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Transient Thermal Model for Ball Bearings in
Electrical Machines

Felix Hoffmann, Donatas Silys, Martin Doppelbauer

Abstract—With the trend towards smaller and high power-
density machines, the thermal behavior of the machine is
becoming increasingly important. Besides the windings and
the magnets in Permanent Magnet Synchronous Machines
(PMSMs), also the bearings are one of the critical components.
The rotation of the balls inside a ball bearing significantly
influences the thermal behavior of a bearing itself. Approaches
from literature neglecting the thermal ball resistance or keeping
it constant over the whole speed range do not give an accu-
rate temperature estimation in all speed ranges for electrical
machines. Therefore, we present a novel modeling approach
with a speed-dependent and speed-independent thermal ball
resistance. Contact resistances, convection phenomena and the
power loss inside the bearing were calculated as proposed in
literature. A brief summary of calculating the losses and contact
resistances in a ball bearing is presented. It is shown that the
ball resistance decreases in exponential shape with an increasing
rotational speed of the ball. The ball resistance is not dependent
on the diameter of the ball, if it is normalized to its stationary
value and a function of the circumferential speed. The speed-
dependent resistance equals the stationary resistance at about
280 mm s™. With this approach, the temperature distribution
of a ball bearing can be accurately determined over the entire
speed range, whereas existing literature approaches are only
accurate in either the low or high speed range.

Index Terms—ball bearings, electrical machines, transient
modeling, lumped circuit analysis

I. INTRODUCTION

While designing high power-density electrical machines,
it is essential to have a knowledge of the thermal behavior
of the machine. Besides the windings and the magnets in
Permanent Magnet Synchronous Machines (PMSMs), also
the bearings are one of the most critical components. In
the absence of the rotor cooling, most of the heat generated
in the magnets and the rotor sheets needs to flow through
the bearings before it is dissipated through the water jacket.
As the stator has most likely a comparable or even higher
temperature, the heat flux from the rotor across the air gap
to the stator can be neglected. To model the transient behavior
of ball bearings analytical lumped circuit analysis is used. A
coupled structural-thermal numerical approach significantly
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raises the complexity and is therefore no option in the
design process. To get a thermal behavior of the bearings
in a reasonable time, a lumped circuit needs to be set up
and parametrized. Therefore, the thermal resistances of the
contacts between races and balls and the thermal resistance
of the ball itself needs to be known precisely as well as
the convection phenomena inside the bearing. The formation
of the contact surfaces and therefore the contact resistances
are well known in literature [1]-[3] likewise the losses in a
ball bearing [4]. Furthermore, there are several approaches
available to model the Dean flow [5], [6] and Taylor Couette
flow [7], which are the dominant convection phenomena in
ball bearings. For the conductive thermal resistance of the
balls itself, the approaches in literature are limited. Nakajima
[3] describes the thermal contact resistances depending on the
acting forces on the bearing and validated them including the
overall thermal resistance of the bearing on the test bench.
He neglects the thermal ball resistance and takes the sum of
both contact resistances as the only conductive heat path in
the bearing. Isert [8] observed the heat transfer through a ball
bearing at low angular velocities and assumes a constant ther-
mal resistance of the balls. However, the calculations are only
done at standstill. As the thermal behavior of the bearings at
standstill or low angular velocities is not of high interest,
a model for all rotational speeds is needed. Bossmanns [9]
and Uhlmann [10] observed high speed spindles, which are
operating in the speed range of electrical machines used in
automotive applications. In their observations the conductive
resistance through the ball is neglected. This leads especially
at low speeds to an inaccurate estimation of the temperature
behavior. A combination of the beforementioned approaches
was analysed by Kylander [11]. He tested two ball bearings in
electrical machines and set up a data regression for the overall
thermal resistance of the bearing, which is linearly decreasing
for increasing rotational speed of the inner ring. The problem
is that this regression is limited to bearings with a mean
diameter between 46 mm and 75mm. To come over the
aforementioned problems, we are using numerical methods
to identify the thermal resistance of the balls depending on
their rotational speed. The thermal resistance of the balls is
split up in a speed-independent and a speed-dependent part.
Therefore, the conductive resistance of the ball bearing can
be modeled accurate over the whole speed range leading to
a more accurate temperature behavior of the bearing. In the
following, a ball bearing used in electrical machines with a
rotating inner ring is observed.



II. THERMAL MODELING

In the following section the different parts of a ball
bearing will be analyzed and its main thermal resistances
will be calculated to parametrize the lumped circuit.

A. Power Loss

For the transient modeling of a ball bearing the knowledge
of the power loss in the bearing is essential. There are
different friction effects, which contribute to the total power
loss. The main effect is the friction between the balls and
the races due to rolling and sliding of the balls. For bearings
used in electrical machines for automotive applications, the
friction between the possible sealing and the rings as well as
the drag friction caused by an optional oil bath is neglected.
The total power loss inside the bearing can be calculated as

Ploss = Wi (Troll + Tslidc) 5 (1)

where w; describes the angular velocity of the inner ring, 750
the rolling torque and Tj;q. the sliding torque due to friction.
Both friction torque components are calculated according to
[4]. The rolling torque component can be described by

Troll = ¢ish¢rsGrr(Vn)0‘6v (2)

where ¢;q, describes the inlet shear heating reduction factor,
¢rs the kinematic starvation reduction factor, GG,, a bearing
type and load depending factor, v the kinematic viscosity of
the lubricant and n the rotational speed of the inner ring. The
sliding torque component can be expressed as

Tiide = GSI,USL 3

Therein g describes the sliding friction coefficient and Gy
a bearing type and load-dependent factor.

B. Convection Coefficients

Another important heat path from the inner ring to the
outer ring is due to convection. In a ball bearing two
phenomena occur, which will be described in the following.
To have a better understanding of the variables, Fig. 1 shows
a schematic of a ball bearing. The phenomena are the Dean
flow, which describes the heat transfer between the races and
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Fig. 1. Schematic of a ball bearing.

the ball and the Taylor Couette flow, which describes the
heat transfer between the rings. Both phenomena are speed
dependent. The Dean flow, which occurs in curved channels
where the radius of the curvature is much larger than the
channel width, can be characterized by the Dean number [6]

2rm

4. 112
De = Repe [ r } . @

Therein d, describes the raceway diameter and 7, the mean
radius of the bearing. The Reynolds number for the Dean
flow is defined by

(2
Repe = ‘”Vb, ©)

where d}, describes the ball diameter. Using the Dean number
and the following Manlapaz-Churchill correlation [5], which
is based on a regression analysis, the Nusselt number can be
obtained as

/o7 1/3
4.343\° De\ */?
Nup, = l<3.657+ ) 4 1.158 (e) (6)
T T2

with z; = (1+ Di‘;’;T)Q and zo = 1+ %377, where Pr
denotes the Prandtl number. Using (6), the heat transfer
coefficient of the Dean flow can be calculated to
- NuDe)\f
==

where A¢ describes the thermal conductivity of the Iubricant-
air mixture.

For the Taylor Couette flow, we can directly calculate the
Nusselt number according to [7]

)

QDe

kRe2 N\ %2

Nur, = 0.22 (eT) Pro3, (8)
Fy

Therein k = f_—i denotes the ratio between the gap length of

the two races and the inner radius of the outer race and a

geometrical factor defined by

0.05766(1 + k/2)

F, = .
£70.0571(1 — 0.652k) + 0.00056(1 — 0.652k) 1 ©)
The Reynolds number in this case is defined by
iTi0d,
Rer, = 2ilo% (10)

Using (8) and (10) we can directly calculate the heat transfer
coefficient for the Taylor Couette flow

o NUTaAf
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C. Contact Resistance

If two curved surfaces are being physically pressed to-
gether, an elliptical contact zone is formed [2]. With the
resulting contact surface, the contact resistance can be cal-
culated, which is an essential part of the conductive heat
path throughout a bearing. The resulting contact resistance is
divided into two separate contact resistances, one at the inner



and one at the outer contact area. They can be calculated for
one ball according to [3] as follows

\I/(ai o / bi o)

Rio=—7—7""-, 12
’ 4/\(1170 (12)
with U(a;o/bio) = %Kl (e, g) Therein the indices % and o
denote the inner and outer race, A the thermal conductivity
of the bearing material, a the semi-major half axis of the
contact area, b the semi-minor half axis, K; the complete
elliptic integral of first kind and e the eccentricity of the half
axes. The total contact resistance of one ball assuming the

same material for the ball and both races is given by [3]
1 [0 (ai/b) n U (ao/bo)

Rcont act —
2\ a; ao

13)

The contact areas between the balls and the races are depen-
dent on the axial and radial loads acting upon the bearing
and must be calculated separately for each ball. The axial
load can normally be neglected in comparison to the radial
load in applications such as electrical machines, where radial
ball bearings are used. Fig. 2 shows the distribution of the
radial load F, on the balls. The balls in the upper half are
not loaded at all. The load on each ball can be calculated as

F,=F. coss (nd), for nf < g (14)

Depending on the force on each ball, the contact areas and
the thermal contact resistances are calculated. The contact
resistance of the whole bearing is then given by the paral-
lel connection of all contact resistances. In [2], a detailed
derivation for calculating the contact surfaces can be found.

D. Ball Rotation

To model the transient thermal resistance of the balls
inside the bearing, which changes due to the changing
rotational speed, it is indispensable to know the angular
velocity of the balls. The resulting formula for the rotational
ball velocity calculation is shown in the following, whereas
a detailed explanation can be found in [12]. The average
angular velocity of the balls in dependency on the angular
velocity of the inner ring is given by

Wi 1

e R 15
INGEND) (13)
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Fig. 2. Graphical representation of the radial load distribution on each ball.
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where dy, denotes the mean bearing diameter. This implies
that the ball is rotating in the opposite direction as the inner
race. For the heat transfer it is indifferent in which direction
the balls are rotating.

E. Equivalent Circuit

Fig. 3 shows the resulting equivalent circuit diagram for
the ball bearing. The single ball shown in the figure represents
all balls in the bearing. The previously discussed theory is
applied to parametrize the resistances in the lumped circuit.
The ball is split up in a speed-independent and a speed-
dependent thermal resistance. As the speed dependent one
is difficult to calculate analytically, it is parametrized by
Finite Element Analysis (FEA) simulations, which will be
discussed in section IV-D. The contact resistances are calcu-
lated as stated in section II-C and the convection phenomena,
described in section II-B, are combined into one thermal
resistance. The conductive heat paths in the inner and outer
races are not shown for the sake of simplicity. The cage is not
modelled as it just holds the balls in its desired position and
serves as an additional thermal mass, but does not contribute
to the heat transfer between the two races. The generated heat
is inserted with 50 % to the ball and 25 % to each contact
region according to [11].

outer ring

inner ring

Fig. 3. Equivalent circuit of the ball bearing.



III. DEVICE UNDER TEST

The observed bearing is a deep groove ball bearing of type
61807 — 2RZ from SKF [4]. This means that the bearing is
fitted with two low frictional seals. Fig. 4 shows an graphical
representation of the bearing.

outer ring —
A
{

sealing

cage

inner ring

Fig. 4. Used ball bearing of type 61807 — 2RZ from SKF [4].

The ball bearing consists of 19 balls with a cage that holds
the balls in position. The inner diameter of the inner race is
given by 35mm and the outer diameter of the outer race
is given by 47 mm. The bearing has a width of 7mm. The
bearing is chosen for rotational speeds up to 15000 min!
and is therefore applicable for automotive applications. The
material of the balls and the races is stainless steel. The
most important geometry parameters, thermal material char-
acteristics and parameters for the analytical calculations are
summarized in Table I. The thermal material characteristics
are assumed to be not dependent on temperature.

TABLE 1
BEARING PARAMETERS

Parameters Values
number of balls 19
inner diameter 35 mm
outer diameter 47 mm
width 7 mm
ball diameter 3.5 mm
speed limit 15000 min!
thermal conductivity 60.5 %
J

specific heat capacity 434

volumetric mass density 7850 =3

IV. SIMULATION RESULTS

In the following section, the lumped circuit parameters of
the previous section are calculated in order to simulate the
overall behavior of the ball bearing. For all simulations the
bearing is loaded with a radial force of 500 N.

A. Power Loss

The power loss of the machine is an essential parameter
for modeling the bearing as the heat is directly inserted in
the machine. Fig. 5 shows the result for the rolling and
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Fig. 5. Rolling torque and sliding torque due to friction (blue) and power

loss (red) of the observed ball bearing at an operating temperature of 60 °C
for speeds of the inner ring up to 15000 min~! and a radial load of 500 N.

sliding torque as well as the overall power loss for speeds
of the inner ring up to 15000min!. The power loss of a
ball bearing is dependent on its operating temperature and
therefore for the sake of simplicity just the results for an
operating temperature of 60°C are displayed. The rolling
torque is increasing up to about 18.7 N mm at 6000 min! and
is decreasing afterwards in a linear shape, whereas the sliding
torque is decreasing from 11.5 N mm down to 3.9 Nmm at
about 1800 min™! and is staying constant afterwards. This is
due to the fact that the lubrication is equally distributed at
this point. Hence, the power loss is increasing from 0 W up
to 27.1 W at 15000 min*.

B. Convetion Coefficients

Fig. 6 shows the heat transfer coefficients of the Dean
and Taylor Couette flow in dependency on the speed of the
inner ring. It can be seen that both heat transfer coefficients
are highly dependent on the rotational speed of the inner
race. For low speeds up to 1000 min™! a steep rise for the
heat transfer coefficients can be seen, whereas the gradient is

400
— 300
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~ 200
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Taylor Coutte
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Speed in 1000 min™!

Fig. 6. Heat transfer coefficients of the Taylor Couette flow (blue) and the
Dean flow (red) depending on the rotational speed of the inner ring.



decreasing thereafter. This is due to the fact that the flow is
laminar for low speeds and turbulent for high speeds, leading
to an increasing heat transfer coefficient according to [5].
The heat transfer coefficient equals 376 m\ng at 15000 min™!
for the Dean flow and 265 m‘QIK for the Taylor Couette flow.
The higher heat transfer coefficient for the Dean flow can be
explained by a more turbulent flow between the race and the
ball as the ball is rotating and the area where the vortices are
forming is comparable small. Both effects lead to a higher
heat transfer coefficient in comparison to the Taylor Couette
flow, where the area between the inner ring and outer ring is
comparable large and the outer ring is not rotating.

C. Contact Resistance

In radial ball bearings used in electrical machines the axial
load is low compared to the radial load. Thus, only the sum
of both contact resistances depending on the radial load is
observed. Fig. 7 shows the contact resistance of the loaded
balls. The number of the balls equals the one in Fig. 2. The
contact resistance of the unloaded balls is infinite large and
can be neglected. The contact resistance is decreasing with an
increasing load as the ball is pressed more into the raceway.
Thus, the contact surface between the ball and the ring is
increasing. The same applies for the different balls. The ball,
where the radial load vector is pointing to, has a much higher
load and therefore a larger contact surface resulting in a lower
thermal contact resistance. The total contact resistance of the
ball bearing results with the parallel connection of the contact
resistance of each ball. For the lumped circuit the contact
resistance of each ball is assumed to be constant over time.
This can be assumed as the inner race is rotating and the
load on every ball changes rapidly. Fig. 8 depicts the total
contact resistance between the balls and the inner and outer
race. The thermal contact resistance decreases in exponential
shape from 4.54K/W and 4.72K/W for 100N down to
1.67K/W and 1.74 K/W for a radial load of 2000 N for the
inner and outer ring. The contact resistance is decreasing for
an increasing radial load for the same reason as explained
before. The contact resistance of the inner ring is slightly

60 Ball 1
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=2 Ball 4
-5‘ 40 |- Ball 5 [
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Fig. 7. Thermal contact resistance of the loaded balls of the inner ring
dependent on the radial load.
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Fig. 8. Thermal contact resistance of the inner ring (blue) and outer ring

(red) dependent on the radial load.

lower than the outer one as the contact surface is increasing
the more curved the race is [2]. Since the inner ring is more
curved, the contact resistance is lower. Hence, the greater
the difference in the curvature of the races, the greater the
difference in the thermal contact resistance.

D. Ball Resistance

The main improvement of the novel modeling of ball
bearings is a changing conductive thermal resistance of
the balls with changing rotational speed. Since analytical
calculation methods are limited, FEA simulations are used to
parameterize the resistance. Therefore, the thermal resistance
depending on the rotational speed of the balls from 0 up to
50000 min! is simulated. The simulations were performed
with ANSYS Mechanical. With section II-D it can be calcu-
lated that the rotational speed of the inner ring is 5.74 times
lower than the one of the balls for the chosen load. Fig. 9
shows the result of the simulations. It is assumed that all
balls are rotating with the same angular velocity due to the
same reason as explained above for the averaging load. The
thermal resistance of the ball is decreasing exponentially from
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Fig. 9. Thermal resistance of all balls combined depending on the ball

speed from standstill up to 50 000 min'.



2.5K/W, which corresponds to its value at standstill, down
to about 0.16 K/W at 50000 min. The thermal resistance
reaches 50 % of its stationary value at about 2000 mint. It
can be seen that the behavior can not be described by a single
exponential function, but a superposition of two exponential
functions, as there are two effects happening for the heat
transfer. The first one is the conductive heat path of the ball
itself. Besides the conduction path, the heat will also flow
from the inner race to the outer race due to the rotation of
the ball. The heat is transported at the surface of the ball.
The effect of the heat transfer due to rotation is increasing
with increasing rotational speed and therefore the conductive
ball resistance is converging to zero for infinite ball speed.
Another important parameter for the conductive heat resis-
tance of the rotating balls is the dependency on the ball
diameter. To analyze this behavior equivalent simulations
as before were performed. We will separate the speed-
depending resistance part from the speed-independent part
in the following. Fig. 10 shows the speed-dependent thermal
resistance for different ball diameters normalized to their
speed-independent resistance depending on the circumferen-
tial speed of the balls. The representation is chosen to have
a better comparison between the balls. It can be seen that
regardless of the ball diameter, the rotational thermal resis-
tance depending on the circumferential speed is decreasing
the same way. The differences in the ball diameters of up to
7% are due to simulation uncertainties of the mesh grid.
The circumferential speed, where the two effects of heat
transfer due to conduction due to rotation are equal is at
about 280 mms™t. Below this certain speed the conductive
heat transfer is predominant, whereas the heat transfer due to
the ball rotation is dominant beyond this point. Thus, the sim-
ulation results show that independent from the ball diameter,
the rotational thermal resistance can be parametrized.

E. System Simulation

The lumped circuit is fully parametrized with the sections
before and can be used to simulate scenarios, which are too
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Fig. 10. Speed-independent thermal resistance of the balls normalized to

its speed-independent resistance depending on the circumferential ball speed
and ball diameters of 2.5 mm (blue), 3.5 mm (red) and 4.5 mm (green).

complex to carry out in a coupled thermal-structural FEA
simulation. The convection coefficients and heat loss inside
the bearing will be calculated depending on the actual speed
of the inner ring and the mean temperature of the bearing.
A heat flux from the rotor of 10 W flowing through the
bearing is assumed. To simulate the cooling, heat convection
is assumed at the outer surface of the outer ring to a reference
temperature of 50 °C.

The first simulation describes the temperature behavior of
the ball bearing for a speed of the inner ring of 4000 min~!
until 150 s. Thereafter, the speed is increased to 12 000 min!
until 300s and is decreased to 6000 min! afterwards. Fig. 11
depicts the results. The temperature of the inner and outer
ring as well as the one of the ball is increasing up to
their steady-state values of 88.5°C, 76.3°C and 55.4°C
at about 100s for a speed of 4000min!. After the speed
increases to 12000 min™!, the temperatures are increasing
to 107.4°C, 97.2°C and 60.6 °C in exponential shape. The
temperatures are increasing as the power loss inside the
machine is increasing and the decreasing ball resistance is
not dominant in these speed ranges according to Fig. 9. For
the same reason, the temperatures are decreasing again to
92.9°C, 81.4°C and 56.7°C after the speed decreases to
6000 min™t. The outer ring shows the coolest temperature as
its thermal path to the cooling system is the shortest. On the
contrary the inner ring is the hottest component as its thermal
path is the longest. The temperature drop between the ball
and the outer ring is larger compared to the temperature drop
between the inner ring and the ball. This is due to the fact
that the heat flux through the outer contact resistance is larger
as it also consists of the heat losses of the bearing compared
to the inner contact resistance. Due to the linear relationship
between heat flux and temperature drop, the temperature drop
is larger between the ball and the outer ring.

To see the importance of the novel modeling approach, the
approaches from [8] and [10] are implemented and compared
with each other for the same boundary conditions as before.
Fig. 12 depicts the steady-state ball temperatures for a speed
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Fig. 11. Transient temperature behavior for the inner ring (blue), outer ring
(green) and ball (red) for an radial load of 500 N, a rotor flux of 10 W and
speeds of 4000 min~!, 12000 min™! and 6000 min™!.



of the inner ring from standstill up to 15000 min™'. It can
be seen that the model, where the stationary ball resistance
is kept constant over the speed range [8] starts at 86.8 °C
at standstill equivalent to our model. In comparison, the
approach with neglecting conductive ball resistance [10]
starts at 66.2 °C. This temperature difference of 20.6 K is
directly given by the temperature drop over the thermal ball
resistance. For increasing speeds the steady-state ball temper-
atures for the approach of a constant resistance are increasing,
but the temperatures of our approach are decreasing up to
2000 min™'. This is due to the fact that the ball resistance is
decreasing faster than the power loss inside the ball bearing
is increasing with increasing speed. Our novel approach is
converging to the approach with an neglected ball resistance
and reaches it about 5500 min~!. At this speed the conductive
ball resistance can be neglected and the approaches are
reaching 104.4°C at 15000min™!. The approach with a
constant ball resistance is reaching 134.2 °C, which gives an
overestimation of the actual temperature of 29.8 K.

This simulation shows the importance of the novel approach
to split up the thermal resistance of the ball in a speed-
dependent and speed-independent part. The approach with
a constant ball resistance is just valid at standstill, but
overestimates the temperature for higher speeds. On the other
hand, the approach with neglecting ball resistance is just
valid at high speeds, whereas our novel approach gives an
accurate temperature estimation over the whole speed range.
Especially in a use case, where the electrical machine stops
and needs to accelerate afterwards, the heat flows from
the rotor through the bearings, which would result in an
underestimation of the actual temperature for a model with
a neglected ball resistance.

V. CONCLUSION AND OUTLOOK

We have briefly discussed the contact resistances, convec-
tion phenomena and power loss inside a bearing. We have
extended the thermal model of a ball bearing with a speed-
dependent and speed-independent thermal resistance for the
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Fig. 12. Comparison of the steady-state ball temperatures over the whole

speed range of the bearing for our approach (blue), a constant ball resistance
(red) [8] and a neglected ball resistance (green) [10].

balls itself and have parametrized them with FEA simula-
tions. Hence, we are able to simulate a speed-dependent heat
transfer mechanism. Therefore, we are able to determine
the temperature behavior precisely over the whole speed
range. The total thermal resistance of the ball is decreasing
in exponential shape and the speed-dependent and speed-
independent part are equal for a circumferential speed of
the balls of 280 mm s™!. It was shown that for the used ball
bearing the steady-state temperatures of the balls over the
speed range of the bearing is first decreasing until about
2000 min™! and increasing afterwards. The novel approach
equals the approach of a neglected ball resistance at about
5500 min™t. Currently we are setting up a test bench to
measure the temperatures of the ball bearing to validate the
results for the investigated ball bearing.
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