervals have been reduced to
size at most 2. The search for the correct item has therefore been limited to a constant number
of blocks, which can be ‘unpacked’ in timeO(𝐵). Continuing the search on these items using
function split of Algorithm 3.3 takes time O(log𝐵). Thus, function splitBlock runs in time
O(log𝑛 + 𝐵).

To retain logarithmic span in the overall alias table construction algorithm, we choose
𝐵 ∶= log𝑛 and obtain the claimed bounds. ◻

These changes should yield a speed increase overall because alias table computation is
not limited by computation but by the available memory bandwidth (see Section 3.8). Using
this optimisation, we reduce memory use for the auxiliary arrays from 2𝑛 to 3𝑛/ log𝑛 words.
Including the alias table, this reduces total memory usage by almost half.

Note that we could also use a rank/select data structure, eg, that of Ref. [Shu17], instead
of the array ℎ. This data structure requires 𝑛 + o(𝑛) bits, ie, Θ(𝑛/ log𝑛) words, and can be
constructed in parallel. This change could also be made to Algorithm 3.3 independently.

3.3.3 Distributed Alias Table Construction

The shared-memory parallel algorithm described in Section 3.3.2 can also be adapted to a
distributed-memory machine (eg, using PRAM emulation [Ran91]). However, this requires
information about all items to be communicated. Hence, more communication-efficient al-
gorithms are important for large 𝑛. To remedy this problem, we will now view sampling as
a 2-level process implementing the owner-computes approach underlying many distributed
algorithms. An illustration of this is shown in Figure 3.3.

Let 𝐸𝑖 denote the set of items allocated to PE 𝑖. For each PE 𝑖, we create ameta-item of weight
𝑊𝑖 ∶= ∑𝑗∈𝐸𝑖 𝑤𝑗. Sampling now amounts to sampling a meta-item and then delegating the task
to sample an actual item from 𝐸𝑖 to PE 𝑖. The local data structures can be built independently
on each PE, possibly using a shared-memory parallel algorithm locally. Additionally, we need
to build a data structure for sampling a meta-item. We present two variants of this approach in
the following theorem.
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Theorem 3.3 (Distributed 2-level Alias Tables)
Assuming thatO(𝑛/𝑝) elements are allocated to each PE, we can sample a single item in time
O(𝛼) after preprocessing a 2-level alias table, which can be done in timeO(𝑛/𝑝) plus the following
communication overhead:

i) 𝛽𝑝 + 𝛼 log𝑝 with replicated preprocessing, or

ii) 𝛼 log𝑝 with a distributed top-level table permitting two aliases.

Proof. Building the local alias tables takes timeO(max𝑖 ∣𝐸𝑖∣) ⊆ O(𝑛/𝑝) sequentially.
For Theorem 3.3 (i), we can perform an all-gather operation on the meta-items and compute

the data structure for the meta-items in a replicated way. All-gathering 𝑝 items can be imple-
mented in timeO(𝛽𝑝 + 𝛼 log𝑝) [San+19, Chapter 13.5.1], resulting in the claimed running
time bound.

For Theorem 3.3 (ii), we use the data redistribution algorithm from the extended version
of the paper on which the selection chapter is based, Ref. [HSM15, Section 9], to compute a
relaxed alias table that allows two aliases for each bucket on the top level. This redistribution
algorithm is due to Peter Sanders and therefore not contained in this dissertation.

First, we compute the total weight𝑊with an all-reduction. This allows each PE to determine
whether itsmeta-item is light or heavy. PEswith a lightmeta-itemhave a deficit of size𝑊/𝑝−𝑊𝑖,
whereas PEs with a heavy meta-item have a surplus of size𝑊𝑖 and a deficit of size𝑊/𝑝. We
then use the redistribution algorithm of Ref. [HSM15, Section 9] to align deficits and surpluses,
and transmit the required parts of items. This algorithm is based on aligning prefix sums of
deficits and surpluses with an efficient parallel merging algorithm. The resulting sequence yields
the set of receivers for each PE with a surplus.

The slightly counterintuitive handling of heavy items above, simultaneously giving them a
surplus and a deficit, ensures that each meta-bucket has at most two aliases. Consider a light
meta-item that received the final part of a heavy meta-item’s surplus, but still has some amount
of deficit remaining. Then, if the next meta-item that has just above-average weight, only a
small piece of it would be redistributed, which would not necessarily suffice to fill the remaining
deficit of a light meta-item. Considering the entirety of the heavy meta-items as surplus fixes
this, as the next heavy meta-item always has size at least𝑊/𝑝, and is thus guaranteed to be
large enough to fill the remaining deficit.

We now consider the running time of this approach. Computing𝑊 takes timeO(𝛼 log𝑝)
and the local computations that follow require only constant time. Matching up communication
partners for the redistribution takes timeO(𝛼 log𝑝) using Batcher’s [Bat68] parallel merging
algorithm, see Ref. [HSM15] for the details. Each PE with a deficit is involved in at most two
redistributions as a receiver, while PEs with a surplus (ie, a heavy meta-item) are additionally
involved in one other redistribution as a sender. Each redistribution consists of one sender
transmitting its meta-item to a set of receivers. For the last receiver to know how large its piece
of the meta-item is, it additionally has to consult the prefix-sum of the deficits and surpluses
computed by the redistribution algorithm. By subtracting the preceding PEs’ deficits from the
prefix sum of the surpluses up to and including its heavy meta-item, it can recover the size
of its share. All collective operations involved have latency logarithmic in the number of PEs
involved, ie, at most log𝑝. Thus, we obtain the claimed construction time bound.
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Figure 3.3: Illustration of a two-level alias table with 3 PEs.

Sampling from the resulting two-level alias table needs an additional indirection. First,
a meta-bucket 𝑗 is computed. Then a request is sent to PE 𝑗 which identifies the subset 𝐸𝑖
from which the item should be selected and delegates that task of sampling from 𝐸𝑖 to PE 𝑖.3
Computing the meta-bucket from the top-level ‘two-alias table’ is similar to sampling from
a regular alias table, except that the buckets are now partitioned into three pieces for items 𝑖,
𝐴𝑖,1, and 𝐴𝑖,2, and we need to determine whether 𝑥 ∶=𝑊/𝑝 ⋅ rand() is (a) less than or equal
to𝑊𝑖, in which case item 𝑖 is returned, (b) at most𝑊𝑖 +𝐴𝑖,1.𝑤, in which the first alias 𝐴𝑖,1 is
returned, or (c) between𝑊𝑖 +𝐴𝑖,1.𝑤 and𝑊/𝑝, in which case the second alias 𝐴𝑖,2 is returned.
This requires only a constant amount of time. ◻

Redistributing Items. As discussed so far, constructing distributed-memory 2-level alias
tables is communication-efficient. However, when large items are predominantly allocated on
few PEs, sampling many items can lead to an overload on PEs with large𝑊𝑖. We can remedy
this problem by moving large items to different PEs or even by splitting them between multiple
PEs. This redistribution can be done in the same way we construct alias tables. This implies a
trade-off between redistribution cost (part of preprocessing) and load balance during sampling.

We now look at the case where an adversary can choose an arbitrarily skewed distribution
of item sizes but where the items are randomly allocated to PEs (or that we actively randomise
the allocation implying Θ(𝑛/𝑝) additional communication volume).

Theorem 3.4 (Item Redistribution for Distributed 2-level Alias Tables)
If items are randomly distributed over the PEs initially, it suffices to redistributeO(log𝑝) items
from each PE such that afterwards, each PE has total weight O(𝑊/𝑝) in expectation and
O(𝑛/𝑝 + log𝑝) (pieces of) items. This redistribution takes expected timeO(𝛼 log𝑝).

Proof. Let us distinguish between super-heavy items whose weight exceeds 𝑐𝑊/(𝑝 log𝑝) for
an appropriate constant 𝑐 and the remaining ordinary items. The expected maximum weight
allocated to a PE based on ordinary items isO(𝑊/𝑝) [San96]. Thus, we need only redistribute
super-heavy items. Yet, by definition of super-heavy items, at most 𝑝 log(𝑝)/𝑐 of them can
exist in the entire input. By standard balls-into-bins arguments [RS98, Theorem 1, Case 2],
only O(log𝑝) super-heavy items are initially allocated to any PE with high probability. We
adapt the redistribution used in Theorem 3.3 (ii) to cope with a logarithmic number of items to
redistribute. The sending PEs simply send all of their super-heavy items to all of their associated
receivers, and the receivers unpack the bulk to extract the parts they have to represent. The
asymptotic complexity does not change since even messages of sizeO(log𝑝) can be broadcast
in timeO(𝛼 log𝑝), eg, using pipelining [San+19, Chapter 13.1.2]. ◻

3If we ensure that meta-items have similar size (see Section 3.3.3), then we can arrange the meta-items in such a
way that 𝑖 = 𝑗most of the time.
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3.4 Output-Sensitive SamplingWith Replacement
(ProblemWRS–R)

The algorithm of Section 3.3.2 easily generalises to sampling 𝑘 items with replacement by simply
executing 𝑘 queries. Since the precomputed data structures are static, these queries can be run
in parallel. We obtain optimal spanO(1) and workO(𝑘).

Corollary 3.5 (Weighted Sampling with Replacement using Alias Tables)
After a suitable alias table data structure has been computed, we can sample 𝑘 items with replace-
ment with workO(𝑘) and spanO(1).

Yet if the weights are skewed this may not be optimal since large items will be sampled
multiple times. Here, we describe an output-sensitive algorithm that outputs only different
items in the sample together with how often they were sampled, ie, a set 𝑆 of pairs (𝑖, 𝑘𝑖)
indicating that item 𝑖 was sampled 𝑘𝑖 times. The work will be proportional to the output
size 𝑠 up to a small additive term. For highly skewed distributions, even 𝑘 ≫ 𝑛 may make
sense. Note that outputting multiplicities may be important for appropriately processing
the samples. For example, let 𝑋 denote a random variable where item 𝑖 is sampled with
probability 𝑤𝑖/𝑊 and suppose we want a truthful estimator for the expectation of 𝑓(𝑋) for
some function 𝑓 that is assumed to correlate with the weights. Then the Hansen-Hurwitz
estimator, �̂�(𝑋) =𝑊/𝑘 ⋅ ∑(𝑖,𝑘𝑖)∈𝑆 𝑘𝑖𝑓(𝑖)/𝑤𝑖, provides the desired result [HH43].

Wewill combine and adapt three previously used techniques for related problems: the bucket
tables from Section 3.1.2, the divide-and-conquer technique from Section 3.1.4 [San+18], and
the Poisson sampling algorithm of Bringmann and Panagiotou [BP17].

We approximately sort the items into 𝑢 = ⌈log𝑈⌉ groups of items whose weights differ
by at most a factor of two using integer sorting. To do this, weight 𝑤𝑖 is mapped to group
⌊log(𝑤𝑖/𝑤min)⌋. In contrast to subset sampling, this has to extend to items with even the
smallest weights.

To help determine the number of samples to be drawn from each group, we build a complete
binary tree with one nonempty group at each leaf. Interior nodes store the total weight of
items in groups assigned to their subtrees. This divide-and-conquer tree (DC-tree) allows us
to generalise the divide-and-conquer technique described in Section 3.1.4 to weighted items.
Suppose we want to sample 𝑘 elements from a subtree rooted at an interior node whose left
subtree has total weight 𝐿 and whose right subtree has total weight 𝑅. Then the number of
items 𝑘′ to be sampled from the left has a binomial distribution (𝑘 trials with success probability
𝐿/(𝐿 + 𝑅)). We can generate 𝑘′ accordingly and then recursively sample 𝑘′ items from the
left subtree and 𝑘 − 𝑘′ items from the right subtree. A recursive algorithm can thus split the
number of items to be sampled at the root into numbers of items sampled at each group. When
a subtree receives no samples, the recursion can be stopped. Since the distribution of weights
to groups can be highly skewed, this stopping rule will be important in the analysis.

For each group 𝐺, we integrate bucket tables and DC-trees as follows. Let 𝑛𝐺 be the number
of items in the group, and let [𝑎, 2𝑎) be the range of weights mapped to this group. For the
bucket table we can use a very simple variant that stores these 𝑛𝐺 items with weights from
the interval [𝑎, 2𝑎) in 𝑛𝐺 buckets of capacity 2𝑎. Sampling one element then uses a rejection
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Figure 3.4: Output-sensitive sampling: assignment of multiplicities with 𝑘 = 36.

method that repeats the sampling attempt when the random variate leads to an empty part of a
bucket.4

We also build a DC-tree for each group. A simple linear mapping of items into the bucket
table allows us to associate a range of relevant buckets 𝑏𝑇 with each subtree 𝑇 of the DC-tree.
For sampling𝑚 items from a group 𝐺, we use the DC-tree to decide how many samples each
subtree has to contribute. When this number decreases to 1 for a subtree 𝑇, we sample this
element directly and in constant expected time from the buckets in the range 𝑏𝑇.5

Figure 3.4 gives an example of the query process. We obtain the following complexities:

Theorem 3.6 (Output-Sensitive Weighted Sampling with Replacement)
Preprocessing for problem WRS–R can be done in the time and span needed for integer sorting 𝑛
elements with 𝑢 = ⌈log𝑈⌉ = ⌈log(𝑤max/𝑤min)⌉ different keys6 plus linear work and logarithmic
span (on a CREW PRAM) for building the actual data structure. Using this data structure,
sampling a multiset 𝑆 with 𝑘 items and 𝑠 different items can be done with span O(log𝑛) and
expected workO(𝑠 + log𝑛) on a CREW PRAM.

Proof. Besides sorting the items into groups, we have to build binary trees of total sizeO(𝑛).
This can be done with logarithmic span and linear work using a simple bottom-up reduction.
The bucket-tables which have total size 𝑛 can be constructed as in Section 3.3.2.

The span of a query is essentially the depth of the trees, log𝑢 + log𝑛 ≤ 2 log𝑛.
Bounding the work for a query is more complicated since, in the worst case, the algorithm

can traverse paths of logarithmic length in the DC-trees for just a constant number of samples
taken at its leaves. However, this is unlikely to happen, and we show that in expectation

4If desired, we can also avoid rejection sampling by mapping the items into up to 2𝑛𝐺 buckets of size 𝑎 without
gaps. This way there are at most two items in each bucket. Note that this is still different from alias tables because
we need to map ranges of consecutive items to ranges of buckets. This is not possible for alias tables.

5For practical implementations, it may make sense to stop descending the tree when𝑚 drops below some constant.
We can then join duplicates using a small hash table that fits in cache. This optimisation is described in more
detail on page 89.

6Section 3.1.1 discusses the cost of this operation on different models of computation.
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Figure 3.5: Illustration of the groups in Theorem 3.6.

the overhead is a constant factor plus an additive logarithmic term. We are thus allowed to
charge a constant amount of work to each different item in the output and can afford a leftover
logarithmic term.

We first consider the top-most DC-tree 𝑇 that divides samples between groups. Tree 𝑇 is
naturally split into a heavy range of groups that contain some items which are sampled with
probability at least 1/2, a range ofmedium groups whose items are sampled with probability less
than 1/2 but above 1/𝑛, and a remaining range of light groups in which all items are sampled
with probability at most 1/𝑛. Refer to Figure 3.5 for an illustration. Assuming the heavy groups
are to the left, consider the path 𝑃 in 𝑇 leading to the first light group. Subtrees branching from
𝑃 to the left are complete subtrees that lead to heavy groups only. Since all leaves represent
non-empty groups, we can charge the cost for traversing the left trees to the elements in the
groups at the leaves: in expectation, at least half of these groups contain elements that yield a
sample.

Consider next the medium groups, ie, those whose items yield at least one sample with
probability at least 1/𝑛. There can be at most log𝑛 such ‘middle’ groups because groups’ weight
bounds fall exponentially. Because these groups are consecutive, they fit into subtrees of 𝑇 of
logarithmic total size. Therefore, traversing the paths to them causesO(log𝑛) work in total.

This leaves the light groupswhose items individually yield at least one samplewith probability
at most 1/𝑛. There are at most 𝑢 ≤ 𝑛 such groups. Fix an arbitrary one of them, 𝐺, and let 𝑛𝐺
be the number of items in this group. Then the expected cost of traversing the path to 𝐺 is the
path’s length (≤ log𝑢 ≤ log𝑛) times the likelihood that the path is taken (≤ 𝑛𝐺/𝑛). Summing
this over all light groups yields total expected work log𝑛∑𝐺 𝑛𝐺/𝑛 ≤ log𝑛.

Finally, Lemma 3.7 shows that the work for traversing DC-trees within a group is linear in
the output size from each group. Summing this over all groups yields the desired bound. ◻
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Lemma 3.7 (Work Bound for Sampling from a DC-tree [HS19d])
Consider a DC-tree plus bucket array for sampling with replacement of 𝑘 out of 𝑛 items where
weights are in the range [𝑎, 2𝑎). Then the expected work for sampling is O(𝑠), where 𝑠 is the
number of different sampled items.

Proof (due to Peter Sanders and included here for self-containedness). If 𝑘 ≥ 𝑛,Ω(𝑛) items are
sampled in expectation at a total cost of O(𝑛). So assume 𝑘 < 𝑛 from now on. The first
log𝑘 +O(1) levels of 𝑇may be traversed completely, contributing a total cost ofO(𝑘).

For the lower levels, we count the number 𝑌 of visited nodes from which at least 2 items
are sampled. This is proportional to the total number of visited nodes since nodes from which
only one item is sampled contribute only constant expected cost (for directly sampling from
the array) and since there are at most 2𝑌 such nodes.

Let𝑋 denote the number of items sampled at a node at level ℓ of tree 𝑇. An interior node at
level ℓ represents 2𝐿−ℓ leaves with total weight𝑊ℓ ≤ 2𝑎2𝐿−ℓ where 𝐿 = ⌈log𝑛⌉. 𝑋 has a binomial
distribution with 𝑘 trials and success probability

𝜌 =
𝑊ℓ
𝑊
≤
2𝑎2𝐿−ℓ

𝑎2𝐿−1
= 4 ⋅ 2−ℓ .

Hence, the probability of sampling at least two items at a node at level ℓ can be estimated as

P[𝑋 ≥ 2] = 1 − P[𝑋 = 0] − P[𝑋 = 1] = 1 − (1 − 𝜌)𝑘 − 𝑘𝜌(1 − 𝜌)𝑘−1 ≈ (𝑘𝜌)2/2

where the ‘≈’ holds for 𝑘𝜌 ≪ 1 and was obtained by series development in the variable 𝑘𝜌. The
expected cost at level ℓ > log𝑘 +O(1) is thus estimated as the product of the above probability
and the number of nodes at this level, ie,

2ℓP[𝑋 ≥ 2] ≈ 2ℓ(𝑘𝜌)2/2 ≤ 2ℓ(𝑘 ⋅ 4 ⋅ 2−ℓ)2/2 = 8𝑘22−ℓ .

At level ℓ = ⌈log𝑘⌉ + 3 + 𝑖 we thus get expected cost ≤ 8𝑘22−⌈log 𝑘⌉ ⋅ 2−3 ⋅ 2−𝑖 ≤ 𝑘 ⋅ 2−𝑖. Summing
this over 𝑖 to cover all lower levels of the tree yields expected total cost 𝑌 ∈ O(𝑘). ◻

3.4.1 Distributed Output-Sensitive Sampling with Replacement
The batched character of sampling with replacement makes this setting attractive for a distrib-
uted implementation using the owner-computes approach. Each PE builds the data structure
described above for its local items. Furthermore, we build a top-level DC-tree that distributes
the samples between the PEs, ie, with one leaf for each PE. We will see below that this can
be done using a bottom-up reduction over the total item weights on each PE, ie, no PRAM
emulation or replication is needed. Each PE only needs to store the partial sums appearing
on the path in the reduction tree leading to its leaf. Sampling itself can then proceed without
communication. Each PE simply descends its path in the top-level DC-tree analogous to the
uniform case [San+18, Section 3.2]. Afterwards, each PE knows how many samples to draw
from its local items. Note that we assume 𝑘 to be known on all PEs and that communication
for computing results from the sample is not considered here.
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Theorem 3.8 (Distributed Output-Sensitive Weighted Sampling with Replacement)
Sampling 𝑘 out of 𝑛 items with replacement (problem WRS–R) can be done in a communication-
free way with processing overheadO(log𝑝) in addition to the time needed for taking the local
sample. Building and distributing the DC-tree for distributing the samples is possible in time
O(𝛼 log𝑝).

Proof. It remains to explain how the reduction can be done in such a way that it can be used as
a DC-tree during a query and such that each PE knows the path in the reduction tree leading to
its leaf. First, assume that 𝑝 = 2𝑑 is a power of two. Then we can use the well-known hypercube
algorithm for all-reduce (eg, Ref. [Kum+94]). In iteration 𝑖 ∈ [1 .. 𝑑] of this algorithm, a PE
knows the sum for its local 𝑖−1-dimensional subcube and receives the sum for the neighbouring
subcube along dimension 𝑖 to compute the sum for its local 𝑖 dimensional subcube. For building
the DC-tree, each PE simply records all these values.

For general (ie, non-power-of-two) values of 𝑝, we first build the DC tree for 𝑑 = ⌊log𝑝⌋.
Then, each PE 𝑖 with 𝑖 < 2𝑑 and 𝑗 ∶= 𝑖 + 2𝑑 < 𝑝 receives the aggregate local item weight from
PE 𝑗 and then sends its path to PE 𝑗. ◻

Observe that the way Theorem 3.8 is stated, this sample distribution algorithm can also be
applied to the naïve local sampling method of repeatedly sampling one item from an alias table.

Similar to Section 3.3.3, it depends on the assignment of the items to the PEs whether this
approach is load-balanced for the local computations. Before, we needed a balanced distribution
of both the number of items and the items’ weights. Now the situation is better because items
may be sampled multiple times but require work only once. On the other hand, we do not want
to split heavy items between multiple PEs since this would increase the amount of work needed
to process the sample. It would also undermine the idea of communication-free sampling if we
had to collect samples of the same item assigned to different PEs. Below, we once more analyse
the situation for items with arbitrary weights that are allocated to the PEs randomly.

Theorem 3.9 (Weighted Sampling with Replacement with Random Allocation)
Consider an arbitrary set of item sizes and let 𝑢 = log(max𝑖𝑤𝑖/min𝑖𝑤𝑖). If items are randomly
assigned to the PEs initially, then preprocessing takes expected time O(isort1𝑢(𝑛/𝑝) + 𝛼 log𝑝)
where isort1𝑢(𝑥) denotes the time for sequential integer sorting of 𝑥 elements using keys from the
range [0 .. 𝑢].7 Using this data structure, sampling a multiset 𝑆 with 𝑘 items and 𝑠 different items
can be done in expected timeO(𝑠/𝑝 + log𝑝).

Proof. For preprocessing, standard balls-into-bins arguments tell us that a random assignment
of 𝑛 ≥ 𝑝 log𝑝 items to 𝑝 PEs results in no more than 𝑛/𝑝 +Θ(

√

𝑛/𝑝 ⋅ log𝑝) = Θ(𝑛/𝑝) items
at any PE with high probability (see, eg, [RS98]), andO(log𝑝) items if 𝑛 < 𝑝 log𝑝. Thus, we
have at mostO(𝑛/𝑝 + log𝑝) items at any PE with high probability.

Since sorting is now a local operation, we only need an efficient sequential algorithm for
approximately sorting integers. The term 𝛼 log𝑝 is for the global DC-tree as in Theorem 3.8.

A sampling operation will sample 𝑠 items. Since their allocation is independent of the choice
of the sampled items, we can apply the same balls-into-bins bounds as above to conclude that
no more thanO(𝑠/𝑝 + log𝑝) sample items are allocated to any PE with high probability. ◻

7Note that this will be linear in all practically relevant situations.
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3.5 SamplingWithout Replacement (ProblemWRS–N)
A common approach to sampling without replacement is to sample with replacement and reject
items that were already sampled. Using a hash table to quickly identify duplicate samples works
well for small sample sizes in the uniform (ie, unweighted) sampling setting [San+18]. It would,
however, not work well for weighted inputs with skewed distribution, where few items would
dominate the sample with replacement, leading to an extremely high number of rejected items.
But presume that we knew an ℓ > 𝑘 so that a sample of size ℓ with replacement contains at least
𝑘 and no more thanO(𝑘) unique items with sufficiently high probability. Then we could use
the output-sensitive algorithm for WRS–R of Section 3.4 and discard the samples’ multiplicities
to obtain a sample without replacement of size 𝑠 ≥ 𝑘 in timeO(𝑠). This sample can then be
downsampled to size 𝑘 with linear work using the exponential clocks method (Section 3.1.3).

The crucial step, of course, is to find ℓ. This depends heavily on the distribution of the input:
if all items have similar weight, ℓwill be little larger than 𝑘, but if the weights are heavily skewed,
it could have to be exponentially large. Our main observation is that by having distributed
the items into groups of similar weight (see Section 3.4), we already have enough information
to compute a good value for ℓ in logarithmic time. The basis of this estimation is to assume
that sufficiently heavy items are sampled once and lighter items are sampled with probability
proportional to their weight. We precompute the data needed for the estimation for each
group and then, at query time, perform a binary search over the groups. Suppose the currently
considered group stores elements with weights in the range [𝑎, 2𝑎). Then we try the value
ℓ = ⌈𝑊/𝑎⌉. We (over-)estimate the resulting global number of unique samples as

∣{𝑖 ∣ 𝑤𝑖 ≥ 𝑎}∣ + ℓ ⋅ ∑
𝑖∶𝑤𝑖<𝑎

𝑤𝑖
𝑊
.

This is the precomputed number of items with weight ≥ 𝑎 (those in heavier groups, including the
current group) plus ℓ times the relative weight of the items with weight < 𝑎. Below we show that
aiming for an overestimate of 2𝑘 different samples will yield at least 𝑘 with constant probability.
First, we state the above estimation as a lemma—which we shall prove later—providing both
an over- and an underestimate.

Lemma 3.10 (Expected Number of Unique Items in a Sample with Replacement)
Let𝑋 be the random variable describing the number of unique items in a weighted sample with
replacement of size ℓ. Then,

(1 −
1
𝑒
) 𝑡ℓ ≤ E[𝑋] ≤ 𝑡ℓ where 𝑡ℓ ∶= ℓ ⋅ ∑

𝑖∶ 𝑤𝑖𝑊 <
1
ℓ

𝑤𝑖
𝑊
+ ∣{𝑖 ∣
𝑤𝑖
𝑊
≥
1
ℓ
}∣ .

Before we dive into the technical parts, we now describe the algorithm in more detail.

Construction. To support fast queries, we need to do some additional precomputation during
construction. First, compute𝑊 and apply the preprocessing of Section 3.4. Then, compute
each group’s relative total weight, 𝑔𝑖 ∶= ∑𝑗∈𝐺𝑖 𝑤𝑗/𝑊, where 𝐺𝑖 denotes the group with index 𝑖,
and their exclusive prefix sum, ℎ𝑖 ∶= ∑𝑗<𝑖 𝑔𝑖. Further, let 𝑐𝑖 ∶= ∑𝑗<𝑖 ∣𝐺𝑗∣ be the number of items
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in all groups before group 𝑖. These prefix sums are used at query time to quickly estimate the
number of unique samples for a given sample size with replacement.

Queries. At query time, we can find a suitable value of ℓ using binary search over the non-
empty groups. These are exactly the leaves of the top-level DC-tree constructed by the pre-
processing for WRS–R. Let 𝑖 be the index of the group currently under consideration and
[𝑎𝑖, 2𝑎𝑖) be the interval of probabilities assigned to the group. Lemma 3.10 gives upper and
lower bounds for the expected number of unique items in a sample of size ℓ, which are only a
constant factor apart. With the data structures computed during construction, we can eval-
uate 𝑡ℓ for ℓ ∶= ⌈𝑊/𝑎𝑖⌉ as 𝑡ℓ ∶= ℓ ⋅ ℎ𝑖 + (𝑛 − 𝑐𝑖). Lemma 3.12 below states that we can find a
group 𝑖 whose minimum weight 𝑎𝑖 gives us a value of ℓ such that sampling ℓ elements with
replacement yields 2𝑘 unique elements in expectation, but at the same time not too many more
(ie, O(𝑘)). This ensures that the output contains at least 𝑘 unique elements with sufficient
probability. However, this group may be empty and thus not considered in the binary search.
Let 𝐺𝑖 and 𝐺𝑗 be the non-empty groups with items of next-smaller and next-larger weights,
respectively. Then we are free to choose ℓ in the range [2𝑎𝑖 .. 𝑎𝑗]. We do this by solving the
inequality E[𝑋] ≥ (1 − 1/𝑒)𝑡ℓ

!
= 2𝑘 of Lemma 3.10 for ℓ. As there are no items with weights in

the range considered, the sum of weights and the set cardinality in the equation of the lemma
remain constant, and we can solve for ℓ in constant time to find the most suitable value of 𝑡ℓ,
obtaining ℓ = ℎ−1𝑖 (2𝑘

𝑒
𝑒−1 − (𝑛 − 𝑐𝑖)). We then draw a sample with replacement of size ℓ as in

the algorithm of Theorem 3.6, and discard the sampled items’ multiplicities. If the resulting
sample has fewer than 𝑘 unique elements, it is rejected and the sampling is repeated. In a
postprocessing step, we downsample the resulting sample with replacement to the required
size 𝑘 using the exponential clocks technique of Section 3.1.3.

Overall, we get:

Theorem 3.11 (Weighted Sampling without Replacement)
Preprocessing for problemWRS–N is possible with the same work and time bounds as for problem
WRS–R (Theorem 3.6). Sampling 𝑘 items without replacement is then possible with spanO(log𝑛)
and expected workO(𝑘 + log𝑛) on a CREW PRAM.

Proof. The computation of𝑊 as well as the 𝑔𝑖, ℎ𝑖, and 𝑐𝑖 is possible with linear work and
logarithmic span. Thus, the running time of the construction phase is dominated by the
preprocessing for WRS–R of Theorem 3.6.

The binary search for a query takes time O(log𝑛), as each step of the search requires
constant time using the values computed during the construction phase. Because ℓ was chosen
to yield at least 2𝑘 samples in expectation, the probability of the query resulting in fewer than
𝑘 unique items is at most 1/2 by Markov’s inequality. Downsampling the resulting sample
needsO(𝑘) work andO(log𝑛) span for a selection of 𝑘 out ofΘ(𝑘) items using the algorithm
of Section 2.3.1. The log𝑛 term in the work bound comes from sampling with replacement
(Theorem 3.6). In summary, we obtain the claimed bound. ◻

Proof (Lemma 3.10). We can bound the number of unique items in a sample with replacement
of size ℓ by considering the probability of any item to not be sampled. Item 𝑖 is not part of the
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Figure 3.6: How the expected number of samples E[𝑋] is influenced by the choice of ℓ
depends on the distribution of the inputs (Lemma 3.10). Items with small probability of
being sampled contribute linearly in their weight, whereas large items are expected to be
sampled.

sample with probability (1 −𝑤𝑖/𝑊)ℓ, and we obtain

E[𝑋] =
𝑛
∑
𝑖=1
1 − (1 −𝑤𝑖/𝑊)ℓ

where𝑋 is the random variable describing the number of unique items in the sample.
We split the formula for the expectation of𝑋 into two parts: the items with relative weight
𝑤𝑖/𝑊 below 1/ℓ, ie, thosewhich yield less than a single sample in expectation, and the remaining
ones with 𝑤𝑖/𝑊 ≥ 1/ℓ which are expected to occur in the sample.

Let us briefly consider the case of ℓ = 1 so that we can safely assume ℓ > 1 in the remainder
of the proof. In the trivial case where the input consists of a single item and 𝑤1 =𝑊, we obtain
𝑡ℓ = 1 ⋅ 0+1 = 1. Otherwise, all items are in the first group, and we have 𝑡ℓ = 1 ⋅∑𝑖𝑤𝑖/𝑊+0 = 1.
In either case, we obtain 𝑡ℓ = 1 as expected and are done.

Bernoulli’s inequality states (1 + 𝑥)𝑟 ≥ 1 + 𝑟𝑥 for 𝑥 ∈ ℝ,𝑥 > −1 and 𝑟 ∈ ℕ. Because we can
now assume ℓ > 1, we have 𝑤𝑖/𝑊 < 1/ℓ < 1 for the items of the first group and thus obtain the
upper bound

1 − (1 −𝑤𝑖/𝑊)ℓ ≤ ℓ𝑤𝑖/𝑊 .

We can also find a lower bound for the inclusion probability of items in the first group:

1 − (1 −𝑤𝑖/𝑊)ℓ = 1 − (1 − 𝑏𝑖/𝑛)𝑐⋅𝑛 where 𝑏𝑖 ∶= 𝑛𝑤𝑖/𝑊 and 𝑐 ∶= ℓ/𝑛

≥ 1 − 𝑒−𝑐𝑏𝑖 = 1 − 𝑒−ℓ𝑤𝑖/𝑊 by 𝑒𝑥 ≥ (1 + 𝑥/𝑛)𝑛

≥ (1 − 1/𝑒) ℓ𝑤𝑖/𝑊 as 𝑒−𝑥 ≤ 1 − (1 − 1/𝑒)𝑥 for 𝑥 ∈ (0, 1).

Conveniently, this lower bound is (1 − 1/𝑒) times our upper bound, and thus the first term of 𝑡
is explained.

Consider now the items with 𝑤𝑖/𝑊 ≥ 1/ℓ, ie, the items which yield at least one sample in
expectation. Because it is a probability, 1 − (1 −𝑤𝑖/𝑊)ℓ is clearly bounded above by 1. In the
other direction, because 𝑤𝑖/𝑊 ≥ 1/ℓ, we obtain

1 − (1 −𝑤𝑖/𝑊)ℓ ≥ 1 − (1 − 1/ℓ)ℓ ≥ 1 − 1/𝑒 by (1 + 𝑥/𝑛)𝑛 ≤ 𝑒𝑥 .

This again assumes ℓ > 1. Adding the results of both parts yields the claimed inequalities. ◻
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An example of this is illustrated in Figure 3.6. By applying the above estimation to the
groups used by the algorithm of Section 3.4, we can quickly obtain an estimate for the output
size that is at most a factor of two worse.

Lemma 3.12 (Group-Based Estimation of Sample Cardinality)
Applying the estimation of Lemma 3.10 to groups of items of similar weight as in Section 3.4
loosens the bound on E[𝑋] by at most a factor of two.

Proof. Item 𝑖 is in group ⌊log(𝑤𝑖/𝑤min)⌋. Label the groups 𝐺1 to 𝐺𝑢 where 𝑢 ∶= ⌈log𝑈⌉ =
⌈log(𝑤max/𝑤min)⌉ and let the value range of group 𝑖 be [𝑎𝑖, 2𝑎𝑖). The difference to Lemma 3.10
now is that we can only choose ℓ as ⌈𝑊/𝑎𝑖⌉ for some group 𝑖. This necessitates moving entire
groups between the left and right parts of the estimation (with left and right as illustrated in
Figure 3.6). Pick a group 𝑖, ie, ℓ ∶= ⌈𝑊/𝑎𝑖⌉, and consider the effects of choosing group 𝑖 + 1
instead, ie, ℓ′ ∶= ⌈𝑊/𝑎𝑖+1⌉ = ⌈𝑊/(2𝑎𝑖)⌉ = ℓ/2. This results in moving group 𝑖 from the right
part of the estimation to the left part. The contribution of any group 𝑗 > 𝑖 is the same for 𝑡ℓ
and 𝑡ℓ′ because their items are expected to be sampled in both instances. Furthermore, the
contribution of groups 1 to 𝑖 − 1 is halved, as ℓ′ = ℓ/2. It remains to bound the contribution of
group 𝑖, which is moved from the right part of the estimation to the left part: it contributes ∣𝐺𝑖∣
to 𝑡ℓ and 𝜉 ∶= ℓ′∑𝑗∈𝐺𝑖 𝑤𝑗/𝑊 to 𝑡ℓ′ . However, as all items in 𝐺𝑖 are in the weight range [𝑎𝑖, 2𝑎𝑖)
and ℓ′ = ⌈𝑊/𝑎𝑖+1⌉ = ⌈𝑊/(2𝑎𝑖)⌉, we have 𝜉 ≥ ℓ′𝑎𝑖 ∣𝐺𝑖∣ /𝑊 ≥ 𝑎𝑖/𝑎𝑖+1 ⋅ ∣𝐺𝑖∣ = ∣𝐺𝑖∣ /2, and thus the
expected number of samples contributed by group 𝑖 at most halves, too. Thus, 𝑡ℓ ≤ 2𝑡ℓ′ , and for
any ℓ of Lemma 3.10, we can find an ℓ̂ ≥ ℓ that yields no fewer, but also at most twice as many
unique items in expectation while only relying on information about the groups, not the 𝑤𝑖. ◻

3.5.1 Distributed Sampling without Replacement
Weagain use the owner-computes approach and adapt the distributed data structure for problem
WRS–R from Section 3.4.1. However, to find the right estimate for the number ℓ of samples
with replacement, we need to perform a global estimation taking all items into account. This
can be achieved by finding the global sum of all the local prefix sums in each step of the binary
search. Also, in each iteration, we need a nested binary search to find corresponding buckets in
the local bucket arrays.

If the global number of group 𝑢 is not too large, we can consider a different trade-off between
preprocessing cost and query cost. We precompute replicated arrays of global group sizes and
weights. This allows finding the right value of ℓ without communication at query-time. Local
sorting is performed using bucket sort with 𝑢 groups. The global group sizes can then be
computed as a sum all-reduction on the local arrays of group sizes.

During a query, after sampling with replacement, we need a global parallel selection algo-
rithm to reduce the sample size to 𝑘. This can be done using the unsorted selection algorithm
of Section 2.3.1. We get the following result:

Theorem 3.13 (Weighted Sampling without Replacement with Random Allocation)
Consider an arbitrary set of item sizes and let 𝑢 = log(max𝑖𝑤𝑖/min𝑖𝑤𝑖). If items are randomly
assigned to the PEs initially, then preprocessing takes expected time O(isort1𝑢(𝑛/𝑝) + 𝛼 log𝑝)
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where isort1𝑢(𝑛/𝑝) denotes the time for sequential integer sorting of 𝑥 elements using keys from
the range [0 .. 𝑢]. Using this data structure, sampling 𝑘 items without replacement can be done in
expected timeO(𝑘/𝑝 + 𝛼 log(𝑛) log(𝑝)).

A variant that uses a replicated array of global group sizes works withO(𝑛/𝑝 + 𝛽𝑢 + 𝛼 log𝑝)
preprocessing time and query timeO(𝑘/𝑝 + log𝑢 + 𝛼 log𝑘𝑝).

Proof. Finding the right estimate for ℓwith binary search increases the latency of the algorithm
toO(𝛼 log(𝑝) log(𝑛)).

With a replicated array of global group sizes, we incur additional preprocessing time
O(𝑛/𝑝 + 𝑢) for bucket sort and O(𝛽𝑢 + 𝛼 log𝑝) for the sum all-reduction on the arrays of
local group sizes. At query time, this allows finding the right value of ℓ with local work
O(log𝑢) ≤ O(log𝑛).

Drawing the sample with replacement takes expected timeO(𝑘/𝑝 + log𝑝) by Theorems 3.8
and 3.9.

Using the unsorted selection algorithm of Section 2.3.1, the selection at the end of the query
takes timeO(𝑘/𝑝 + 𝛽min(𝑘/𝑝,√𝑝 log𝑝 𝑘) + 𝛼 log𝑘𝑝) w.h.p. for general inputs. However, for
randomly distributed data, this becomesO(𝑘/𝑝 + 𝛼 log𝑘𝑝) by Corollary 2.2.

The claimed bounds then follow with Theorem 3.8. ◻

3.6 Poisson Sampling (ProblemWRS–P)
Poisson sampling, also known as subset sampling, is a generalisation of Bernoulli sampling to
the weighted case. The unweighted case can be solved in linear expected time with regard to
the output size by computing the geometrically distributed distances between elements in the
sample [AD85]. The naïve algorithm for the weighted problem, which consists of throwing a
biased coin for each item, requiresO(𝑛) time. Bringmann and Panagiotou [BP17] show that
this is optimal if only a single subset is desired, and present a sequential algorithm that is also
optimal for multiple queries.

The difference between WRS–P on the one hand and WRS–1/WRS–R on the other hand
is that we do not have a fixed sample size but rather treat the item weights as independent
inclusion probabilities in the sample (this requires 𝑤𝑖 ≤ 1 for all 𝑖). Hence, different algorithms
are required. Observe that the expected sample size is𝑊 ≤ 𝑛. Then our goal is to devise a
parallel preprocessing algorithm with workO(𝑛) which subsequently permits sampling with
workO(1 +𝑊).

We now parallelise the approach of Bringmann and Panagiotou [BP17,Theorem 1.6]. Similar
to our algorithm for sampling with replacement, this algorithm is based on grouping items into
sets with similar weight. In each group, one can use ordinary Bernoulli sampling in connection
with rejection sampling. Load balanced division between PEs can be done with a prefix sum
calculation over the weights in each group.

Theorem 3.14 (Poisson Sampling)
Preprocessing for problem WRS–P can be done with workO(𝑛) and spanO(log𝑛). A query can
then be implemented with expected workO(𝑊 + 1) and spanO(log𝑛).
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Proof. Approximately sort the items into 𝐿 + 1 buckets with 𝐿 ∶= ⌈log𝑛⌉, where bucket 𝑖
is 𝐵𝑖 ∶= {𝑗 ∣ 2−𝑖 ≥ 𝑤𝑗 ≥ 2−(𝑖+1)} for 𝑖 ∈ [0 .. 𝐿 − 1] and 𝐵𝐿 ∶= {𝑗 ∣ 2−𝐿 ≥ 𝑤𝑗} contains all
sufficiently improbable elements. This can be done with linear work and logarithmic span on a
CREW PRAM [RR89, Lemma 3.1]. Let 𝜎 denote the permutation of the items implied by this
re-ordering.

Next, we precompute an assignment of consecutive ranges of permuted items to PEs. Ob-
serve that we need not care about bucket boundaries regarding the assignment; there are no
dependencies between elements, and the result remains a valid Poisson sample. Therefore, we
compute a prefix sum ̂𝑤𝑖 ∶= ∑𝑗≤𝑖𝑤𝜎(𝑗) over the inclusion probabilities in their new order. PE 𝑖
then handles the items whose �̂�𝑗 fall into the range [(𝑖 − 1)𝑊/𝑝, 𝑖 ⋅ 𝑊/𝑝). These can be found
with linear work and constant span by checking for every neighbouring pair of items whether a
boundary falls between them, and if so, which PEs’.

Sampling then proceeds on all buckets in parallel using the assignment calculated during
preprocessing. In bucket 𝑖, all items have weight at most 𝑤𝑖 ∶= max𝑗∈𝐵𝑖 𝑤𝑗 ≤ 2−𝑖, and, with
the exception of bucket 𝐿, at least 𝑤𝑖/2. PEs generate geometrically distributed skip values
𝑣 ∶= ⌊ln(rand())/ ln(1 −𝑤𝑖)⌋ and then consider the 𝑗 ∶= 𝑣/𝑤𝑖-th item. The algorithm then
uses rejection to output the item with probability 𝑤𝑗/𝑤𝑖. This process is repeated until a PE
exceeds its allotted item range. In all buckets 𝑖 < 𝐿, the acceptance probability is at least 1/2
for every element, leading to an efficient algorithm in expectation. In bucket 𝐿, the smaller
acceptance probability is not a problem, as with high probability only a constant number of
items is ever considered to begin with. This is because the probability of being sampled is at
most 1/𝑛 for items in bucket 𝐿. In total, this requires workO(1 +𝑊) in expectation.

Although all PEs have to do about the same expected amount of work, there are some
random fluctuations between the actual amount of work depending on the actual exponential
variates that are computed. Using Chernoff bounds once more, these can be bounded to
O(𝑊/𝑝 + log𝑛) with high probability, leading to a (conservative) log𝑛 term for the span.

Each PE returns an array containing its part of the sample. An additional prefix sum
computation can be used to rearrange the output into one contiguous array. This requires work
O(𝑛) and spanO(log𝑛). ◻

3.6.1 Distributed Poisson Sampling

For the distributed setting, observe that problem WRS–P can be solved entirely independently
over disjoint subsets of the input if we are not interested in load balancing. No communication
is needed. We thus can directly adapt the result of Bringmann and Panagiotou [BP17]. Note
that for a PE with 𝑛𝑖 items, it suffices to sort them into log𝑛𝑖 categories now which is possible
in linear time. A query on a PE with total weight𝑊𝑖 will take expected timeO(1 +𝑊𝑖). As
expected parallel query time we getO(max𝑖𝑊𝑖 + log𝑛) using an argument analogous to the
proof of Theorem 3.14.

Once more, we analyse load balancing for the case that the items are distributed randomly.

80



3.7 Sampling with a Reservoir (Problem WRS–B)

Theorem 3.15 (Distributed Poisson Sampling for Random Allocation)
When items are distributed randomly, Poisson sampling (problem WRS–P) can be done in a
communication-free way with expected preprocessing overhead O(𝑛/𝑝 + log𝑝) and expected
sampling timeO(𝑊/𝑝 + log𝑝).

Proof. The bound for the preprocessing follows by applying balls-into-bins bounds to the
distribution of the number of items as in the proof of Theorem 3.9. The query bound follows
similarly by exploiting that the expected maximum load is maximised when all the weight is
concentrated in𝑊 items of weight 1 [San96]. ◻

3.7 Sampling with a Reservoir (ProblemWRS–B)
We adapt the streaming algorithm of Efraimidis and Spirakis [ES06] (see also Section 3.1.3)
to a distributed mini-batch streaming model as described in Section 1.2.4, where PEs process
variable-size batches of items one at a time. After processing a batch, the task is to update the
sample to be a uniform (or weighted) random sample without replacement of size min(𝑘, 𝑛′)
of all 𝑛′ items seen so far, up to and including the items of the current batch. Only the current
mini-batch is available in memory, as the PEs’ memory is too small to store previous batches.

3.7.1 Fully Distributed Weighted Reservoir Sampling
The basic idea of our algorithm is to combine the exponential clocks method, associating with
each item an exponentially distributed key (cf. Section 3.1.3), with a communication-efficient
bulk priority queue as described in Section 2.4. Using these two main ingredients, we maintain
the set of the 𝑘 items with the smallest keys, ie, the sample. Each PE is solely responsible for the
items that were seen in its input, and no PE gets a special role (such as a coordinator node).
During each batch, a PE inserts into its local reservoir all items whose key is smaller than
the largest key of any item in the sample (the global threshold). When a batch finishes, the
PEs perform a distributed selection for the 𝑘-th smallest key, which becomes the new global
threshold, and discard all items with larger keys. The remaining elements form the new sample.
During a mini-batch, the threshold remains unchanged.

Skip Value Computation. First, we show how to adapt the sampling method with skip values
(‘exponential jumps’) of Efraimidis and Spirakis [ES06, Section 4] to the exponential variates
described in Section 3.1.3. Recall that the difference between the variates associated with
items in [ES06] and here is a simple 𝑥 ↦ − ln(𝑥) mapping. Let 𝑣𝑖 denote the key of item
𝑖, that is, the exponentially distributed variate associated with it, and define 𝑇 ∶= max𝑖∈𝑅 𝑣𝑖
as the threshold value, ie, the largest key of any item in the reservoir. Then the amount of
weight to be skipped is exponentially distributed with rate 𝑇, which can be computed as
𝑋 ∶= − ln(rand())/𝑇, where rand() is a uniformly distributed random value from the interval
(0, 1]. The key associated with the newly sampled item 𝑗 is then 𝑣𝑗 ∶= − ln(rand(𝑒−𝑇𝑤𝑗 , 1))/𝑤𝑗,
with rand(𝑎, 𝑏) ∶= 𝑎+ rand()(𝑏− 𝑎). The range of this variate has been chosen so that 𝑣𝑗 is less
than 𝑇 (as at this stage, it has already been determined that item 𝑗must be part of the reservoir,
we need to compute a suitable variate from the distribution associated with its weight). In the
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Figure 3.7: Schematic view of data flow in our reservoir sampling algorithm.

sequential setting, item 𝑗 then replaces the item with the largest key in the reservoir, and the
threshold 𝑇 is updated to the now-largest key in the reservoir.

Algorithm Details. We now flesh out the remaining parts of our algorithm. Firstly, the
reservoir is maintained in a distributed fashion using our bulk priority queue of Section 2.4.
This requires each PE’s local reservoir to be implemented as a B+ tree that is augmented to also
support the split, rank, and select operations in logarithmic time (see Section 1.3.4). The split
operation is used to quickly discard the items that are no longer part of the sample at the end of
a batch, while rank and select are required for the threshold selection process.

Secondly, the algorithm globally maintains the threshold 𝑇, which is the same at all PEs
and does not change during a mini-batch. The PEs process their items using the skip distance
method described above, inserting the new candidate sample items into their local reservoirs.

Lastly, once all items of the mini-batch are processed, the PEs jointly select the globally
𝑘-th smallest key (see Section 3.1.5) in the union of all local reservoirs. This key becomes
the insertion threshold for the next mini-batch. Each PE then discards all items with larger
keys using a split operation on its local reservoir. The remaining 𝑘 items in the union of all
local reservoirs are a weighted sample without replacement of size 𝑘 of all items seen so far.
Algorithm 3.6 gives pseudocode and Figure 3.7 shows a schematic view of the algorithm.

Theorem 3.16 (Weighted Reservoir Sampling)
For weighted reservoir sampling with sample size 𝑘, processing a mini-batch of up to 𝑏 items per
PE is possible in timeO(𝑏 + (𝑏∗ + 1) log(𝑏∗ + 𝑘) + 𝑇sel), where 𝑏∗ ≤ 𝑏 is the maximum number
of items from the mini-batch below the insertion threshold on any PE, and 𝑇sel is the time for
selection from sorted sequences of size at most 𝑏∗ + 𝑘 per PE (see Section 3.1.5).

Proof. By definition of 𝑏∗, the local insertions require timeO(𝑏∗ log(𝑏∗ + 𝑘)) in total because
each local reservoir has size at most 𝑘 at the start of the batch. Since we have to process each
item’s weight even when using the above skip value technique,O(𝑏) time is required to identify
the items to be inserted into the reservoir. The selection operation takes time 𝑇sel which varies
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Algorithm 3.6 : Weighted reservoir sampling in a Single-Program Multiple-Data style.
Input : 𝐴, the local portion of the mini-batch consisting of items with weight 𝑤 ∈ ℝ+ and

index 𝑖 ∈ ℕ; 𝑇, the previous mini-batch’s threshold (initially −∞); 𝑅, the local
reservoir (initially empty), a B+ tree mapping keys from ℝ to item IDs

Output : 𝑇′, the updated threshold; 𝑅′, the updated local reservoir
1 Function processBatch(𝐴,𝑇,𝑅)
2 if 𝑇 < 0 then —fewer than 𝑘 items seen globally before this batch
3 foreach (𝑤, 𝑖) ∈ 𝐴 do
4 𝑅.insert(− ln(rand())/𝑤, 𝑖) —exponentially distributed keys

5 else
6 𝑗 ∶= 0 —1-based index of next item, initially invalid
7 while 𝑗 ≤ ∣𝐴∣ do
8 𝑋 ∶= − ln(rand())/𝑇 —weight to be skipped
9 while𝑋 > 0 do —skip𝑋 amount of weight in total
10 𝑗 ∶= 𝑗 + 1
11 if 𝑗 > ∣𝐴∣ then break from both loops
12 𝑋 ∶= 𝑋 −𝐴[𝑗].𝑤
13 𝑥 ∶= exp(−𝑇 ⋅ 𝐴[𝑗].𝑤)
14 𝑣 ∶= − ln(rand(𝑥, 1))/𝐴[𝑗].𝑤 —new key
15 𝑅.insert(𝑣,𝐴[𝑗].𝑖)

16 (𝑇′, 𝑖) ∶= select(𝑅, 𝑘) ∈ ℝ ×ℕ —select 𝑘 globally smallest and new threshold
17 (𝑅′,_) ∶= 𝑅.splitAt(𝑖) —discard local items with larger keys
18 return (𝑇′, 𝑅′) —return new threshold and reservoir

depending on the specifics of the input. The number of candidate items per PE for the selection
is clearly bounded by the local reservoir size of at most 𝑘 + 𝑏∗. Discarding the items with keys
exceeding the new threshold using a split operation takes time logarithmic in the local reservoir
size, ie,O(log(𝑘 + 𝑏∗)) time.

Now consider the implications of splitting the single stream of the sequential case into
multiple independently-handled streams without carrying over any remaining skip weight𝑋
at the end of the stream (line 11 of Algorithm 3.6). This maintains correctness because the
process is designed so that each unit of weight has the same probability of spawning a sample,
regardless of when the procedure was started. Thus, partitioning the stream does not affect
correctness.

Keeping the threshold fixed for the duration of each mini-batch also maintains correctness
because the set of all items above any threshold always forms a weighted random sample (whose
size is not known a priori). Here, the threshold is chosen so that the sample size is guaranteed
to be at least 𝑘, and the selection process determines a new threshold to restore a fixed sample
size of 𝑘 items. ◻
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The question now is how many items we (unnecessarily) insert into the local reservoirs by
leaving the threshold unchanged during a mini-batch. We first analyse the number of insertions
into each PE’s local reservoir in Lemma 3.17, before considering the expectedmaximumnumber
of insertions into any PE’s local reservoir in Theorem 3.18.

Lemma 3.17 (Weighted Reservoir Sampling, Average Case)
If the item weights are independently drawn from a common continuous distribution and all
batches have the same number of items on every PE, then our algorithm insertsO( 𝑘𝑝(1 + log 𝑛𝑘))
items into each local reservoir in expectation.

Proof. Efraimidis and Spirakis [ES06, Proposition 7] show that if the 𝑤𝑖 are independent
random variates from a common continuous distribution, their sequential reservoir sampling
algorithm inserts O(𝑘 log(𝑛/𝑘)) items into the reservoir in expectation. We adapt this to
mini-batches of 𝑏 items per PE. Let𝑋𝑖 denote the number of insertions on a PE for batch 𝑖. We
obtain a binomially distributed random variable with expectation

E[𝑋𝑖] =
𝑏
∑
𝑗=1

P[item 𝑗 is inserted] = 𝑏 ⋅
𝑘
𝑛pre
≤ 𝑏 ⋅
𝑘
𝑖𝑝𝑏
=
𝑘
𝑖𝑝
,

where 𝑛pre is the number of items seen globally before the batch began. For the initial 𝑖0 = 𝑘𝑏𝑝
iterations, this probability exceeds one, and we account for this with 𝑏 insertions per PE, ie,
𝑏 ⋅ 𝑘𝑏𝑝 = 𝑘/𝑝 overall. For mini-batches 𝑖0 ≤ 𝑖 < 𝑛𝑝𝑏 we obtain

E[∑𝑋𝑖] ≤ ∑
𝑘
𝑏𝑝≤𝑖≤

𝑛
𝑏𝑝

𝑘
𝑖𝑝
=
𝑘
𝑝
∑
𝑘
𝑏𝑝≤𝑖≤

𝑛
𝑏𝑝

1
𝑖
=
𝑘
𝑝
(𝐻 𝑛
𝑏𝑝
−𝐻 𝑘

𝑏𝑝
)

≤
𝑘
𝑝
(1 + ln

𝑛
𝑏𝑝
− ln
𝑘
𝑏𝑝
) =
𝑘
𝑝
(1 + ln
𝑛
𝑘
) ,

where𝐻𝑛 is the 𝑛-th harmonic number. ◻

Theorem 3.18 (Weighted Reservoir Sampling, Number of Insertions)
If the item weights are independently drawn from a common continuous distribution and all
batches have the same number of items on every PE, then our algorithm inserts no more than
O(
𝑘
𝑝 log
𝑛
𝑘 + log𝑝) items into any local reservoir in expectation.

Proof. To obtain the maximum load over all PEs, we apply a Normal approximation to the
bound on the𝑋𝑖 from the proof of Lemma 3.17. This yields the following approximation 𝑌𝑖:

𝑌𝑖 ∼ N (
𝑘
𝑖𝑝
,
𝑘
𝑖𝑝
(1 −
𝑘
𝑖𝑝𝑏
)) .

Summing these over the mini-batches as above, we again obtain a normal distribution whose
mean and variance are the sum of its summands’ means and variances. We then apply a bound
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on the maximum of independent and identically distributed (i.i.d.) Normal random variables
obtained using the Cramér-Chernoff method [BLM13, Chapter 2.5],

E[ max
𝑗∈[1 .. 𝑝]
𝑍𝑗] ≤ 𝜇 + 𝜎

√

2 ln𝑝 for 𝑍𝑗 ∼ N (𝜇, 𝜎2) .

Using the mean of the 𝑌𝑖 as an upper bound to their variance, we obtain 𝜇 +
√

2𝜇 ln𝑝 as an
upper bound to the maximum per-PE load for 𝜇 = 𝑘𝑝(1 + ln 𝑛𝑘). Thus, the expected bottleneck
number of insertions into any local reservoir isO( 𝑘𝑝 log

𝑛
𝑘 + log𝑝). ◻

Reservoir SamplingwithVariable Reservoir Size. For any given threshold𝑇, the items with
keys less than or equal to 𝑇 form a sample without replacement of all items seen so far. The size
of this sample—call it 𝑠—is not known a priori, and in the previous sections, we used selection
from the local reservoirs to determine the threshold so that 𝑠 = 𝑘. If, however, the precise
sample size is not important to the application, and 𝑠 is allowed to vary in some range [𝑘 .. 𝑘],
we can do better than for fixed 𝑘. By using the amsSelect approximate selection algorithm of
Section 2.3.2.b) (see also Section 3.1.5), selection converges much faster if 𝑘 − 𝑘 is sufficiently
large (eg, a constant factor apart).

Corollary 3.19 (Reservoir Sampling with Variable Reservoir Size)
If the sample size is allowed to vary between 𝑘 and 𝑘, and 𝑘 − 𝑘 ∈ Ω(𝑘), then 𝑇sel ∈ O(𝛼 log𝑝)
in the running time of Theorem 3.16 and Corollary 3.20.

Observe that if the items come from a common distribution, once 𝑛 ≫ 𝑘 items have been
processed, turnover in the sample is very low. Accordingly, only few items have keys below the
threshold to enter the reservoir in each batch. As a result, we can forego selection and let the
sample grow until 𝑠 > 𝑘, potentially for multiple mini-batches. Only then does the selection
have to find a new threshold. Additionally, the selection is faster because it does not have to
find the item with a particular precise rank, but only some item in a given range of ranks.

3.7.2 Uniform Reservoir Sampling
The above algorithm can be easily adapted to uniform items by using the well-known skip
distances for uniform reservoir sampling [Dev86, p. 640, ‘Reservoir sampling with geometric
jumps’]. Here, we adapt Devroye’s algorithm to our notation and model. Initially, when no
threshold is known, the keys of the items are simply uniform random variates between 0 and 1,
generated by rand(). The number of items to be skipped then follows a geometric distribution
with success probability 𝑇 and can be computed as 𝑋 ∶= ⌊ln(rand())/ ln(1 − 𝑇)⌋ for a given
threshold 𝑇. The key of the 𝑋 + 1-th item, which is inserted into the local reservoir, is then
simply 𝑣 ∶= rand() ⋅ 𝑇. The remainder of the algorithm works analogously to the weighted
case. Note that skipping 𝑋 items is a constant-time operation, whereas skipping 𝑋′ amount
of weight in the weighted case requires examining every item that is skipped. As a result, the
asymptotic local processing time for a batch of uniform items is the number of items inserted
into the reservoir times the time to insert them.
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Figure 3.8: Schematic view of data flow in the centralised gathering algorithm.

Corollary 3.20 (Uniform Reservoir Sampling, Number of Insertions)
For unweighted (uniform) reservoir sampling with sample size 𝑘, processing amini-batch is possible
inO((𝑏∗ + 1) log(𝑏∗ + 𝑘) + 𝑇sel) time, where 𝑏∗ ≤ 𝑏 is the maximum number of items from the
mini-batch on any PE that is below the insertion threshold, and 𝑇sel is the time for selection from
sorted sequences of size at most 𝑏∗ + 𝑘 per PE (see Section 3.1.5).

Observe that the criteria for random distribution of the input (see Section 3.1.5) are much
easier to satisfy for uniform sampling. For example, a uniform arrival rate for all PEs suffices,
as the keys associated with the items are uniformly random.

Refer to Lemma 3.17 and Theorem 3.18 above for an analysis of the number of items below
the insertion threshold over all mini-batches.

3.7.3 A Centralised Approach

As a comparison point to our fully decentralised algorithms, we now describe an approach that
designates a single PE as the coordinator, which maintains the sample. Again, the PEs use a
threshold to immediately discard any items that cannot be part of the sample (in the first batch,
if a PE receives more than 𝑘 items, only the 𝑘 items with the smallest keys need to be retained).
The remaining candidates are gathered at the coordinator, which uses a standard sequential
selection algorithm (eg, quickselect) to sequentially select the 𝑘 smallest items, discards the
rest, and broadcasts the new threshold. Figure 3.8 shows a schematic view of the algorithm.

Observe that the number of items gathered in later batches is small in expectation, as only
few new items enter the reservoir if the items follow the same distribution in all mini-batches.
This algorithm can be seen as an adaptation of Jayaram et al.’s [Jay+19] method to a mini-batch
model, which renders the level set construction used therein unnecessary.
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3.8 Experimental Evaluation

Wenow report experiments on alias tables (problemWRS–1, Section 3.3) and the closely related
problem of sampling with replacement (problem WRS–R, Section 3.4) as well as reservoir
sampling (problemWRS–B, Section 3.7). Our focus is on these problems because our algorithms
for problems WRS–N and WRS–P are basically reductions to sorting and selection problems
that have been studied elsewhere (WRS–N also needs WRS–R, which we do study here). We
are also not aware of any competing parallel approaches that we could compare to.

Our experiments are split into two parts. First, we consider sampling with replacement
(problems WRS–1 and WRS–R) in a shared-memory parallel setting. We limit ourselves to
shared-memory experiments for these problems because we expect the shared-memory setting
to be much more common in non-streaming workloads at present. Furthermore, there are
simply no other published results on—or implementations of—parallel algorithms of any kind
for these problems to the best of our knowledge. As a result, we judge the value of shared-
memory implementations and evaluations to eclipse that of distributed-memory ones for these
problems. Thereafter, we report distributed-memory experiments on reservoir sampling (WRS–
B), which is a much more on-line problem where the need for distributed-memory codes and
evaluations is much more obvious.

All of our implementations are publicly available under the GNU General Public Licence
(version 3). The code and scripts for the first part of our experiments, problems WRS–1
and WRS–R, can be found at https://github.com/lorenzhs/wrs, while the artefacts for
problem WRS–B are available at https://github.com/lorenzhs/reservoir.8

Experimental Platform. We use machines with Intel and AMD processors in our experi-
ments. The Intel machine has four Xeon Gold 6138 CPUs (4 × 20 cores, 160 hyper-threads,
of which we use up to 158 to minimise the influence of system tasks on our measurements)
and 768GiB of DDR4-2666 main memory. The AMD machine is a single-socket system with a
32-core AMD EPYC 7551P CPU (64 hyper-threads, of which we use up to 62) and 256GiB
of DDR4-2666 RAM. While single-socket, this machine also has non-uniform memory ac-
cess (NUMA) characteristics, as the CPU consists of four dies internally, with part of the
memory attached to each die. Both machines run Ubuntu 18.04. The distributed reservoir
sampling experiments use MPI (OpenMPI 4.0) for communication and were conducted on
ForHLR II, a general-purpose high-performance computing cluster located at Karlsruhe Insti-
tute of Technology, using up to 256 nodes. Each node is equipped with two deca-core Intel
Xeon E5-2660 v3 processors for a total of 20 cores per node, and 64GiB of DDR4 main memory.
We use one MPI process (PE) per core, ie, 20 PEs per node, for a total of up to 5120 PEs. All
nodes are attached to an InfiniBand 4X EDR interconnect using an InfiniBand FDR adaptor
[KIT20]. All implementations are in C++ and compiled with GNU g++ 9.2.0 (flags -O3 -flto
-march=native).

Our measurements do not include time spent on memory allocation and mapping where
sizes are known in advance.
8Archived copies of the code are available at https://web.archive.org/web/20200925083205/https://
codeload.github.com/lorenzhs/wrs/zip/master and https://web.archive.org/web/20200925083355/
https://codeload.github.com/lorenzhs/reservoir/zip/master, respectively.
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3 Weighted Sampling

Table 3.3: Overview of algorithms used in the evaluation.

Abbreviation Section Description

PSA 3.3.2 parallel alias tables
PSA+ 3.3.2.a) optimisation of PSA
OS 3.4 output-sensitive sampling with replacement
OS-ND p. 89 non-deduplicating optimised variant of OS
2lvl 3.3.3 two-level alias tables
2lvl-classic 2lvl with Vose’s algorithm (Algorithm 3.1) as base case
2lvl-sweep 2lvl with our sweeping algorithm (Algorithm 3.2) as base case

ours 3.7.1 our weighted reservoir sampling algorithm
ours-8 ours with 8 and the selection algorithm of Theorem 2.6
gather 3.7.3 centralised gathering reservoir sampling algorithm

Implementation Details. Table 3.3 lists the algorithms which we evaluate in this section. We
implemented alias table construction using our parallel splitting algorithm (PSA, Section 3.3.2,
as well as PSA+, the practical optimisation described in Section 3.3.2.a)). For WRS–R, we
implemented the distributed output-sensitive sampling algorithm (OS, Section 3.4) in shared
memory using a sequential implementation of the base method. We chose this mode of
implementation as it is simpler and does not depend on shared memory, which should help on
NUMA machines. A variant of OS called OS-ND, which we describe below, is also included in
our implementation. We also implemented the two-level alias table construction algorithm in
shared memory (2lvl, Section 3.3.3, Theorem 3.3 (i)) and sequential alias table using both Vose’s
method (Algorithm 3.1) and our sweeping construction (Algorithm 3.2). The 2lvl algorithm
can use either of these as its base case. When using Vose’s method, we refer to it as 2lvl-classic,
and 2lvl-sweep when using our sweeping algorithm.

Both of the machines used require some degree of Non-Uniform Memory Access (NUMA)
awareness in memory-bound applications like ours. Thus, in our SM-parallel implementations,
all large arrays are distributed over the available NUMA nodes, and threads are pinned to
NUMA nodes to maintain data locality. The same amount of memory and the same number of
threads is assigned to each NUMA node.

For reservoir sampling, we implemented our algorithm of Section 3.7 with the amsSelect
approximate multisequence selection algorithm of Section 2.3.2.b), using one (labelled ‘ours’)
or eight pivots (labelled ‘ours-8’) and exact bounds (𝑘 = 𝑘 = 𝑘, see Section 2.3.2.c)). We
compare it to a centralised algorithm which uses the same thresholding procedure but gathers
all candidate items at a designated root PE, where it uses sequential selection to maintain the
sample, subsequently labelled ‘gather’. The local reservoirs are implemented as B+ trees, based
on an implementation of Bingmann [Bin18b] augmented with join/split operations from an
implementation by Akhremtsev [AS16] and rank/select support (see Section 1.3.4).
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All pseudo-random numbers are generated with 64-bit Mersenne Twisters [MN98], using
the Intel Math Kernel Library (MKL) [Int19] on the Intel machine and the cluster, and dSFMT9

on the AMD machine.

Optimisations. For the output-sensitive algorithm OS, we use an additional optimisation
that aborts the tree descent and uses the base case bucket table when fewer than 128 samples are
to be drawn from at least half as many items. The resulting elements are then deduplicated using
a hash table to ensure that each element occurs only once in the output. A variant without this
deduplication is calledOS-ND and can be useful for applications that allow the total multiplicity
of sampled items to be split over several occurrences.

All alias table queries are implemented in a branchless manner. To do so, we store the bucket
index and its alias in a temporary array 𝐴 of size two and use indexing with the conditional
to return the correct item. Using zero-based indexing and the notation of Section 3.1.2, let
𝐴[0] = 𝑟 and 𝐴[1] = 𝑎𝑟. The query then returns 𝐴 indexed with whether the coin came up
heads (0) or tails (1), which uses the result of a comparison as an index into 𝐴 instead of a
conditional branch. The result is an improvement of 20% to 25% in sequential query times
(measured for 𝑛 = 108 items). When using all threads, there are enough concurrent random
accesses to memory at any time to hide the latency of the conditional branch, yielding a more
modest single-digit percentage point increase in total throughput.

We implemented special handling of the first mini-batch of reservoir sampling to avoid
inserting too many items into the reservoir if the local size 𝑏 of the first mini-batch is large
compared to the sample size 𝑘. While processing the first mini-batch, use the key of local
rank 𝑘 as a local threshold, and update this threshold periodically. More concretely, if 𝑏 ≥
max(1.5𝑘, 𝑘 + 500), we use the key of local rank 𝑘 as the threshold for subsequent items, and
refresh this local threshold every time the local reservoir exceeds max(1.1𝑘, 𝑘 + 250) items,
discarding those that are larger. This maintains correctness: at no point is a local reservoir
pruned to a size smaller than 𝑘, so the union of all local reservoirs is guaranteed to be of size at
least 𝑘. It also maintains the property that each local reservoir is a sample without replacement
of some size 𝑘′ of all items seen so far at this PE.

Furthermore, to speed up the innermost loop of our reservoir sampling algorithm (Algo-
rithm 3.6), we compute the sum of weights of 32 items at a time, check whether the amount of
weight to be skipped (𝑋) is larger than this sum, and skip all 32 items at once if this is the case.
This reduces the number of conditional branches and allows for vectorisation using the CPU’s
Single Instruction Multiple Data (SIMD) units. Both of these factors speed up the processing
of the items in a batch significantly, especially as typically, only a few items per batch end up
contributing to the reservoir (and𝑋 is much larger than the average weight) once 𝑛 ≫ 𝑘 items
have been processed.

Input Data. Unless specified otherwise, we use uniformly random weights from the interval
(0, 1] as inputs. In our query experiments, we additionally use random permutations of the
weights {1−𝑠, 2−𝑠,… , 𝑛−𝑠} for a parameter 𝑠 to obtain more skewed ‘power-law’ or Zipf-like
distributions. For reservoir sampling, the weights were scaled to the interval (0, 100].
9http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/, version 2.2.3; an archived copy of the code
is available at https://web.archive.org/web/20200515023309/http://www.math.sci.hiroshima-u.ac.
jp/~m-mat/MT/SFMT/dSFMT-src-2.2.3.tar.gz.
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3.8.1 Sequential Performance of Alias Tables

Surprisingly, many common existing implementations of alias tables (eg, gsl_ran_discrete-
_preproc in theGNUScientific Library (GSL) [Gal+09] or sample in the R project for statistical
computing [R C20]) use a struct-of-arrays memory layout for the alias table data structure.
By using the array-of-structs paradigm instead, we can improve memory locality, incurring
one instead of up to two cache misses per query. Combined with branchless selection inside
the buckets and a faster random number generator, our query is four times faster than that
of GSL version 2.5 (measured for 𝑛 = 108). At the same time, alias table construction using
our implementation of Vose’s method is 30% faster than GSL on the Intel machine and 44%
faster on the AMD machine. Other popular statistics packages, such as NumPy (version 1.5.1,
function np.choice) or Octave (Statistics package version 1.4.0, function randsample) employ
algorithms with superlinear query time for WRS–R. We therefore use our own implementation
of Vose’s algorithm as the baseline in our evaluation.

Among our sequential implementations, construction with Vose’s method is 20–25% faster
than our sweeping algorithm,10 with the gap being slightly smaller on the AMD machine than
on the Intel machine. Including the time for memory allocations narrows the gap by around
two percentage points. Thus, when used purely sequentially, Vose’s method remains the fastest,
and we use it as the sequential baseline for our speedup experiments in Section 3.8.2.

3.8.2 Construction

Speedups compared to an optimised sequential implementation ofVose’s alias table construction
algorithm are shown in Figure 3.9 (strong scaling with fixed 𝑛 = 108 and 𝑛 = 109 as well as weak
scaling with 𝑛/𝑝 = 107 uniform random variates).11 Observe that for 𝑛 = 108, the per-thread
input size is quite small for the high thread counts achievable on the Intel machine, resulting
in somewhat noisy measurements (Figure 3.9 (a)). Note that OS-ND is not shown, as it only
differs from OS in the query phase, not during construction. Speedups do not increase further
once the machine’s memory bandwidth is saturated, limiting the speedup that can be achieved
with techniques that require multiple passes over the data (PSA, 2lvl-classic). Unlike PSA
(and what PSA+ attempts to mitigate), 2lvl can be constructed almost independently by the
PEs and requires much fewer accesses to memory. Sequentially, Vose’s method outperforms
our sweeping algorithm (see Section 3.8.1). However, when used as the base case of 2lvl, our
algorithm scales much better to high thread counts because it reduces the memory traffic and
since hyper-threading (HT) helps to hide the overhead of branch mispredictions. For large
per-thread inputs, 2lvl-sweep achieves more than twice the speedup of 2lvl-classic. On random
inputs such as the ones used here, PSA+ can greedily process almost the entire input, and thus
achieves excellent speedups.

10In the conference paper this chapter is based on, Ref. [HS19d], we reported a somewhat smaller gap. We have
since further optimised our implementation of Vose’s method. Specifically, the optimisation to make queries
branchless was previously implemented by storing both the index and the alias in the table, instead of using a
temporary array of size two at query time.

11As Figure 3.9 shows only speedup values, we here provide the running times of the sequential baseline with regard
to which they are given. These are, from (a) to (f), 1.14 𝑠, 1.35 𝑠, 11.4 𝑠, 13.5 𝑠, 114𝑚𝑠, and 136𝑚𝑠.
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Preprocessing forOS introduces some overhead but requires fewer passes over memory than
PSA and achieves approximately twice the speedups as a result on the Intel machine. On the
AMD machine, its scaling behaviour is initially similar to that of PSA or slightly worse, however,
where PSA’s speedups begin to stagnate, OS continues to scale well. This continues even into
hyper-threading, which yields much larger relative improvements for OS construction on the
AMD machine than on the Intel machine (compare Figures 3.9 (c) and 3.9 (d)). However, due
to the Intel machine’s higher overall memory bandwidth, the AMD machine does not achieve
the same speedups for memory-bound construction algorithms, even when using the same
number of cores on both machines. We can also see that by processing each group of each
thread independently, OS makes good use of the cache: the large non-inclusive L3 caches of
the Intel machine gives it a boost for 𝑛 = 108 (Figure 3.9 (a)). Once groups no longer fit into
the CPU’s caches (𝑛 = 109, Figure 3.9 (c)), speedups are somewhat lower. To a lesser extent, we
can also observe this effect on the AMD machine (Figures 3.9 (b) and 3.9 (d)).

In the weak scaling experiments (Figures 3.9 (e) and 3.9 (f)), we again see clearly how
2lvl-classic and PSA are limited by memory bandwidth. Using more than two threads per
available memory channel (4 × 6 for the Intel machine, 8 for the AMD machine) yields nearly
no additional benefit for these algorithms. Meanwhile, 2lvl-sweep, PSA+, and—to a lesser
extent—OS are not so much limited by the available memory bandwidth as by the latency of
memory accesses. As a result, they continue to scale well, even for the highest thread counts.

3.8.3 Queries
We performed strong and weak scaling experiments for queries (Figure 3.10) as well as through-
put measurements for different sample sizes (Figure 3.11). Observe that the different variants
of our 2lvl, 2lvl-classic and 2lvl-sweep, differ only in how they approach construction and have
identical query behaviour. The same is true of PSA and PSA+. Thus, we do not consider them
separately in the query evaluation.

3.8.3.a) Scaling

First, consider the scaling experiments of Figure 3.10.12 These experiments were conducted
on the Intel machine, as its highly non-uniform memory access characteristics highlight the
differences between the algorithms. All speedups are given relative to sampling sequentially
from an alias table. The strong scaling experiments (Figures 3.10 (a) and 3.10 (b)) deliberately
use a small sample size to show scaling to low per-thread sample counts (≈ 64000 samples per
thread for 158 threads). We can see that all algorithms have good scaling behaviour. Hyper-
threading (marked ‘HT’ in the plots) yields additional speedups, as it helps to hide memory
latency. This already shows that the bottleneck is random access latency to memory. Sampling
from PSA and 2lvl is done completely independently by all threads, with no interaction apart
from reading from the same shared data structures. Because the Intel machine has four NUMA
nodes, most queries have to access another NUMA node’s memory. This limits the speedups
achievable using alias tables (PSA, 2lvl).
12The sequential processing times with regard to which the speedups are reported are, from (a) to (d), 215𝑚𝑠,
220𝑚𝑠, 21.3𝑚𝑠, and 21.4𝑚𝑠.
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(a) Strong scaling, Intel machine, 𝑛 = 108.
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(b) Strong scaling, AMD machine, 𝑛 = 108.
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(c) Strong scaling, Intel machine, 𝑛 = 109.
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(d) Strong scaling, AMD machine, 𝑛 = 109.
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(e) Weak scaling, Intel machine, 𝑛/𝑝 = 107.
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(f)Weak scaling, AMDmachine, 𝑛/𝑝 = 107.

Figure 3.9: Strong (top and middle) and weak (bottom) scaling evaluation of parallel
alias table construction techniques. Strong scaling with input sizes 𝑛 = 108 (top) and
𝑛 = 109 (middle), weak scaling with 𝑛/𝑝 = 107. Speedups are relative to our optimised
implementation of Vose’s method, Algorithm 3.1. Algorithm names as in Table 3.3.
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(a) Strong scaling, uniform input.
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(b) Strong scaling, power-law input, 𝑠 = 1.

1 2 4 8 16 32 64 128
0

50

100

150

HT

Number of threads 𝑝

Sp
ee

du
p

2lvl
OS

OS-ND
PSA

(c) Weak scaling, uniform input.
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Figure 3.10: Query strong and weak scaling for 𝑛 = 109 input elements. Sample size for
strong scaling 𝑘 = 107, per-thread sample size for weak scaling 𝑘/𝑝 = 106. All speedups
are relative to sampling from an alias table sequentially. Intel machine. Algorithm names
as in Table 3.3.

In contrast, for OS and OS-ND, threads access only local memory after a shared top-level
sample assignment stage. This benefits scaling, especially on NUMA machines and machines
with local last-level caches, such as newer AMD CPUs. As a result, OS-ND achieves the best
speedups, despite this benchmark producing very few samples withmultiplicity greater than one
(Figure 3.10 (a), where the sample size is 1% of the input size). On the other hand, deduplication
in the base case ofOS has considerable overhead, makingOS roughly 25% slower than sampling
from an alias table for such inputs, even sequentially. However, preliminary experiments show
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that implementing OS with hash-table based deduplication remains significantly faster than
fully descending the DC-trees, ie, omitting the optimisation described on page 89.

The weak scaling experiments of Figures 3.10 (c) and 3.10 (d) show even better speedups
because many more samples are drawn here than in our strong scaling experiment, reducing
overheads. Sampling from a classical alias table (PSA) achieves a speedup of over 30 here,
again limited by memory accesses rather than computation. Meanwhile, the output-sensitive
methods (OS, OS-ND) reap the benefits of accessing only local memory.

Comparing the results for uniformly random weights (Figures 3.10 (a) and 3.10 (c)) with
those for power-law inputs (Figures 3.10 (b) and 3.10 (d)) clearly shows that the query perfor-
mance of alias tables (PSA, 2lvl) is independent of the input’s weight distribution. Meanwhile,
for OS and its variant OS-ND, uniformly random weights are a difficult input because they
result in few items with multiplicity greater than one (see the throughput measurements below
for further details). Thus, they achieve significantly higher speedups for the power-law input.

3.8.3.b) Throughput

Figure 3.11 shows the query throughput of the different approaches (note the logarithmic
𝑦-axes in the lower plots). We can see that 2lvl suffers a significant slowdown compared to
PSA on all inputs since an additional query for a meta-item is needed (this is also clearly
visible in Figure 3.10). Its throughput is around 40% lower than sampling from an alias table.
Nonetheless, both algorithms are limited by the latency of random accesses to memory for the
(bottom) alias tables on both machines.

As long as the sample contains few duplicates (cf. the dashed lines with the scale on the
right 𝑦-axis, which belong to the solid lines of the same colour and marker shape), the cost of
base case deduplication in OS exceeds the benefits of increased memory locality. On the AMD
machine, where memory access locality is less important, this results in higher throughput for
2lvl than for OS for small sample sizes when inputs are not too skewed (Figure 3.11 (b)). As
expected, when there are many duplicates, the output-sensitive algorithms (OS and OS-ND)
perform very well. Omitting base case deduplication (OS-ND) doubles throughput for uniform
inputs and does no harm for skewed inputs, making OS-ND the consistently fastest algorithm.

Even when OS is slower than sampling from an alias table, adding sequential deduplication
to normal alias tables using a fast hash table (Google’s dense_hash_map13) is not competitive.
A preliminary experiment with uniform inputs (𝑛 = 108 items and 𝑘 = 107 samples) resulted in
sequential deduplication increasing the time for sampling by a factor of five to six compared
to simply storing samples in an array without deduplication. This clearly demonstrates that
locally deduplicating already partitioned data with many small hash tables, as is done in OS, is
much faster than global deduplication using a single large hash table.

Lastly, we observe that 2lvl and PSA throughput levels off after 107.5 ≈ 3 ⋅ 107 samples on the
AMD machine (3.11 (b)), whereas it keeps increasing slightly on the Intel machine (3.11 (a)).
This is likely due to the Intel machine’s higher overall memory bandwidth.

13https://github.com/sparsehash/sparsehash, version 2.0.2, archived at https://web.archive.org/web/
20200925092936/https://codeload.github.com/sparsehash/sparsehash/tar.gz/sparsehash-2.0.2
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(a) Intel machine (158 threads). Note the logarithmic 𝑦-axes for the bottom plots.
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(b) AMD machine (62 threads). Note the logarithmic 𝑦-axes for the bottom plots.

Figure 3.11: Query throughput of the different methods for 𝑛 = 109, using all available
cores. Top left: uniform inputs, top right: power-law with 𝑠 = 0.5, bottom left: power-law
𝑠 = 1, bottom right: power-law 𝑠 = 2. Dashed lines on the right 𝑦-axis belong to the
same-coloured solid lines on the left 𝑦-axis and show fraction of output size over sample
size for output-sensitive algorithms. Algorithm names as in Table 3.3.
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Figure 3.12: Time per unique output item for the different methods for 𝑛 = 109 using all
available cores on the Intel (top) and AMD (bottom) machines. Top left: uniform inputs,
top right: power-law with 𝑠 = 0.5, bottom left: power-law 𝑠 = 1, bottom right: power-law
𝑠 = 2. Dashed lines on the right 𝑦-axis belong to the same-coloured solid lines on the left
𝑦-axis and show fraction of output size over sample size for output-sensitive algorithms.
Algorithm names as in Table 3.3.
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3.8.3.c) Time per Unique Item

Figure 3.12 shows the time per unique item in the sample. This metric penalises algorithms for
emitting an item with multiplicity greater than one multiple times, which affects the methods
based on alias tables considerably when the number of unique samples is low. We can see
that the 2lvl and PSA approaches do well as long as few items have multiplicity larger than
one, ie, the dashed lines are close to 1 (right scale). In these cases, what OS gains from having
higher locality of memory accesses is lost in base case deduplication, especially on the AMD
machine. Because it may split items’ total multiplicity over several occurrences by omitting
base case deduplication, OS-ND does not suffer from this and is the fastest algorithm. The
same is true for the power-law inputs with 𝑠 = 0.5 and 𝑠 = 1 (observe that as in Figure 3.11,
the 𝑦-axes for the lower two plots are logarithmic). For power-law inputs with 𝑠 = 2, the
running time of OS and OS-ND is nearly constant regardless of sample size. This is because the
number of unique items is very low for this input (measured in the low thousands), and thus
what little time is spent on sampling is dominated by thread synchronisation and scheduling
overhead. These overheads are particularly problematic with the 158 threads on the Intel
machine (Figure 3.12 (a)), where they add up to several milliseconds, around ten times as much
as on the AMD machine (Figure 3.12 (b)).

3.8.4 Reservoir Sampling

We now present the results of strong and weak scaling experiments with our weighted reservoir
sampling algorithmon a supercomputer and provide detailedmeasurements on the composition
of the running time of the algorithms. Throughout this section, our weighted reservoir sampling
algorithmwith single-pivot selection is referred to as ‘ours’, its version withmulti-pivot selection
with 8 pivots as ‘ours-8’, and the centralised gathering algorithm as ‘gather’ (see also Table 3.3).

Each experiment was repeated ten times, with each run lasting 30 seconds, completing as
many mini-batches as possible in that time. Input generation is not included in the reported
times. We use uniformly random floating-point weights from the interval (0, 100] as inputs.
Preliminary experiments with skewed weights—normally distributed with the mean increasing
based on the mini-batch sequence number and the PEs’ ranks—showed no significant dif-
ferences in running time. Speedups are reported relative to our algorithm with single-pivot
selection (‘ours’) on a single node (𝑝 = 20 cores/PEs). Based on preliminary experiments, we
chose 𝑑 = 8 as the number of pivots used in the multi-pivot amsSelect selection algorithm with
exact output rank (see Section 2.3.2.c)).

3.8.4.a) Weak Scaling

The results of a scaling experiment are shown in Figure 3.13, with plots in three rows for per-PE
mini-batch sizes 𝑏—from top to bottom—106, 105, and 104, and three columns with sample
sizes 𝑘 of 103, 104, and 105 items, from left to right.14 The figure shows the efficiency of the

14The single-node times per batch with regard to which the speedups are reported are, row-wise from top left to
bottom right, 3.10𝑚𝑠, 3.14𝑚𝑠, 3.24𝑚𝑠; 116𝜇𝑠, 122𝜇𝑠, 131𝜇𝑠; 16.2 𝜇𝑠, 16.6 𝜇𝑠, 19𝜇𝑠.
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Figure 3.13: Reservoir sampling, weak scaling with different batch (rows) and sample
sizes (columns). Efficiency (speedup divided by number of PEs) is measured relative to
our algorithm with single-pivot selection (‘ours’) on 1 node (20 cores).
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algorithm, measured relative to our algorithm with single-pivot selection (‘ours’) for the same
batch and sample sizes on a single node (𝑝 = 20 cores/PEs).

We can see that our algorithm shows good scaling, especially for larger mini-batch sizes.
Using multiple pivots for selection (‘ours-8’, in blue) is especially beneficial for larger sample
sizes (centre and right columns), where it reduces average recursion depth by a factor of around
2.5—from 7.3 to 2.7 for 𝑘 = 105 and from 4.3 to 1.8 for 𝑘 = 104—compared to a much smaller
improvement from 1.9 to 1.1 for 𝑘 = 103 (left column), where the average recursion depth is
already very low when using a single pivot. This results in selection running time improvements
of up to 35% for 𝑘 = 105 and around 20% for 𝑘 = 104, with no significant improvement for
𝑘 = 103. Because local processing is a significant part of overall processing time (refer to the
running time composition analysis of Section 3.8.4.c) for details), the actual overall running
time improvement is only around 8% (𝑘 = 105 and 𝑏 = 106). As expected, smaller samples (left
column) achieve slightly better speedups than larger ones (right column). The causes for this
lie in theO(log𝑘 log𝑝) latency of the selection algorithm and increased local processing time
due to larger local reservoirs.

For 𝑏 = 104, the costs for a single collective communication operation exceed local processing
time for larger numbers of PEs, and all algorithms struggle. Because it only needs to execute
a single gather operation on extremely few new candidates—most PEs do not contribute any
new candidates in most batches—, algorithm ‘gather’ has lower communication overhead in
this scenario. However, its efficiency also leaves much to be desired. When comparing the
performance of all algorithms for the different batch sizes, our key takeaway is that processing
fewer than 105 items per PE per mini-batch should be avoided with a large number of nodes if
throughput is important. These inputs are too small for distributed processing to be efficient.

We also see clearly that the centralised algorithm (‘gather’, in green) performs well only when
the batch size is unrealistically small (bottom row) or the sample size is very small (𝑘 = 103, left
column), where few candidates need to be gathered per batch. It begins struggling even with
𝑘 = 104 for large batch sizes. For larger sample sizes (𝑘 = 105, right column), it performs poorly
unless batches are tiny (bottom right). Its performance for 𝑏 = 105, 𝑘 = 105 is a reproducible
outlier and is likely due to the MPI library’s internal algorithm choice for the gather step. All
algorithms show better—and in the case of our algorithm, near-optimal—scaling for large
batch sizes, as communication overhead is much less noticeable than for small batches, where
local processing is fast.

Overall, ‘ours-8’ is themost consistently fast algorithm, as we see that selection usingmultiple
pivots yields better results than the variant using single-pivot selection (‘ours’) for large batch
and sample sizes. Its performance trails that of ‘ours’ only when all three of batch size, sample
size, and number of PEs are comparatively small.

3.8.4.b) Strong Scaling

Our strong scaling experiments use the same sample sizes of 𝑘 = 103, 104, and 105 items,
while keeping the global batch size 𝐵 = 𝑏 ⋅ 𝑝 fixed at 𝐵 = 210 ⋅ 104 ≈ 107, 210 ⋅ 105 ≈ 108, and
210 ⋅ 106 ≈ 109 items. These sizes are chosen so that the number of PEs 𝑝 divides them evenly
for the power-of-two numbers of 20-core machines used in our experiments.
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(a) Strong scaling, total size 𝐵 = 210 ⋅ 105. (b) Strong scaling, total size 𝐵 = 210 ⋅106.

(c) Weak scaling, per-PE size 𝑏 = 105. (d) Weak scaling, per-PE size 𝑏 = 106.

insert select threshold gather Algorithm: ours-8 gather

Figure 3.16: Composition of running time, normalised to the slower algorithm; strong
scaling with 𝐵 = 𝑏𝑝 = 210 ⋅ 105 (top left) and 210 ⋅ 106 (top right) items; weak scaling
with 𝑏 = 105 (bottom left) and 106 (bottom right) items per PE; sample size 𝑘 = 105. Left
bars: our algorithm using selection with 8 pivots (‘ours’), right bars with diagonal lines:
centralised algorithm (‘gather’).

Figure 3.14 shows the relative speedups for a strong scaling experiment with the above
configurations.15 We again observe that using multiple pivots for selection (‘ours-8’) provides
15The single-node times per batch with regard to which the speedups are reported are, with the sample sizes in

ascending order, 1.813𝑚𝑠, 1.828𝑚𝑠, 1.875𝑚𝑠 for 𝐵 = 210 ⋅ 104; 14.18𝑚𝑠, 14.27𝑚𝑠, 14.92𝑚𝑠 for 𝐵 = 210 ⋅ 105;
138.6𝑚𝑠, 138.2𝑚𝑠, 149.2𝑚𝑠 for 𝐵 = 210 ⋅ 106.
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significant benefits for large sample sizes (green lines) and does not make much difference for
smaller ones (red and blue lines). The centralised algorithm again works well only for small
sample sizes and fails to provide any significant speedup for large samples.

We also see that as long as the local batch size (ie, input size per PE) is too large to fit
into the CPU’s caches—more than around 105 items—speedups increase well, before abruptly
jumping once local processing happens in cache. For the smallest batch size, this effect even
exceeds what would be the ideal speedup. This is a classical superlinear speedup due to larger
available cache resources. Once the data fits into cache, local processing time—which pre-
viously was a significant factor—collapses, and now represents only a very small part of the
overall time. Initially, this leads to a superlinear speedup. As communication in the selection
process becomes the dominant factor in overall running time, speedups slowly decline as the
O(log𝑘 log𝑝)messages required for the selection dominate running time as the number of
PEs grows. Figure 3.15 shows the throughput per PE, ie, how many items are processed at every
PE per second and confirms this. It clearly shows the momentary advantage of processing
inputs that just fit into cache, but are large enough to keep the fraction of running time spent
on selection low. Once this advantage passes, the decline in throughput per PE once again
follows the predicted curve, dominated by the communication cost of selection.

3.8.4.c) Running Time Composition

Figure 3.16 shows the composition of running times for ourweak and strong scaling experiments
with two different batch sizes and 𝑘 = 105 samples. Each pair of bars—our algorithm using
selection with 8 pivots (‘ours-8’), and to its right, the centralised gathering algorithm (‘gather’),
marked with diagonal lines—is normalised to the slower of the two algorithms, which is always
‘gather’ in these experiments.

Figures 3.16 (a) and 3.16 (b) present the results for strong scaling. We can see that the
running time share of locally processing the input declines as expected, and selection becomes
the dominant factor in our algorithm. In the centralised algorithm, however, the amount of
time spent on gathering the candidate items grows rapidly, especially for the larger batch size
(Figure 3.16 (b)). For the smaller batch size, sequential selection dominates the running time
of ‘gather’ when using many nodes, as only 𝑏 = 𝐵/𝑝 = 20 000 items are processed per PE and
batch when using 256 nodes (5120 PEs). This is much faster than selecting the 𝑘 = 105 smallest
values out of little more than 𝑘 candidates (the 105 previously best items plus fewer than 300
new candidates per mini-batch on average for 128 and 256 nodes in this experiment).

The results for weak scaling are shown in Figures 3.16 (c) and 3.16 (d). For the smaller batch
size (Figure 3.16 (c)), selection dominates the gathering algorithm’s running time from the
beginning. Our algorithm is consistently more than twice as fast, and typically up to four times
faster. While this gap shrinks for 32 and 64 nodes (640 and 1280 PEs, respectively), it grows
again as the centralised algorithm’s time spent on gathering the candidates increases, even
though on average, less than 0.1 new candidates per PE are gathered. The results for the larger
batch size, shown in Figure 3.16 (d), are also as expected. While our algorithm requires slightly
more time for sequential processing—the candidates have to be inserted into a B+ tree instead
of stored in an array—the centralised algorithm’s selection and gathering become unsustainably
slow for large numbers of nodes.
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3.9 Application: Generating R-MATGraphs

In this section, we demonstrate how weighted sampling can be applied to the problem of
generating graphs according to the R-MAT (‘Recursive MATrix’) model. We only provide a
short overview here, as the full details of the technique are not pertinent to the focus of this
dissertation. Instead, we refer the reader to our paper, Ref. [HS20b], for additional details and
discussion. The paper is joint work with Peter Sanders, and parts of this section are copied
verbatim from this paper.

R-MAT is a simple, widely used model for generating graphs with a power-law degree
distribution, a small diameter, and a community structure that is somewhat similar to complex
real-world networks. Its simplicity also allows theoretical analysis of its properties, eg, diameter,
clustering coefficient, and degree distribution [MX11; Les+10]. It is particularly attractive for
generating very large graphs because edges can be generated independently by an arbitrary
number of processors. Therefore, R-MAT is used in the Graph 500 benchmark [Mur+10],
which is the most well-known supercomputer benchmark for graph algorithms and even
nonnumerical algorithms in general.

However, current R-MAT generators need time logarithmic in the number of nodes for
generating an edge, as they generate one bit at a time for node IDs of the connected nodes in
constant time each. Recent results on communication-free graph generation [SS16; Fun+19;
Blä+19] put the role of R-MAT as the most scalable graph generator into question. Other
models—refer to Refs. [Gol+10; DT20; Pen+20] for an overview of the broader literature on
generating graphs—with similar properties, such as Barabasi–Albert (BA) preferential attach-
ment graphs [BA99; SS16] or random hyperbolic graphs (RHG) [Kri+10; Fun+19; Blä+19],
can now be generated in a massively parallel fashion using only linear work. By accelerating
R-MAT generation by a logarithmic factor, we put things back to what one would expect. We
achieve constant time per edge by precomputing pieces of node IDs of logarithmic length.
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Figure 3.17: Example of R-MAT’s recursive partitioning process to a depth of four. The
marked square corresponds to a node ID prefix of 00112 for the tail node and 10102 for
the head node. This square has probability 𝑏 ⋅ 𝑎 ⋅ 𝑑 ⋅ 𝑐 of being chosen.
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These pieces can then be sampled in constant time using an alias table. This simple technique
leads to practical improvements by an order of magnitude. This further pushes the limits of
attainable graph size and makes generation overhead negligible in most situations.

FormalDefinition. The simplest variant of R-MATdefines a directedmulti-graph𝐺 = (𝑉,𝐸)
with 𝑛 = 2𝑘 nodes and 𝑚 edges based on 4 parameters 𝑎, 𝑏, 𝑐, and 𝑑 with 𝑎 + 𝑏 + 𝑐 + 𝑑 = 1.
Each edge is drawn independently at random using the following recursive process. Consider
the 𝑛 × 𝑛 adjacency matrix𝑀 of 𝐺 where𝑀𝑖𝑗 = 1 if (𝑖, 𝑗) ∈ 𝐸 and𝑀𝑖𝑗 = 0 otherwise. 𝑀 is
split into four quadrants. The edge is placed in the upper left quadrant with probability 𝑎, in
the upper right with probability 𝑏, in the lower left with probability 𝑐, and in the lower right
quadrant with probability 𝑑. The process repeats this subdivision 𝑘 times until a single entry of
the adjacency matrix is determined. An example is shown in Figure 3.17.

Our Algorithm. For generating R-MAT graphs, we use an alias table to store precomputed
subpaths of the recursive process described above. For some constant 𝜑 < 1, we precompute
𝑢 = 𝑛𝜑 paths together with their probabilities. By sampling and concatenating the resulting
paths, we generate Θ(log𝑛) address bits of adjacency array entries in each iteration. The
simplest such strategy generates, for a fixed length ℓ < 0.5 log𝑛, all 𝑢 = 4ℓ paths of a length ℓ.
These paths can be generated using a simple recursive procedure in timeO(𝑢). The function
enumItems in Algorithm 3.7 outputs each path representing it as a tuple (𝑖, 𝑗, 𝑝) where 𝑖 stands
for ℓ bits of the row index of the adjacency matrix, 𝑗 for ℓ bits of the column index, and 𝑝 for
the probability that this path is generated.

The resulting sequence of partial paths 𝐸 is then preprocessed into an alias table 𝐴 that
allows constant time sampling. Full row and column indices of adjacency array entries can
then be generated by repeatedly sampling pieces of row and column indices and concatenating
them until 𝑘 = log𝑛 bits are available. After at most ⌈𝑘/ℓ⌉ ∈ O(1) iterations, a new edge
will be completed. By reusing leftover bits from generating previous edges, we can indeed
see that generating 𝐵 edges will take ⌈𝑘𝐵/ℓ⌉ sampling operations. The function genRMAT in
Algorithm 3.7 implements this approach to generate a batch of 𝐵 edges.

Overall, we get the following result:

Theorem 3.21 (Linear-Work R-MAT generation)
The above algorithm computes an R-MAT graph with𝑚 ∈ Ω(𝑛) edges in timeO(𝑚).

Proof. The correctness of the algorithm is evident from the above description. Since the
number of items is 4ℓ < 40.5 log 𝑛 = 2log 𝑛 = 𝑛 ∈ O(𝑚), generating items and preprocessing them
into an alias table can be done in timeO(𝑚) [Vos91]. As argued above, generating each edge
takes constant time. ◻

In the technical report [HS19b], we also describe a generalisation that generates bit strings
of non-uniform length. This might be faster for highly skewed generator matrices.

Experiments. We perform experiments on a machine with two Intel Xeon E5-2683 v4 pro-
cessors with 16 processing cores each. With hyper-threading (two hardware-supported threads
on each core) this means we can use up to 64 threads. The machine uses Ubuntu 18.04 as its
operating system. Our implementation is written in C++ and compiled with the GNU C++
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Algorithm 3.7 :Our R-MAT graph generator. The values 𝑎, 𝑏, 𝑐, and 𝑑 are parameters of the
distribution. This pseudocode uses strings of bits for clarity where a real implementation
would process machine words in a bit-parallel fashion in constant time. Operator ‘⋅’ stands
for string concatenation.
Input : 𝑖, 𝑗 prefixes of the current path, initially empty bit strings; 𝑝 the current path’s

probability, initially 1.0; ℓ, the number of levels to expand
Output : triples (𝑖, 𝑗, 𝑝) of partial paths

1 Function enumItems(𝑖, 𝑗, 𝑝, ℓ)
2 if ℓ = 0 then output item (𝑖, 𝑗, 𝑝)
3 else
4 enumItems(𝑖 ⋅ 0, 𝑗 ⋅ 0, 𝑎𝑝, ℓ − 1); enumItems(𝑖 ⋅ 0, 𝑗 ⋅ 1, 𝑏𝑝, ℓ − 1)
5 enumItems(𝑖 ⋅ 1, 𝑗 ⋅ 0, 𝑐𝑝, ℓ − 1); enumItems(𝑖 ⋅ 1, 𝑗 ⋅ 1, 𝑑𝑝, ℓ − 1)

Input : 𝐵, the number of edges to generate
6 Function genRMAT(𝐵)
7 ℓ ∶= 0.25 log𝑛 —tuning parameter, constraint: ℓ = 𝑐 log𝑛, 𝑐 < 0.5
8 𝐴 ∶= alias table for the items generated by enumItems(⟨⟩ , ⟨⟩ , 1.0, ℓ)
9 𝑖 ∶= 𝑗 ∶= ⟨⟩ —fragments of row and column index bit strings, initially empty

10 𝑒 ∶= 1
11 while 𝑒 ≤ 𝐵 do —Generate a batch of 𝐵 edges.
12 (𝑖′, 𝑗′) ∶= 𝐴.sample() —get more bits using alias table 𝐴
13 𝑖 ∶= 𝑖 ⋅ 𝑖′; 𝑗 ∶= 𝑗 ⋅ 𝑗′ —append them to known bits
14 if ∣𝑖∣ ≥ 𝑘 then —enough bits for a new edge
15 output edge (𝑖[1 .. 𝑘], 𝑗[1 .. 𝑘])
16 𝑖 ∶= 𝑖[𝑘 + 1 .. ∣𝑖∣]; 𝑗 ∶= 𝑗[𝑘 + 1 .. ∣𝑗∣] —reuse remaining bits for next edge
17 𝑒 ∶= 𝑒 + 1

compiler g++ in version 8.2.0. Its source code is available at https://github.com/lorenzhs/
wrs/tree/rmat.16 We compare with the R-MAT generators used in the Graph 500 benchmark
reference implementation [Bad+20] and the NetworKit toolkit for large-scale network analysis
[SSM16]. We removed the code for making the graph undirected and for scrambling node IDs
to concentrate on the core task of R-MAT: edge generation. The modified code is also available
under the above link.

Figure 3.18 (a) shows the throughput using 64 threads as a function of the available alias
table size. For 𝑛 = 230 nodes, we generate 1011 edges overall, assigning blocks of 216 edges at a
time to the threads. We see two peaks in throughput which correspond to fully using L2 cache
and L3 cache, respectively. Overall, the best throughput is up to 881 million edges per second.
This is 14.2 times faster than the Graph 500 generator and 7.9 times faster than NetworKit. On

16An archived copy of the code is available at https://web.archive.org/web/20200925083536/https://
codeload.github.com/lorenzhs/wrs/zip/rmat.
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3.9 Application: Generating R-MAT Graphs
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Figure 3.18: R-MAT experiments.
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3 Weighted Sampling

an AMD Epyc 7551P with 32 cores (64 hardware threads; see page 87 for more details on the
machine), we get similar results: slightly better overall performance than on the Intel machine,
with the best performance when the L3 cache on each chiplet is fully used.

Figure 3.18 (b) gives the speedup over our algorithm on a single thread. We achieve speedup
30.6 on 32 threads and speedup 32 on 64 threads. Hyper-threading is of little help because
the memory bandwidth to L3 cache is becoming a limiting factor in our code. In contrast,
the Graph 500 and NetworKit generators benefit significantly from hyper-threading since the
number of arithmetic operations far dominate the memory accesses.

Figure 3.18 (c) shows the degree distribution of the generated graphs for all three generators.
It is clearly visible that the output graphs of all generators have identical degree distributions.
All three generators show the plateaus in the degree distribution that are characteristic of
R-MAT graphs. This experimentally corroborates our claim that our method generates graphs
according to the R-MAT model.

To demonstrate the extreme scale of the graphs that can be generated using our method,
we additionally executed it on 256 nodes of SuperMUC-NG, the 13-th fastest supercomputer
according to the June 2020 Top 500 list17 and 4th in the June 2020 Graph 500 BFS list18. Each
node has two Intel Xeon Platinum 8174 processors with 24 cores (48 hardware threads) and
96GiB of RAM. We ran both our generator and the Graph 500 generator for 20 minutes each,
for 𝑛 = 244 nodes. Our generator produced 247.995 edges, 12.4 times more than the 244.361 edges
produced by the Graph 500 generator. Thus, generating an R-MAT graph as used in the Graph
500 BFS benchmark for scale 44 (𝑛 = 244, 𝑚 = 248) takes just 20 minutes on 256 nodes of
SuperMUC-NG. This graph is four times larger than the largest previously used graph in the
official Graph 500 benchmark, at scale 42 (𝑛 = 242,𝑚 = 246) as of the June 2020 list.

The speed of our generators compares favourably to generators for other models. For
example, the sequential Erdős-Renyi generator of Funke et al. [Fun+19] is only around 10%
faster than our sequential generator, but for a much simpler model (the special case 𝑎 = 𝑏 =
𝑐 = 𝑑). On the other hand, the streaming hyperbolic graph generator sRHG of Funke et al.
[Fun+19], a more complicated model, takes around 5 times more time per edge.

3.10 Conclusions and FutureWork

We have presented parallel algorithms for a wide spectrum of weighted sampling problems
running on a variety of machine models. The algorithms are at the same time efficient in
theory and sufficiently simple to be practically useful. Our experiments show that alias table
computation can be parallelised efficiently. For random inputs, the variant PSA+ combines
the high construction speedup of 2lvl with the query performance of a normal, single-level
alias table. For skewed inputs, OS and even more so its variant OS-ND show excellent query
performance. Our reservoir sampling algorithm shows good scaling and performance in a
distributed evaluation, proving the usefulness of our mini-batch model.

17https://www.top500.org/lists/top500/list/2020/06/, archived at https://web.archive.org/web/
20200817083528/https://www.top500.org/lists/top500/list/2020/06/ on 17th Aug. 2020

18https://graph500.org/?page_id=834, archived at https://web.archive.org/web/20200809164212/
https://graph500.org/?page_id=834 on 9th Aug. 2020
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3.10 Conclusions and Future Work

As an application of weighted sampling, we give a simple and practical algorithm for gener-
ating R-MAT graphs with constant time per edge in an embarrassingly parallel way. This makes
this widely used family of graphs even more easily usable for experiments with huge graphs. By
applying weighted sampling to precomputed chains consisting of many random decisions, we
improve per-core throughput by an order of magnitude over the reference implementation.

Future Work. Future work could consider further implementations, such as the block-wise
algorithm of Section 3.3.2.b) or implementations for GPGPUs. The latter is the topic of an
ongoing master’s thesis by Hans-Peter Lehmann, supervised mainly by the author of this
dissertation and showing promising preliminary results. For implementing WRS–N one could
perhaps obtain constant factor improvements by studying more accurate estimators for the
output size of a sample with replacement.

Our algorithms are formulated for explicitly parallel models of computing. It could also be
interesting to adapt them to the more abstract, implicitly parallel models used in databases or
big data tools such as MapReduce [DG08], Spark [Zah+10], or Thrill [Bin+16]. For example,
using a prefix sum operation, we could build a table based on rejection sampling similar to the
one used by Bringmann and Larsen [BL13] in Thrill or Spark. Other systems that are based on
sets or relations could emulate arrays by explicitly storing the array index as the first component
of a tuple. Batched queries can be supported by join or merge operations with a set of random
indices. However, for this to be efficient, the batch needs to have sizeΩ(𝑛) or the join operation
must keep the larger join partner in-memory allowing sublinear time access to the data. We
can also consider a more coarse-grained approach emulating the distributed-memory approach
of Section 3.3.3 with 𝑝 =

√

𝑛 PEs. The table of
√

𝑛meta-items would be replicated while each
distributed object would store a small alias table for

√

𝑛 objects.
Regarding reservoir sampling, a natural avenue for future work would be to study whether

our approach could be applied to sampling from a sliding window, ie, sampling only from the
(mini-batches containing the) 𝑤 most recently seen items. Additionally, we find it curious
that while using multiple pivots in the selection reduces the selection’s average recursion depth
by a factor of around 2.5, the running time benefit is much more limited at around 35% of
selection running time (see Section 3.8.4.a)). Preliminary measurements suggest that the
reduced number of MPI collective operations does not translate into a corresponding reduction
in running time. Careful engineering might be able to improve this. Furthermore, we might
be able to improve the work bound of WRS–B by exploiting integer keys for the distributed
priority queue.
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4Chapter 4

Probabilistic Checking of Fundamental
Big Data Operations

We propose fast probabilistic algorithms with low (ie, sublinear in the input size)
communication volume to check the correctness of operations in Big Data processing
frameworks and distributed databases. Our checkers cover many of the commonly
used operations, including sum, average, median, and minimum aggregation, as well
as sorting, union, merge, and zip. An experimental evaluation of our implementation
in Thrill (Bingmann et al. [Bin+16]) confirms the low overhead and high failure
detection rate predicted by theoretical analysis.

Motivation. Recently, Big Data processing frameworks like Apache Spark [Zah+10], Apache
Flink [Ale+14] and Thrill [Bin+16] have surged in popularity and are widely used to process
large amounts of data. Computation and data are distributed over a large number of machines
connected by a network, and processing is based on collective operations that transformdatasets.
Combined with the advances in computing performance and memory capacity brought about
by Moore’s Law (see Chapter 1), this lets users process enormous amounts of data quickly.1

Yet as the size of the data and the number of machines increases, so does the rate of hardware
failures and thus the importance of fault tolerance, as well as the difficulty of writing correct
programs that handle all edge cases. Some frameworks, eg, Apache Spark, can deal with
failing machines [Zah+10], but none of the popular solutions can detect silent data corruption.
These errors can be the result of subtle mistakes in the programming, but also spontaneous
bitflips in memory, caused for example by manufacturing defects (hard errors) [SPW11] or
high-energy particles (‘cosmic rays’ causing soft errors) [ZL79; Har+20]. The latter concern
can largely be mitigated by the use of error-correcting code (ECC) memory at the cost of
increased hardware expenditure. While ECC memory can detect most hard errors, there is
a limit to its mitigation capacity, which is exceeded much more frequently than commonly
assumed [SPW11]. Moreover, the frequency of occurrence of either kind of errors is expected
to continue to increase as hardware miniaturisation progresses [Bor05]. More concerningly,
malicious users have been shown to be able to flip bits in memory without accessing them
(dubbed ‘row hammer’ in popular reporting) [Kim+14], posing problems on multi-user HPC
systems. Thus, there are numerous causes of silent data corruption in big data systems. We
propose probabilistic algorithms to detect such silent failures in the frameworks’ operations
1When MapReduce experienced its surge in popularity around the start of the so-called ‘big data revolution’, the
primary bottleneck was I/O (input/output) bandwidth, ie, the speed with which data could be read or written to
disk. Yet fast solid-state drives (SSDs) have proliferated in the last decade. Today, even a single consumer-grade
SSDs can read or write multiple gigabytes per second. A commodity server with multiple of these drives can
achieve I/O bandwidths that were previously unimaginable at this price point. Combined with the growing
scarcity of the network (see Chapter 1), this means that the bottleneck in Big Data processing frameworks is
now often the network. This again emphasises the need for communication efficiency.
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4 Probabilistic Checking of Fundamental Big Data Operations

Table 4.1: Our main results. Parameters as in Table 4.2: input size 𝑛; number of PEs 𝑝;
failure probability 𝛿; machine word size 𝑤; trade-off parameter 𝑑; communication startup
cost 𝛼; communication cost per word 𝛽. Operations are defined in Section 4.1.

Operation Broadcast
Result?

Certificate
Required? Checker Running TimeO(⋅)

sum/count aggregation no no (
𝑛
𝑝 + 𝛽𝑑) log𝑑

1
𝛿 + 𝛼 log𝑝

average aggregation no dist. same as above

median aggregation yes yes* same as above

minimum aggregation yes yes 𝑛
𝑝 + 𝛼 log𝑝

permutation, sort, union,
merge, zip, GroupBy†, join† no no (

𝑛
𝑝𝑤 + 𝛽) log

1
𝛿 + 𝛼 log𝑝

* no certificate required if input elements are distinct.
† invasive checker for input redistribution phase.

with little overhead, which we refer to as checkers. These checkers can be used to verify the
integrity of the main computation while treating the operation as a black box, ie, independent
of its implementation. To ensure that their overhead is low and does not impact the system’s
overall scalability, they need to be highly communication-efficient. Our checkers cover many
of the commonly used operations of current-generation data-parallel computing frameworks.

Consider the options available to a programmer who wants to increase users’ confidence
in the correctness of her program. Formal verification would be ideal, but is very difficult for
complex programs and does not address hardware errors. Testing can help the programmer
to avoid mistakes, but cannot prove the absence of bugs. Lastly, she can write a small and fast
program that verifies the output of the main program: a checker. The checker must be very fast
to avoid large slowdowns, much faster than the main program. The probabilistic checkers we
consider here make a favourable trade-off between confidence and speed.

References. This chapter is based on a conference paper [HS18] published jointly with Peter
Sanders. The paper was mainly written by the author of this dissertation, with editing by Peter
Sanders. Large parts of this chapter were copied verbatim from the paper and the technical
report [HS17] accompanying it, which contains additional detail not present in the conference
version. The author of this dissertation is also the author of all implementations and conducted
all evaluations.

Results. Table 4.1 lists our main results. For each operation, it states whether the entire result
needs to be available at all PEs (or a distributed result suffices), whether the checker requires
a certificate—and if yes, whether a distributed certificate suffices—and the checker’s running
time. Note that the majority of our results also apply to distributed database systems. The
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4.1 Preliminaries

Table 4.2: Summary of notation used in this chapter.

Symbol Meaning

𝑛 input size
𝛿 maximum permitted failure rate
𝑑 trade-off (tuning) parameter, 𝑑 ∈ ℕ
𝑤 machine word size, see Section 1.2.1
𝑝 number of PEs
𝛼, 𝛽 communication characteristics of the machine model, see Section 1.2.3

proximity between data-parallel big data processing frameworks and distributed databases is
exemplified by the SQL layer of Apache Spark [Arm+15].

4.1 Preliminaries
Let an operation’s input data set consist of 𝑛 elements, each represented by a fixed number
of machine words2, and let 𝑘 denote the number of elements in the output of a particular
operation, and let 𝑤 be the machine word size in bits. A summary of the notation used in this
chapter is provided in Table 4.2.

In this chapter, we adopt the terminology of Thrill [Bin+16] for operations. We also design
our checkers to become part of Thrill, and implemented them within Thrill for our experiments.

Error Model. Checkers have one-sided errors: they are never allowed to reject the result of
correct computations. Only in the case of an incorrect result are they allowed to erroneously
accept with a small probability, limited by the parameter 𝛿 > 0.

Certificates. Some operations become much easier to check if the result of the operation is
accompanied by a certificate to facilitate checking. However, when an algorithm provides an
output along with a certificate for said output, the certificate might also be faulty. We need to
take care not to accept incorrect results because the certificate contains the same flaw, ie, we
need to verify the correctness of the certificate as well.

Hashing. To simplify the analysis, we assume the availability of (idealised) random hash
functions, ie, hash functions chosen uniformly at random from the set of all mappings between
the input and output value types. Then, for any input, its (fixed) hash value can be treated
like a number chosen uniformly at random from the hash functions’ image space. We explain
separately when weaker guarantees on the randomness of the hash function suffice.

Result Integrity. Ordinarily, the output is provided in distributed form, ie, the PEs hold
disjoint parts of the output. However, some checkers require the output of an operation or a
certificate to be provided in a full at all PEs. If this is the case, we must additionally ensure
2Frequently, adaptation to variable-sized objects is possible. Our focus on fixed-size objects is mainly to simplify
notation.
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4 Probabilistic Checking of Fundamental Big Data Operations

that all PEs received the same output or certificate. This can be achieved by hashing the data in
question with a random hash function and comparing the hash values of all other PEs. This
can be achieved in timeO(𝑘 + 𝛼 log𝑝) by broadcasting the hash of PE 1, which every PE can
compare to its own hash, and aborting if any PE reports a difference.

Operations

We now define the operations which we consider for checking.

Reductions. A reduce operation (Figure 4.1 (a)) collects elements by their keys, processing
all elements of the same key in an arbitrary order using an associative reduce function 𝑓. This
function maps two values to a new value of the same type and describes how to combine two
elements into one. To reduce the local elements of a PE, we use a hash table ℎ. Process elements
one-by-one, denoting the current element by 𝑒 = (𝑘, 𝑣) and set ℎ[𝑘] = 𝑓(𝑣, ℎ[𝑘]) or ℎ[𝑘] = 𝑣 if
ℎ[𝑘] is empty. We then use a simple collective reduction algorithm (see Section 1.3.3) to obtain
the final result at PE 1. The total time taken isO(𝑛/𝑝 + 𝑇coll(𝑘)) = O(𝑛/𝑝 + 𝛽𝑘 + 𝛼 log𝑝).

Most aggregation operators which we consider are all special cases of this generic reduction
framework. In sum or count aggregation, 𝑓(𝑎, 𝑏) = 𝑎 + 𝑏 is the arithmetic addition operator.
Minimum or maximum aggregation computes the smallest or largest value associated with the
keys, 𝑓(𝑎, 𝑏) = min(𝑎, 𝑏).

The average aggregation of Table 4.1 does not directly fall under this reduction framework.
To compute per-key averages, the value type is extended by a count, and 𝑓((𝑣1, 𝑐1), (𝑣2, 𝑐2) =
(𝑣1 + 𝑣2, 𝑐1 + 𝑐2) adds values as well as counts. Finally, in a post-processing step, the value-
count-pair (𝑣, 𝑐) is mapped to 𝑣/𝑐 to obtain the average.

GroupByAggregations. A more general approach to aggregation isGroupBy (Figure 4.1 (b)),
where all elements with a certain key are collected at one PE and processed by the group function
𝑔 ∶ [Value] → Value. This enables the use of more powerful operators such as computing
median, but requires more communication. Total running time isO(𝑛/𝑝 + 𝑇all-to-all(𝑛/𝑝)) =
O(𝑛/𝑝 + 𝛽𝑛 + 𝛼𝑝).

In a median aggregation, we compute for each key the value that is larger than one-half
of the keys’ values and smaller than the other half ’s. More precisely, for an odd number of
elements 𝑛𝑖 associated with key 𝑖, the median is the element of rank ⌈𝑛𝑖/2⌉. For an even number
of elements, it is the arithmetic mean of the elements of ranks 𝑛𝑖/2 and 𝑛𝑖/2 + 1.

OtherOperations. A zip operation (Figure 4.1 (c)) combines two sequences 𝑆1 = ⟨𝑥1,… , 𝑥𝑛⟩
and 𝑆2 = ⟨𝑦1,… ,𝑦𝑛⟩ of equal length 𝑛 index-wise, producing as its result a sequence of pairs
𝑆 = ⟨(𝑥1, 𝑦1),… , (𝑥𝑛, 𝑦𝑛)⟩.

The union (Figure 4.1 (d)) operation combines two multisets so that each item’s multiplicity
in the output is exactly the sum of its multiplicities in the two input sets.

A merge (Figure 4.1 (e)) operation combines two sorted sequences into a single sorted
sequence whose length is exactly the sum of the input sequences’ lengths.

In a (natural) join, two data sets 𝐴 and 𝐵 indexed by a common key column are combined.
For each key, the join outputs all combinations of values from 𝐴 and 𝐵 associated with the key.
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(a) Illustration of a reduction with reduce function ⊕, four PEs, and three keys.
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(b) Illustration of a GroupBy aggregation with group function 𝑔, four PEs, and four keys.
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(c) Zipping two sequences.
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(d) Union of two sequences: no ordering guarantees.
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(e) Merging two sorted sequences into one sorted sequence.

Figure 4.1: Illustration of selected operations considered for checking.
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4.2 RelatedWork

The literature on the wider field of verifying the correctness of a program’s output is vast and
to attempt to give an overview with any semblance of completeness would be an enormous
undertaking. However, wewere surprised that distributed—let alone communication-efficient—
probabilistic checkers appear to be largely unstudied. We therefore first report on the most
directly relatedworks, and then give a short overview of the techniques for increasing confidence
in the output of a program that we consider the most relevant.

Yi et al. [Yi+09] present PIRS, an aggregation checker in the context of databasemanagement
systems. Their algorithm is based on polynomial identities using techniques that are very similar
to one of our permutation checkers. This necessitates arithmetic modulo a prime number for
each item in the input, which is a rather costly operation. We compare our results to their
method in more detail in the appropriate sections.

Nath and Venkatesan [NV13] present a cryptographically secure aggregation checker. How-
ever, due to the cryptographic primitives involved being rather expensive to compute, their
checker is one to two orders of magnitude slower than PIRS. Other cryptographically secure
checkers are based on Merkle hash trees, eg, Ref. [Li+07]. Since cryptographically secure
checkers consider a very different security model, we do not explore this avenue in more detail
here. Instead, we refer the interested reader to Refs. [Pap+13; Pap+14] for another approach
with cryptographic guarantees that is also slower than PIRS.

Tests. In practice, programs are often tested against a set of test cases of known good in-
put/output pairs, ensuring that the program computes the correct result without crashing for all
test cases. However, testing can never demonstrate the absence of bugs (see, eg, Ref. [Mye04]).

Formal Verification. From a theoretical standpoint, formally verifying the correctness of
a program is the ultimate goal. While tremendous progress has been made in this area (eg,
Ref. [Ahr+16]), verifying implementations of complex distributed algorithms in popular pro-
gramming languages is still infeasible.

Certifying Algorithms. Blum and Kannan [BK89; BK95] introduce probabilistic checkers in
a sequential setting (although individual algorithms that meet their definitions have existed far
longer, eg, Freivalds’s [Fre77] matrix multiplication checker). McConnell et al. [McC+11] build
upon this to design (sequential) certifying algorithms, stressing the importance of simplicity of
the checker, and putting increased focus on certificates (also termed witnesses) that prove that
the output is correct. While formally verifying the main algorithm may be infeasible, doing so
for the (far simpler) verifier may be within reach.

VerifiableComputing. Verification of arbitrary computations performed by a singlemachine
or outsourced to a set of untrusted machines is a well-studied problem, dating back at least
30 years and published under names such as ‘verifiable computing’ [GGP10], ‘checking com-
putations’ [Bab+91], or ‘delegating computations’ [GKR15]. All of these are computationally
expensive beyond the limits of feasibility, despite recent efforts to make verifiable computing
more practical [Par+16; CMT12; Set+12; Bra+13]. A recent survey by Walfish and Blumberg
[WB15] concludes that ‘[t]he sobering news, of course, is these systems are basically toys’ due to
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orders-of-magnitude overhead. In contrast, our work focuses on checking specific operations,
allowing us to develop checkers that are fast in practice.

Algorithm-Based Fault Tolerance. An approach that has received significant attention for
linear algebra kernels isAlgorithm-Based Fault Tolerance (ABFT) [HA84; Bos+09]. By encoding
the input using checksums, and modifying the algorithms to work on encoded data, ABFT
techniques detect and correct any failure on a single processor. This allows error detection
with little overhead in many numerical applications, see, eg, Ref. [Zha+20] for a recent result
in machine learning. However, the approach fundamentally requires the algorithms to be
redesigned to operate on the encoded data.

Helpful Advisor. Cormode et al. [CMT13; CMT12] and Chakrabarti et al. [Cha+14] study
outsourced computation in data stream models. A powerful ‘helper’ (the entity to which the
computation has been outsourced) annotates the stream. However, the helper is untrusted and
the algorithm must verify the correctness of the annotation while also using the information
contained therein to compute the solution. This algorithm is called the ‘verifier’, and its role is
similar to that of a checker in our model. However, the focus of these papers lies on single-pass
streaming algorithms, which precludes computing and comparing fingerprints of input and
output, and is thus rather different from the setting we study.

Self-Stabilisation. The defining property of self-stabilising systems [Dij74; Sch93] is that
they return to correct behaviour within bounded time from being started in any state. Thus,
they can recover from arbitrary faults. However, this design goal is intrinsically linked to the
design of the algorithm that computes the results in the first place. A self-stabilising algorithm
is (usually) designed so that its state is easy to verify. Much like algorithm-based fault tolerance,
this requires not just the design of a verification tool, but a redesign of the algorithm that
computes the result. Thus, it is a rather invasive approach that may not be desirable.

Proof Labelling Schemes. For graph problems, a successful theoretical approach to locally
verifying global properties (also called ‘local distributed verification’) are proof labelling schemes
[KKP10]. Much like our checkers (and a key distinction from self-stabilising algorithms), they
are designed to be independent of the result’s computation. Instead, for problems that are hard
to verify, they use ‘advice’ that is provided to the verifier. The task of the verifier is then to
both convince itself that the advice provided is truthful and to use it to ascertain the result’s
correctness.3 However, there are also significant differences to our model of checking. Notably,
proof labelling schemes consider graph problems in a network-centric model of computation,
where each node of the graph is also a node of the network. To establish correctness, for each
vertex, the verifier is restricted to working with the vertex’s state and the advice on vertices that
are at most a constant distance away from the vertex (eg, its neighbours). Similar ideas that
do not use external advice, relying only on the solution, were considered earlier by Naor and
Stockmeyer [NS95], also in the context of graph problems. Korman and Kutten [KK06] give an
introduction and provide an overview of some noteworthy results in both settings as well as
self-stabilisation (see above).
3Under different names, such advice pops up in numerous places throughout computer science. For example, in a
common characterisation of the complexity class NP, a witness allows an algorithm from P to verify that the
decision problem can be solved. The certificates used by some of our checkers are another form of advice.
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Fault Tolerance. Note that while some existing systems, eg, Apache Spark [Zah+10], imple-
ment some fault tolerance measures such as detecting and handling the failure of individual
nodes, there are large classes of failures that no existing big data processing system appears to
detect or mitigate. These include data corruption caused by soft errors, ie, incorrectly handled
edge cases in the programming, or bitflips in CPU or main memory caused by cosmic rays, leak
voltage, as well as hard errors, ie, device defects causing repeated failure at the same memory
locations. A common solution to memory errors is the use of ECC RAM [BCH13], which can
correct most soft errors and detect (but often not correct) many hard errors [HSS12]. This
is orthogonal to our checkers: a checker can never detect errors introduced into the input
data before the algorithm is invoked, so the use of ECC RAM remains advisable even when
computations can be checked. An alternative approach is to use redundant computations, eg,
Ref. [Fia+12], which comes at a rather high cost, though it may be an option if failure rates are
high enough for recovery to dominate overall running time.

4.3 Checking Aggregations
Reductions are perhaps the most important operation in the kind of Big Data systems we
consider, and the first instances of these systems even carried them in their name: MapReduce.
The checker we describe works not only for sum aggregation but also other operations on
integers that fulfil certain properties. We require the reduce operator ⊕ to be associative,
commutative, and satisfy 𝑥 ⊕ 𝑦 ≠ 𝑥 for all 𝑦 ≠ 0, ie, every element except the neutral element
changes the result. Examples include count aggregation, which conceptually equals sum
aggregationwhere the value of every element ismapped to 1, and exclusive or (xor). Without loss
of generality, we therefore only discuss sum aggregation in this section. Several other common
choices of reduce functions violating the above requirements and aggregations requiring the
additional power of GroupBy are discussed in Section 4.5.

In sum aggregation, we are given a distributed set of (key, value)-pairs. Let 𝐾 be the (un-
known) set of keys in the input and 𝑘 ∶= ∣𝐾∣ its equally unknown size. The output of sum
aggregation then consists of a single value for each key, which is the sum of all values associated
with it in the input. In SQL, this operation would be expressed as

SELECT key, SUM(value) FROM table GROUP BY key.

To check the result of such an aggregation, we apply a naïve sum reduction algorithm to
a condensed version of the input. Due to the small size of the data to which it is applied, we
sometimes refer to this as the minireduction. The condensed version of the input which we
apply it to is conceptually similar to a counting Bloom filter [Fan+00] or a count-min sketch
[CM05]. Just as is done there, we use a random hash function to map items to a new, smaller
key space and then sum up the values of all items with the same hash key (see Figure 4.2 for an
example of our checker). Conceptually, a count-min sketch is ‘just’ a counting Bloom filter that
is too small to reliably answer membership queries. Similarly, our condensed version of the
input is the same data structure, but even smaller, so that it would not be able to reliably answer
the queries that a count-min sketch is commonly used for (eg, quantiles or frequent items). We
then merge the local summaries obtained this way to produce a ‘fingerprint’ of the input, and
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Figure 4.2: Word Count example of the sum aggregation checker. On the left, the PEs’
inputs, shown as columns of (word, count) pairs. Inputs are first hashed and reduced
locally modulo 𝑟 (centre) followed by a global reduction over the local tables. The res-
ulting fingerprint is shown on the right and fits into 𝑑 ⋅ ⌈log(2 ̂𝑟)⌉ = 8 ⋅ 4 = 32 bits. This
configuration of the checker fails with probability 𝛿 ≤ 1/ ̂𝑟 + 1/𝑑 = 1/4.

compare it to the fingerprint of the output. We will show that if the fingerprints match, the
output was likely computed correctly.

Theorem 4.1 (Aggregation Checker)
Let ⊕ be an associative and commutative reduce function on integers satisfying 𝑥 ⊕ 𝑦 ≠ 𝑥 for all
elements 𝑥, 𝑦 with 𝑦 ≠ 0. Then ⊕-aggregation of 𝑛 elements with failure probability at most 𝛿 can
be checked in time 𝑇check-sum(𝑛, 𝑝, 𝛿) ∶= O(( 𝑛𝑝 + 𝛽𝑑) log𝑑

1
𝛿 + 𝛼 log𝑝), where 𝑑 ∈ ℕ is a tuning

parameter.

Observe that only the local work depends on the input size and that the running time is
independent of the number of keys that appear in the input. Let 𝑑 from the statement of
Theorem 4.1 be the size of the condensed key space, with 2 ≤ 𝑑 ≪ 𝑘. We then use a random
hash function ℎ ∶ 𝐾→ [1 .. 𝑑] to map the original keys to the reduced key space. Let ̂𝑟 ≥ 𝑑 be a
modulus parameter, with 𝑟 chosen uniformly at random from the range [�̂� + 1 .. 2�̂�]. Apply a
naïve sum reduction modulo 𝑟 to the thus-remapped input and—separately—the output of the
aggregation algorithm. If both produce the same result, the operation was likely conducted
correctly. Pseudocode is shown in Algorithm 4.1.

Lemma 4.2 (Aggregation Checker Failure Probability)
A single iteration of the above sum aggregation checker fails with probability at most 1̂𝑟 +

1
𝑑 .

Proof. If the aggregation was performed correctly, then the per-bucket results in the reduced
keyspace are the same for input and output, and thus the checker always accepts a correct result.
This follows from the properties we require the reduction operator to have, which carry over to
the ring in which we perform the mini-reduction. Thus assume from now on that the output of
the aggregation operation is incorrect, ie, the checker should fail.
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4 Probabilistic Checking of Fundamental Big Data Operations

Algorithm 4.1 : A single iteration of the sum aggregation checker.
Input : 𝑣 the local input to the sum aggregation operation, an array of size 𝑛𝑖, 𝑜 the local

part of the asserted result of the sum aggregation, an array of size 𝑘𝑖, 𝛿 ∈ ℝ the
maximum allowed failure rate

Output : whether 𝑜 is likely the correct result of the sum aggregation
1 Function checkSumAgg(𝑣, 𝑜, 𝛿)
2 (𝑑, ̂𝑟) ∶ℕ×ℕ ∶= numerically determined parameters (see Table 4.3)
3 𝑟 ∶ℕ ∶= random number from [�̂� + 1 .. 2�̂�] —modulus parameter
4 ℎ ∶ 𝐾→ [1 .. 𝑑] ∶= random hash function —maps keys to buckets
5 𝑤𝑣 ∶= cRed(𝑣, 𝑑, 𝑟, ℎ) —apply condensed reduction to input
6 𝑤𝑜 ∶= cRed(𝑜, 𝑑, 𝑟, ℎ) —...and asserted result of sum aggregation
7 return 𝑤𝑣 = 𝑤𝑜 —significant only at PE 1

Input : arr an array of input items, 𝑑 ∈ ℕ the result size, 𝑟 ∈ ℕ the modulus,
ℎ ∶ 𝐾→ [1 .. 𝑑] a hash function

Output : a 𝑑-dimensional sum modulo 𝑟 of the inputs’ hash values
8 Function cRed(arr, 𝑑, 𝑟, ℎ)
9 𝑡 ∶ Value[𝑑] ∶= ⟨0,… , 0⟩

10 foreach (𝑘, 𝑣) ∈ arr do
11 𝑡[ℎ[𝑘]] ∶= (𝑣 + 𝑡[ℎ[𝑘]])mod 𝑟 —local reduction
12 Reduce(𝑡, +𝑟, 1) —reduce to PE 1 with addition modulo 𝑟
13 return 𝑡 —significant only at PE 1

For 𝑖 ∈ 𝐾, let 𝑛𝑖 be the (correct, unknown) ⊕-aggregate of all values with key 𝑖, and 𝑛′𝑖 be the
asserted result of the corrupted computation. Then, because the result is incorrect, there exists
at least one 𝑖 with 𝑛𝑖 ≠ 𝑛′𝑖. Let 𝐼 ∶= {𝑖 ∈ 𝐾 ∣ 𝑛𝑖 ≠ 𝑛′𝑖} be the keys whose results were computed
incorrectly by the operation.

Let ℎ ∶ 𝐾 → [1 .. 𝑑] be the random hash function used to map keys to the condensed
keyspace. We use this hash function to map elements to the 𝑑 buckets by their keys, and
reduce the values in associated counters modulo 𝑟, where 𝑟 is chosen uniformly at random
from [�̂� + 1 .. 2�̂�]. Effectively, we operate in the residue class ring ℤ/𝑟ℤ. Thus the checker fails
if

∀𝑗∈[1 .. 𝑑] ∶ ⨁
𝑖∈𝐼
ℎ(𝑖)=𝑗
𝑛𝑖 = ⨁

𝑖∈𝐼
ℎ(𝑖)=𝑗
𝑛′𝑖 mod 𝑟 .

We prove the claimed failure probability by first considering the failure probability intro-
duced by the modulus, and then analysing a version of the checker without a modulus. For the
first part, we bound the probability of such an error by 1/�̂�. In the second part, we injectively
map each hash function ℎ for which the checker fails to 𝑑 − 1 distinct hash functions for which
it does not fail, yielding the 1/𝑑 term of the failure probability.

(1) If there is an 𝑖 ∈ 𝐼 with 𝑛𝑖 = 𝑛′𝑖 mod 𝑟, the checker cannot detect the error in this key.
Because the modulus is chosen randomly, this occurs with probability 𝑟−1 ≤ �̂�−1 by definition
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4.3 Checking Aggregations

of 𝑟 for a single key. However, for the checker to fail, 𝑛𝑖 = 𝑛′𝑖 mod 𝑟 must hold for all 𝑖 ∈ 𝐼.
Thus, the probability of failure declines exponentially with ∣𝐼∣, and ∣𝐼∣ = 1 is the hardest case.
Therefore, �̂�−1 bounds the total additional failure probability introduced by the modulus.

(2) Define 𝐹 ∶= {ℎ ∶ 𝐾→ [1 .. 𝑑] ∣ checker fails for ℎ} as the set of hash functions for which
the checker fails and let ̆𝚤 ∶= min 𝐼 be the first key whose aggregate value is incorrect. For each
ℎ ∈ 𝐹, we define the 𝑑 − 1 hash functions ℎ𝑗 with

∀𝑗∈[1 .. 𝑑]⧵{ℎ( ̆𝚤)}, 𝑖∈𝐾 ∶ ℎ𝑗(𝑖) =
⎧
⎪⎪
⎨
⎪⎪
⎩

ℎ(𝑖) 𝑖 ≠ ̆𝚤,
𝑗 else

and let 𝐹 ∶= {ℎ𝑗 ∣ ℎ ∈ 𝐹, 𝑗 ∈ [1 .. 𝑑] ⧵ {ℎ( ̆𝚤)}}. Clearly, the checker does not fail for any ℎ𝑗 ∈ 𝐹,
as exactly one element with different values is being remapped in a hash function for which
it does fail (the case of 𝑛 ̆𝚤 = 𝑛′ ̆𝚤 mod 𝑟 is treated in (1)). By the assumption that 𝑥 ⊕ 𝑦 ≠ 𝑥 for
𝑦 ≠ 0, the result will differ in exactly two buckets, and the checker will notice.

We also need to show that the mapping is injective, ie, that the new hash functions are
unique and thus ∣𝐹∣ = (𝑑 − 1) ∣𝐹∣. Clearly, for a given ℎ all of its ℎ𝑗 are different, so assume that
there exists an ℎ′ ≠ ℎ and 𝑗, 𝑗′ so that ℎ𝑗 = ℎ′𝑗′ ∈ 𝐹. Then, by definition, 𝑗 = ℎ𝑗( ̆𝚤) = ℎ′𝑗′( ̆𝚤) = 𝑗

′

and thus 𝑗 = 𝑗′. For ℎ𝑗 = ℎ′𝑗, we furthermore need

∀𝑖∈𝐾 ∶ ℎ𝑗(𝑖) = ℎ′𝑗(𝑖)
def.
⟺ ∀𝑖∈𝐾⧵{ ̆𝚤} ∶ ℎ(𝑖) = ℎ′(𝑖)

Thus ℎ = ℎ′ if and only if ℎ( ̆𝚤) = ℎ′( ̆𝚤). But this must hold, for otherwise we would have
ℎ′ = ℎℎ′( ̆𝚤) ∈ 𝐹 by definition of the ℎ𝑗, which contradicts the assumption that ℎ′ ∈ 𝐹. Therefore,
such an ℎ′ cannot exist and ∣𝐹∣ = (𝑑 − 1) ⋅ ∣𝐹∣. ◻

Observe that unlike the failure probability bound in (1), the bound in (2) is tight: if the only
difference between the two inputs is the key of a single item, then the probability that the hash
values of the new and old key are the same (and the modification thus goes unnoticed) is 1/𝑑.
This follows from the uniformity of random hash functions.

Lemma 4.3 (Aggregation Checker Running Time)
Checking ⊕-reduction with ⊕ as in Theorem 4.1, 𝑛 input pairs, and 𝑘 keys, using 𝑑 buckets, with
moduli in [�̂� + 1 .. 2 ̂𝑟] and probability of failure at most 𝛿 > 0, is possible in time

O((
𝑛
𝑝
+ 𝛽
𝑑 log(�̂�)
𝑤

) log( 1̂𝑟+ 1𝑑 )−1 𝛿
−1
+ 𝛼 log𝑝).

Proof. From the above description we can see that a single iteration of the checker requires
time O(𝑛/𝑝) to hash and locally reduce the input. A single iteration’s table that can be ex-
pressed in 𝑑 ⌈log(2�̂�)⌉ bits, ie, ⌈𝑑 log(2 ̂𝑟)/𝑤⌉machine words. Thus, the reduction takes time
𝑇coll(⌈𝑑 log(2 ̂𝑟)/𝑤⌉) ∈ O(𝛽𝑑 log(�̂�)/𝑤 + 𝛼 log𝑝). Repeating the procedure ⌈log( 1̂𝑟+ 1𝑑 )−1 𝛿

−1
⌉

times increases the probability of detecting an incorrect result to at least 1− 𝛿 by accepting only
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4 Probabilistic Checking of Fundamental Big Data Operations

if all repetitions of the procedure declare the result to be likely correct. To keep the number of
messages low, we can execute all instances of the checker simultaneously (this also means that
we only have to read the input once), and perform their reductions at the same time. ◻

We can instantiate this checker in different ways to obtain the characteristics we wish. First,
we use this to show Theorem 4.1:

Proof (Theorem 4.1). Setting 𝑑 ≤ �̂� ≤ 2𝑤−1 and ( 1̂𝑟 +
1
𝑑)
−1
< 𝑑 in Lemma 4.3 yields log(2�̂�) ≤ 𝑤

and running time O((𝑛/𝑝 + 𝛽𝑑) log𝑑 𝛿
−1
+ 𝛼 log𝑝), which can be simplified to the claimed

bound. ◻

We can also minimise bottleneck communication volume and find that minimum at 𝑑 = 2
buckets, ̂𝑟 = 8 for a modulus range of [9 .. 16], and thus a minireduction result size of 8 bits
with log1.6 𝛿

−1 repetitions. However, this high number of repetitions causes a lot of local work.
Further, the practical usefulness of sending single bytes across the network is questionable. In
effect, real-world interconnects have an effective minimum message size 𝑏, such that sending
fewer than 𝑏 bits is not measurably faster than sending a message of size 𝑏 bits. Thus, our
goal should be to minimise the number of iterations—⌈log 1

̂𝑟+ 1𝑑 𝛿⌉—under the constraint that
the result size shall be close to 𝑏 bits: 𝑑 ⌈log(2�̂�)⌉ ⌈log 1

̂𝑟+ 1𝑑 𝛿⌉ ≤ 𝑏. This relation can be used to
(numerically) compute optimal choices of �̂� and 𝑑 for a given 𝑏. Table 4.3 shows such values
for some interesting choices of 𝑏 and 𝛿. However, in practice, keeping local work low might

Table 4.3: Select numerically determined optimal values for the sum aggregation
checker’s bucket count 𝑑 and modulus parameter ̂𝑟 given a message size of 𝑏 bits.

𝑏 𝛿 𝑑 �̂� #iter achieved 𝛿

1024 10−4 37 28 3 3.0 ⋅ 10−5
1024 10−6 25 27 5 2.5 ⋅ 10−7
1024 10−8 18 27 7 4.1 ⋅ 10−9
1024 10−10 14 26 10 2.5 ⋅ 10−11
1024 10−20 6 24 32 3.3 ⋅ 10−21

4096 10−6 124 210 3 7.4 ⋅ 10−7
4096 10−10 68 29 6 2.1 ⋅ 10−11
4096 10−20 32 28 14 4.4 ⋅ 10−21

16 384 10−7 420 212 3 1.8 ⋅ 10−8
16 384 10−10 273 211 5 1.2 ⋅ 10−12
16 384 10−20 148 210 10 7.6 ⋅ 10−22
16 384 10−30 93 210 16 1.3 ⋅ 10−31

65 536 10−10 1170 213 4 9.1 ⋅ 10−13
65 536 10−20 630 212 8 1.3 ⋅ 10−22
65 536 10−30 420 212 12 1.1 ⋅ 10−31
65 536 10−40 321 211 17 2.9 ⋅ 10−42
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be more important than these solutions to minimise 𝛿 admit, and one might prefer to trade a
reduced number of iterations for a larger value of 𝑑 and perhaps choose ̂𝑟 = 231.

A Note on Related Work. Yi et al. [Yi+09] claim that an approach based on the count-min
sketch cannot work. However, their argument is based on using the sketch for its original
purpose, estimating the count of each key. This would indeed, as the authors claim, necessitate
an excessively large sketch without providing good guarantees. However, we do not query
the sketch at all, but treat the entire sketch as a fingerprint of the input and compare these
fingerprints. Therefore, their considerations do not apply to us.

Optimisations. Multiple instances of this algorithm can be executed concurrently by using a
hash function that computes 𝑐 ⋅ ⌈log𝑑⌉ bits. Its value can then be interpreted as 𝑐 concatenated
hash values for separate instances, enabling bit-parallel implementation. It is also possible to
use Single Instruction Multiple Data (SIMD) techniques to further reduce local work. Refer to
Section 4.6 for specific implementation details.

4.4 Checking Permutations
Many approaches for permutation checking exist in the sequential case, and often directly imply
communication-efficient equivalents. Perhaps the most elegant approach was first described by
Wegman and Carter [WC81], albeit in a less general manner than we prove here. The idea is
to use a random hash function and compare the sum of hash values in the input and output
sequences. Checking permutations is perhaps most useful for verifying the output of sorting
algorithms. Once we have established that a sequence is a permutation of another, verifying
sortedness of the output sequence only requires that each PE receive the smallest element of its
successor PE and compare its local maximum to it.

Lemma 4.4 (Hash-Based Permutation Checker)
Let 𝐸 = ⟨𝑒1,… , 𝑒𝑛⟩ and 𝑂 = ⟨𝑜1,… , 𝑜𝑛⟩ be two sequences of 𝑛 elements from a universe 𝑈. For a
random hash function ℎ ∶ 𝑈 → [0 ..𝐻 − 1], define 𝜆 ∶= ∑𝑛𝑖=1 ℎ(𝑒𝑖) − ℎ(𝑜𝑖). Then 𝜆 = 0 if 𝐸 is a
permutation of 𝑂, and P[𝜆 = 0] ≤ 𝐻−1 otherwise. If the items of 𝐸 and 𝑂 are pairwise different
within the respective sequence, ie, each item occurs only once, then the computation can also be
performed in ℤ/𝐻ℤ (ie, mod𝐻) without affecting the result.

Proof. Define ℎ(𝑋) ∶= ∑𝑥∈𝑋 ℎ(𝑥) for any set or sequence𝑋. If 𝐸 and 𝑂 are permutations of
each other, then ℎ(𝐸) = ℎ(𝑂) due to commutativity of addition, and thus 𝜆 = 0 by associativity.

Otherwise, let 𝑒 be an element that—without loss of generality—occurs more frequently in
𝐸 than in𝑂, say 𝑘 times in 𝐸 and 𝑘′ < 𝑘 in𝑂 (𝑘′ can, of course, be 0). Then we can express ℎ(𝐸)
and ℎ(𝑂) as ℎ(𝐸) = ℎ(𝐸⧵𝑒)+𝑘 ⋅ ℎ(𝑒) and ℎ(𝑂) = ℎ(𝑂⧵𝑒)+𝑘′ ⋅ ℎ(𝑒). Assuming ℎ(𝐸) = ℎ(𝑂)
(so that 𝜆 = 0) and solving for ℎ(𝑒), we obtain ℎ(𝑒) = (ℎ(𝑂 ⧵ 𝑒) − ℎ(𝐸 ⧵ 𝑒))/(𝑘 − 𝑘′). But the
right side of this equation is independent of the value of ℎ(𝑒), which is uniformly distributed
over [0 ..𝐻 − 1]. Thus, the event ℎ(𝐸) = ℎ(𝑂)—and therefore 𝜆 = 0—occurs with probability
at most 1/𝐻.

For pairwise unique items, 𝑘 = 1 and 𝑘′ = 0, and thus the calculation works in ℤ/𝐻ℤ
without affecting the probability. ◻
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4 Probabilistic Checking of Fundamental Big Data Operations

The above proof is, in effect, a solution to Exercise 5.8 of Ref. [San+19].
Every PE can compute the sum for its O(𝑛/𝑝) local elements independently. A sum all-

reduction over these values then yields 𝑠. The algorithm can thus be executed in timeO(𝑛/𝑝 +
𝛽 log(𝐻)/𝑤+𝛼 log𝑝) for unique items, andO(𝑛/𝑝+𝛽 log(𝑛𝐻)/𝑤+𝛼 log𝑝) otherwise. Similar
to Section 4.3, the success probability can be boosted arbitrarily by repeating the algorithm
with different hash functions. By executing instances simultaneously, this can be done without
affecting the number of messages.

However, this algorithm requires confidence in the randomness of the hash function ℎ.
Blum and Kannan [BK95, Section 6.2] give an elegant construction for a family of sufficiently
random hash functions for the case 𝛿 = 12 . If we do not have access to a sufficiently trusted
hash function, we can use a different approach based on constructing a polynomial from 𝐸
and 𝑂, which is originally due to Lipton [Lip89] and essentially a solution to Exercise 5.7 of
Ref. [San+19].

Lemma 4.5 (Polynomial-Based Permutation Checker)
For two sequences 𝐸 = ⟨𝑒1,… , 𝑒𝑛⟩ and𝑂 = ⟨𝑜1,… , 𝑜𝑛⟩ from a universe [0 ..𝑈 − 1] and any 𝛿 > 0,
choose a prime 𝑟 > max(𝑛/𝛿,𝑈 − 1) and define the polynomial

𝑞(𝑧) ∶=
𝑛
∏
𝑖=1
(𝑧 − 𝑒𝑖) −

𝑛
∏
𝑖=1
(𝑧 − 𝑜𝑖) mod 𝑟.

Then for random 𝑧 ∈ [0 .. 𝑟 − 1], 𝑞(𝑧) = 0 if 𝐸 is a permutation of 𝑂, and P[𝑞(𝑧) = 0] < 𝛿
otherwise.

Proof. If 𝐸 is a permutation of 𝑂, then both products have the same factors and thus 𝑞(𝑧) = 0
for all 𝑧 by commutativity of multiplication. Otherwise, because 𝑟 is larger than any 𝑒𝑖 or 𝑜𝑖
(this is important to ensure that no pair 𝑖, 𝑗 with 𝑒𝑖 ≡ 𝑜𝑗 mod 𝑟 exists) is prime, 𝑞 is a non-zero
polynomial of degree 𝑛 in the field 𝔽𝑟. Such a polynomial has at most 𝑛 roots.4 Thus the
probability of 𝑞(𝑧) = 0 is at most 𝑛𝑟 <

𝑛
𝑛/𝛿 = 𝛿. ◻

Instead of doing 2𝑛 expensive multiplication-modulo-prime operations, one could also
consider using carry-lessmultiplication in a Galois FieldGF(2ℓ)with an irreducible polynomial.
Multiplication in Galois Fields can be implemented very efficiently, eg, using Intel SIMD
instructions [PGM13].

Theorem 4.6 (Permutation Checker)
It is possible to check whether a sequence of 𝑛 elements is a permutation of another such sequence
with probability at least 1 − 𝛿 in time 𝑇check-perm(𝑛, 𝑝, 𝛿) ⊆ O(( 𝑛𝑝𝑤 + 𝛽) log

1
𝛿 + 𝛼 log𝑝).

4This can easily be seen by induction. It is easy to verify for 𝑛 ≤ 1. Now let 𝑞 be a polynomial of degree 𝑛 ≥ 2, and
𝑎 be a root of 𝑞 (if none exists, we are finished). Then 𝑞 = 𝑞′ ⋅ (𝑋 − 𝑎) for some polynomial 𝑞′ of degree 𝑛 − 1,
and by the induction hypothesis, 𝑞′ has at most 𝑛 − 1 roots. For some 𝑏 ∈ 𝔽𝑟, 𝑞(𝑏) = 𝑞′(𝑏) ⋅ (𝑏 − 𝑎) is zero if
and only if 𝑎 = 𝑏 or 𝑞′(𝑏) = 0. Thus 𝑞 has at most 𝑛 roots.
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Proof. We can boost the success probability of the algorithm of Lemma 4.4 arbitrarily by
executing several independent instances and accepting only if all instances do. Batching com-
munication keeps latency to log𝑝. Choose𝐻 = 2𝑤 in Lemma 4.4 to obtain failure probability
at most 2−𝑤 with costO(𝑛/𝑝 + 𝛽 log𝑛 + 𝛼 log𝑝) for a single round. Executing 1/𝑤 ⋅ log(1/𝛿)
instances then yields failure probability at most 𝛿 in timeO((𝑛/𝑝 + 𝛽 log𝑛) 1𝑤 log 1𝛿 + 𝛼 log𝑝).
The claimed running time then follows because the machine’s word size 𝑤 is assumed to be
able to hold an input item’s index, which has ⌈log𝑛⌉ bits.

For unique items, the log𝑛 factor in the communication volume is removed because the
range of values in Lemma 4.4 is [0 .. 2𝑤−1] and thus a single machine word suffices. ◻

If we want to use the polynomial checker of Lemma 4.5, choose 𝛿 = 2−𝑤+1𝑛, which is less
than one as we can assume 𝑛 < 2𝑤−1. Then, as we can assume𝑈 ≤ 2𝑤, 𝑟 can always be chosen in
[2𝑤−1 .. 2𝑤] by Bertrand’s postulate, and a single machine word can hold the necessary values.
This gives costO(𝑛/𝑝 + 𝛽 + 𝛼 log𝑝) per round and log(1/𝛿)/(𝑤 − 1 − log𝑛) rounds, which is
worse than the hash-based checker.

Theorem 4.7 (Sort Checker)
Checking whether a sequence of 𝑛 elements is a sorted version of another such sequence with
probability ≥ 1 − 𝛿 is possible in time 𝑇check-sort(𝑛, 𝑝, 𝛿) ∶= O(𝑇check-perm(𝑛, 𝑝, 𝛿)).

Proof. After verifying the permutation property using Theorem 4.6, it remains to be checked
whether the elements are sorted. First, verify that the local data is sorted in timeO(𝑛/𝑝). Then,
transmit the locally smallest element to the preceding PE, and receive the smallest element
of the next PE. Compare this to the locally largest element. Lastly, verify that no PE rejected
using a sum all-reduction on an indicator flag. In total, this requires time 𝑇check-perm(𝑛, 𝑝, 𝛿) +
O(𝑛/𝑝) +O(𝛼) + 𝑇coll(O(1)) ⊆ O(𝑇check-perm(𝑛, 𝑝, 𝛿)). ◻

4.5 Further Checkers
There are many operations for which we can construct checkers from the sum aggregation and
permutation checker. We discuss several in the following subsections. Afterwards, we turn to
some invasive checkers, ie, checkers that do not treat the operation as a black box, and instead
check only part of the operation. While less desirable than true checkers, these checkers allows
us to broaden the range of covered operations.

4.5.1 Average Aggregation
Computing the per-key averages is impossible to express in a scalar reduction, but becomes easy
when replacing (key, value)-pairs with (key, value, count)-triples and using the reduce function
⊕ with (𝑘1, 𝑣1, 𝑐1) ⊕ (𝑘1, 𝑣2, 𝑐2) ∶= (𝑘1, 𝑣1 + 𝑣2, 𝑐1 + 𝑐2). The computation is then followed up
by an output function ℎ with ℎ(𝑘1, 𝑣1, 𝑐1) ∶= (𝑘1, 𝑣1/𝑐1). This avoids the use of the much more
communication-expensive GroupBy function.

Checking average aggregation is easy when these per-key element counts are available in a
certificate, for then we can reconstruct the result of a sum aggregation by undoing the final
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division—termed ℎ above—by multiplying the average value with the count for every key. As
described above, this certificate naturally arises during computation anyway and thus does
not impose overhead on the average computation. Now we can leverage the sum checker,
applying it both to the input sequence and the reconstructed sums. As the product is computed
component-wise, both the asserted averages and the certificate can be supplied in distributed
form, as long as both values are available at the same PE for any key.

To prevent accidental mismatches when both averages and counts are scaled in a way that
yields the same reconstructed sums—eg, double the averages and halve the counts—, we
also need to check the correctness of the counts. Therefore, we also need to apply the count
aggregation checker to the input and the counts in the certificate. The same can also be achieved
in a single step by applying the (key, value, count)-triple aggregation trick using the reduce
function ⊕ described above to the checker.

Corollary 4.8 (Average Aggregation Checker)
For a given input sequence of 𝑛 key-value pairs ⟨𝑒1,… , 𝑒𝑛⟩ with 𝑒𝑖 = (𝑘𝑖, 𝑣𝑖), keys 𝑘𝑖 ∈ 𝐾, and
𝑘 ∶= ∣𝐾∣, it is possible to check whether a set of 𝑘 asserted per-key averages ⟨𝑎1,… , 𝑎𝑘⟩ is correct if
the number of values associated with each key is available as a certificate ⟨𝑐1,… , 𝑐𝑘⟩, by supplying
⟨(𝑒1, 1),… , (𝑒𝑛, 1)⟩ as input and ⟨(𝑎1 ⋅ 𝑐1, 𝑐1),… , (𝑎𝑘 ⋅ 𝑐𝑘, 𝑐𝑘)⟩ as output to the sum aggregation
checker of Section 4.3, achieving the time complexity and success probability of Theorem 4.1.

4.5.2 Minimum and Maximum Aggregation
Now consider computing the minimum or maximum value per key (without loss of generality,
we shall henceforth only consider minima). This is a surprisingly difficult operation to check.
Clearly, the sum aggregation checker of Section 4.3 is not directly applicable, as themin function
does not satisfy the requirement min(𝑎, 𝑏) ≠ 𝑎 if 𝑏 ≥ 𝑎. To check min-aggregation, we need to
verify for each key that (a) no elements smaller than the purported minimum exist, as well as
determine whether (b) the minimum value does indeed appear in the input sequence. Both
subproblems seem to require the asserted result to be known at all PEs. Let 𝑆 = ⟨𝑥1,… , 𝑥𝑛⟩ be
the input sequence, and𝑀 = ⟨𝑚1,… ,𝑚𝑘⟩ the asserted output. Given𝑀, property (a) is easy
to verify by iterating the locally present part of 𝑆 and verifying that no element exists with a
value smaller than the entry of its key in𝑀.

However, property (b) is surprisingly hard to check using o(𝑘) bits of communication.5 A
certificate in the form of the locations of the minima, available in full at every PE, remedies
this. Each PE then needs to verify its set of local asserted minima. The certificate is required to
be available in full at every PE so that we can ensure that all keys are covered—otherwise, a
faulty algorithm might simply ‘forget’ a key, and the checker would not be able to notice.

Theorem 4.9 (Minimum/Maximum Aggregation Checker)
Checking minimum (maximum) aggregation is possible in timeO(𝑛/𝑝 + 𝛼 log𝑝) provided that
the asserted output and a certificate specifying which PE holds the minimum (maximum) element
for any key are available at all PEs.
5It is easy to verify in timeO(𝑛/𝑝 + 𝛽𝑘/𝑤 + 𝛼 log𝑝) using a bitwise or reduction—see Section 1.3.3—on a bitvector
of size 𝑘 specifying which keys’ minima are present locally, and testing whether each bit is set in the result.
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Proof. Verifying property (a) takes a linear scan over the input with a table lookup for each
key, and can be done in time O(𝑛/𝑝). To check property (b), each PE needs to ensure that
the minima (maxima) which are claimed to occur at this PE are actually present. This is
another local operation which can be implemented in linear time. Lastly, testing whether all
PEs accepted their part of the output takes timeO(log𝑝)with a simple all-reduction. To ensure
that the certificate is the same at every PE, we can use a (cryptographic) hash function and
check that each PE’s certificate has the same hash value. This is another all-reduction on a
constant number of machine words. ◻

Note that this checker is not probabilistic and thus guaranteed to notice any errors in the
result. We discuss possible improvements and lower bounds in the paragraph on future work
at the end of this chapter.

4.5.3 Median Aggregation
We use the common definition of the median of an even number of elements as the mean of
the two middle elements. Thus, there may not exist an element that is equal to the median,
but—assuming unique values—the number of elements smaller than the median is always equal
to the number of larger elements.

If the asserted medians are available at every PE, checking a median aggregation operation
on unique values can be reduced to the sum aggregation problem by verifying the above
property.6 Simply map elements smaller than their key’s median to −1, and larger elements
to +1. Then, the sum over all of these values must be 0 for every key. This property can be
checked probabilistically using the sum aggregation checker of Theorem 4.1. Pseudocode of
our algorithm is given in Algorithm 4.2.

6Requiring that each value occur no more than once for each key is without loss of generality because it can be
enforced by an appropriate tie-breaking scheme, which needs to be known to both the median aggregation
operation and the checker.

Algorithm 4.2 : Median checker, assuming unique values. The function checkSumAgg
is defined in Algorithm 4.1. For simplicity of the presentation, we use associative arrays
indexed by key for 𝑜 and 𝑠.
Input : 𝑣, the local part of the input to the median aggregation, an array of size 𝑛𝑖, 𝑜, the

asserted result, an array of size 𝑘, 𝛿, the maximum allowed failure rate
Output : Whether 𝑜 is likely the correct result of the median aggregation

1 Function checkMedian(𝑣, 𝑜, 𝛿)
2 𝑠 ∶Map of Key→ℤ using default value 0 for unknown keys, size 𝑘
3 foreach (key, value) ∈ 𝑣 do —combine mapping and local reduction
4 if val < 𝑜[key] then 𝑠[key] = 𝑠[key] − 1
5 if val > 𝑜[key] then 𝑠[key] = 𝑠[key] + 1
6 return checkSumAgg(𝑠.as_array(), ⟨0,… , 0⟩ , 𝛿) —see Algorithm 4.1
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Theorem 4.10 (Median Aggregation Checker)
Median aggregation on a sequence of 𝑛 elements can be checked with failure probability at most
𝛿 > 0 in time O(𝑇check-sum(𝑛, 𝑝, 𝛿)) provided the asserted result is available at every PE. For
non-unique values, tie breaking information on the median values is required as a certificate.

Proof. By definition, an element is the median of a set of unique elements if and only if the
number of elements smaller than it is exactly equal to the number of elements that is larger.
This is verified using the sum aggregation checker by mapping smaller values to −1 and larger
values to +1. Ties are broken using an appropriate tie breaking scheme and the certificate. The
claim then follows from Theorem 4.1. ◻

4.5.4 Zip

Zipping combines two sequences 𝑆1 = ⟨𝑥1,… , 𝑥𝑛⟩ and 𝑆2 = ⟨𝑦1,… ,𝑦𝑛⟩ of equal length 𝑛
index-wise, producing as its result a sequence of pairs 𝑆 = ⟨(𝑥1, 𝑦1),… , (𝑥𝑛, 𝑦𝑛)⟩. However,
since 𝑆1 and 𝑆2 need not have the same data distribution over the PEs, this is nontrivial. Thus,
the elements of (at least) one sequence need to be moved in the general case. Checking a
Zip operation hence requires verifying that the order of the elements is unchanged in both
sequences. For this, we require a hash function that can be evaluated in parallel on distributed
data, independent of how the input is split over the PEs. One example would be the inner
product of the input and a sequence of 𝑛 random values, 𝑅 = ⟨𝑟1,… , 𝑟𝑛⟩, where 𝑟𝑖 = ℎ′(𝑖) for
some high-quality hash function ℎ′ [San+19]. This way, 𝑅 can be computed on the fly and
without communication. The PEs only need to compute the global indices of their local input,
which can be done with a prefix sum in timeO(𝛼 log𝑝).

Theorem 4.11 (Zip Checker)
Checking Zip(S1, S2) with ∣𝑆1∣ = ∣𝑆2∣ = 𝑛 with a false-positive probability of at most 𝛿 > 0 can be
achieved in timeO((𝑛/𝑝 + 𝛽) 1𝑤 log 1𝛿 + 𝛼 log𝑝).

Proof. For a single iteration of the checker, apply the hash function to 𝑆1 and the first part of
the elements of 𝑆. This hash value can be computed in timeO(𝑛/𝑝 + 𝛽 log(𝐻)/𝑤 + 𝛼 log𝑝)
for the families of hash functions discussed above, where the output of the hash function is
in [0 ..𝐻 − 1]. The same is applied to 𝑆2 and the second part of the elements of 𝑆. Accept if
both pairs of hashes match. Again, the success probability can be boosted arbitrarily to 1− 𝛿 by
executing log𝐻 𝛿

−1 instances of the checker in parallel, and the claimed running time follows
for𝐻 = 2𝑤 and log(𝛿−1)/𝑤 concurrent instances. ◻

4.5.5 Other Operations

We now briefly describe several further operations to which the permutation and sort checker
can be adapted. For the latter two, we present invasive checkers for the element redistribution
phase. The rest of the operation needs to be checked with an appropriate local checker.
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4.5.5.a) Union

Verifying whether a multiset 𝑆 is the union of two other multisets 𝑆1 and 𝑆2 of size 𝑛1 and 𝑛2,
respectively, is equivalent to checking whether 𝑆 is a permutation of the concatenation of 𝑆1
and 𝑆2. We can therefore adapt the permutation checker of Section 4.4 to iterate over two input
sets.

Corollary 4.12 (Union Checker)
The Union(S1, S2) operation can be checked in the time it takes to check permutations of size
∣𝑆1∣ + ∣𝑆2∣ to the same error detection probability 1 − 𝛿, ie, timeO(𝑇check-perm(∣𝑆1∣ + ∣𝑆2∣ , 𝑝, 𝛿)),
with 𝑇check-perm(𝑛, 𝑝, 𝛿) defined in Theorem 4.6.

4.5.5.b) Merge

A Merge operation combines two sorted sequences 𝑆1 and 𝑆2 of length 𝑛1 and 𝑛2, respectively,
into a single sorted sequence 𝑆 of length 𝑛1 + 𝑛2. Checking it is thus equal to verifying that 𝑆 is
sorted and the union of 𝑆1 and 𝑆2, c.f. the previous subsection.

Corollary 4.13 (Merge Checker)
Checking Merge(S1, S2) with error detection probability at least 1 − 𝛿 is possible in time

O(𝑇check-sort(∣𝑆1∣ + ∣𝑆2∣ , 𝑝, 𝛿)).

4.5.5.c) GroupBy

The GroupBy operation is conceptually similar to aggregation (see Section 4.3), but passes all
elements with the same key to the group function 𝑔 ∶ [Value]→ Value. Thus, for every key, all
elements associated with it need to be sent to a single PE. This stage of a GroupBy operation
can therefore be checked in a two-stage process similar to the sort checker. First, we verify that
the redistributed data is a permutation of the input, ie, no items were lost, added, or changed.
Then we need to verify that each item is where it should be using the GroupBy operation’s
mapping of keys to PEs (this can, for example, be implemented using a hash function mapping
keys to PEs’ indices). The group function needs to be checked separately by an appropriate
local checker, which falls outside the scope of this work.

Corollary 4.14 (GroupBy Checker)
Checking the redistribution phase of GroupBy on a sequence of 𝑛 elements with probability at
least 1 − 𝛿 is possible in timeO(𝑇check-sort(𝑛, 𝑝, 𝛿)).

4.5.5.d) Join

Similar to GroupBy, we can design an invasive checker for element redistribution in Join
operations. The two common approaches to joins are the sort-merge join and hash join al-
gorithm [GUW09]. Note that the sort checker can be used for both approaches because as
far as data redistribution is concerned, a hash join is essentially a sort-merge join using the
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hashes of the keys for sorting. To further verify that the distribution of keys to PEs is the same
for both input sequences, we exchange the locally largest (smallest) keys with the following
(preceding) PE and check that those are larger (smaller) than the local maximum (minimum).
The correctness of the element redistribution then follows from their global sortedness.

Corollary 4.15 (Join Checker)
Checking the input redistribution phase of a hash or sort-merge join on two sequences of 𝑛1 and
𝑛2 elements with success probability at least 1 − 𝛿 is possible in timeO(𝑇check-sort(𝑛1 + 𝑛2, 𝑝, 𝛿)).

4.6 Experimental Evaluation
We developed implementations of our core checkers, sum aggregation and sorting. These were
integrated into Thrill [Bin+16], an open-source data-parallel big data processing framework
using modern C++ which is being developed in the group of Peter Sanders at Karlsruhe In-
stitute of Technology.7 Our code is available at https://github.com/lorenzhs/thrill/
tree/checkers.8 Thrill provides a high-performance environment that allows for easy im-
plementation and testing of our methods while offering a convenient high-level interface to
users.

Goals. The aim of our experiments is twofold. First, to show that our checkers achieve the
predicted detection accuracy, and second, to demonstrate their practicability by showing that
very little overhead is introduced by using a checker.

Manipulators. To test the efficacy of our checkers, we implemented manipulators that pur-
posefully interfere with the computation and deliberately introduce faults. Manipulators are a
flexible way to introduce a wide variety of classes of faults, allowing us to test our hypotheses
on which kinds of faults are hardest to detect. It is easy to convince oneself that large-scale
manipulation of the result is much easier to detect than subtle changes. Thus, our manipulators
focus on the latter kind of change in the data. The specific manipulation techniques used with
an operation are described in the respective subsections.

Implementation Details. As hash functions, we used CRC-32C, which is implemented in
hardware in newer x86-64 processors with support for SSE 4.2 [Gop+11], and tabulation
hashing [WC81; PT12] with 256 entries per table and four or eight tables for 32 and 64-bit values,
respectively. We abbreviate the hash functions with ‘CRC’, ‘Tab’, and ‘Tab64’, respectively. Where
needed, pseudo-random numbers are obtained from an MT19937 Mersenne Twister [MN98].

Platform. We conducted our scaling experiments on up to 128 nodes of bwUniCluster, each
of which features two 14-core Intel Xeon E5–2660 v4 processors and 128GiB of DDR4 main
memory. The CPUs have a base clock of 2.0GHz and boost clock up to 3.2GHz, and hyper-
threading is disabled. The machine was running Red Hat Enterprise Linux 7.4, and the code
7See https://project-thrill.org and https://github.com/thrill/thrill/ for details. An archived
copy of the project website is available at https://web.archive.org/web/20200202015413/http://
project-thrill.org/.

8An archived copy of the code is available at https://web.archive.org/web/20200925083644/https://
codeload.github.com/lorenzhs/thrill/zip/checkers.
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was compiled with g++ 7.1.0. We treat each core as its own PE, running with 28 PEs per node.
For our overhead experiments, we used an AMD Ryzen 9 3950X 16-core machine with a base
clock of 3.5 GHz and boost clock up to 4.7GHz. The machine has 64GiB of DDR4 RAM, runs
Ubuntu 18.04, and we used g++ 9.3.0 as the compiler. In both cases, the compiler flags -O3
-march=native -DNDEBUG were used.

4.6.1 Sum Aggregation
We implemented the sum aggregation checker of Section 4.3. As workload, we chose integers
distributed according to a power-law distribution, with frequency 𝑓(𝑘;𝑁) = 1/(𝑘𝐻𝑁) for the
element of rank 𝑘. Here,𝑁 is the number of possible elements and𝐻𝑁 is the𝑁-th harmonic
number. This distribution naturally models many workloads, eg, wordcount over natural
languages.

The tested configurations of the checker—number of iterations, number of buckets, hash
function, and modulus parameter—are listed in Table 4.4. The first set of configurations was
used for testing detection accuracy, the second for scaling experiments.

Implementation Details. To minimise local work, our implementation employs bit-paral-
lelism where possible, eg, instead of computing eight four-bit hash values, we compute one
32-bit hash value and partition it into eight groups of four bits, which we treat as the output
of the hash functions. This is implemented generically to satisfy any partition of a hash value

Table 4.4: Configurations tested for Sum Aggregation checker.
First set was used for accuracy tests, second set for scaling tests.

Configuration Table size Failure rate Comment
#iter × 𝑑m log �̂� (bits) 𝛿

1×2m31 64 5 ⋅ 10−1 high �̂� is less effective than …
1×4m31 128 2.5 ⋅ 10−1 ↪multiple iterations
4×2m4 40 1 ⋅ 10−1 lower 𝛿 and size than above
4×4m3 64 2 ⋅ 10−2 𝛿 = 2% for 64-bit table
4×4m5 96 6 ⋅ 10−3
4×8m3 128 3.9 ⋅ 10−3
4×8m5 192 6 ⋅ 10−4
4×8m7 256 3.1 ⋅ 10−4

5×16m5 480 7.2 ⋅ 10−6
6×32m9 1 920 1.3 ⋅ 10−9
8×16m15 2 048 2.3 ⋅ 10−10
4×256m15 16 384 2.4 ⋅ 10−10
5×128m11 7 680 3.9 ⋅ 10−11
8×256m15 32 768 5.8 ⋅ 10−20 lower local work, larger size
16×16m15 4 096 5.4 ⋅ 10−20 higher local work, smaller size
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Table 4.5: Manipulators used for sum aggregation checking.

Name Manipulation applied

Bitflip flips a random bit in the input
RandKey randomise the key of a random element
SwitchValues switches the values of two random elements
IncKey increments the key of a random element
IncDec𝑛 acts on 2𝑛 elements with distinct keys, …
↪ using 𝑛 = 1 incrementing the keys 𝑛 elements and …
↪ and 𝑛 = 2 decrementing that of 𝑛 other elements

into groups. Since 64 hash bits suffice to guarantee a failure probability of nearly 10−20 (see
Table 4.4), evaluating a single hash function suffices in all practically relevant configurations.

To minimise the cost of adding modulo 𝑟, we use 64-bit values for the buckets internally,
add normally, and perform the expensive modulo step only if the addition would overflow.
This can be detected cheaply with a jump-on-overflow instruction.

Detection Accuracy. The manipulators we used are listed in Table 4.5. Figure 4.3 demon-
strates that our checkers achieve the theoretically predicted performance in practice, even
when using hash functions with weaker guarantees. We can see that Lemma 4.2 generally
overestimates the failure probability introduced by the modulus. Note that the significance
of the results for configurations with low 𝛿 is limited, as the expected number of failures in
100 000 runs for eg, the 4×8 Tab m7 configuration is only 31.1.

We note that CRC-32C appears to work very well for subtle manipulations, which is likely
because it was designed so that small changes in the input cause many output bits to change.
This makes it likely that a change in an element’s key causes it to be sent to a different bucket in
at least one iteration. However, the least significant bits appear to change in similar ways for
different inputs, as indicated by the IncDec1 measurements, causing an elevated failure rate in
this setting. Tabulation hashing performs quite uniformly well across the board, which is not
entirely unexpected given its high degree of independence.

Local Processing Overhead. We measured the sequential overhead of the sum aggregation
checker on the aforementioned AMD Ryzen 9 3950X machine, as single-node performance
on bwUniCluster proved to be too inconsistent to yield useful results (this is likely due to
thermal limitations). The workload consisted only of passing the inputs into the checker, with
no aggregation performed. The results are shown in Table 4.6. The configurations used provide
high confidence in the correctness of the result and cover a wide range of practically relevant
parameter choices. Clearly, the number of iterations is the dominating factor in overhead,
and CRC-32C is somewhat faster than 64-bit tabulation hashing. This is no surprise, as CRC-
32C is implemented in hardware and provides only 32 hash bits. However, our more accurate
configurations require 64 bits of hash function output and are thus implemented with tabulation
hashing. We can see that 𝛿 ≈ 2.4 ⋅ 10−10 can be achieved in just 2.2 ns per element on this high-
end desktop machine which achieved an average clock speed of 4.55GHz in this benchmark, ie,
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Figure 4.3: Accuracy of the Sum Aggregation checker for different manipulators. The
50 000 input elements follow a power-law distribution with 106 possible values, executed
on 4 PEs and measured over 100 000 iterations. Configurations as in Table 4.4.
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4 Probabilistic Checking of Fundamental Big Data Operations

Table 4.6: Overhead of sum aggregation checker: checker local input processing time for
106 pairs of 64-bit integers, 1000 runs. Refer to Table 4.4 for details on the configurations.

Configuration 𝛿 Time per item (ns) Approx. #cycles

5×16 CRC m5 7.2 ⋅ 10−6 2.9 13
6×32 CRC m9 1.3 ⋅ 10−9 3.1 14
8×16 CRC m15 2.3 ⋅ 10−10 3.8 17
4×256 CRC m15 2.4 ⋅ 10−10 2.2 10
5×128 Tab64 m11 3.9 ⋅ 10−11 4.1 19
8×256 Tab64 m15 5.8 ⋅ 10−20 5.8 26
16×16 Tab64 m15 5.4 ⋅ 10−20 8.5 38

approximately 10 CPU cycles. A configuration with 4𝐾𝑖𝐵 table size and 𝛿 ≈ 5.8 ⋅ 10−20 can be
realised with as little overhead as 5.8 ns per element, approximately 26 cycles. Similar accuracy
with a smaller table size of just 512 Bytes and thus very little communication can be achieved
in 8.5 𝑛𝑠 per item, approximately 38 cycles.

To put these numbers into perspective, the main reduce operation takes approximately
59 ns per element using a single core of the same machine. This surprisingly low overhead
was achieved by carefully engineering our implementation as described in Section 4.6.1. A
naïve implementation would likely cause an order of magnitude more overhead. Observe
that this experiment measures only the checker’s local work. Therefore, it is not representative
of the overhead in a parallel and distributed setting, where the communication required for
aggregation tends to dominate overall running time. Wewill shortly also present experiments on
a cluster computer measuring the impact of our checkers on the running times of a distributed
sum aggregation workload.

We compare our checker to PIRS [Yi+09] using the original implementation and the world
cup data set.9 We had to slightly fix the code of Yi et al. so that it would compile with modern
compilers. Furthermore, we removed time measurement code that represented 75% of the
overall running time, likely because the relative cost of system calls has changed since the code
was originally published.10 Executing PIRS with the input data located in main memory yielded
52𝑛𝑠 and 591𝑛𝑠 update times per item for count and sum queries, respectively, after deducting
the time for input parsing.11 We also implemented their benchmark with our checker, and
the per-item update time of our checker is 3.1 𝑛𝑠 for count and 3.3 𝑛𝑠 for sum aggregation in
a sequential execution of our checker with the ‘4×256 CRC m15’ configuration on the same

9Source: http://www.cs.utah.edu/~lifeifei/pirs/, archived at https://web.archive.org/web/
20120519232455/http://www.cs.utah.edu/~lifeifei/pirs/ on 4th Sept. 2020.

10Our changes are available at https://algo2.iti.kit.edu/huebschle/pirs.diff, archived at https://web.
archive.org/web/20200904115701/https://algo2.iti.kit.edu/huebschle/pirs.diff.

11This is a speedup of nearly 20 over the measurements that Yi et al. report on a 2.8GHz Intel Pentium CPU, likely
from early 2002. In comparison, the Ryzen 9 3950X we used was introduced in late 2019, nearly 18 years later.
Yi et al. report 0.98 𝜇𝑠 and 8.01 𝜇𝑠 for count and sum updates, respectively. Thus, their code runs 18.8 and 13.5
times faster on our machine, respectively. This is likely at least partially due to its reliance on arithmetic modulo
a prime number with 64-bit integers, which was not natively implemented in hardware in their machine.
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Figure 4.4: Weak scaling experiment for Sum Aggregation checker with 125 000 items per
PE, following a Zipf (power-law) distribution. Average over 1000 runs. Configurations as
in Table 4.4.

machine. Our checker is over 16 times faster in this benchmark for count checking, and around
180 times faster for sum aggregation checking.

Scaling Behaviour. We performed weak scaling experiments, the results of which are shown
in Figure 4.4. These measurements suffer from a noticeable amount of noise because reduction
and checker are interleaved—elements are forwarded to the checker as they are passed to
the reduction. This is necessitated by the design of Thrill and would be similar related Big
Data frameworks. As a result, we measure the entire reduce-check pipeline, the running time
of which is influenced by multiple sources of variability, including the network, causing the
aforementioned noise. We note that the results for a single node remain consistent with the
sequential overhead measurements of the preceding paragraph.

It is clearly visible that the overhead introduced by the checkers is within the fluctuations
introduced by the network and other sources of noise. Furthermore, starting with four nodes,
the data exchange necessary for the reduction dominates overall running time, which becomes
nearly independent of the checker’s configuration and thus accuracy, although some impact of
the number of iterations on running time remains visible. Nonetheless, the average overhead
over all configurations is a mere 1.1% when using more than a single node. Observe that
even the slowest and most accurate configuration, ‘16×16 Tab64 m15’ with 𝛿 < 6 ⋅ 10−20, thus
providing near-certainty in the correctness of the result, adds only 2.4% to the average running
time on two or more nodes (56 or more cores/PEs in Figure 4.4).
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4 Probabilistic Checking of Fundamental Big Data Operations

Table 4.7: Manipulators used for sort/permutation checking.

Name Manipulation applied

Bitflip flips a random bit in the input
Increment increment some element’s value
Randomise set some element to a random value
Reset reset some element to the default value (0)
SetEqual set some element equal to a different one

4.6.2 Permutation and Sorting

In this subsection, we evaluate the permutation and sorting checker of Section 4.4 with a work-
load of 106 integers chosen uniformly at random from the range [0 .. 108 − 1]. We implemented
the hash-based permutation and sorting checker of Lemma 4.4, and truncate the output of the
hash function to the log𝐻 least significant bits for different values of𝐻. Our measurements
are for a single iteration of the checker. Manipulations are applied before sorting to test the
permutation checker and not the trivial sortedness check.

Detection Accuracy. We measured the sort checker’s detection accuracy with CRC-32C and
tabulation hashing, two fast real-world hash functions with limited randomness and different
characteristics. This setup examines whether these hash functions provide sufficient random-
ness to detect manipulations and are, therefore, suitable for use in the checker. In Figure 4.5
we show the results of this experiment. We can see that tabulation hashing provides sufficient
randomness to achieve the theoretically predicted detection accuracy on all tested manipulators
(see Table 4.7). In contrast, CRC-32C does not seem to provide sufficient randomness. In
particular, we observe a significantly increased failure rate using the Increment manipulator
where a single element of the input was incremented by 1. The proportion of excessive failures
rises with the number of hash bits used. This suggests that incrementing the input to the hash
function affects only the least significant bits of the output with the required reliability. This is
a failure of the so-called avalanche test and a well-known weakness of the CRC family [HSZ08].
No significant deviations from expected performance were observed for the other manipulators
because these affect bits at different positions in the input, whereas the Increment manipulator
disproportionately changes the least significant bits in the input.

Running Time Overhead. On the aforementioned AMD Ryzen 9 3950X machine, the over-
head for local processing of input and output of the sorting operation was just under 1 ns per
element for CRC32, and around 2 ns when using 32-bit tabulation hashing. However, once
we use it while actually sorting the data, the overhead all but disappears. When sorting 108
integers using all 16 cores of the machine, we measured slowdowns of 1.2% for the CRC-32C
configurations and 2.5% for the configurations using tabulation hashing. Because we have
to compute the full hash regardless of how many of its bits we use, the configuration had no
measurable influence on the running time.
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Figure 4.5: Accuracy of the Permutation/Sort checker for different manipulators. Uni-
formly distributed input with 108 possible values, 106 input elements, 4 PEs, 100 000
iterations for each manipulator. Configuration parameter log𝐻 describes to how many
bits the hash function is truncated.
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4 Probabilistic Checking of Fundamental Big Data Operations

We do not present scaling experiments for the permutation checker, as the only commu-
nication is a global reduction on a single integer value and one message sent and received
per PE, both also containing exactly one integer value. However, we expect the overhead in a
distributed system to be even lower. This is because all time spent on the data exchange that is
necessary for sorting the input is in addition to the local sorting step measured above.

4.7 Conclusions
We have shown that probabilistic checking of many distributed big data operations is possible
in a communication-efficient manner. Our experiments show excellent scaling and around
2% running time overhead in a distributed setting for sum aggregation and sorting. This is
true even when near-certainty in the correctness of the result is required. Accuracy guarantees
predicted by theoretical analysis are achieved in practice even when using hash functions
with limited randomness. Moreover, our checkers have negligible memory overhead. The
basic methods used in our checkers are extremely simple, making manual verification of the
correctness of the checker much more feasible than of the aggregation to be checked. The
existence of such checkers could speed up the development cycles of operations in big data
processing frameworks by providing correctness checks and allowing for graceful degradation
at execution time by falling back to a simpler but slower method should a computation fail.

Future Work. Lower bounds on communication volume and latency for probabilistic dis-
tributed checkers would offer some insight into how far from an optimal solution our checkers
are. Furthermore, it would be interesting to see whether more operations can be checked
without the need for a certificate or requiring the purported result to be available at each PE.
For example, could a probabilistic minimum or maximum aggregation checker with sublinear
communication exist?

It would also be interesting to know whether the sum aggregation checker can be adapted for
other data types such as floating-point numbers without suffering from numerical instability
issues such as catastrophic cancellation.

Acknowledgements. The authors acknowledge support by the state of Baden-Württemberg
through bwHPC.
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