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Using data collected in the Belle experiment at the KEKB asymmetric-energy ete™ collider we search
for transitions Y(4S) — n,(18)w, Y(5S) — n,(1S)w and Y(5S) — 1,(2S)w. No significant signals are
observed and we set 90% confidence level upper limits on the corresponding visible cross sections: 0.2 pb,

0.4 pb and 1.9 pb, respectively.

DOI: 10.1103/PhysRevD.102.092011

I. INTRODUCTION

Recently Belle observed the Y(4S) — hy,(1P)n transi-
tion and measured its branching fraction to be B[Y(4S) —
h,(1P)n] = (2.18 +0.21) x 103 [1]. This value is unex-
pectedly large in comparison with branching fractions of
the Y (4S) — Y(1S8,28)n"z~ decays [2-4], and represents
a strong violation of the heavy quark spin symmetry
(HQSS) [5]. A possible mechanism for the HQSS breaking
is an admixture of BB pairs in the Y'(4S) state [6]. Indeed,
the BB pair is not an eigenstate of the b quark spin and
contains bb quarks in both spin-triplet and spin-singlet
states. The Y(4S) — h,(1P)n transition proceeds via the
spin-singlet component. The transition Y(4S) — 7,(15)®
might also proceed via the spin-singlet component and
thus could be enhanced [6]. Here we perform a search for
the Y(4S) - 1,(1S)w as well as Y(10860) — 7, (15)®
and Y(10860) — 7,(2S)w transitions. For brevity, the
Y (10860) state is denoted as Y'(5S) according to its quark
model assignment.

We use the full data samples of 711 fb~! and 121 fb~!
collected at the Y'(4S) and Y'(5S) resonances by the Belle
detector [7] at the KEKB asymmetric-energy e e~ collider
[8]. The average center-of-mass (c.m.) energy of the
Y(10860) sample is /s = 10.867 GeV. The Belle detector
is a large-solid-angle magnetic spectrometer that consists of
asilicon vertex detector, a 50-layer central drift chamber, an
array of aerogel threshold Cherenkov counters, a barrel-like
arrangement of time-of-flight scintillation counters, and an
electromagnetic calorimeter comprised of CsI(TI) crystals
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(ECL) located inside a superconducting solenoid coil that
provides a 1.5 T magnetic field. An iron flux-return located
outside of the coil is instrumented to detect K9 mesons and
to identify muons.

For the Monte Carlo (MC) simulation, we use EvtGen
[9] VectorISR model, which correctly describes the angular
distribution of ISR photons but uses a flat distribution in
photon-energy radiator function. We apply corrections on
the ISR photon energy according to Ref. [10]. We use the
GEANT3 [11] package to simulate the detector response.

II. EVENT SELECTION

Since the #,,(1S, 25) mesons do not have decay channels

that are convenient to reconstruct, we reconstruct only

w— atn 2" and use the recoil mass M (@) =

V (Vs —EL)? = (pi)? to identify the signal, where E,
and p;, are the energy and momentum of the @ meson in the
c.m. frame.

We use a generic hadronic event selection with require-
ments on the position of the primary vertex, track multi-
plicity, and the total energy and momentum of the event
[12]. For charged pions we require the distance of closest
approach to the interaction point to be within 2 cm along
the beam direction and within 0.2 cm in the plane trans-
verse to the beam direction. We apply loose particle
identification requirements to separate charged pions from
kaons, protons and electrons. The energy of a photon in
the laboratory frame is required to be greater than 50 MeV
for the barrel part of the ECL and greater than 100 MeV
for the endcap part of the ECL. To further suppress
the background from low-energy photons, we require
the momentum of the z° in the c.m. frame to be
above 240 MeV/c, 270 MeV/c and 140 MeV/c for the
Y (4S)—=n,(1S)w, Y(5S) =1, (1S)w and Y(55) = 1, (2S)w
transitions, respectively. The masses of the z° and @
candidates should satisfy |M(yy)—m,| <8MeV/c? and
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M(z*7=7°) —m,| <12 MeV/c* [13]. The resolu-
tions in M(yy) and M(zn"n"2°) are 5.5 MeV/c? and
8 MeV/c?, respectively.

The w —» "z~ 7n" events predominantly populate the
central part of the Dalitz plot (DP), while background
events populate the region near the boundaries. Therefore
we require the normalized distance from the DP center, r, to
be lower than 0.84. The variable r takes values from r =0
at the DP center to r = 1 at its boundary [14].

To suppress background from continuum events e e~ —
qq (q = u, d, s, c) that have a jetlike shape, we use the
angle Oy, between the thrust axis of 7772~z and the
thrust axis of the rest of the event in the 77,-meson candidate
rest frame. The thrust axis is defined as the unit vector 7y,
which maximizes the thrust value: T =>;|p;-7ir|/
> |1pil- From the MC simulation we find that the dis-
tributions in cos(@y,g) for the signal transitions are uni-
form; this is because there is no favored direction in the 7,
rest frame as its spin is zero. The selection criteria are
| cos(Oprust)| < 0.90 and | cos(Opms)| < 0.70 for the
Y(4S) = n,(1S)w and Y(5S) - 1,(1S)w transitions,
respectively, while for the Y(5S) — #,(2S)w transition
no criteria on cos(By,) are applied.

The selection requirements described above are opti-
mized using a figure of merit N,/ /Nyyg, Where the signal
yield is estimated using MC simulation, and the back-
ground yield is estimated using the signal region in data,
assuming the signal fraction is very small. For optimization
of various requirements we use an iterative procedure.
The M,eeoi(n"n~2%) is required to be in the interval
(9.20,9.60) GeV/c* for the #,(1S) candidates and
(9.90,10.05) GeV/c? for the 5,(2S) candidates. These
intervals are used in the fits described below.

The M(z" 7~ z") distribution for the Y (4S) — 7,(15)w
candidates without the @ mass requirement is shown in
Fig. 1. One can see clear signals of the # and @ mesons.
The purity of the w-meson signal is estimated to be 13%. In

10°
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FIG. 1. The M(ﬂ+ﬂ_ﬂ0) distribution for the Y'(4S) — 7, (18w

candidates. Red lines indicate the @ mass requirement.

the Y(5S) — 1,(1S)w and Y(55) — 7,(2S)w transitions
the purities are 24% and 6%, respectively.

We find on average 1.33, 1.12 and 1.63 candidates per
event for the Y(4S) — 1,(1S)w, Y(55) — n,(1S)w and
Y(5S) = 1,(2S)w transitions, respectively. The multiple
candidates are not correlated in M.,y (777~ 7°), therefore
we do not perform a best candidate selection. The total
selection efficiencies are 5.5%, 5.6% and 6.6% for the three
transitions, respectively.

III. FIT TO DATA

We perform a binned y? fit to the M. (7" 7~ 7°)
distributions in the 7, (1S) and 7, (2S) mass regions. The
fit function is a sum of signal and background components.
The signal component is described with a two-sided
Crystal Ball (CB) function, which consists of a Gaussian
core portion and power-law tails; the function and its first
derivative are both continuous [15]. The parameters of the
CB function are fixed using MC simulation; the o-param-
eters of the core Gaussian are 12.7 MeV/c?, 14.6 MeV/c?
and 9.2 MeV/c? for Y(4S) = n,(1S)w, Y (55) = 1, (15)@
and Y(5S) — 1,(2S)w, respectively. The integral of the
signal function over the fit range is taken as a signal yield.
The background component is described with a Chebyshev
polynomial; its order is chosen as the one that gives
the maximum p-value for the fit. The polynomial orders
are 8, 5 and 6 for the three transitions, respectively. The
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FIG. 2. The M,(ntz~ %) distribution for the Y(4S) —
ny(1S)w candidates. Top: data points with the fit function
overlaid; note the suppressed zero on the vertical scale. Bottom:
residuals between the data and the fit function. The solid line
shows the fit function for the best fit; the dashed line shows the
same function with the yield fixed to the upper limit.
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M eeoi(mt 7~ 7°) distributions and fit results for Y'(4S) —
(18w, Y(55) = n,(1S)@w and Y(55) - 7,(2S)w are
shown in Figs. 24, respectively. We use 1 MeV bins
for fitting and 10 MeV bins for visualization to improve
clarity. No significant signals are observed. The obtained
signal yields for each transition are presented in Table 1.
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FIG. 4. The M,(a" 7~ 2%) distribution for the Y(55) —
1,(2S)w candidates; note the suppressed zero on the vertical
scale. Symbols are the same as those in Fig. 2.

TABLE 1. Signal yields for various transitions obtained from
the fits in units of 10°.

Y(4S) - n,(18)w Y(55) = n,(18)@ Y(5S5) = n,(2S)w

-50+6.673 0.8 + 1.0507 2.4 45812
TABLE II. Systematic uncertainties in the yields of various
transitions in units of 102,

Y(4S) — Y(58) —

ny(18)w ny(18)w ny(28)w
7, mass e +0 A
n, width 6 +1 i
ISR tail I s 2
Background it i RS
Total i q s

To set upper limits on the branching fractions, we study
the systematic uncertainties in the yields. We vary the
17, (1S) and 7, (2S) masses and widths within one standard
deviation [13]. The 7,(2S) width is estimated using a
model-independent relation [16]:

s (25) = T(S)] - F ) e
=4.6173 MeV. (1)

The ISR tails are sensitive to the energy dependence of the
ete” = n,(nS)w cross sections. Instead of a resonant
production via Y'(4S) or Y(5S), we consider also the cross
sections that are energy independent. We generate MC
samples for each modification and use them to determine
signal shapes. To estimate the uncertainties due to back-
ground parametrization we vary the fit range and increase or
decrease the polynomial order by one. Maximal deviations in
each case are considered to be a systematic uncertainty. The
summary of the uncertainties in the yields is presented in
Table II. The total systematic uncertainty in the yield is found
by adding various contributions in quadrature.

IV. UPPER LIMITS ON VISIBLE CROSS SECTIONS
AND BRANCHING FRACTIONS

The visible cross sections are calculated as:

N
€-Blo - n" 777 Ly(,s)

(2)

oisle™e” = ny(mS)w] =

where n = 4,5 and m = 1, 2; N is the signal yield, € is the
selection efficiency, Ly(,s) is the integrated luminosity,
Ly(4s) =711 fb_l and Ly(ss) =1214 fb_l.
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TABLE III. Visible cross sections and upper limits at the
90% confidence level in pb.

Visible cross section Upper limit

ete” = n(1S)w at Y(45) —0-141—(()):218 0.2
etem = n,(1S)w at Y(5S) 0.13107 04
ete” = n,y(2S)w at Y(5S) 0357 L

We take into account the uncertainty in the efficiency due
to possible discrepancies between data and MC simulation
(1% per track and 2.2% for z°), the uncertainty in B[w —
7t~ 7°) [13] and the uncertainty in the Y'(4S) and Y(55)
integrated luminosity. The total multiplicative uncertainty
in the visible cross section is 4.5%.

To combine the uncertainty in the yield, dy, which is
obtained by adding corresponding statistical and systematic
uncertainties in quadrature, and the multiplicative uncer-
tainty 6, we use formula:

(N£6y)-(1£6) =N+ 6y @ N6 ® 5y5).  (3)

where the symbol @ denotes addition in quadrature.

Estimated visible cross sections and upper limits set
using the Feldman-Cousins method [17] at the 90% con-
fidence level are presented in Table III.

We also estimate branching fractions of the Y(4S) —
n,(1S)w, Y(55) = 1,(1S)w and Y(5S) — 1,(2S)w tran-
sitions using the number of Y'(45) or Y(5S) instead of the
luminosity in the denominator of Eq. (2). The number of
Y(4S) is (771.6 4 10.6) x 10%, while the number of
Y'(5S) is estimated as Ly(ss) - 6,5, Where 0,5 = (0.340 &
0.016) nb [18]. The total multiplicative uncertainty in the
branching fraction is 4.5% and 6.5% for transitions from
Y (4S) and Y(5S), respectively. Estimated branching frac-
tions and upper limits at the 90% confidence level are
presented in Table IV.

We also set the upper limit on the ratio:

B[Y(4S) — n,(1S)w]
B[Y(4S) — h,(1P)y]

<84x1072 (4)

at the 90% confidence level.

V. CROSS-CHECK WITH Y(55) — y;;(1P)w

As a cross-check, we perform a search for the Y(55) —
x»7(1P)w transitions that were observed previously using

TABLE IV. Branching fractions and upper limits at the
90% confidence level.

Branching fraction Upper limit

Y(4S) = n,(18)w (—1.3%15) x 107 1.8x 107
Y(55) = n,(1S)w (3754 x 107 1.3 x 1073
Y(55) = n,(28)w (1.0727) x 1073 5.6 x 1073
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FIG. 5. The M (z"z~x°) distribution for the Y(55) —
x»7(1P)w candidates; note the suppressed zero on the vertical

scale. Symbols are the same as those in Fig. 2.

exclusive reconstruction [19]. The analysis procedure is the
same as for the 7, (nS)w transitions. To fit the signal region
we use the sum of three CB functions corresponding to
Zp0(1P), xp1 (1P) and y,,(1P) signals. Since we do not
have enough resolution to measure y;;(1P) and y,,(1P)
yields individually, we fix the ratio between them according
to the known values [19]. To fit the background contribu-
tion we use a ninth-order Chebyshev polynomial. The fit
result is shown in Fig. 5.

There are no significant signals. The obtained upper
limits on branching fractions at the 90% confidence level
are

B[Y(55) = yp0(1P)w] < 3.0 x 1073,
B[Y(5S) = 1 (1P)w] < 3.2 x 1073, (5)
Since the ratio between y,,; (1P) and y,, (1P) is fixed, we
do not give an upper limit for y,,(1P). The obtained upper
limits are consistent with the exclusive measurement [19]:
B[Y(5S) = yp(1P)w] < 3.9 x 1073,
B[Y(5S) = y, (1P)w] = (1.57 £ 0.30) x 1073, (6)

VI. CONCLUSION

In summary, we perform a search for the transitions
Y(4S) = n,(1S)w, Y(55) - n,(1S)w and Y(55) —
1,(28)w. No significant signals are observed and we set
upper limits on visible cross sections and branching
fractions presented in Tables III and IV. The upper limit
for Y(4S) — 1, (15)w is order of magnitude lower than
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the value for the similar transition to a spin-singlet state,
Y(4S) — h,(1P)n [1]. We set the upper limit on the ratio:

B[Y(4S) — 1,(1S)w]

BIY(4S) = hy(1P)yy] ~ o4 107 ()

at the 90% confidence level. As both transitions are
expected to proceed via the BB admixture in the Y(4S)
state [6], our result will help to better understand this
mechanism. The suppression of the Y(4S) — n,(15)®
transition relative to the Y(4S) — h,(1P)n one could be
due to different overlaps between the initial state and the
bottomonium in the final state or the details of the # and
meson production.
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