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Abstract
This work investigates the capabilities of anisotropic theory-based, purely data-driven and hybrid approaches to model the
homogenized constitutive behavior of cubic lattice metamaterials exhibiting large deformations and buckling phenomena.
The effective material behavior is assumed as hyperelastic, anisotropic and finite deformations are considered. A highly
flexible analytical approach proposed by Itskov (Int J Numer Methods Eng 50(8): 1777–1799, 2001) is taken into account,
which ensures material objectivity and fulfillment of the material symmetry group conditions. Then, two non-intrusive data-
driven approaches are proposed, which are built upon artificial neural networks and formulated such that they also fulfill
the objectivity and material symmetry conditions. Finally, a hybrid approach combing the approach of Itskov (Int J Numer
Methods Eng 50(8): 1777–1799, 2001) with artificial neural networks is formulated. Here, all four models are calibrated with
simulation data of the homogenization of two cubic lattice metamaterials at finite deformations. The data-driven models are
able to reproduce the calibration data very well and reproduce the manifestation of lattice instabilities. Furthermore, they
achieve superior accuracy over the analytical model also in additional test scenarios. The introduced hyperelastic models are
formulated as general as possible, such that they can not only be used for lattice structures, but for any anisotropic hyperelastic
material. Further, access to the complete simulation data is provided through the public repository https://github.com/CPShub/
sim-data.

Keywords Finite hyperelasticity · Anisotropy · Metamaterials · Data-driven modeling · Machine learning · Artificial neural
networks

1 Introduction

With recent progress in additive and advancedmanufacturing
methods, there has been increasing interest in the develop-
ment of soft and flexible metamaterials [3,26], which can be
subjected to large and tailorable, e.g., auxetic, elastic defor-
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mations [2,4,12,23,34], harness mechanical instabilities and
buckling [28], absorb energy or dissipate vibrations [5]. This
functional behavior of soft metamaterials is enabled by their
microstructural topology [3], whether they consist of truss,
beam or shell-like lattice members or multi-phase solids, and
their soft material constituents, typically elastomers or poly-
mer hydrogels. Due to their microstructural topology and the
soft materials, they are mechanically characterized by non-
linearities, i.e., large elastic deformations andfinite strains, as
well as mechanical instabilities, such as buckling and snap-
ping, and anisotropy with specific material symmetries.

To efficiently model the mechanical behavior of large
scale structures that are constituted of soft metamaterials at
a microscopic level, nonlinear multiscale simulation meth-
ods are required, for which the effective microstructural
behavior must be homogenized, see, e.g., [15,30]. Concur-
rent multiscale simulation, e.g., in the framework of the
FE2 method, requires the solution and homogenization of
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a microstructural boundary value problem at each evaluation
point of the macroscopic finite element (FE) problem and is
thus computationally expensive. In contrast, hierarchical or
sequential multiscale simulation requires the formulation of
an effective constitutive model, which can then be cheaply
evaluated within the macroscale simulation. However, devel-
oping such effective constitutive models even for elastic soft
metamaterials is difficult, since analytical hyperelastic mod-
els based on strain energy potentials must be adapted to
include anisotropy and often do not reflect the behaviour of
metamaterialswell—aswill also be shownhere. Thus, empir-
ical, data-driven constitutive models are generally developed
for nonlinear microstructures by fitting either strain ener-
gies or stresses obtained from microstructural simulations
as interpolating or approximating response surfaces, e.g., by
polynomial database interpolation [19,36], B-splines [6,37],
or reduced basis models [24].

More recently, the development of data-driven constitutive
modeling has gained great momentum. Methods based on
artificial neural networks (ANNs) and other machine learn-
ing (ML) approaches have shown excellent results in terms
of prediction quality, flexibility and performance. In the field
of nonlinear elasticity, [25] shows how ANNs can be used
in order to calibrate hyperelastic laws, but the approach is
limited to small deformations and does not offer strategies
for specific material symmetries. In [27] ANNs are used for
the identification constitutive relations with known material
symmetry for large large deformations. The ansatz is demon-
strated for Nickel with cubic material symmetry, where the
ANNs are trained on the deformation gradient or specific
invariants with structure tensors up to fourth-order for cubic
behavior. The approach yields the best results based on the
cubic invariants. But since no illustrations of the stress strain
behavior are provided, it remains unclear if the ansatz is
able to capture highly nonlinear material behavior. In [19]
a polynomial approach is presented for the data-driven iden-
tification of the constitutive manifold. The approach shows
very good results but is limited to small strains and does
not cover material symmetry considerations. A data-driven
model-free method for nonlinear hyperelasticity at finite
strains is developed in [31]. The method demonstrates very
good performance but is demonstrated only in one- and two-
dimensional problems for isotropic material behavior. The
RNEXP approach of [14] offers a highly efficient method
for hyperelastic materials, but it is formulated for small
deformations and specific material symmetries can only be
approximated through patterns in the provided calibration
data. In [13] a ANN-based on-the-fly adaptive ansatz is pre-
sented for nonlinear hyperelasticity at small strains. The
effective material law of the microstructure is replaced by an
ANN and used inmacroscopic FE simulations. The approach
shows also very good results within the training range but
does not consider strategies specifically incorporating the

material symmetry. In [16] an interesting approach for the
data-driven calibration of corrections of given hyperelastic
models for finite strain is presented. This approach shows
very promising results due to its thermodynamical proper-
ties and its application in biomechanics, see [17], but is only
demonstrated for isotropic material behavior. The work of
[35] introduces efficient sampling strategies and ANN-based
models for hyperelasticity at finite deformations for isotorpic
material behavior.

Effective constitutive modeling of beam lattices, assumed
in this work as hyperelastic systems, is particularly chal-
lenging, since they exhibit either stretching- or bending-
dominated behavior, which depends on the microarchitec-
ture, and can vary between deformation modes (such as
uniaxial, biaxial, shear, etc.) and even between tensile and
compressive deformation, see, e.g., [1,11,18]. Furthermore,
stretching-dominated behavior often results in instabilities
and buckling, which makes microstructural simulations and
identification of effective material laws challenging. Effec-
tive continuummodels have so far only been investigated for
finite deformations of simpler types of 2D lattices [7,10,32].
In [22] a hyperelastic model is proposed, which, however,
only performs satisfactory for uniaxial tensile deformation.
To the best of the authors’ knowledge, no sensible anisotropic
hyperelastic models have been proposed and investigated for
typical 3D beam lattices subject to large deformations and
instabilities.

The present work introduces three data-driven models
for the homogenized three-dimensional constitutive behavior
of anisotropic hyperelastic (meta-) materials at finite defor-
mations. The models are build upon ML methods, more
specifically, based on ANNs, and are compared to a highly
flexible hyperelastic model incorporating material symme-
tries proposed by [20]. The structure of the ANN models is
designed such that all models fulfill the principle of objec-
tivity and the material symmetry conditions for the known
symmetry group of the material. All models are formulated
as general as possible, in order to allow for future appli-
cations for any hyperelastic material with known material
symmetry and alternative ML models. For the investigation
of cubic lattice structures, considered as hyperelastic sys-
tems, the ANN models are trained based on synthetic data
from three-dimensional simulations of two different lattice
cells. The calibrated models are then compared to the hyper-
elastic model of [20] and among themselves in terms of
prediction quality, capture of lattice instabilities and gen-
eralization behavior.

The outline of the manuscript is as follows. In Sect. 2,
first, the basic material theory considerations for anisotropic
hyperelastic materials are shortly described. Then, the hyper-
elastic model of [20] is sketched. This is followed by the
development of the three ML models. In Sect. 3 the abili-
ties of all models for the calibration of the effective material
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behavior of two different lattice cells is demonstrated. The
manuscript ends in Sect. 4 with conclusions on the perfor-
mance of the models.
Notation A symbolic tensor notation is preferred through-
out the manuscript. The present work requires only zeroth-,
second- and fourth-order tensors. An orthonornmal basis
{e1, e2, e3} of the three-dimensional physical space is used
to represent all tensors. Scalars (zeroth-order tensors) are
denoted by italic letters, e.g., W , a, b. Second- and fourth-
order tensors are denotedbybold characters, e.g., A, B, P, S,
and blackboard bold characters, e.g., C, respectively. Ein-
stein’s summation convention is not used in this work. The
composition of two second-order tensors is denoted simply
by AB with components (AB)i j = ∑

k=1 Aik Bk j . The dou-
ble contraction is simply denoted by a colon, i.e., A : B is
the scalar A : B = ∑3

i, j=1 Ai j Bi j , A : C is a second-order

tensor with components (A : C)i j = ∑3
k,l=1 AklCkli j and

A : B is a fourth-order tensor with components (A : B)i jkl =
∑3

m,n=1 Ai jmn Bmnkl . The number of elements in a list or
countable finite set L is denoted by #(L). The tensor product
is denoted by ⊗, while the tensor power is denoted by A⊗n .
Standard variable symbols from continuum mechanics are
used, i.e.,W is reserved for quantities connected to the strain
energy density, F denotes the deformation gradient, P and
S are reserved for quantities immediately connected to the
first and second Piola-Kirchhoff stress tensors, respectively.

2 Formulation of material models

2.1 Basic material theory considerations

A hyperelastic material model for finite deformations is
described by a scalar potentialW = W (F), where F denotes
the deformation gradient, which belongs to the set of invert-
ible tensors with positive determinant I nv+. The potentialW
represents the strain energy density with respect to the vol-
ume in the initial placement. In order to fulfill the principle of
material objectivity, see [33], the dependency of the potential
is reduced to the right Cauchy-Green tensor C = FT F, i.e.,

W = W (F) = Ŵ (C) , (1)

i.e., Ŵ is prescribed and W is determined by (1). In the fol-
lowing, the material model is referred to as objective for
short.

The material symmetry of the material is specified by the
collection G of all symmetry transformations Q

G = {Q1, . . . } ⊂ SO(3). (2)

The collection G is referred to as the material symmetry
group. The set of orthogonal second-order tensors in three-

dimensional space is denoted by O(3), while the special
orthogonal group is denoted as SO(3) ⊂ O(3). The present
work is restricted to finite symmetry groups. For finite G,
#(G) is used to denote the number of elements.

The potential satisfies

W (F) = W (FQ) ∀F ∈ I nv+, Q ∈ G , (3)

which for (1) translates for Ŵ to

Ŵ (C) = Ŵ (QTC Q) ∀C ∈ Sym+, Q ∈ G , (4)

where Sym+ denotes the set of symmetric positive defi-
nite second-order tensors. It is shortly remarked that the
present work considers material symmetry groups as subsets
of SO(3), and not of O(3), since the potentialW is restricted
to evaluations of arguments FQ in (3) with positive deter-
minant.

The first and second Piola–Kirchhoff stress tensors, P and
S, respectively, are defined as follows

P = ∂W

∂F
, S = 2

∂Ŵ

∂C
(5)

such that the identity

P = FS (6)

and the material symmetry conditions, see, e.g., [8],

P(F) = P(FQ)QT ∀F ∈ I nv+, Q ∈ G (7)

S(C) = QS(QTC Q)QT ∀C ∈ Sym+, Q ∈ G (8)

are automatically fulfilled if the potential fulfills (1) and (3).
Naturally, the just described properties of constitutive

models for hyperelasticity form only a subset of the large set
of constraints in material modeling. For instance, ellipticity
is an important property in terms of material stability, but it
lies beyond the scope of the present work. In the following,
only the principle of objectivity, hyperelasticity and mate-
rial anisotropy are considered for all upcoming constitutive
models.

2.2 Material model of [20]

A highly flexible material model was proposed by [20]. It
was first proposed for orthotropic hyperelasticity, but it can
be easily generalized to arbitrary material symmetry. The
potential of [20] will be denoted by W I. The core idea of
[20] is to define the potential as follows

W I(F) = Ŵ I(C) = 1

2

N∑

i=1

ci Ei (C) : Ci : Ei (C) (9)
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with N isotropic tensor-valued functions Ei , i.e.,

Ei (C) = QEi (QTC Q)QT ∀C ∈ Sym+, Q ∈ O(3) (10)

andmajor-symmetric anisotropic fourth-order tensors fulfill-
ing the associated material symmetry conditions

Ci = Q�Ci ∀Q ∈ G, i = {1, . . . , N } , (11)

where (Q �A)i jkl = ∑3
m,n,o,p=1 QimQ jnQkoQlp Amnop.

The ansatz (9) is objective per definition and fulfills the
symmetry conditions (3) or (4), respectively. It should be
remarked that the ansatz (9) was originally motivated by [20]
from the St. Venant material model, which becomes immedi-
ately obvious by replacing Ei → (C − I)/2 and identifying
C = ∑N

i=1 ciCi as the elastic stiffness of the anisotropic
material.

In order to formulate a sensible material model, the
isotropic functions Ei (C) should fulfill the conditions

Ei (I) = O , (12)
∂Ei

∂C
(I) = 1

2
I
S , (13)

where O and I
S denote the zero second-order tensor and

the identity on symmetric second-order tensors, respectively.
Condition (12) ensures W I(I) = 0 and W I(R) = 0 for any
rigid body rotation R ∈ SO(3). Condition (13) ensures that
the functions Ei (C) reduce to the infinitesimal strain tensor
ε = (H + HT )/2, F = I + H for small deformations. The
gradient

∂Ŵ I

∂C
(C) =

N∑

i=1

ci Ei (C) : Ci : ∂Ei

∂C
(C) (14)

immediately shows, that condition (12) also ensures SI(I) =
O = P I(R) for any R ∈ SO(3) for the correspondingly
derived stresses.

In [20], the isotropic functions Ei are chosen as analytic.
More specifically, based on the spectral decomposition of C

C =
M∑

α=1

Λα Pα (15)

withM distinct eigenvaluesΛα and corresponding projectors
Pα , the functions Ei (C) are chosen as

Ei (C) =
M∑

α=1

ei (Λα)Pα, (16)

which is a specific choice of isotropic functions with scalar
core functions ei (x). In [20], the core function

ei (x) =
R∑

r=1

air
bir

(xbir /2 − 1) (17)

is used, since it provides a close connection to the Ogden
model and related ones. Additionally, the core function (17)
can be interpreted from a mechanical point of view as a
superposition of R different Seth-strains. The core function
(17) fulfills (12). The condition (13) can be reduced to the
constraint e′

i (1) = 1/2, which imposes
∑R

r=1 air = 1. The
formulas given in [21] can be used to compute the analytic
gradient (14).

We refer to the parametrized potential asW I = W I(F; p),
where p refers to the collection of all model parameters, in
this case, air and bir . The quantities ci in (9) could also
be considered as free parameters, but in this work, they
will be fixed together with Ci if the anisotropic stiffness
C = ∑N

i=1 ciCi for the linear behavior is known. For given
stiffness C of the linear elastic behavior (corresponding to,
e.g., triclinic, monoclinic, hexagonal, cubic, etc. material
symmetry), one can decompose the stiffness into its spectral
representation and use it as ci andCi , where ci correspond to
the eigenvalues and Ci to the projectors of the decomposed
stiffness. This will be discussed later on in more detail in
Sect. 3.1.

2.3 Theory-driven non-intrusive ML approaches

Based on available data of a considered material or micro-
structure, we propose two theory-driven machine learning
approaches for building constitutive models that fulfill the
objectivity and material symmetry conditions (3):

1. Group symmetrization of the potential: We consider an
arbitrary core model for the potential W̃ with parameters
p, which takes C = FT F as input, i.e., W̃ = W̃ (C; p).
We assume that the core model W̃ is twice continuously
differentiable with respect to C . The core model can be
any scalar-valued function accepting a six-dimensional
input (degrees of freedom of C) which is twice contin-
uously differentiable. We define the auxiliary quantity
W0(F; p) = W̃ (C; p) and formulate the potential as

WMLW(F; p) = 1

#(G)

∑

Q∈G
W0(FQ; p) . (18)

This hyperelastic ansatz is objective and, due to the prop-
erties of groups, fulfills the symmetry conditions (3) for
any choice of its parameters p. A proof of the fulfill-
ment of the group symmetry is given in “Appendix A”.

123



Computational Mechanics

This means that the stresses derived from (18) auto-
matically fulfill (7) and (8). Since the core model W̃
is twice continuously differentiable, not only the stress
PMLW = ∂WMLW/∂F is computable, but also the stress
tangent tensor.
Alternatively, one could define the auxiliary quantities

G̃(C; p) = ∂W̃

∂C
(C; p) ,

Ŵ0(C; p) = W̃ (C; p) − W̃ (I; p) (19)

−G̃(I; p) : (C − I) , (20)

W̌0(F; p) = Ŵ0(FT F; p) , (21)

and use W̌0(F; p) instead of W0(F; p) in (18). The
usage of G̃(I; p) in (18) through (20) ensures that the
gradient of Ŵ0 vanishes for C = I . This would yield
a modified model in (18) which is stress free for any
rigid body rotation, see “Appendix A” for a proof. Addi-
tionally, WMLW(I; p) = 0 would hold per construction.
While these properties are appealing, we do not imple-
ment them in the following, since they add computational
complexity to the ML model in terms of the parameter
dependency with small benefit. Based on a few training
points the model (18) can be calibrated to achieve an
acceptable approximation of the material state at C = I .

2. Group symmetrization of the stress: We consider a con-
tinuously differentiable model S̃ with parameters p, i.e.,
S̃ = S̃(C; p). We define the auxiliary quantity

P0(F; p) = FS̃(FT F; p) (22)

and the corresponding first Piola-Kirchhoff stress as

PMLP(F; p) = 1

#(G)

∑

Q∈G
P0(FQ)QT (23)

The ansatz (23) is objective and, due to the properties
of groups, fulfills the symmetry conditions (7) for any
choice of its parameters. A proof of the fulfillment of
the group symmetry is given in “Appendix A”. Since the
core model S̃ is differentiable, the corresponding stress
tangent is computable. Alternatively, the quantity

P̌0(F; p) = F(S̃(FT F; p) − S̃(I; p)) (24)

could be used in (23) instead of P0. This would yield
a modified model fulfilling PMLP(R; p) = O ∀R ∈
SO(3). In the following, we do not implement this
alternative formulation, since it only adds computational
complexity to the model with small benefit. We are fur-
ther interested in the ability of models in approximating
the material state at C = I .

Both proposed approaches offer a highly flexible and non-
intrusive form for the usage of arbitrary data-driven ML
methods.Here, artificial neural networks (ANNs)will be con-
sidered for W̃ and S̃. It should be remarked that the outlined
approaches could use any other data-driven model for W̃ and
S̃. Further, it should be remarked that the potentialmodel (18)
is a hyperelastic model, whereas the stress model (23) is only
an elastic model, since no potential for it is known. Still, the
model (23) is taken into consideration as a pragmatic model
for the stress of an elastic material in view of its practical
use for macroscopic FE simulations only requiring P and its
derivative for structural simulations.

As indicated in Sect. 2.1, the present work is restricted
to finite material symmetry groups. For material symmetry
groups with an infinite number of elements, the approaches
(18) and (23) could be reformulated in terms of integrals over
the corresponding group. From an implementation point of
view, thismay be difficult, such that simply using (18) or (23)
with a finite subgroup of the infinite group may suffice for
the corresponding application. For instance, if transversely
isotropic behavior is of interest, then the finite subgroup with
60-degrees rotations around the symmetry axis may provide
acceptable results in some situations.

For the current investigation, the material law is path-
independent, i.e., solely state-dependent. From the rich pool
of data-driven approaches, we consider in this work ANNs
due to their enormous flexibility.More specifically, instead of
recurrent neural networks for history-dependent processes,
we choose feedforward neural networks (FFNNs) for pure
state-dependency. Hereby, different number of neurons and
hidden layers, as illustrated in detail in “Appendix B” , are
considered. In order to ensure (infinite) continuous differ-
entiability, we choose the softplus function s(x) = log(1 +
exp(x)) as activation function in all hidden layers. For a com-
pact reference of the FFNN taken into account, the networks
for W̃ and S̃ will be addressed as

N [n1, n2, . . . , nH ] (25)

where ni , i ∈ {1, . . . , H}, denote the number of neurons in
the H hidden layers. After fixing the number of hidden layers
and neurons in each layer, the remaining FFNN parameters
are the layer weights and biases, addressed simply by the
parameter p. The total number of parameters of each model
is described in “Appendix B” and tabulated in Table 3.

2.4 ML-extended theoretical model

Methods from the field of ML can also help (i) to decide,
which model from a given collection offers the best quality
based on inference criteria, as shown in [29] with a Bayesian
approach for a collection of three isotropic hyperelastic mod-
els, or (ii) to extend the capabilities of an existing model.
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Typically, constitutive models are based on several con-
siderations of material theory, but require manual, human
decisions on the choice of representations or ansatz func-
tions at different steps of themodel formulation, e.g., here the
choice of isotropic functions Ei in (16) and of the scalar core
functions ei in (17) for the model of [20]. These human deci-
sions may be, depending on the modeling step, too restrictive
with respect to the richness of the theoretical model. Thus, it
could be beneficial to combine a motivated material model
with ML methods at an appropriate decision point.

The present section aims at this perspective and proposes
to extend the model of [20] as follows. The structure of the
model of [20] is highly flexible for isotropic Ei . Mainly the
choice of Ei is limited to human imagination and intuition.
For a more general approach, one may consider Reiner’s rep-
resentation theorem which states that any isotropic function
Ẽi (C) of a symmetric tensor C can be represented as

Ẽi (C) =
2∑

j=0

φi j (I , I I , I I I )C j , (26)

with C0 = I , C1 = C, C2 = CC, the invariants

I = tr(C) , I I = tr(cof(C)) , I I I = det(C) (27)

and cof(C) = det(C)C−1. The functions φi j in (26) are
unknown, which motivates in the current setting the use
of FFNNs with parameters pi j for each function φi j =
φi j (I , I I , I I I ; pi j ). Usage of (26) in the approach of [20]
instead of Ei given in (16) offers a hybrid model combining
some material theory requirements and the power of data-
driven ML methods. The ML-extended ansatz based on (26)
yields a corresponding potential WMLI. This ML-extended
ansatz inherits from [20] the fulfillment of objectivity, hyper-
elasticity and material symmetry per construction. The col-
lection of all parameters for the hybrid approach is referred
to as p, as for the purely data-driven ones. We denote the
corresponding potential as WMLI = WMLI(F; p).

Due to linearity, the function

Ěi (C) = Ẽi (C) − Ẽi (I) (28)

is also isotropic. Alternative usage of (28) instead of (26) in
the approach of [20] fulfills (12), such that a modified model
with vanishing stresses at C = I can be generated. As for the
other ML models, we do not implement this alternative form
in order to reduce the complexity of parameter dependency
and check the ability to approximate thematerial state atC =
I . Furthermore, the amplifying quantities ci in (9) are set to
ci = 1 Pa for the instances of the ML-extended approach
WMLI, since the output amplification is already carried out
by the internal FFNNs.

3 Application to cubic beam-lattice
metamaterials

The constitutive models introduced in the previous section
are now used to represent the effective material behavior of
beam-lattice metamaterials with cubic symmetry. For this
purpose, the parameters of the models are fitted to data
obtained from numerical homogenization of the respective
unit cell models, see “Appendix C” for details.

3.1 Preparations and implementation of considered
models for cubic material symmetry

For a clearer identification of the consideredmodels, we refer
to them in this section as follows:

– Theoretical model of [20] (9) with potential W I and
derived P I:

– ML model (18) with group symmetrization of the poten-
tial WMLW and derived PMLW;

– ML model (23) with group symmetrization of the stress
PMLP;

– ML extension of [20] based on (26) with potential WMLI

and derived PMLI.

The list of models is referred to as {I,MLW,MLP,MLI}. The
preparation of the models for representing cubic material
symmetry, their calibration and implementation are dis-
cussed in the following.
Pre-calibrated ci and Ci for [20] model. Calibration of the
original approach of [20] requires the determination of the
parameters of the core functions Ei and, eventually, of the
quantities ci in (9), as well as a decision on which Ci are
to be used for the cubic material law. Based on linear elas-
ticity, in the present work we choose to decompose a given
linear elastic stiffness tensor C into its spectral representa-
tion, such thatCi are the corresponding projectors and ci the
corresponding eigenvalues. For cubic stiffnesses, the N = 3
projectors are known

C1 = 1

3
I ⊗ I , C2 =

3∑

i=1

e⊗4
i − C1 ,

C3 = I
S − (C1 + C2) .

(29)

For the cubic lattice unit cells under consideration, the eigen-
values ci are given explicit values, such thatC = ∑3

i=1 ciCi

equals the effective stiffness of the cell for infinitesimal defor-
mations,which can be computed from linear homogenization
or nonlinear simulations results around F = I .
Group symmetrization The Schoenflies octahedral groups O
and Oh , see, e.g., [9], containing 24 and 48 orthogonal trans-
formations for cubic objects, respectively, are well known.
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The group Oh contains transformations including reflections.
For the present work, only subsets of SO(3) are acceptable,
i.e., O ⊂ SO(3) is used for the group symmetrization in the
following examples.
Fitting of model parameters Each constitutive model � ∈
{I,MLW,MLP,MLI} has a set of remaining parameters p.
These parameters will be calibrated by minimization of the
mean squared error (MSE) of the output model, W�(F; p)
and P�(F; p), respectively, based on available data. With
a given dataset D = {F1, . . . } with corresponding mea-
sured/simulated output W̌ and P̌ , in J and Pa, respectively,
we define the corresponding dimensionlessMSE as objective
function for the model W�(F; p) as

MSEW (p) = 1

#(D)

∑

F∈D

[ 1

J2
(W̌ (F) − W�(F; p))2

+ 1

9 Pa2
‖ P̌(F) − P�(F; p)‖2

]
. (30)

The factor 1/9 in the second term of the sum is used to com-
pute the average over the 9 components of P . For the model
PMLP(F; p) given in (23) we consider only the MSE with
respect to the measured/simulated stresses

MSEP (p) = 1

#(D)

∑

F∈D

1

9 Pa2
‖ P̌(F) − PMLP(F; p)‖2.

(31)

The parameters p of the corresponding models
{I,MLW,MLP,MLI} will be the minimizers of the corre-
sponding MSE, i.e.,

pW/P = argmin
p

MSEW/P (p) . (32)

It is shortly remarked, that calibration of material models is
usually focused on the stress values. The present approach
incorporates the potential values in (30) for the hyperelastic
models from the following perspective. Any function being
calibrated at given points benefits from information of the
function values and of its gradient at those points. In virtual
material testing anddesign, simulation technologies allow for
a deeper insight into several state variables. If this informa-
tion is available, it can enhance themodel quality and should,
therefore, be used. In real-world experiments many of these
state variables are not accessible or only under significant
effort. For instance, in lattice structures, if the material of the
elastic beams is characterized well, then, in principle, their
deformation could be tracked with digital image correlation
and the elastic energy density could be computed. Since the
current work focuses the simulative investigation of lattice
structures, the potential values are at hand and used for the
calibration of the hyperelastic models. It should finally be
noted, that the gradient error may still dominate (30).

Fig. 1 Visualization of the beam model of the ”X” cell

Implementation of models The model W I has been imple-
mented and optimized in Mathematica 12 in order to take
advantage of symbolic programming options required due
to the usage of the spectral representations in (16). The
ML-modelsWMLW, PMLP andWMLI have been implemented
and optimized in Python 3.7 with Google’s TensorFlow 2.1
library to use the full extent of efficient optimization ofANNs
compatible with the current Anaconda distribution (October
2020).

3.2 Effective constitutive behavior of ”X” cell

3.2.1 Simulation data

We first consider a cubic lattice type with a body-centered
micro-architecture, which consists of 8 beams connecting at
the center of the cell, see Fig. 1, here denoted as ”X” cell.

Synthetic data has been generated in nonlinear simu-
lations with uniaxial, equibiaxial, planar, volumetric and
simple shear deformations enforced by periodic boundary
conditions. These particular deformation modes were cho-
sen here, since they can also be applied in physical material
tests and are thus often used for the experimental charac-
terization of hyperelastic materials. The calibration dataset
DC = {(F1, P̌1, W̌1), . . . } contains triples (F, P̌, W̌ ) for
all simulation steps denoting the effective deformation gra-
dient F of the cell, the effective first Piola-Kirchhoff stress
tensor P̌ in Pa and the effective potential (effective strain
energy of the cell) W̌ in J . The dataset DC will be used for
the calibration of models with the objective functions (30)
and (31). Additionally, 3 validation tests, to be addressed as
the test dataset DT , were conducted to check the general-
ization capabilities of the calibrated models. The dataset DT

consists of 2 biaxial tests with different stretch ratios (test 1
and 2) and a test combining tension and shear (test 3). Further
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technical details of the conducted simulations are described
in “Appendix C” . The dataset DC is composed of 905 data
points (each with a corresponding triple (F, P̌, W̌ )), while
DT contains 603 data points. It should be noted that these
numbers are relatively low in terms of the dimensionality of
the input and output space. Since the input space of deforma-
tion tensors is nine-dimensional, an equidistant distribution
of only 10 points in each dimension would yield 109 data
points. The current investigation aims at the examination of
the proposed models with mechanically sensible design with
small amounts of data.

All components of the effective deformation and stress
tensors for DC and DT for the X cell are displayed in Figs.
2 and 3 over the corresponding process parameter, respec-
tively. The data for the potential will not be illustrated, we
focus the visualization of the deformation and stress state. In
the uniaxial, biaxial, planar and volumetric simulations, the
process parameter is F11, where typically 0.5 ≤ F11 ≤ 1.5,
while in simple shear F12 is used with 0 ≤ F12 ≤ 0.5. In the
test data F11 is used as process parameter. All plots show the
components of the corresponding 3-by-3 matrices for F (left
column in Figs. 2 and 3) and P (right column in Figs. 2 and
3), denoted by colors in the legends.

The X cell has been chosen as a first benchmark example,
since it shows vastly differing stress responses for F11 > 1
and F11 < 1, as shown in Fig. 2. Furthermore, the stress
response in the uniaxial case and biaxial case differ by an
order of magnitude. Finally, buckling manifests itself in the
volumetric case very early for F11 < 1 and the shear case
activates several stress components. This very particular and
highly nonlinear effective behavior occurs for the X lattice
type, since it does not have any beams along the cell edges.
The soft responses in compression result from bending of the
struts, while the increasingly stiff behaviors in tension result
from a combination of bending and stretching of struts. Only
in volumetric deformation, all struts are subjected to equal
loading, which causes the much stiffer behavior in tension
and buckling in compression. Based on these observations,
the X cell offers an excellent challenging study case for the
proposed anisotropic material models.

In order to further verify the calibrated material models,
the test cases (test 1, 2 and 3) are taken into consideration, see
Fig. 3. Test 1 and 2 are biaxial tests with different stretching
ratio along the 1 and 2 directions (see F11 and F22 is the
left plots of Fig. 3), such that the adaptive properties of the
calibrated models solely based on DC are to be tested. Test
3 offers a more challenging scenario combining tension and
shearing (see F11 and F12 components) and a highly different
resulting stress behavior of the non-symmetric P including
instabilities for compression (F11 < 1) and tension (F11 >

1), see P11, P12 and P21 in the bottom right plot of Fig. 3.
This behavior is not encountered in any of the cases in DC . It
should, therefore, be stressed that the calibration dataset DC

contains less complex mechanical scenarios compared to the
test dataset DT . This makes, form the authors’ perspective,
the dataset DT a good benchmark dataset to evaluate the
generalization properties of the considered models.
InterludeBefore continuing to the advancedmodels, it should
be shortly discussed that the elementary, linear constitutive
relation of St. Venant’s law PSV = F(C : (FT F − I)/2)
with cubic stiffness C = ∑3

i=1 ciCi is not at all suitable for
the finite-deformationmodeling of the considered structures.

For a clear example, consider the uniaxial case of the X
cell depicted in Fig. 2. The uniaxial case with diagonal F
imposes F11 values and is carried out with the stress free
condition P22 = P33 = 0, such that F22 = F33 are returned
based on that condition. Calibration of the eigenvalues of
the cubic stiffness based on all simulation cases yields c1 =
10450.3 Pa, c2 = 154.3 Pa and c3 = 7343.6 Pa. Computing
the ideal condition PSV

22 = PSV
33 = 0 yields a dependency of

FSV−ideal
22 = FSV−ideal

33 in terms of F11

FSV−ideal
22 =

√
(c2 − c1)F2

11 + 3c1√
2c1 + c2

. (33)

The (F11, F22)uni path of the simulated uniaxial case and
the fictitious path for (F11, F22)SV−ideal based on (33) are dis-
played in Fig. 4 (left plot). It can be seen that the simulation
path (F11, F22)uni (blue curve) does not deviate much from
the fictitious one (F11, F22)SV−ideal (orange curve) yielding
PSV
22 = 0. The P11 values corresponding to the simulated

(F11, F22)uni are depicted in blue in Fig. 4 (right plot),
while PSV

11 corresponding to (F11, F22)SV−ideal is illustrated
in orange. It can be seen, that these stress curves agree rea-
sonably in the vicinity of F11 = 1. But it should be stressed
that PSV

11 for (F11, F22)SV−ideal corresponds to a fictitious
deformation, it does not correspond to the real deformation
(F11, F22)uni of the cell. Evaluation of the real cell defor-
mation (F11, F22)uni with St.-Venant’s law yields the green
curve shown in Fig. 4 (right plot).

From this comparison, it can be concluded that outside the
infinitesimal deformation regime around F ≈ I , St. Venant’s
law may not be acceptable for modeling the effective con-
stitutive behavior of such a metamaterial, not even for the
simple uniaxial case. Naturally, the cells under consideration
pose further challenges for a material law, e.g., manifestation
of buckling in compression and tension (cf. test 3 in Fig. 3),
such that we do not further discuss St. Venant’s law andmove
on to the comparison of the ML approaches.

3.2.2 Comparison of calibrated models

The four considered constitutive models are calibrated with
the dataset DC . For the model W I R = 7 has been chosen.
For the FFNNs in the ML models, the following architec-
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F11 = 0.5
F11 = 1.5

F11 = 0.5

F11 = 1.5

F11 = 0.5 F11 = 1.5

F11 = 0.5
F11 = 1.5

a a

F12 = 0.5

Fig. 2 Training dataset DC of the X cell, showing all components of F (left column of plots) and P in Pa (right column of plots) for uniaxial,
biaxial, planar, volumetric, and simple shear cases (from top to bottom)

ture sweep has been conducted. The number of neurons
in all hidden layers has been kept constant throughout the
hidden layers, but varied in {8, 16, 32, 64}, e.g., N [8, 8],
N [16, 16, 16]. The number of hidden layers has been varied
in {1, 2, 3, 4}. This yields a total of 16 FFNN architectures.
Each architecture has been initialized three times in order
to start with different randomly initialized states of weights
and biases, resulting in a total of 48 model instances. Each
model instance has been trainedwith DC (905 datapoints) for
20,000 epochs with full batch training and the ADAM opti-

mizerwith default settings inTensorFlow2.1with Python 3.7
on a GeForce RTX 2080 Ti graphic card in a Windows sys-
tem. No parameter regularization has been used. The training
times for an instance of the WMLW model were 11–14min
depending on the architecture, for PMLP 8–10min, and for
WMLI 4–6min.

InTable 1, the calibratedmodels are tabulated and grouped
with respect toW I,WMLW, PMLP andWMLI. The table shows
the model architectures, the number of parameters, the cor-
responding MSEW and MSEP for the test dataset DT and
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Fig. 3 Test data of the X cell,
showing all components of F
and P test 1, test 2, test 3. Tests
1 and 2 represent biaxial cases
with different stretches, see F11
and F22 components. Test 3
represent a case combining
tension and shear, see F11 and
F12 components

Fig. 4 Left plot: Path of deformation gradient components of simulated uniaxial simulation (F11, F22)uni (blue) and fictitious (F11, F22)SV−ideal

(orange); Right plot: P11 component corresponding to (F11, F22)uni (blue), PSV
11 corresponding to (F11, F22)SV−ideal (orange) and corresponding to

(F11, F22)uni (green)

calibration dataset DC . Each model group is sorted with
respect to the corresponding objective function of the model,
but evaluated with the test dataset DT (MSEW in the third
column for W I/MLW/MLI and MSEP in the fourth column for
PMLP). Only the best 5 of the 48 corresponding instances of
each of the ML models in terms of the corresponding objec-
tive function evaluated for DT are tabulated.

For the W I model it can be seen by the very high MSEW

for DT and for DC that it does not perform well, despite the

high number of model functions in each of the Ei functions
(R = 7) and the incorporation of the elastic stiffness for small
deformations. The WMLW model shows a significantly bet-
ter performance than theW I approach. Various architectures
achieve satisfactory results in theMSEW for DC (second last
column). It can be seen throughMSEP for DC (last column),
that the stress errors dominate. The same holds in the evalua-
tions for DT . Nomonotonicity with respect to theMSEW for
DT with respect to the size of the FFNNs can be seen. This
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Table 1 List of calibrated
models for X cell; columns:
model, total number of
parameters, evaluation of
calibrated model with test
dataset DT with MSEW and
MSEP , analogous evaluation of
calibrated model with
calibration dataset DC

Model Par. DT DC
MSEW MSEP MSEW MSEP

W I with R = 7 42 3.81 · 1011 3.76 · 1011 5.11 · 104 3.12 · 104
WMLW with N [32, 32, 32] 2369 9.17 · 101 8.44 · 101 4.73 · 100 4.68 · 100

with N [32, 32, 32] 2369 1.05 · 102 9.86 · 101 1.00 · 101 8.53 · 100
with N [8, 8, 8] 209 1.56 · 102 1.18 · 102 9.28 · 100 9.00 · 100
with N [8, 8] 137 1.61 · 102 1.36 · 102 7.23 · 101 7.08 · 101
with N [64, 64, 64, 64] 12993 1.70 · 102 1.43 · 102 5.20 · 100 5.06 · 100

PMLP with N [16, 16, 16, 16] 1030 – 3.52 · 102 – 1.17 · 101
with N [8, 8, 8] 254 – 5.00 · 102 – 1.47 · 101
with N [16, 16, 16] 758 – 5.43 · 102 – 1.49 · 101
with N [8, 8, 8] 254 – 5.65 · 102 – 4.98 · 101
with N [32, 32, 32, 32] 3590 – 1.06 · 103 – 9.04 · 100

WMLI with N [16, 16, 16, 16] 8073 2.15 · 103 1.74 · 103 1.87 · 101 1.81 · 101
with N [32, 32] 10953 3.25 · 103 2.96 · 103 7.04 · 101 6.33 · 101
with N [8, 8, 8] 1665 3.54 · 103 2.89 · 103 2.09 · 101 1.93 · 101
with N [64, 64] 40329 3.56 · 103 3.38 · 103 8.75 · 101 7.58 · 101
with N [64, 64] 40329 3.58 · 103 3.25 · 103 5.65 · 101 5.24 · 101

The hyperelastic models W I/MLW/MLI have been trained on MSEW with DC (second last column) and sorted
by increasing MSEW with DT (third column). The elastic model PMLP has been trained on MSEP with DC
(last column) and sorted by increasing MSEP with DT (fourth column)

is well known in the ANN literature, larger networks do not
always yield better results and a unique ”best” performing
architecture is usually hardly identifiable. The elastic model
PMLP shows good results with respect to its objective func-
tion (MSEP for DC , last column), but does not achieve the
generalization quality of WMLW with respect to MSEP for
DT (fourth column). Finally, the WMLI model shows accept-
able results larger than WMLW for DC , but a dramatic loss of
generalization quality with respect to DT .

In the following, we consider for WMLW the tabulated
instance withN [8, 8], for PMLP the instance withN [8, 8, 8]
yielding MSEP = 5.00 · 102 and for WMLI the instance
with N [8, 8, 8]. This choice is based on pure pragmatism
targeting the selection of models yielding comparable and
tolerable quality (within the corresponding model groups)
with low computational complexity. In terms of evaluation
speed of the chosen instances, 100,000 deformation gradi-
ents are evaluated in a single forward pass byWMLW in 0.89 s
(potential and stress values), by PMLP in 0.62 s (only stress
values) and by WMLI in 0.18 s (potential and stress values).
This evaluation speed seems acceptable for FE simulations
requiring the evaluation of the material model at a corre-
sponding numbers of integration points.

In terms of the approximation of the material state at
F = I and for rigid body rotations, the chosen ML-model
instances have been evaluated for 100 random rotations. The
correspondingmaximumof the stress norm ‖P‖ over the 100
sampled rotations evaluates to 1.27 Pa forWMLW, 1.53 Pa for

PMLP and 1.72 Pa forWMLI. This is considered, based by the
magnitude of stresses throughout the simulation cases, as
acceptable.
Examination of calibration cases In the following, the cho-
sen ML-model instances, i.e., WMLW with N [8, 8], PMLP

with N [8, 8, 8] and WMLI with N [8, 8, 8] (see above), are
addressed for the sake of brevity simply asWMLW, PMLP and
WMLI, respectively. Evaluation of all stress components of P
of the calibrated models for the DC (uniaxial, biaxial, planar,
volumetric and shear cases) is depicted in Fig. 5. The simula-
tion data is depicted by the continuous lines, while the model
predictions are depicted by the dashed lines. The modelsW I,
WMLW, PMLP andWMLI are depicted in the first, second, third
and fourth column, respectively.

As shown in Fig. 5, the theoretical model for the stresses
based on the potential W I is not able to adequately fit the
homogenized material behavior of the metamaterial, even
though the model of [20] carries the cubic symmetry and
uses the stiffnessC for infinitesimal deformations (extracted
from the simulationdata), such that the stress tangentmatches
exactly around F ≈ I . The performance of the calibrated
model W I is very low, not only with respect to the poten-
tial values, cf. Table 1, but also with respect to the derived
stresses. The reason for the low performance of themodelW I

in this example is the choice of the special class of isotropic
function in (16) and of core functions in (17). More specifi-
cally, the chosen core functions are too smooth to be able to
fit the manifestation of the instabilities due to beam buckling
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Fig. 5 Evaluation of calibrated modelsW I (first column),WMLW (second col.), PMLP (third col.) andWMLI (fourth col.) for cubic X cell for uniaxial,
biaxial, planar, volumetric and shear cases (from top to bottom). Continuous lines depict the simulation data, while the dashed lines denote the
calibrated models

in the cell structure. However, as the choice of functions is
a human decision, this illustrates the difficulty in manually
formulating an anisotropic hyperelastic model.

In the second column of Fig. 5 the stresses derived from
theMLmodelWMLW are depicted. As visible in the plots, the
stress predictions of this MLmodel are almost indistinguish-
able from the simulation data. This remarkable results show
that this machine learning-based hyperelastic model fulfill-
ing the principle of objectivity and all anisotropy conditions
of the material law is also able to capture manifestation of
the instability in the volumetric case.

The evaluation of the stresses for themodel PMLP is shown
in the third column of Fig. 5. This model has been calibrated

solely with the stress data of the simulations. It achieves very
good results with respect to the calibration data and is able
to capture the instability in the volumetric case.

In the last column of Fig. 5 the stresses based on the hybrid
modelWMLI are shown. Compared toW I, the hybridWMLI is
able to fit the simulation data verywell and also to capture the
instability in the volumetric case. This is due to the far more
general approach using Reiner’s representation theorem (26)
and insertion of highly flexible ML functions for φi j . This
result demonstrates that theory-based models can very well
be extended by ML methods at appropriate decision points.
Examination of test cases As done above, the chosen ML-
model instances, i.e., WMLW with N [8, 8], PMLP with
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Fig. 6 Evaluation of calibrated models W I (first column), WMLW (second column), PMLP (third column) and WMLI (fourth column) for cubic X
cell for test 1, 2 and 3 (from top to bottom). Continuous lines depict the simulation data, while the dashed lines denote the calibrated models

N [8, 8, 8] and WMLI with N [8, 8, 8], are addressed for the
sake of brevity byWMLW, PMLP andWMLI, respectively.After
calibration, themodels have been evaluatedwith the test data,
as shown in Fig. 6. As for the previous figure, the simulation
data is depicted by the continuous lines, while the model
predictions are depicted by the dashed lines. The modelsW I,
WMLW, PMLP and WMLI are shown in the first, second, third
and fourth column, respectively.

It can be clearly seen that W I does not generalize well
in any form, which is expected since it did not yield sat-
isfactory results for DC . The model WMLW in the second
column shows excellent generalization properties, which
is best seen in the third test. The instability is well pre-
dicted in compression (F11 < 1) as well as in tension
(F11 > 1). Furthermore, the hyperelastic model WMLW

shows in the third test better generalization with respect
to P11, compared to PMLP, and far better compared to
WMLI. The model WMLI does not generalize well. As in
the evaluation of W I, the derived stresses of WMLI grow
too fast and diverge very quickly from the material behav-
ior in the third test. The authors suspect that this behavior
may be an intrinsic property of the structure of the model
of [20].
Re-calibration with test data If more calibration data is
provided, better results can be obtained with the highly flex-
ible ML models proposed in the present work. The models
WMLW, PMLP and WMLI have been re-trained with the com-
plete simulation data (i.e., concatenating DC and DT ) for
5,000 additional epochs. The evaluation of the re-calibrated

models with DC is depicted in Fig. 7. The evaluation of the
re-calibrated models with DT is displayed in Fig. 8. It can
be clearly seen that the ML model WMLW not only main-
tains its excellent performance in the calibration cases but
also improves very well in capturing the material behavior in
the test cases, cf. Fig. 8. This also holds for the stress model
PMLP. The re-calibrated model WMLI improves its perfor-
mance in the test cases, cf. Fig. 8. In this example, the ML
hyperelastic model WMLW shows its excellent performance
in terms of (1) capturing themanifestation of instabilities, (2)
generalization behavior and (3) maintaining accuracy during
re-calibration. The stress model PMLP shows also excellent
results, but does not offer, strictly speaking, a hyperelastic
model. The ML-extended approach WMLI shows its abil-
ity to go beyond [20] and to capture instabilities, but does
not achieve the prediction quality of the former ML mod-
els.

3.3 Effective constitutive behavior of ”BCC” cell

3.3.1 Simulation data

This second example follows the structure of the previous
one, but a different cell topology is examined, the ”BCC”
cell, which is displayed in Fig. 9. Hereby, it should be
noted that a periodic arrangement of the cell is considered
through the periodic boundary conditions in all simula-
tions. The cell consists of a body-centered architecture that
has a cubic frame (through periodic extension) added with
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Fig. 7 Evaluation of re-calibrated models WMLW (first column), PMLP (second column) and WMLI (third column) of X cell for calibration cases
uniaxial, biaxial, planar, volumetric and shear (from top to bottom). Continuous lines depict the simulation data, while the dashed lines denote the
re-calibrated models
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Fig. 8 Evaluation of re-calibrated modelsWMLW (first column), PMLP (second column) andWMLI (third column) of X cell for tests 1, 2 and 3 (from
top to bottom). Continuous lines depict the simulation data, while the dashed lines denote the re-calibrated models

further beams on all edges of the cell. This stiffens the
cell, but makes it also susceptible to instabilities already
in uniaxial compression and other simple cases, cf. Fig.
9. Therefore, this second example provides an even more
challenging scenario in terms of complex effective material
behavior.

As in the previous example, 3D simulations for the com-
putation of the effective constitutive behavior of the cell are
conducted. The calibration dataset DC (consisted of the uni-
axial, biaxial, planar, volumetric cases as in the previous
example), is depicted in Fig. 10 by the continuous lines.
The test dataset DT (composes of the test 1, 2 and 3 as in
the previous example) is depicted in Fig. 11 by the continu-
ous lines. All simulation cases of the corresponding datasets
are illustrated over the respective process parameter. In the
shear case, the process parameter is the F12 component of the
effective deformation gradient of the cell, while in all other
cases the F11 is taken as the process parameter. It should be
noted that the BCC cell, compared to the X cell, exhibits fur-
ther instabilities in uniaxial, biaxial and planar compression
(F11 < 1), cf. Fig. 10.

Uni cell Uniaxial compression Volumetric compression

Fig. 9 Elementary unit BCCcell of a periodic arrangement (left), defor-
mation for uniaxial compression (middle), deformation for volumetric
compression (right)

3.3.2 Comparison of calibrated models

In this second example we compare the performance of the
models WMLW, PMLP and WMLI. As in the previous exam-
ple, we conduct the same architecture sweep with the same
48 architecture instances for each ML model. The five best
performing instances of each model with respect to DT are
tabulated in Table 2.

As in the previous example, Table 2 shows that different
architectures achieve comparable quality with respect to DT .
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Fig. 10 Dataset DC (uniaxial, biaxial, planar, volumetric and shear in
respective rows) for BCC cell with calibrated models; continuous lines
denote the data in DC while dashed lines denote the model predictions;
respective components are depicted as shown by the legend on the right;

F components (first column of pots); stress prediction ofWMLW (second
column); stress prediction of PMLP (third column); stress prediction of
WMLI (fourth column)
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Table 2 List of calibrated
models for BCC cell; columns:
model, total number of
parameters, evaluation of
calibrated model with test
dataset DT with MSEW and
MSEP , analogous evaluation of
calibrated model with
calibration dataset DC

Model Par . DT DC
MSEW MSEP MSEW MSEP

WMLW with N [32, 32] 1313 1.03 · 103 1.00 · 103 2.36 · 102 2.31 · 102
with N [32, 32, 32] 2369 1.05 · 103 9.82 · 102 1.78 · 102 1.74 · 102
with N [16, 16] 401 1.11 · 103 1.07 · 103 3.25 · 102 3.14 · 102
with N [32, 32, 32] 2369 1.12 · 103 1.01 · 103 1.80 · 102 1.75 · 102
with N [8, 8, 8] 209 1.15 · 103 1.14 · 103 2.46 · 102 2.35 · 102

PMLP with N [16, 16, 16, 16] 1030 – 1.54 · 103 – 1.86 · 102
with N [32, 32, 32, 32] 3590 – 1.87 · 103 – 1.82 · 102
with N [8, 8, 8, 8] 326 – 2.29 · 103 – 1.90 · 102
with N [16, 16, 16, 16] 1030 – 2.70 · 103 – 3.15 · 102
with N [16, 16, 16] 758 – 2.73 · 103 – 2.54 · 102

WMLI with N [16, 16] 3177 1.81 · 103 1.71 · 103 4.32 · 102 3.99 · 102
with N [16, 16, 16] 5625 1.84 · 103 1.78 · 103 3.78 · 102 3.55 · 102
with N [32] 1449 1.89 · 103 1.72 · 103 5.36 · 102 4.93 · 102
with N [16, 16, 16, 16] 8073 2.18 · 103 1.98 · 103 3.63 · 102 3.39 · 102
with N [32, 32] 10953 2.34 · 103 2.27 · 103 4.45 · 102 4.13 · 102

The hyperelastic models W I/MLW/MLI have been trained on MSEW with DC (second last column) and sorted
by increasing MSEW with DT (third column). The elastic model PMLP has been trained on MSEP with DC
(last column) and sorted by increasing MSEP with DT (fourth column)

Themajor challenge is still the minimization of the dominant
stress errors, which constitute the major part of the MSEW

in the hyperelastic models. For DT , with respect to MSEW

theWMLW achieves better results thanWMLI. With respect to
MSEP theWMLW model performs slightly better than PMLP

and WMLI.
In the following, from Table 2 one instance for each group

is selected: forWMLW the instance withN [16, 16], for PMLP

the instancewithN [8, 8, 8, 8] and forWMLI the instancewith
N [32]. These selected instances will be referred to asWMLW,
PMLP and WMLI, for the sake of brevity.

The selected instances have been evaluated with DC . The
corresponding stress values are depicted in Fig. 10 by dashed
lines. The second column corresponds to the evaluation of
WMLW. The third column shows the predictions of the stress
model PMLP. The right column depicts the predictions of
WMLI. All models are able to capture the main features of
the BCC cell, whereWMLI shows the lowest performance, as
also reflected by the MSEP for DC in Table 2.

Evaluation of the selected instances for DT is displayed in
Fig. 11. As reflected by the corresponding MSEP of Table
2, all models show comparable performance. Recalibration
of the selected instances for 5,000 additional epochs with
the union of DC and DT improves the performance of all
instances for DT , as displayed in Fig. 12.

It should be noted that the selected instance WMLW

with N [8, 8, 8] has the least number of parameters from
the selected ones. Still, it shows an excellent performance,
despite the small size of the core FFNN. In view of the rel-

atively low model-complexity of WMLW and the challenging
nonlinearities of the present cell, its generalization behavior
seen in Fig. 11 is considered as excellent.

4 Conclusions

Thepresentworkproposes newanisotropicmodels for hyper-
elasticity at finite deformations, which combine material
theoretical considerations with machine learning methods.
In this way, data-driven approaches are developed that fulfill
by construction the principle of objectivity andmaterial sym-
metry conditions for any given material symmetry group. In
particular, a ML-based hyperelastic model WMLW through
(18), a ML-based stress model PMLP through (23), and a
ML-extended hyperelastic modelWMLI based on (28), which
is motivated from the work of [20], are introduced. In all ML
models, any suitable ML approach can be inserted. In the
present work, differentiable FFNNs were used in order to
ensure the computation of stresses and potential stress tan-
gents.

These ML-based approaches have been compared to the
highlyflexible theoreticalmodel proposedby [20] and among
themselves. As benchmark examples, simulation data of the
homogenized constitutive behavior of cubic 3D lattice cells
has been gathered. These considered flexible metamaterials
exhibit finite deformations with strong instabilities in vari-
ous loading scenarios depending on the cell topology. In the
first example of the X cell, the approaches of the present
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Fig. 11 Dataset DT (test 1, 2 and 3 in respective rows) forBCCcellwith
calibrated models; continuous lines denote the data in DT while dashed
lines denote the model predictions; respective components are depicted

as shown by the legend on the right; F components (first column of
pots); stress prediction of WMLW (second column); stress prediction of
PMLP (third column); stress prediction of WMLI (fourth column)

work manage not only to capture the instability in volumet-
ric compression, but they also forecast the manifestation of
instabilities in more complex test scenarios not contained in
the calibration data. Thus, they largely outperform the con-
stitutive model of [20]. In the second example of the BCC
cell, the MLmodels are trained with synthetic data of a BCC
cell, which even exhibits several instabilities. All instabilities
are reproduced by the ML models, at what WMLW shows the
best performance.

We conclude that the novel approaches proposed in the
present work not only offer better results than the approach
of [20], but higher flexibility at minor intrusion. Thus, the
hyperelastic ML-based model WMLW based on (18) showed
the best generalization behavior and the best prediction
quality in the investigated examples. The model WMLW

offers an attractive alternative for anisotropic hyperelastic
constitutive models, not only for lattice structures, but for
other anisotropic hyperelastic cases, with potential appli-
cation as material law in finite element simulations. For
non-hyperelastic problems, the stress model PMLP may be
used as an initial structure for future developments of data-

driven constitutive laws. The ML-extended approach WMLI

does not offer the prediction quality of the former ML mod-
els, but shows that mechanical models, as the one of [20],
can be extended at key modeling points in order to capture
new constitutive behavior, as the instabilities of lattice struc-
tures. All models have been calibrated with small amounts
of data based on few mechanical simulations. As shown in
the re-calibration of all ML models, the more data is pro-
vided, the better performance can be achieve due to their
flexibility. Finally, it should be remarked that no single best
performing architecture has been identified in the provided
examples. For theWMLW, based on Tables 1 and 2, it appears
that the small architectureN [8, 8, 8] yields very good results
at low complexity. For the remaining ML models, very dif-
ferent architectures achieve among themselves comparable
quality. It is, therefore, recommended to always perform an
architecture sweep for new hyperelastic microstructures, if
resources are available. This not only helps to obtain a set
of high-quality candidates, but also to allow a model selec-
tion with a sensible compromise between prediction quality
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Fig. 12 Dataset DT (test 1, 2 and 3 in respective rows) for BCC cell
with recalibrated models; continuous lines denote the data in DT while
dashed lines denote the model predictions; respective components are
depicted as shown by the legend on the right; F components (first

column of pots); stress prediction of WMLW (second column); stress
prediction of PMLP (third column); stress prediction of WMLI (fourth
column)

and model complexity based on pragmatic requirements for
applications of interest.
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Appendix: A Auxiliary proofs

In this appendix,weprove someproperties of the hyperelastic
model (18) and of the stress model (23).

We begin with the hyperelastic model (18). For a compact
notation in the proof in this appendix, we drop the parame-
ters p of (18), such that we consider the core scalar function
W̃ (C) with the optional extension (21) leading to the modi-
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fied model of (18)

G̃(C) = ∂W̃

∂C
(C) , (34)

Ŵ0(C) = W̃ (C) − W̃ (I) − G̃(C) · (C − I) , (35)

W0(F) = Ŵ0(FT F) , (36)

W (F) = 1

#(G)

∑

Q∈G
W0(FQ) . (37)

The scalar function W (F) defined in (37) corresponds to
(18) including (21). The function W (F) fulfills objectivity,
the anisotropy conditions and yields a stress free state for
arbitrary rigid body motions. In order to prove these proper-
ties, one elementary feature of group theory is required. Two
finite groups G = {Q1, . . . , Qn} and G ′ = {Q′

1, . . . , Q
′
n}

with #(G) = n = #(G ′), with G,G ′ ⊂ SO(3) are consid-
ered. For Q′

i = RQi , i = 1, . . . , n for any R ∈ G yields,
due to (1) the closure axiom of groups and (2) the relation
Qi �= Q j ⇔ RQi �= RQ j for i �= j and R ∈ SO(3),
that G ′ then is simply a reshuffled list of the elements of G.
This implies that G and G ′ are equal in the sense of sets, i.e.,
G \ G ′ = ∅. The same holds for Q′

i = Qi R, i = 1, . . . , n.
Summations over G or G ′ then yield the exact same results.
This elementary property is used for (37) as follows

W (FR) = 1

#(G)

∑

Q∈G
W0(FRQ)

= 1

#(G)

∑

Q′∈G ′
W0(FQ′)

= 1

#(G)

∑

Q∈G
W0(FQ)

= W (F) ∀F ∈ I nv+, R ∈ G . (38)

This proves that W (F) in (37) fulfills the anisotropy condi-
tions of the group G (3).

We now prove the vanishing stresses at F = I for W (F)

as defined in (37). We define the following auxiliary quanti-
ties

P(F) = ∂W

∂F
(F) (39)

P0(F) = ∂W0

∂F
(F) = FS0(FT F) (40)

S0(C) = 2
∂Ŵ0

∂C
(C) (41)

and consider for a differentiable function f (A) and corre-
spondinggradientG(A) = ∂ f /∂A the following elementary

application of the chain rule

∂ f (AB)

∂A
= G(AB)BT . (42)

Inserting (37) into (39), application of (42) and taking (40)
into consideration yields

P(F) = 1

#(G)

∑

Q∈G
P0(FQ)QT . (43)

The result (43) is a consequence of the group symmetrization
ofW0 in (37), such that P inherits the fulfillment of the group
conditions (7)

P(FR)RT =
⎛

⎝ 1

#(G)

∑

Q∈G
P0(FRQ)QT

⎞

⎠ RT

= 1

#(G)

∑

Q∈G
P0(FRQ)(RQ)T

= 1

#(G)

∑

Q′∈G ′
P0(FQ′)Q′T

= 1

#(G)

∑

Q∈G
P0(FQ)QT

= P(F) ∀F ∈ I nv+, R ∈ G . (44)

This immediately proves that the ML approach (23) fulfills
the stress anisotropy conditions (7).

For the evaluation of P(R) for any R ∈ SO(3), we can
see in (43) that P0(R′) for arbitrary R′ = RQ ∈ SO(3)
is to be computed. This requires the evaluation of S0(I), cf.
(40), which finally leads to the necessary examination of the
gradient of Ŵ0(C), cf. (41). Based on the definition (35) of
Ŵ0, its gradient is computed as

∂Ŵ0

∂C
(C) = ∂W̃

∂C
(C) − G̃(I) = G̃(C) − G̃(I) . (45)

It then becomes visible that for C = I the gradient of Ŵ0

vanishes per construction, implying P(R) = O for any R ∈
SO(3).

Appendix: B Feedforward neural networks

Feedforward neural networks (FFNN) are a special class of
artificial neural networks. A neuron is modeled as the atomic
unit processing the input x through an activation function a
with weights w and bias b as follows

y = a(wx + b) . (46)
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A standard FFNN is a network connecting several neurons
and transporting signals from layer to layer. Such a network
with a total of L layers with input vector x ∈ R

n can be
defined recursively with layer index l = 1, . . . , L as follows

x [0] = x ∈ R
n , (47)

x [l] = a[l](W [l]x [l−1] + b[l]) ∈ R
n[l]

, (48)

y = x [L] ∈ R
n[L]

. (49)

The activation function of layer l, a[l], is applied componen-
twise. The weights and biases of layer l with n[l] neurons are
denoted by W [l] ∈ R

n[l]×n[l−1]
and b[l] ∈ R

n[l]
. The layers

l ∈ {1, . . . , H} with H = L − 1 are referred to as hidden
layers, while the last layer l = L is referred to as the output
layer.

For the potential approach built upon (18), the FFNN
W̃ (C) is constructed by extracting the six independent com-
ponents of C , yielding a six-dimensional input vector x [0] ∈
R
6. The activation functions of all hidden layers are chosen

as the softplus function

a[i](x) = s(x) = log(1 + exp(x)) ∀i = 1, . . . , H (50)

such that the network is differentiable for arbitrary input. The
activation function of the last layer is chosen as the identity
function, such that the scalar output y = x [L] = W [H ]x [H ]+
b[H ] ∈ R

1, i.e., W̃ (C) = y is a linear combination of the
outputs of the last hidden layer. The network is then evaluated
for the given input C = FT F, and group symmetrized to the
final model output W (F) as defined in (18).

For the stress approach (23) built upon (24), the FFNN
gets the six independent components of C as input vector
x [0] ∈ R

6, which is then processed through H hidden layers
with the softplus function as activation function. The output
layer with the identity function as activation layer returns a
six-dimensional output vector y = x [L] ∈ R

6, which corre-
sponds to the six independent components of the symmetric

S̃ = S̃
T
. The network is then evaluated and group sym-

metrized for S as defined in (24). The final model output P
is obtained as P(F) = FS(FT F).

For each of the functions φi0/1/2(I , I I , I I I ) in the hybrid
approach formulated in (26) and (28) we consider a FFNN
with x [0] = (I , I I , I I I ) ∈ R

3, H hidden layers based on
the softplus function and a one-dimensional output layerwith
the identity function as output activation function.

For full clarity, if n1, . . . , nH neurons in the H = L − 1
hidden layers are considered in the just described models,
then the total number of remaining parameters (weights and
biases of all layers) correspoding to the architecture reference
N [n1, . . . , nH ] in (25) are tabulated in Table 3. It should be
noted that for equal number of layers and neurons per layer

Table 3 Total number of parameters of ML models for corresponding
input and output dimension of network

Model Input Output Parameters

WMLW n0 = 6 nL = 1
∑L

l=1(nl−1 + 1)nl

PMLP n0 = 6 nL = 6
∑L

l=1(nl−1 + 1)nl

WMLI n0 = 3 nL = 1 N3
∑L

l=1(nl−1 + 1)nl

the ML-model based on (18), denoted here as WMLW, and
the one based on (23), denoted here by PMLP, have similar
number of parameters. The ML-extended model based on
(28), denoted here byWMLI, can have a much higher number
of parameters. This is due to the usage of an independent
FFNN for each function φi0/1/2 for each isotropic function
Ẽi (C), where N depends on the chosen group symmetric
fourth-order tensors Ci , i = 1, . . . , N .

Appendix: C Effective constitutive behaviour
of soft lattice unit cells

To characterize the effective behaviour of flexible beam-
lattice metamaterials, we homogenize the simulated stress-
strain response of the lattice unit cells under various deforma-
tion scenarios. For this purpose, we use the experimentally
validated micromechanical computational model of [22],
which is based on the nonlinear buckling analysis of beam-
lattice structures and implemented in the commercially
available finite element package Abaqus. First, a linear buck-
ling analysis of the lattice model is performed to obtain
the buckling mode shapes. These are then multiplied by an
imperfection factor and incorporated into the lattice model
as geometric imperfections. These perturbations of the lattice
wireframe can be associated with the inevitable manufactur-
ing imperfections that result in a softer structural response
and smooth buckling scenarios,while instantaneous buckling
would occur for perfect geometries. The large deformation
response of the resultant imperfect lattice model is then
simulated by a quasi-static nonlinear analysis. As detailed
in [22], the total number of imperfection mode shapes is
determined via a structural response convergence analy-
sis and the imperfection factor is estimated by fitting the
converged simulated response to experimentally obtained
load-displacement curves.

To characterize the effective stress response of a unit cell
subjected to an arbitrary effective deformation, an effective
deformation gradient is applied to the unit cell under periodic
boundary conditions (PBC). Considering a 3D Timoshenko
beam finite element model of a typical ”X”-type cubic 8-
node unit cell of size L◦ as shown in Table 4, each unit cell
node has six degrees of freedom (DOFs), including three
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transnational DOFs 1, 2, 3 denoting nodal translations along
axis x, y, z, respectively, and three rotational DOFs 4, 5, 6
denoting nodal rotations about axis x, y, z, respectively. Let
UN (i)

DOF represent the displacement boundary condition on a
DOF ∈ {1, . . . , 6} of node i ∈ {1, . . . , 8} denoted by N (i).
On top of all finite element nodes in unit cell model, six
reference points are created, each having the same six DOFs
as those of the beam element nodes. Let URP(k)

DOF represent
the boundary condition on a DOF ∈ {1, . . . , 6} of reference
point k ∈ {1, . . . , 6} denoted by RP(k). PBC are imposed
to the unit cell by a set of kinematic constraints defined in
Table 4. Subsequently, the arbitrary effective deformation
gradient F = I + H under PBC is applied to the unit cell by
applying displacement boundary conditions on the reference
point DOFs as

H = 1

L◦

⎡

⎢
⎣

URP(1)
1 URP(4)

1 0

0 URP(2)
2 URP(5)

2

URP(6)
3 0 URP(3)

3

⎤

⎥
⎦ , (51)

where H is the effective displacement gradient tensor and I is
the identity tensor.Without loss of generality, the zero entries
in the effective displacement gradient tensor are inevitable
due to technical reasons in simultaneous implementation of
PBC and prevention of rigid body motions. The rigid body
motions (translations and rotations) of the unit cell are pre-
vented by applying fixed boundary conditions on the unit cell
nodes as given in Table 5.

From the simulated response of the unit cell to the applied
deformation gradient, the effective first Piola-Kirchhoff
stress tensor P(F) is calculated based on the reaction forces
on reference points and fixed unit cell nodes as

P = 1

L◦2

⎡

⎢
⎣

RFRP(1)
1 RFRP(4)

1 RFN (7)
1

RFN (7)
2 RFRP(2)

2 RFRP(5)
2

RFRP(6)
3 RFN (7)

3 RFRP(3)
3

⎤

⎥
⎦ , (52)

where RFN (i)
DOF is the reaction force on a particular DOF of

unit cell node i and RFRP(k)
DOF is the reaction force on a specific

DOFof reference point k. Here, in the case of a lattice unit cell
modeled by beam finite elements, this approach is equivalent
to continuum averaging of P . Likewise, the effective strain
energy density W (F) is computed from the discrete strain
energy of the beam model divided by the volume of the unit
cell L◦3.

For characterizing the effective constitutive behaviour of
a lattice unit cell type in terms of W (F) or P(F), sim-
ulated data is generated via five standard tests that are
commonly used for experimental characterization of hyper-
elastic material models, including uniaxial, biaxial, planar,
and volumetric tension and compression, as well as simple
shear. The effective displacement gradient for these stan-

Table 4 Constraint definitions to apply an arbitrary deformation gradi-
ent tensor under PBC to a typical 8-node cubic unit cell

z x

y

5
6

1

8

2
4

3

7

Constraint definition: UN (i)
DOF −UN ( j)

DOF = URP(k)
DOF

i j k DOF

2 1 1 1

3 4 1 1

6 5 1 1

7 8 1 1

5 1 2 2

6 2 2 2

7 3 2 2

8 4 2 2

4 1 3 3

3 2 3 3

7 6 3 3

8 5 3 3

6 2 4 1

7 3 4 1

8 5 5 2

7 6 5 2

3 4 6 3

7 8 6 3

URP(2)
2 = URP(3)

3 only for uniaxial test along direction 1

Constraint definition: UN (i)
DOF = URP(k)

DOF
i k DOF

1, . . . , 8 7 4

1, . . . , 8 7 5

1, . . . , 8 7 6

Table 5 Fixed boundary conditions to prevent rigid body motion of
unit cell under PBC

Fixed boundary condition definition: UN (i)
DOF = 0

i DOF

6 1

8 2

3 3

7 1, 2, 3
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dard tests and the corresponding boundary conditions are
given in Table 6. We have further designed three test cases to
evaluate the developed constitutive model. The displacement
gradient tensor and the corresponding boundary conditions
for the evaluation tests 1 to 3 are also given in Table 6. In
the finite element simulations, each reference point DOF is
either subjected to an applied boundary condition or free to
move, on top of the PBC constraints. In the former case, the
corresponding reaction force is read and used to calculate
the corresponding first Piola-Kirchhoff stress component by
(52). In the latter case, the free DOF is measured to calcu-
late the corresponding displacement gradient component by
(51). As shown in Table 6, in all tests, the applied boundary
conditions are proportional with the proportionality constant
λ ∈ [−1, 1], where λ = 0 denotes the undeformed refer-
ence configuration, λ = −1 corresponds to the maximum
compressive deformation state, and λ = 1 represents the
maximum tensile deformation state.
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