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Abstract. We initiate a study of pseudorandom encodings: efficiently
computable and decodable encoding functions that map messages from
a given distribution to a random-looking distribution. For instance, every
distribution that can be perfectly and efficiently compressed admits such
a pseudorandom encoding. Pseudorandom encodings are motivated by a
variety of cryptographic applications, including password-authenticated
key exchange, “honey encryption” and steganography.

The main question we ask is whether every efficiently samplable distri-
bution admits a pseudorandom encoding. Under different cryptographic
assumptions, we obtain positive and negative answers for different fla-
vors of pseudorandom encodings, and relate this question to problems
in other areas of cryptography. In particular, by establishing a two-way
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relation between pseudorandom encoding schemes and efficient invertible
sampling algorithms, we reveal a connection between adaptively secure
multiparty computation for randomized functionalities and questions in
the domain of steganography.

1 Introduction

The problem of compression has been extensively studied in the field of infor-
mation theory and, more recently, in computational complexity and cryptog-
raphy [23,27,40,42]. Informally, given a distribution X, compression aims to
efficiently encode samples from X as short strings while at the same time being
able to efficiently recover these samples. While the typical information-theoretic
study of compression considers the case of compressing multiple independent
samples from the same source X, its study in computer science, and in partic-
ular in this work, considers the “single-shot” case. Compression in this setting
is closely related to randomness condensers [18,34,38,39] and resource-bounded
Kolmogorov complexity [32,33] — two well-studied problems in computational
complexity. Randomness condensers, which relax randomness extractors, are
functions that efficiently map an input distribution into an output distribu-
tion with a higher entropy rate. A randomness condenser can be viewed as an
efficient compression algorithm, without a corresponding efficient decompres-
sion algorithm. The resource-bounded Kolmogorov complexity of a string is the
smallest description length of an efficient program that outputs this string. This
program description can be viewed as a compressed string, such that decoding
is efficiently possible, while finding the compressed string may be inefficient.

An important property of efficient compression algorithms, which combines
the efficiency features of randommness condensers and resource-bounded Kol-
mogorov complexity, is their ability to efficiently produce “random-looking”
outputs while allowing the original input to be efficiently recovered. Despite
the large body of work on compression and its computational variants, this fun-
damental property has, to our knowledge, never been the subject of a dedicated
study. In this work, we fill this gap by initiating such a study. Before formalizing
the problem, we give a simple motivating example.

Consider the goal of encrypting a sample  from a distribution X (say, a ran-
dom 5-letter English word from the Merriam-Webster Dictionary) using a low-
entropy secret key k. Applying a standard symmetric-key encryption scheme
with a key derived from k gives rise to the following brute-force attack: Try
to decrypt with different keys until obtaining z’ in the support of X. In the
typical case that wrong keys always lead to x’ outside the support of X, this
attack successfully recovers x. Variants of this attack arise in different scenarios,
including password-authenticated key exchange [4], honey encryption [30], sub-
liminal communication and steganography [26], and more. A natural solution is
to use perfect compression: if x can be compressed to a uniformly random string
Z € {0,1}" before being encrypted, it cannot be distinguished from another
random string &' € {0,1}" obtained by trying the wrong key. Note, however,



that compression may be an overkill for this application. Instead, it suffices to
efficiently encode x into a (possibly longer) pseudorandom string from which x
can be efficiently decoded. This more general solution motivates the question we
consider in this work.

Encoding into the Uniform Distribution. We initiate the study of encoding distri-
butions into a random-looking distribution. Informally, we say that a distribution
ensemble X, admits a pseudorandom encoding if there exist efficient encoding
and decoding algorithms (Ex,Dx), where Dx is deterministic, such that

Pr [y « X,: Dx(Ex(y)) = y| is overwhelming and (1)
{y<—X,\: Ex(y)}%Un()\) (2)

Here, “~” denotes some notion of indistinguishability (we will consider both
computational and statistical indistinguishability), and the probability is over
the randomness of both Ex and X,. The polynomial n()) denotes the output
length of the encoding algorithm Eyx. We refer to Eq. (1) as correctness and
to Eq. (2) as pseudorandomness. It will also be useful to consider distribution
ensembles parameterized by an input m from a language L. We say that such a
distribution ensemble (X,;,)mer admits a pseudorandom encoding if there exist
efficient algorithms (Ex, Dx) as above satisfying correctness and pseudorandom-
ness for all m € L, where Ex and Dx both additionally receive m as input. Note
that we insist on the decoding algorithm being efficient. This is required for
our motivating applications.! Note also that encoding and decoding above are
keyless; that is, we want encoded samples to be close to uniform even though
anyone can decode them. This is a crucial distinction from, for instance, encryp-
tion schemes with pseudorandom ciphertexts, which look uniformly distributed
to everyone except the owner of the decryption key, and cannot be efficiently
decrypted except by the owner of the decryption key. Here, we seek to simulta-
neously achieve pseudorandomness and correctness for all parties.

Our motivation for studying pseudorandom encodings stems from the fact
that this very natural problem appears in a wide variety of — sometimes seemingly
unrelated — problems in cryptography. We already mentioned steganography,
honey encryption, and password-authenticated key exchange; we will cover more
such connections in this work. Yet, this notion of encoding has to our knowledge
never been studied systematically. In this work we study several natural flavors
of this notion, obtain positive and negative results about realizing them, and
map their connections with other problems in cryptography.

The main focus of this work is on the hypothesis that all efficiently sam-
plable distributions admit a pseudorandom encoding. Henceforth, we refer to
this hypothesis the pseudorandom encoding hypothesis (PREH).

For describing our results, it will be convenient to use the following gen-
eral notion of efficiently samplable distributions. A distribution family ensemble

! Without this requirement, the problem can be solved using non-interactive commit-
ment schemes with the additional property that commitments are pseudorandom
(which exist under standard cryptographic assumptions).



(Xm)mer (for some language L C {0,1}*) is efficiently samplable if there exists
a probabilistic polynomial time (PPT) algorithm S such that S(m) is distributed
according to X,, for every m € L. In case the distribution does not depend on
additional inputs, L can be considered equal to N.

Overview of Contributions. Following is a brief summary of our main contribu-
tions. We will give an expanded overview of the contributions and the underlying
techniques in the rest of this section.

— We provide a unified study of different flavors of pseudorandom encodings
(PRE) and identify computational, randomized PRE in the CRS model as a
useful and achievable notion.

— We establish a two-way relation between PRE and the previously studied
notion of invertible sampling This reveals unexpected connections between
seemingly unrelated problems in cryptography (e.g., between adaptively
secure computation for general functionalities and “honey encryption”).

— We bootstrap “adaptive PRE” from “static PRE” As a consequence, one can
base succinct adaptively secure computation on standard iO as opposed to
subexponential iO [15].

— We use PRE to obtain a compiler from standard secure multiparty computa-
tion (MPC) protocols to covert MPC protocols.

1.1 Flavors of Pseudorandom Encoding

The notion of pseudorandom encoding has several natural flavors, depend-
ing on whether the encoding algorithm is allowed to use randomness or
not, and whether the pseudorandomness property satisfies a computational or
information-theoretic notion of indistinguishability. We denote the corresponding
hypotheses that every efficiently samplable distribution can be pseudorandomly
encoded according to the above variants as PREH::d, PREH;:d, PREHd;Ct and
PREHZ! 2

Furtsher, we explore relaxations which rely on a trusted setup assumption: we
consider the pseudorandom encoding hypothesis in the common reference string
model, in which a common string sampled in a trusted way from some distribu-
tion is made available to the parties. This is the most common setup assumption
in cryptography and it is standard to consider the feasibility of cryptographic
primitives in this model to overcome limitations in the plain model. That is,
we ask whether for every efficiently samplable distribution X, there exists an

2 We note that not all efficiently samplable distributions can be pseudorandomly
encoded with a deterministic encoding algorithm. For instance, a distribution which
has one very likely event and many less likely ones requires one specific encoding to
appear with high probability. Thus, we formally restrict the deterministic variants
of the pseudorandom encoding hypothesis to only hold for “compatible” samplers,
which still results in interesting connections. In this overview, however, we ignore
this restriction.



efficiently samplable CRS distribution and efficient encoding and decoding algo-
rithms (Ex,Dx) as above, such that correctness and pseudorandomness hold,
where the encoding and decoding algorithm as well as the distinguisher receive
the CRS as input, and the distributions in Egs. (1) and (2) are additionally over
the choice of the CRS.

Considering distributions which may depend on an input m € L further
entails two different flavors. On the one hand, we consider the notion where
inputs m are chosen adversarially but statically (that is, independent of the
CRS) and, on the other hand, we consider the stronger notion where inputs m
are chosen adversarially and adaptively depending on the CRS. We henceforth
denote these variants by the prefix “c” and “ac”, respectively.

Static-to-Adaptive Transformation. The adaptive notion, where inputs may be
chosen depending on the CRS; is clearly stronger than the static notion. However,
surprisingly, the very nature of pseudorandom encodings allows one to apply an
indirection argument similar to the one used in [11,12,25], which yields a static-
to-adaptive transformation.

Theorem (informal). If all efficiently samplable distributions can be pseudo-
randomly encoded in the CRS model with a static choice of inputs, then all
efficiently samplable distributions can be pseudorandomly encoded in the CRS
model with an adaptive choice of inputs.

Static-to-adaptive transformations in cryptography are generally non-trivial,
and often come at a big cost in security when they rely on a “complexity lever-
aging” technique. This connection and its application we will discuss below are a
good demonstration of the usefulness of the notion of pseudorandom encodings.

Relazing Compression. The notion of statistical deterministic pseudorandom
encodings recovers the notion of optimal compression. Hence, this conflicts with
the existence of one-way functions.? In our systematic study of pseudorandom
encodings, we gradually relax perfect compression in several dimensions, while
maintaining one crucial property — the indistinguishability of the encoded dis-
tribution from true randomness.

Ezxample. To illustrate the importance of this property, we elaborate on the
example we outline at the beginning of the introduction, focusing more specifi-
cally on password-authenticated key exchange (PAKE). A PAKE protocol allows
two parties holding a (low entropy) common password to jointly and confiden-
tially generate a (high entropy) secret key, such that the protocol is resilient
against offline dictionary attacks, and no adversary can establish a shared key
with a party if he does not know the matching password. A widely used PAKE
protocol due to Bellovin and Merritt [4] has a very simple structure: the parties
use their low-entropy password to encrypt the flows of a key-exchange protocol

3 If perfect compression exists, pseudorandom generators cannot exist (observation
attributed to Levin in [23]).



using a block cipher. When the block cipher is modeled as a random cipher, it has
the property that decrypting a ciphertext (of an arbitrary plaintext) under an
incorrect secret key yields a fresh random plaintext. Thus, Bellovin and Merritt
point out that the security of their PAKE protocol requires that “the message to
be encrypted by the password must be indistinguishable from a random number.”
This is easy to achieve for Diffie-Hellman key exchange over the multiplicative
group of integers modulo a prime p. However, for elliptic curve groups this is
no longer the case, and one needs to resort to alternative techniques including
nontrivial point compression algorithms that compress the representation of a
random group element into a nearly uniform bitstring [6].

Clearly, our relaxation of compression does not preserve the useful property
of obtaining outputs that are shorter than the inputs. However, the remaining
pseudorandomness property is good enough for many applications.

In the following, we elaborate on our weakest notion of pseudorandom encod-
ings, that is, pseudorandom encodings allowing the encoding algorithm to be ran-
domized and providing a computational pseudorandomness guarantee. We defer
the discussion on the stronger statistical or deterministic variants to Sect. 1.3,
where we derive negative results for most of these stronger notions, which
leaves computational randomized pseudorandom encodings as the “best pos-
sible” notion that can be realized for general distributions.

Randomized, Computational Pseudorandom Encodings. Computational
randomized pseudorandom encodings allow the encoding algorithm to be ran-
domized and require only computational pseudorandomness.

Relation to Invertible Sampling. We show a simple but unexpected connection
with the notion of invertible sampling [9,17,22]. Informally, invertible sampling
refers to the task of finding, given samples from a distribution, random coins that
explain the sample. Invertible sampling allows to obliviously sample from distri-
butions, that is, sampling from distributions without knowing the corresponding
secrets. This can be useful for, e.g., sampling common reference strings without
knowing the random coins or public keys without knowing the corresponding
secret keys. A natural relaxation of this notion was systematically studied by
Ishai, Kumarasubramanian, Orlandi and Sahai [29]. Concretely, a PPT sampler
S is inverse samplable if there exists an alternative PPT sampler S and a PPT

. =1
inverse sampler S such that

{y — S0y} ~c {y — S1Y): y},
{y =50%0): (ry)} = {y = S1): (5 (1%, 9),9)}-

Note that the inverse sampling algorithm is only required to efficiently inverse-
sample from another distribution S, but this distribution must be computation-
ally close to the distribution induced by S. The main question studied in [29]
is whether every efficient sampler admits such an invertible sampler. They refer
to this hypothesis as the invertible sampling hypothesis (ISH), and show that



ISH is equivalent to adaptive MPC for general randomized functionalities that
may hide their internal randomness. In this work, we show the following two-way
relation with pseudorandom encoding.

Theorem (informal). A distribution admits a pseudorandom encoding if and
only if it admits invertible sampling.

Intuitively, the efficient encoding algorithm corresponds to the inverse sam-
pling algorithm, and decoding an encoded string corresponds to sampling with
the de-randomized alternative sampler S. This equivalence immediately extends
to all variants of pseudorandom encodings and corresponding variants of invert-
ible sampling we introduce in this work. Invertible sampling is itself connected to
other useful cryptographic notions, such as oblivious sampling, trusted common
reference string generations, and adaptively secure computation (which we will
elaborate upon below).

Building on this connection, the impossibility result of [29] translates to our
setting. On a high level, extractable one-way functions (EOWFs) conflict with
invertible sampling because they allow to extract a “secret” (in this case a pre-
image) from an image, independently of how it was computed. This conflicts
with invertible sampling because invertible sampling is about sampling without
knowing the secrets.

Theorem (informal, [29]). Assuming the existence of extractable one-way
functions (EOWF) and a non-interactive zero-knowledge proof system, PREHZ?d
does not hold.

This suggests that towards a realizable notion of pseudorandom encodings,
a further relaxation is due. Thus, we ask whether the above impossibility result
extends to the CRS model. In the CRS model, the above intuition why ISH
conflicts with EOWF's fails, because the CRS can contain an obfuscated program
that samples an image using some secret, but does not output this secret.

Dachman-Soled, Katz, and Rao [16] (building on the universal deniable
encryption construction of Sahai and Waters [35]) construct a so-called “explain-
ability compiler” that implies cISHZZ1d based on indistinguishability obfuscation*
(i0). By our equivalence theorem above, this implies pseudorandom encodings
for all efficiently samplable distributions in the CRS model, with static choice of
inputs, from iO. Invoking the static-to-adaptive transformation detailed above,
this also applies to the adaptive variant.

Theorem (informal). Assuming the existence of (polynomially secure) indis-
tinguishability obfuscation and one-way functions, acPREHZ?d holds.

4 Informally, an iO scheme is a PPT algorithm that takes as input a circuit C' and
produces another circuit iO(C') such that C' and iO(C') compute the same function,
but iO(C') is unintelligible in the following sense. If two circuits C1 and C2 compute
the same function, then iO(C1) and iO(C2) are computationally indistinguishable.
The notion of iO was introduced in [2] and first instantiated in [21].



Note that [29] claim that their impossibility result extends to the CRS model,
whereas the above theorem seems to suggest the opposite. We show that tech-
nically the result of [29] does extend to the CRS model at the cost of assum-
ing unbounded auziliary-input extractable one-way functions, a strong flavor of
EOWFs that seems very unlikely to exist but cannot be unconditionally ruled
out.

Theorem (informal). Assuming the existence of extractable one-way functions
with unbounded common auziliary input and a non-interactive zero-knowledge
proof system, cPREHZ?d does not hold.

In fact, this apparent contradiction has been the source of some confusion in
previous works: the work of [29] makes an informal claim that their impossibil-
ity result for ISH extends to the CRS model. However, due to the connection
between ISH and adaptively secure MPC (which we will discuss in more details
later on), this claim was challenged in [16]: the authors achieve a construction
of adaptively secure MPC for all functionalities assuming iO, which seemingly
contradicts the claim of [29]. The authors of [16] therefore stated that the “impos-
sibility result of Ishai et al. [...] does not hold in the CRS model.” Our extension
clarifies that the distinction is in fact more subtle: the result of [29] does extend
to the CRS model, but at the cost of assuming EOWF with unbounded auziliary
inputs. This does not contradict the constructions based on iO, because iO and
EOWF with unbounded auxiliary inputs are known to be contradictory [5].

Overview. In Fig. 1, we provide a general summary of the many flavors of the
pseudorandom encoding hypothesis, and how they relate to a wide variety of
other primitives.

Further Relazation. We further study an additional relaxation of pseudorandom
encodings, where we allow the encoding algorithm to run in super-polynomial
time. We show that this relaxed variant can be achieved from cryptographic
primitives similar to extremely lossy functions [45], which can be based on the
exponential hardness of the decisional Diffie-Hellman problem — a strong assump-
tion, but (still) more standard than indistinguishability obfuscation. However,
the applicability of the resulting notion turns out to be rather restricted.

1.2 Implications and Applications of Our Results

In this section, we elaborate on the implications of the techniques we develop
and the results we obtain for a variety of other cryptographic primitives.

New Results for Adaptively Secure Computation. As mentioned above,
a sampler admits invertible sampling if and only if it can be pseudorandomly
encoded. A two-way connection between invertible sampling and adaptively
secure MPC for general randomized functionalities was established in [29]. An
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Fig. 1. An overview of the relations between the pseudorandom encoding hypothesis
and other fields of cryptography and computational complexity theory. For simplicity,
our static-to-adaptive transformation only appears in the computational, randomized
setting in this overview, but also applies to the other settings. (Since the deterministic
variants of the pseudorandom encoding hypothesis are impossible for some pathologic
samplers, the arrows between deterministic and randomized variants of the pseudoran-
dom encoding hypothesis are to be read as if the deterministic variant is true for some
sampler, then the corresponding randomized variant is true for that sampler.)

MPC protocol allows two or more parties to jointly evaluate a (possibly random-
ized) functionality F on their inputs without revealing anything to each other
except what follows from their inputs and outputs. This should hold even in the
presence of an adversary who can corrupt any number of parties in an adaptive
(sequential) fashion. When we write “adaptive MPC”, we mean adaptive MPC
for all randomized functionalities. This should be contrasted with weaker notions
of adaptive MPC for strict subsets of corrupted parties [3,9,20] or for adaptively
well-formed functionalities® [10] which can both be done from mild assumptions.
The connection from [29] shows that adaptive MPC for all randomized functions
is possible if and only if every PPT sampler admits invertible sampling, i.e., the
invertible sampling hypothesis is true.

5 Adaptively well-formed functionalities do not hide internal randomness.



We show that this result generalizes to the global CRS model. More precisely,
we prove the adaptive variant of the pseudorandom encoding hypothesis in the
CRS model acPREH:cnd is equivalent to adaptive MPC in the global CRS model.®

As detailed above, the static pseudorandom encoding hypothesis cPREHS?d
in the CRS model follows from iO (and one-way functions). Applying our static-
to-adaptive transformation, the same holds for the adaptive variant. Thus, we
obtain the first instantiation of an adaptive explainability compiler [16] without
complexity leveraging and, hence, based only on polynomial hardness assump-
tions. The recent work of Cohen, shelat, and Wichs [15] uses such an adap-
tive explainability compiler to obtain succinct adaptive MPC, where “succinct”
means that the communication complexity is sublinear in the complexity of the
evaluated function. Due to our instantiation of acP REHg:d from polynomial iO,
we improve the results of [15] by relaxing the requirement for subexponentially
secure i0 to polynomially secure iO in a black-box way.

Corollary (informal). Assuming the existence of polynomially secure indis-
tinguishability obfuscation and the adaptive hardness of the learning with errors
problem, then malicious, two-round, UC-secure adaptive MPC and sublinear
communication complexity is possible (in the local CRS model, for all deter-
ministic functionalities).

Steganography and Covert Multi-party Computation. We explore the
connection of the pseudorandom encoding hypothesis to various flavors of
steganography. The goal of steganography, informally, is to embed secret mes-
sages in distributions of natural-looking messages, in order to hide them from
external observers. While the standard setting for steganography relies on shared
secret keys to encode the messages, we show that pseudorandom encodings natu-
rally give rise to a strong form of keyless steganography. Namely, one can rely on
pseudorandom encodings to encode any message into an innocent-looking distri-
bution, without truly hiding the message (since anyone can decode the stream),
but providing plausible deniability, in the sense that, even with the decoded mes-
sage, it is impossible to tell apart whether this message was indeed encoded by
the sender, or whether it is simply the result of decoding the innocent distribu-
tion.

Corollary (informal). Assuming pseudorandom encodings, then there exists a
keyless steganographic protocol which provides plausible deniability.

Plausible deniability is an important security notion; in particular, an impor-
tant cryptographic primitive in this area is the notion of (sender-)deniable
encryption [8], which is known to exist assuming indistinguishability obfusca-
tion [35]. Deniable encryption enables to “explain” ciphertexts produced for

6 Together with the conflict between cPREHﬁZd and EOWFs with unbounded auxiliary
input, this corrects a claim made in [16] that the impossibility result of adaptive MPC
from [29] would not extend to the CRS model.



some message to any arbitrary other message by providing corresponding ran-
dom coins for a faked encryption process. We view it as an interesting open prob-
lem to build deniable encryption under the pseudorandom encoding hypothesis
together with more standard cryptographic primitives; we make a first step in
this direction and show the following: the statistical variant of pseudorandom
encodings, together with the existence of public-key encryption, implies deni-
able encryption. Interestingly, we also show that the computational randomized
pseudorandom encoding hypothesis suffices to imply non-committing encryp-
tion, a weaker form of deniable encryption allowing to explain only simulated
ciphertexts to arbitrary messages [9].

Covert Secure Computation. Covert MPC [13,41] is an intriguing flavor of MPC
that aims at achieving the following strong security guarantee: if the output of
the protocol is not “favorable,” the transcript of the interaction should not leak
any information to the parties parties, including whether any given party was
actually taking part in the protocol. This strong form of MPC aims at providing
security guarantees when the very act of starting a computation with other par-
ties should remain hidden. As an example [41], suppose that a CIA agent who
infiltrated a terrorist group wants to make a handshake with another individual
to find out whether she is also a CIA agent. Here, we show that pseudorandom
encodings give rise to a general compiler transforming a standard MPC protocol
into a covert one, in a round-preserving way. The idea is to encode each round of
the protocol such that encoded messages look random. Together with the equiv-
alence between adaptively secure MPC and pseudorandom encodings, this gives
a connection between two seemingly unrelated notions of secure computation.

Corollary (informal). Assuming adaptively secure MPC' for all functionali-
ties, there exists a round-preserving compiler that transforms a large class of
“natural” MPC protocols into covert MPC protocols (in the static, semi-honest
setting).

Other Results. Due to our infeasibility results of PREH;:d, distribution trans-
forming encoders (DTEs) for all efficiently samplable distributions are infeasible.
Even the computational relaxation of DTEs is infeasible assuming extractable
one-way functions. Since all currently known constructions of honey encryption
rely on DTEs, we conditionally refute the existence of honey encryption based
on the DTE-then-encrypt framework from [30]. On the positive side, due to our
feasibility result of acPREHZ?d, computational honey encryption is feasible in
the CRS model.

Theorem (informal). Assuming acPREHZZ1d and a suitable symmetric-key
encryption scheme (modeled as a random cipher), computational honey encryp-
tion for all efficiently samplable distributions exists in the CRS model.



1.3 Negative Results for Stronger Notions of Pseudorandom
Encodings

Below we describe how we gradually relax optimal compression via different
notions of pseudorandom encodings and derive infeasibility results for all vari-
ants of pseudorandom encodings which restrict the encoding algorithm to be
deterministic or require an information-theoretic pseudorandomness guarantee.
This leaves computational randomized pseudorandom encodings as the best pos-
sible achievable notion.

Deterministic, Statistical Pseudorandom Encodings. The notion of pseu-
dorandom encodings with a deterministic encoding algorithm and information-
theoretic indistinguishability is perhaps the simplest notion one can consider.
As we will prove in this paper, this notion recovers the notion of optimal com-
pression: since the encoding algorithm for some source X is deterministic, it
can be seen with an entropy argument that the output size of Ex must be at
most Heo (X)), the min-entropy of X; otherwise, the distribution {Ex(X)} can
necessarily be distinguished from random with some statistically non-negligible
advantage. Therefore, Ex is an optimal and efficient compression algorithm for
X, with decompression algorithm D x; this is true even for the relaxation in the
CRS model. The existence of efficient compression algorithms for various cat-
egories of samplers was thoroughly studied [40]. In particular, the existence of
compression algorithms for all efficiently samplable sources implies the inexis-
tence of one-way functions (this is an observation attributed to Levin in [23])
since compressing the output of a pseudorandom generator to its entropy would
distinguish it from a random string, and the existence of one-way functions
implies the existence of pseudorandom generators [24]).

Theorem (informal). Assuming the existence of one-way functions, neither
PREHE" nor cPREHZ* hold.

This is a strong impossibility result, as one-way functions dwell among the
weakest assumptions in cryptography, [28]. One can circumvent this impossibil-
ity by studying whether compression can be achieved for more restricted classes
of distributions, as was done e.g. in [40]. Our work can be seen as pursuing an
orthogonal direction. We seek to determine whether a relaxed notion of com-
pression can be achieved for all efficiently samplable distributions. The relax-
ations we consider comprise the possibility to use randomness in the encoding
algorithm, and weakening the requirement on the encoded distribution to being
only computationally indistinguishable from random. Clearly, these relaxations
remove one of the most important features of compression algorithms, which
is that their outputs are smaller than their inputs (i.e., they compress). Nev-
ertheless, the indistinguishability of the encoded distribution from the uniform
distribution is another crucial feature of optimal compression algorithms, which
has independent applications.



Deterministic, Computational Pseudorandom Encodings. We now turn
towards a relaxation where the encoded distribution is only required to be com-
putationally indistinguishable from random, but the encoding algorithm is still
required to be deterministic. This flavor is strongly connected to an important
problem in cryptography: the problem of separating HILL entropy [24] from Yao
entropy [44]. HILL and Yao entropy are different approaches of formalizing com-
putational entropy, i.e., the amount of entropy a distribution appears to have
from the viewpoint of a computationally bounded entity. Informally, a distribu-
tion has high HILL entropy if it is computationally close to a distribution with
high min-entropy; a distribution has high Yao entropy if it cannot be compressed
efficiently. Finding a distribution which, under standard cryptographic assump-
tions, has high Yao entropy, but low HILL entropy constitutes a long standing
open problem in cryptography. Currently, only an oracle separation [42] and a
separation for conditional distributions [27] are known. To establish the con-
nection between PREHfCt and this problem, we proceed as follows: informally,
a deterministic pseudorandom encoding must necessarily compress its input to
the HILL entropy of the distribution. That is, the output size of the encoding
cannot be much larger than the HILL entropy of the distribution. This, in turn,
implies that a distribution which admits such a pseudorandom encoding cannot
have high Yao entropy.

In this work, we formalize the above argument, and show that the condi-
tional separation of HILL and Yao entropy from [27] suffices to refute PREH‘if:.
This separation holds under the assumption that non-interactive zero-knowledge
proofs with some appropriate structural properties exist (which in turn can be
based on standard assumptions such as the quadratic residuosity assumption).
Thus, we obtain the following infeasibility result:

Theorem (informal). If the quadratic residuosity assumption holds, then
PREHZ" does not hold.

Hence, we may conclude that towards a feasible variant of pseudorandom
encodings for all efficiently samplable distributions, requiring the encoding algo-
rithm to be deterministic poses a strong restriction.

Randomized, Statistical Pseudorandom Encodings. We now consider
the relaxation of perfect compression by allowing the encoding algorithm to be
randomized while still requiring information-theoretic indistinguishability from
randomness. This flavor of pseudorandom encoding was used in the context of
honey encryption [30]. Honey encryption is a cryptographic primitive which has
been introduced to mitigate attacks on encryption schemes resulting from the
use of low-entropy passwords. Honey encryption has the property that decrypt-
ing a ciphertext with an incorrect key always yields a valid-looking plaintext
which seems to come from the expected distribution, thereby mitigating brute-
force attacks. This is the same property that was useful in the previous PAKE
example.



The study of honey encryption was initiated in [30], where it was shown that
honey encryption can naturally be constructed by composing a block cipher
(modeled as a random cipher) with a distribution transforming encoder (DTE),
a notion which is equivalent to our notion of pseudorandom encoding with ran-
domized encoding and statistical pseudorandomness. The focus of [30] was on
obtaining such DTEs for simple and useful distributions. In contrast, we seek to
understand the feasibility of this notion for arbitrary distributions. Intuitively, it
is not straightforward to encode any efficient distribution into the uniform dis-
tribution; consider for example the distribution over RSA moduli, i.e., products
of two random n-bit primes. Since no efficient algorithm is known to test mem-
bership in the support of this distribution, natural approaches seem to break
down. In fact, we show in this work that this difficulty is inherent: building on
techniques from [5,29], we demonstrate the impossibility of (randomized, statis-
tical) pseudorandom encodings for all efficiently samplable distributions, under
a relatively standard cryptographic assumption.

Theorem (informal). Assuming the sub-exponential hardness of the learning
with errors (LWE) problem, PREH;:1C| does not hold.

This result directly implies that under the same assumption, there exist effi-
ciently samplable distributions (with input) for which no distribution transform-
ing encoder exists. We view it as an interesting open problem whether this result
can be extended to rule out the existence of honey encryption for arbitrary dis-
tributions under the same assumption.

1.4 Open Questions and Subsequent Work

The most intriguing question left open by our work is whether the weakest vari-
ant of the pseudorandom encoding hypothesis cPREHE?d, which is implied by
i0, also implies iO. Very recently, this question was settled in the affirmative by
Wee and Wichs [43] under the LWE assumption. More concretely, by modifying
a heuristic iO construction of Brakerski et al. [7], they show that iO is implied by
LWE if one is additionally given an oblivious LWE-sampler in the CRS model.
Such a sampler, given a matrix A € Z;**", generates outputs that are indistin-
guishable from LWE samples A - s+ e without knowing the secrets s or the noise
e. The existence of an oblivious LWE sampler is nontrivial even under the LWE
assumption, because A can be such that A-s+ e is not pseudorandom; however,
such a sampler still follows from the invertible sampling hypothesis [29], which
we show to be equivalent to the pseudorandom encoding hypothesis. By propos-
ing an explicit heuristic construction of (a relaxed flavor of) an oblivious LWE
sampler, the end result of [43] is a construction of iO from a new “falsifiable”
assumption.

Whether cPREHZ:d implies iO under weaker or different assumptions than
LWE remains open. A potentially easier goal is using cPREHZZ1d to construct
public-key encryption from one-way functions. This is related to the possibil-
ity of constructing oblivious transfer from any public-key encryption in which



public keys and ciphertexts are obliviously samplable [19,22], which is implied
by public-key encryption and cPREHZ?d. Here cPREHZ?d is used to bypass the
black-box separation between public-key encryption and oblivious transfer [22].

Finally, there is a lot of room for relaxing the intractability assumptions we
use to rule out the statistical (CPREH;:d) and deterministic (cPREHd;Ct) flavors
of pseudorandom encodings.

Organization. In Sect. 2, we provide a technical overview of a selection of our
results. In Sect. 3, we provide condensed definitions of pseudorandom encodings
and invertible sampling and a formal proof of their equivalence and in Sect. 4 we
describe the static-to-adaptive transformation. We refer the reader to the full
version [1] for more details and for the other results we described.

2 Overview of Techniques

In this section, we elaborate on some of our technical results in more detail.
In the following, we identify a PPT sampler S with the distribution (family)
ensemble it induces.

The Relation to Invertible Sampling. A PPT sampler S is inverse samplable
[17,29], if there exists an alternative sampler S inducing a distribution which
is computationally indistinguishable to the distribution induced by S such that
the computations of S can be efficiently inverted. Efficiently inverting the com-
putation of S means that there exists an efficient inverse sampler §_1 which,
given an output of S, recovers a well-distributed random tape for S to compute
the given output in the following sense. The inverse sampled random tape is
required to be computationally indistinguishable from the actually used random
tape. More formally, a PPT sampler S is inverse samplable if there exists an

. . = . . =1
efficient alternative sampler S and an efficient inverse sampler S = such that

{y —S1":y} = {y = S1*): y}, (3)
{y =57 ()}~ {y = S1Y): (31, 9),m)}- (4)

We refer to Eq. (3) as closeness and to Eq. (4) as invertibility. If the sampler S
admits an input m, the above is required to hold for all inputs m in the input
space L, where S and §_1 both additionally receive m as input. In accordance
with [29], we refer to the hypothesis that all PPT algorithms with input are
inverse samplable as the invertible sampling hypothesis. Restricting the invertible
sampling hypothesis to algorithms which do not admit inputs is denoted the weak
invertible sampling hypothesis.

The concepts of inverse samplability and pseudorandom encodings are tightly
connected. Suppose a PPT algorithm S is inverse samplable. Then, there exists
an alternative and an inverse sampler (S, g_l) satisfying closeness and invert-

ibility. Invertibility guarantees that the inverse sampler S ' on input of a sample
y from S(1%), outputs a computationally well-distributed random tape 7. Hence,



with overwhelming probability over the choice of y « S(1*) and r « g_l(y),
the alternative sampler on input of 7, recovers y. In other words, the inverse sam-

pler §_1 can be seen as encoding a given sample y, whereas the de-randomized
alternative sampler S given this encoding as random tape, is able to recover y.
Looking through the lens of pseudorandom encoding, this almost proves cor-
rectness except that gy is sampled according to S(1*) instead of S(1*). This
difference can be bridged due to closeness. We now turn towards showing pseu-
dorandomness of the encoded distribution. Due to closeness, the distributions
{y — S(1M: (5 '(1").9)} and {y — S(1Y): (S (1*,y),)} are computa-
tionally indistinguishable. Invertibility guarantees that, given a sample y from
S(1%), an encoding of y is indistinguishable to uniformly chosen randomness con-
ditioned on the fact that decoding yields y. Removing y from this distribution,
almost corresponds to pseudorandomness, except that y is sampled according to
S(1*) instead of S(1*). Again, we are able to bridge this gap due to closeness.
Note that we crucially use the fact that the initial randomness used by S resides
outside of the view of an adversary. Summing up, if a PPT sampler S is inverse
samplable, then it can be pseudorandomly encoded.

Interestingly, this connection turns out to be bidirectional. Suppose a PPT
algorithm S can be pseudorandomly encoded. Then, there exists an efficient
encoding algorithm Eg and an efficient deterministic decoding algorithm Dg sat-
isfying correctness and pseudorandomness. Looking through the lens of invertible
sampling, we identify the decoding algorithm to correspond to the alternative
sampler (viewing the random tape of the alternative sampler as explicit input
to Dg) and the encoding algorithm to correspond to the inverse sampler. Pseu-
dorandomness guarantees that Eg(S5(1%)) is indistinguishable from uniform ran-
domness. Hence, applying the decode algorithm Dg on uniform randomness is
indistinguishable from applying Dg to outputs of E5(S(1%)). Correctness guar-
antees that Dg(Es(y)) for y sampled according to S(1*) recovers y with over-
whelming probability. Thus, the distribution induced by applying Dg on uni-
form randomness is computationally close to the distribution induced by S(1*).
This shows closeness. For the purpose of arguing about invertibility, consider
the distribution A := {y < Dg(r): (r,y)}. Due to pseudorandomness r can be
considered an encoded sample from S(1*). Hence, 4 is indistinguishable to the
distribution, where r is produced by Eg(y’) for some independent y' « S(1*),
ie.

{y — DS(T): (T’y)} ~c {yl — S(l)\),”f’ — ES(y/)vy — DS(T): (Tvy)}'

Note that by correctness, y and y’ are identical with overwhelming probability.
Therefore, A is indistinguishable to {y «— S(1*),r — Eg(y'): (r,3)}. Since
sampling 3’ via Dg applied on uniform randomness is computationally close
to the above distribution due to closeness, invertibility follows. Summing up, a
sampler S can be pseudorandomly encoded if and only if it is inverse samplable.

Likewise to the variations and relaxations described for pseudorandom encod-
ings, we vary and relax the notion of invertible sampling. The inverse sampler
can be required to be deterministic or allowed to be randomized. Further, close-



ness and invertibility can be required to hold information theoretically or com-
putationally. We denote these variants as ISHE?d, ISH;?d, ISH‘fCt and ISHdEe:. To
circumvent impossibilities in the plain model, we also define the relaxations in
the common reference string model in static and adaptive flavors, denoted the
prefix “c” and “ac”, respectively. The above equivalence extends to all introduced
variations of the pseudorandom encoding and invertible sampling hypotheses.

The Static-to-Adaptive Transformation. The static variant of pseudorandom
encodings in the CRS model only guarantees correctness and pseudorandom-
ness as long as the input m for the sampler S is chosen independently of the
CRS. The adaptive variant, on the other hand, provides correctness and pseudo-
randomness even for adaptive choices of inputs. Adaptive notions always imply
their static analogues. Interestingly, for pseudorandom encodings, the opposite
direction is true as well. The core idea is to use an indirection argument (similar
to [11,12,25]) to delay CRS generation until during the actual encoding process.
Thus, the advantage stemming from adaptively choosing the input is eliminated.

Suppose that the static variant of the pseudorandom encoding hypothesis
in the CRS model is true and let S be some PPT sampler. Since S can be
pseudorandomly encoded in the CRS model with static choice of inputs, there
exist algorithms (Setup’, E’,D’) such that static correctness and pseudorandom-
ness hold. Further, the algorithm Setup’ can also be pseudorandomly encoded
as above. Let (Setup”,E”,D”) be the corresponding algorithms such that static
correctness and pseudorandomness hold. Note that since the sampler Setup’ does
not expect an input, static and adaptive guarantees are equivalent.

Then, the sampler S can be pseudorandomly encoded in the CRS model with
adaptive choice of inputs as follows. Initially, we sample a common reference
string crs” via Setup”(1?) and make it available to the parties. Given crs” and
a sample y from S(m), adaptive encoding works in two phases. First, a fresh
CRS crs’ is sampled via Setup’(1*) and pseudorandomly encoded via r; «
E”(ers”, ers’). Second, the given sample y is pseudorandomly encoded via ry «—
E'(crs’, m,y). The encoding of y then consists of (r1,r2). To decode, the CRS crs’
is restored via D”(ers”,r1). Then, using crs’, the original sample y is recovered
via D'(ers’,m, rs).

Since crs’ is chosen freshly during the encoding process, the input m which
may depend on c¢rs”, cannot depend on crs’. Further, the distribution Setup”
does not expect an input. Hence, static guarantees suffice.

To realize that adaptive pseudorandomness holds, consider the encoding of
S(m) for some adaptively chosen message m. Since the view of A when choosing
the message m is independent of crs’, static pseudorandomness can be applied
to replace the distribution E'(crs’, m, S(m)) with uniform randomness. Further,
since the sampler Setup’ does not expect any input, static pseudorandomness suf-
fices to replace the distribution E”(crs”, Setup’(1*)) with uniform randomness.
This proves adaptive pseudorandomness.

The adaptive variant of correctness follows similarly from the static variant
of correctness. Consider the distribution of decoding an encoded sample of S(m),
where m is adaptively chosen. Since the sampler Setup’ does not expect an input,



static correctness can be applied to replace decoding D”(crs”,r1) with the crs’
sampled during encoding. Again, since crs’ does not lie in the view of the adver-
sary when choosing the message m, static correctness guarantees that decoding
succeeds with overwhelming probability. This proves adaptive correctness.

On Deterministic Pseudorandom Encoding and Compression. The notion of
pseudorandom encoding is inspired by the notion of compression. A tuple of
deterministic functions (Ex,Dx) is said to compress a source X, to length
m(A) with decoding error e(A), if (i) Pr[Dx(Ex (X)) # Xi] < e(A) and (ii)
E[|Ex (X)) € m(A), see [40,42]. Pseudorandom encoding partially recovers the
notion of compression if we require the encoding algorithm to be deterministic.
If a source X can be pseudorandomly encoded with a deterministic encoding
algorithm having output length n()), then X, is compressible to length n(}).
Note, however, that the converse direction is not true. Compression and decom-
pression algorithms for a compressible source do not necessarily encode that
source pseudorandomly. The output of a compression algorithm is not required
to look pseudorandom and, in some cases, admits a specific structure which
makes it easily distinguishable from uniform randomness, e.g. instances using
Levin search, [40].

Clearly, the requirement for correctness, poses a lower bound on the encod-
ing length n(\), [36]. Conversely, requiring the encoding algorithm Ex to be
deterministic means that the only source of entropy in the distribution Ex (X))
originates from the source X itself. Hence, for the distributions Ex (X)) and the
uniform distribution over {0, 1}"(’\) to be indistinguishable, the encoding length
n(A) must be “sufficiently small”. We observe that correctness together with the
fact that Ex is deterministic implies that the event Ex (Dx (Ex(X)))) = Ex (X))
occurs with overwhelming probability. Applying pseudorandomness yields that
Ex(Dx (Un(r))) = Up(n) holds with overwhelming probability, wherefore we can
conclude that Dx operates almost injectively on the set {0, 1}"0‘). Hence, the
(smooth) min-entropy of Dx (Up(y)) is at least n(\).

Considering information theoretical pseudorandomness, the distributions
Dx (Upn(n)) and X are statistically close. Hence, by the reasoning above, the
encoding length n()\) is upper bounded by the (smooth) min-entropy of the
source X . In conclusion, if a distribution can be pseudorandomly encoded such
that the encoding algorithm is deterministic satisfying statistical pseudorandom-
ness, then this distribution is compressible to its (smooth) min-entropy. Using a
technical “Splitting Lemma”, this extends to the relaxed variant of the pseudo-
random encoding hypothesis in the CRS model.

Considering computational pseudorandomness, by a similar argument as
above, we obtain that X, is computationally close to a distribution with min-
entropy n(A). This does not yield a relation between the encoding length and
the min-entropy of the source. However, we do obtain relations to computa-
tional analogues of entropy. Computational entropy is the amount of entropy a
distribution appears to have from the perspective of a computationally bounded
entity. The notion of HILL entropy [24] is defined via the computational indis-
tinguishability from a truly random distribution. More formally, a distribution



X, has HILL entropy at least k, if there exists a distribution with min-entropy &
which is computationally indistinguishable from X . Hence, the encoding length
n(A) is upper bounded by the HILL entropy of the source X. Another important
notion of computational entropy is the notion of Yao entropy [44]. Yao entropy is
defined via the incompressibility of a distribution. More precisely, a distribution
X has Yao entropy at least k if X, cannot be efficiently compressed to length
less than & (and successfully decompressed). If a distribution can be pseudoran-
domly encoded with deterministic encoding, then it can be compressed to the
encoding length n()\). This poses an upper bound on the Yao entropy of the
source. In summary, this yields

n(A) < HM (X)) and H™°(X)) < n()). (5)

However, due to [27,31], if the Quadratic Residuosity Assumption (QRA) is
true, then there exist distributions which have low conditional HILL entropy
while being conditionally incompressible, i.e. have high conditional Yao entropy.”
The above observations, particularly Eq. (5), can be extended to conditional
HILL and conditional Yao entropy, by considering PREHd;’Ct for PPT algorithms
with input. Therefore, if the Quadratic Residuosity Assumption is true, PREHS:
cannot be true for those distributions.

Unfortunately, we do not know whether this extends to the relaxed variants
of the pseudorandom encoding hypothesis admitting access to a CRS. On a high
level, the problem is that the HILL entropy, in contrast to the min-entropy,
does not remain untouched when additionally conditioning on some common
reference string distribution, even though the initial distribution is independent
of the CRS. Hence, the splitting technique can not be applied here.

3 Pseudorandom Encodings and Invertible Sampling

In this section, we formally define pseudorandom encodings and invertible sam-
pling. We will work with the hypothesis that every efficiently samplable distri-
bution can be pseudorandomly encoded and invertible sampled and we refer to
these hypotheses as the pseudorandom encoding hypothesis and the invertible
sampling hypothesis, respectively. This section is a condensed and much less
detailed version of [1].

Definition 1 (Pseudorandom encoding hypothesis, PREHZ:d). For every
PPT algorithm S, there exist efficient algorithms Eg (the encoding algorithm)
with output length n(\) and Dg (the decoding algorithm), where Dg is determin-
istic and Eg is randomized satisfying the following two properties.

Correctness. For all inputs m € L, €dec—error(A) := Pr [y — S(m): Dg(m, Eg(m,

y)) # y| is negligible.

7 Let (X,Z) be a joint distribution. The conditional computational entropy is the
entropy X appears to have to a bounded adversary when additionally given Z.



Pseudorandomness. For all PPT adversaries A and all inputs m € L,
Adv®, (N) == |Pr[BaphS, o () = 1] = Pr[BEzp?’, 1 (A) = 1]| < negl()),

where Exp®*,. o and Exp®*,. | are defined below.

E‘Tp&r?m O(A) Exp;rewz 1 ()\)
r {0,137 u <+ {0,1}"™
y:= S(m;r) return A(m,u)

return A(m, Es(m,y))

Definition 2 (Invertible sampling hypothesis, ISHZ™, [29]). For every
PPT algorithm S, there exists a PPT algorithm S (the alternate sampler) with

randomness space {0,1}"N and an efficient randomized algorithm s (the
inverse sampler), satisfying the following two properties.

Closeness. For all PPT adversaries A and all inputs m € L,
AdvSes(N) = |Pr[BapSh, o(A) = 1] = Pr[EapST 1(A) = 1]| < negl(A),

where Expf"fffl’o and Empi‘ff:,l are defined below.

Invertibility. For all PPT adversaries A and all inputs m € L,
Adv'y,,(N) = [Pr[Ezp'y,,, o(N) = 1] = Pr[Ezp'y,,, 1(\) = 1]] < negl()),

inv in

where Exp'}’,, o and Exp'}’,, 1 are defined below.

Eapn o) Eopim1 (V) Eapimo(N) Bap i (V)
r {0,137 r« {0,1}"™ r« {0,1}"™ r« {0,1}"™)
y = S(m;r) y = S(m;r) y = S(m;r) y = 5(m;r)
return A(m,y) return A(m,y) return A(m,r,y) T g_l(m, y)

return A(m,7,y)
Theorem 1. PREHZ?d 18 true if and only if ISHESd is true.
Lemma 1. IfISHZ?d holds, then PREHZ?d holds.

Proof. Assume ISHE?d holds. Let S be a PPT algorithm. ISHZZ1d implies that
there exists an alternative sampler S (with randomness space {0,1}"")) and a

corresponding inverse sampler g_l satisfying closeness and invertibility.
For m € L,y € {0,1}*,r € {0,1}"), we define the algorithms Eg(m,y) :=
g_l(m,y) (potentially randomized) and Dg(m,r) := S(m;r) (deterministic).



GO G1 G2

r 4+ {0,1}"™ r+ {0,1}" 4 {0,1}P™

y:= S(m;r) y = S(m;r) y = S(m;r)

return A(m,7,y)  F 5§ (m,y) TS (my)
return A(m,7,y) return A(m,7,y)

Fig. 2. Hybrids used in the proof of correctness.

Correctness. We consider a series of hybrids, see Fig. 2.
inv inv

Game Gy is identical to Ezp}’,, o and game G is identical to Frp}y’,, ;.
Hence, |Pr[out; = 1] — Prlouty = 1]| < Advij\:m()\).

Claim. For all PPT adversaries A, for all m € L, there exists a PPT adversary
A, such that |Prlouts = 1] — Prlout; = 1]| < Adv%"fl()\),

Proof. Construct an adversary A on closeness. On input of (m,y), A computes

T — g_l(m, y), calls A on input of (m,7,y) and outputs the resulting output. If
y is sampled using S(m;r) (for r — {0,1}"N), A perfectly simulates game G
for A. If y is sampled using S(m;r) (for f « {0,1}PM), A perfectly simulates

game Go for A. Therefore, Prlout; = 1] = Pr[Exp%O: ,(A) = 1] and Prlouty =

1] = Pr[Exp%‘fifLyo()\) =1]. O
Thus, we have that |Prlouty = 1] — Prloutg = 1]| < Adv%’j:(k) + Adv™ ()

A m
for some PPT adversaries A, A
Consider the adversary A distinguishing between game Go and game Gz
that on input of (m,r,y), outputs 0 if S(m;r) = y and outputs 1 other-
wise. By definition, A always outputs 0 in Gg. Hence, €gec—error(A) = Prly «—
S(m): S(m, g_l(m,y)) # y| = Prlouts 4 = 1] = |Prouta, 4 = 1] — Prloutp 4 =
1]].

Pseudorandomness. We consider a sequence of hybrids starting from Ea:pi{?m’o

and concluding in Exp%’, ., see Fig. 3.

Go G G2

7 {0, 1PV r+ {0,1}"™ ¢ {0,1}"™
y = S(m;r) y = S(m;r) return A(m,r)
Uﬁgil(m»y) ueg_l(m,y)

return A(m, u) return A(m, u)

Fig. 3. Hybrids used in the proof of pseudorandomness.



Claim. For all PPT adversaries A, for all m € L, there exists a PPT adversary
A, such that |Prlout; = 1] — Pr[outg = 1]| < Adv%c’f;()\),

Proof. Construct a PPT adversary A on the closeness property as follows. On

input of (m,y), A calls A on input of (m,S ' (m,y)) and outputs the resulting
output. o - o
If y «— S(m), A simulates game Gg for A, and if y «— S(m), A simulates

game G, for A. Hence, Prouty = 1] = Pr[Exp%‘?i:yO()\) = 1] and Prfout; = 1] =

PI‘[E:L’p%O: (A =1]. O

Claim. For all PPT adversaries A, for all m € L, there exists a PPT adversary

A, such that |Prloute = 1] — Prlout; = 1]| < Adv%"m()\).

Proof. We construct a PPT adversary A on the invertibility property. On input
of (m,r,y), A calls A on input of (m,r) and outputs its output.

Ifr—3S '(m, y) for y « S(m), A simulates game G, for A. If r « {0, 1},

A simulates game G for A. Therefore, Prlout; = 1] = Pr[Exp%"m o(A) = 1] and

Prlouty = 1] = Pr[Expi%Vm (A =1]. a
Hence, Adv®", (\) = |Prlouty = 1] — Prlouty = 1]| < Adv%ofi()\) + Adv%‘/’m(/\)

for some PPT adversaries A and j/. 0

Lemma 2. If PREHZ?d holds, then ISHZfd holds.

Proof. We prove the statement for the computational randomized case. The
remaining cases are similar.

Assume PREH::d holds. Let S be a PPT algorithm. PREHg?dimplies that for
S there exist efficient algorithms Eg (potentially randomized) with output length
n(A) and Dg (deterministic) satisfying correctness and pseudorandomness.

For m € L,r € {0,1}*™ y € {0,1}*, we define the alternative sampler
as S(m;r) := Dg(m,r) (randomized) and the corresponding inverse sampler

gil(m, y) := Es(m,y) (potentially randomized).

Closeness. Let A be an adversary on closeness. We consider a sequence of games

starting from Earpf!fifw and concluding in E:cpf!fffl’l, see Fig. 4.

Go Gy (e Gs

rs + {0,137 rs + {0,13*™ rs « {0,1}*™ rs + {0,13P™

ys = S(m;rs) ys = S(m;rs) ys = S(m;rs) ys = S(m;rs)

return A(m,ys) rp < Es(m,ys) rp < Es(m,ys) rp « {0,1}"™
yp := Ds(m,rp) yp = Ds(m,rp) yp = Dg(m,rp)
return A(m, ys) return A(m,yp) return A(m, yp)

Fig. 4. Hybrids used in the proof of closeness.



The difference between game Gy and game G; is only conceptional, hence,
Priouty = 1] = Priout; = 1].

G, and Gy proceed exactly identical if ys = yp. More formally, let F' be
the event that ys # yp. We have that out; = 1 A =F & outs A —F. Hence,
the Difference Lemma (due to Shoup, [37]) bounds |[Prlouty = 1] — Prlout; =
1]] < Pr[F]. Correctness guarantees that for all m € L, Pr[F] = Prlys <
S(m): Dg(m,Es(m,ys)) # ys] = €dec—error(A) is negligible.

Claim. For all PPT adversaries A, for all m € L, there exists a PPT adversary
A, such that [Prlout; = 1] — Prlouts = 1]| < AdvZ" (N).
Proof. Construct an adversary A on pseudorandomness as follows. On input
of (m,u =: 7p), A calls A on input (m,Dgs(m,rp)) and outputs the resulting
output. If u « Eg(m,y) for y « S(m), A perfectly simulates game Gz for A.
Otherwise, if u is uniformly random over {0,1}"N),| A perfectly simulates game
Gs for A. Hence, Prlout; = 1] = Pr[EzpS (A) = 1] and Prlout; = 1] =
Pr[Exp%?m’o()\) =1]. O
Hence, AdvS5e (\) = |Prfouts = 1]—Prlouty = 1]| < Adv% (N)+€dec—error()
for some PPT adversary A.

Invertibility. We consider a sequence of hybrids, see Fig. 5.

Go G1 Go
r{0,1}"™W rs « {0,1}p®) rs + {0,137
y := Dgs(m,r) ys = S(m;rs) ys = S(m;rs)
7+ Es(m,y) rp < Es(m,ys) rp < Es(m,ys)
return A(m,T,y) return A(m,rp,ys) yp := Ds(m,rp)

return A(m,rp,ys)

Gs Gi Gs

rs {0, 1}p(A) rs « {0, 1}p(x) rp + {0, 1}n(A>

ys = S(m;rs) ys = S(m;rs) yp = Ds(m, )

rp < Es(m,ys) rp < {0,1}"™ return A(m,7p,yp)
yp = Ds(m,rp) yp := Ds(m,rp)

return A(m,rp,yp) return A(m,rp,yp)

Fig. 5. Hybrids used in the proof of invertibility.

Claim. For all PPT adversaries A, for all m € L, there exists a PPT adversary

A, such that |Pr[out; = 1] — Pr[outy = 1]| < Adv%em()\) + €dec—error(A).



Proof. Let A be an adversary distinguishing Gy and G1. Construct an adversary
A on the closeness property. On input of (m,y), A computes 7 «— Eg(m,y) and
calls A on input (m,7,y). If y «— S(m), A simulates game Gq for A. Else, if
y < S(m), A simulates game G for A. Hence, |Prjout; = 1] — Prlouty = 1]| =
AdvsEre (V). 0

The difference between G1 and Gy is purely conceptional. Hence, Prlout; =
1] = Prouty = 1]. G2 and Gg behave identical if yp = ys. Let F denote the
failure event yp # ys. We have that outy = 1 A = < outs A =F. The Difference
Lemma (due to Shoup, [37]) bounds |Pr[outs = 1] — Prlouts = 1]| < Pr[F].
Due to correctness, for all m € L, Pr[F] = Prlyg < S(m): Dg(m,Eg(m,ys)) #
yS] = 6decferror()‘) is negligible.

Claim. For all PPT adversaries A, for all m € L, there exists a PPT adversary

A, such that |Prlouty = 1] — Pr[outz = 1]| < Adv%em()\).

Proof. Construct a PPT adversary A on the pseudorandomness property. On
input of (m,u), A calls A on input (m,u =: rp,Dg(m,u) =: yp) and outputs
the resulting output. If u « Eg(m,y) for y « S(m), A perfectly simulates
game G3 for A. Otherwise, if u is uniformly random over {0, 1}, A perfectly

simulates game Gy for A. Hence, Prlouts = 1] = Pr[Eacp%emo()\) = 1] and

Prlouty = 1] = Pr[Emp%em 1()\) =1]. O

The difference between G4 and Gy is again only conceptional and Prlouty = 1] =

Prlouts = 1]. Hence, |Prlout; = 1]—Prlouty = 1]| < 2 Adv%’ (A)+2-€dec—error(A)

O

for some PPT adversary A.

4 Static-to-Adaptive Transformation

We obtain a natural relaxation of the pseudorandom encoding hypothesis by
introducing public parameters. That is, a distribution defined via S can be pseu-
dorandomly encoded in this relaxed sense, if there exists a probabilistic setup
algorithm Setupg and encode and decode algorithms as before such that for all
m € L, the event Dg(crs,Eg(crs,S(m))) = S(m) occurs with overwhelming
probability, where the probability is also over the choice of crs, and the distri-
bution (Setupg(1*), Es(Setupg(1*),S(m))) is indistinguishable from the distri-
bution (Setupg(1*), Uy (r)). See the full version [1] for more details.

There are two variants of this definition. The input m can be required to be
chosen independently of crs or allowed to be chosen depending on crs. Clearly,
the adaptive variant implies the non-adaptive (or static) variant. Interestingly,
the opposite direction is true as well by an “indirection” argument similar to the
one from the work on universal samplers [25]. A similar technique was used in
the context of non-committing encryption [11] and adaptively secure MPC [12].

Theorem 2. Let a € {~c, =} and ( € {rand,det}. If cPREH? is true, then
acPREHg 1s true.



Proof. We prove the statement for the computational randomized case. A very
similar proof applies to the remaining cases.

Let S be a PPT sampler with input space L. Since cPREHZ:d is true, for the
PPT sampler S, there exist (Setup’, El, D) with output length n/()) such that
correctness and pseudorandomness hold (statically). Again, since cPREH::d is
true, for the PPT sampler Setup’, there exist (Setup”, E”, D”) with output length
n’'(\) such that correctness and pseudorandomness hold (statically). ® Note that
Setupig does not expect an input.

In Fig. 6, we define algorithms (Setupg, Eg,Dg) satisfying adaptive correct-
ness and pseudorandomness.

Setupg(1*) Es(crs,m,y) Ds(crs,m,r)

crs”  Setup” (1) crs’ + Setuply(17) parse r =: 71 || 2

crs := crs’”’ r1 + E"(crs”, crs’) crs’ == D"(crs” 1)

return crs ro +— Es(crs’,m,y) y = DYs(crs’,m,rs)
return r || 72 return y

Fig. 6. Adaptive pseudorandom encodings.

On a high level, since crs’ is chosen freshly and independently after the
adversary fixes the message m, selective security suffices. Furthermore, since the
distribution of crs’ has no input, selective security is sufficient.

Adaptive correctness. We define a series of hybrid games to prove correct-
ness, see Fig. 7. Game G corresponds to encoding and subsequently decoding a
sample y (for adaptively chosen input m) and game G; is simply a reordering

G Go Gs

ers'” « Setup” (1) crs” < Setup” (1) ers'” « Setup” (1)
ers' « Setupy (1) ers’ + Setupy(17) m <« A(ers”)

r1 < E"(crs”, ers') r1 ¢+ E"(ers”, crs’) crs’ < Setups(1*)
crsp = D"(crs”,r1) crsp == D" (crs” ) y < S(m)

m < A(crs”) m < A(crs”) 7o < Es(crs’,m,y)
y < S(m) y + S(m) Yyp = D'S(crs',m, r2)
To E:g(crs/,m,y) ro — E'S(crs',m7 y) return yp =y

yp = Ds(crsp,m,ra) yp = Ds(ers’, m,r2)

return yp =y return yp =y

Fig. 7. Hybrid games for the proof of adaptive correctness.

8 For notational convenience, we do not write the sampler Setup’s as index.



of the commands of Gg. The game hop from Gy to G; only conceptional and
Prouty = 1] = Prlout; = 1].

Claim. For all PPT adversaries A, there exists a PPT adversary A, such that
_dec—

|[Prlouts = 1] — Pr[out; = 1]| < eisetjz,/fg‘,’b,,)’z()\).

Proof. The games G; and Gy proceed exactly identically if crs’, = crs’. Let E

be the event that crs’ # crsl,. We have that out; = 1 A =FE < outy A —E. Due

to correctness of (Setup”,E”, D),

crs’ «— Setup(1*)
crs’ « Setupy(17)
r1 «— E"(ers”, ers’)

ers'y == D"(ers”,rq)

Pr s ers’y # crs’

is negligible. Hence, the Difference Lemma (due to Shoup, [37]) upper bounds

|Prlouty = 1] — Pr[out; = 1]| < Pr[E]. 0

The game hop from Gs to Gs only conceptional and Prlouts = 1] =
Priouts = 1].

Claim. For all PPT adversaries A, there exists a PPT adversary A, such that
_ c—dec—error

Prlouts =1] > 1 — e(Setup’S,E’S,D’S),Z()‘)'

Proof. Due to correctness of (Setupl, E, D), we have that for all PPT adver-

saries A,

m — A(1Y)
crs’ « Setupy(1*)
Pr| y < S(m) ‘Y =YD
r «— Eg(ers’,m,y)
yp = Di(ers’,m,r)

is overwhelming. Therefore, for all PPT adversaries A, Prlouts = 1] is over-
whelming. a

Adaptive Pseudorandomness. We define a series of hybrid games to prove
pseudorandomness, see Fig. 8.

Game G corresponds to the adaptive pseudorandomness game. That is, Gg
first samples crs”, the adversary A chooses the message m adaptively depending
on crs”, and Gg then samples y using S(m), encodes that sample and gives the
encoding to A.

Claim. For all PPT adversaries A, there exists a PPT adversary A, such that

|Pr[outy = 1] — Priouty = 1]| < Advzse:up;z,E’S,D’S),Z(/\)'



Gy

G2

Gs

crs’ < Setup” (1)
m <+ A(crs”)
y < S(m)

ers” « Setup” (1)
crs’ + Setupls (1Y)

r1 < E"(crs”, crs’)

ers” « Setup” (1)
1+ {0,1}"'™
m < A(ers”)

m <+ A(ers”)

ry — {0,13"'™

return A(crs”,m,r || r2)

crs’ + Setuply(17) ry — {0,1"'™

" " /
r1 < E"(¢ers”, ers’) return A(crs”,m,r1 || r2)
ro + {0,137 ™

return A(crs”,m,r1 || r2)

Fig. 8. Hybrid games for the proof of adaptive pseudorandomness.

Proof. Construct an adversary A on static pseudorandomness relative to
(Setupy, Els, D) as follows. On input of 1*, A samples crs” « Setup”(1*) calls A
on input of ¢rs”, and outputs the message m produced by A. In return, A receives
crs’ «— Setups(1*) and either u := El(crs’, m, S(m)) or a uniform random string

u — {0,1} XN from Expfg‘:upngs)D,S))A’b(/\). A computes r; «— E”(crs”, crs’),

calls A on input of (¢rs”,;m,ry || v) and returns A’s output.

If A plays EarpE;:up; E..D%) —o(A), then it perfectly simulates Go. On the
5:E5:Ps) A,

other hand, if A plays Exps "¢

(Setupl. E1..D%) A 1()\), then it perfectly simulates G1.0
s:E5:Ps) A,

The game hop from G to Gy is only conceptional and Prout; = 1] = Prout; =
1].

Claim. For all PPT adversaries A, there exists a PPT adversary A, such that
[Prlouts = 1] = Prlouty = 1]| < Advig "0 0, ) 2 ().

Proof. Construct an adversary A on static pseudorandomness relative to
(Setup”,E”,D") as follows. On input of 1*, A returns L since the input space
L of the sampler Setups(1}) is empty. In return, A receives crs” sampled via
Setup” (1*) and u which is either produced via E”(crs”, Setup’(1*)) or via uniform
sampling from {0, 1}" (N, A calls A on input of ¢rs” and receives a message m
from A. Finally, A samples r5 < {0,1} (M) calls A on input of (crs”,m,u || r2)
and outputs his output.

- crs—pre
If A plays Exp(semp”JEN,[)”)J,0

oA crs—pre
other hand, if A plays Exp(setup,/)E”’D”)}Z’l

(M), then it perfectly simulates Ga. On the
(A), then it perfectly simulates Gs. O

Acknowledgments. We thank Daniel Wichs for suggesting the unconditional static-
to-adaptive transformation, as well as anonymous reviewers for extremely useful
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