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ABSTRACT
The need for algorithms that optimize building energy consumption

is usually motivated with the high energy consumption of buildings

on a global scale. However, the current practice for evaluating the

performance of such algorithms does not reflect this goal, as in

most cases the performance is reported for one specific simulated

building only, which provides no indication about the generaliza-

tion of the score on other buildings. One approach to overcome

this severe issue is to establish a shared collection of environments,

each representing one simulated building setup, that would enable

researchers to systematically compare and contrast the efficacy

of their building optimization algorithms at scale. However, this

requires that the individual environments are well designed for this

goal. This paper is thus targeting the design of suitable environ-

ments for such a collection based on a detailed analysis of related

publications that allows the identification of relevant characteris-

tics for suitable environments. Based on this analysis a guide is

developed that distills these characteristics into questions, intended

to support a discussion of relevant topics during the design of such

environments. Additional explanations and examples are provided

for each question to make the guide more comprehensible. Finally,

it is demonstrated how the guide can be applied, by utilizing it

for the design of a novel environment, which represents an office

building in tropical climate. This environment is released open

source alongside this publication. We also indicate how test scenar-

ios from existing publications could be enhanced to comply with

the required characteristics according to our guide, underlining its

importance for the future development and evaluation of building

energy optimization algorithms, and thus for the sustainability of

buildings in general.
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1 INTRODUCTION
An enormous amount of scientific work has been published within

the last decades covering the algorithmic optimization of energy

consumption patterns of buildings, usually with the target to in-

crease energy efficiency, provide flexibility, and/or improve user

comfort [23]. However, while it is very common to motivate the

research by referring to the high share of global energy consump-

tion caused by buildings, there is a tendency to evaluate the pro-

posed algorithms very locally, in many cases even on exactly one

building that is furthermore often closely related to the institution

the authors are affiliated with (see e.g. [1, 6–8, 16, 17, 20, 21, 32]).

Obviously, this contradicts the original intention of developing al-

gorithms that address a global scale problem, i.e. that can be applied

to a larger number of potentially very diverse buildings. However,

from all publications addressing the algorithmic optimization of

buildings reviewed for this work [1, 6–8, 12, 16–18, 20, 21, 30, 32, 33]

none did actually discuss the impact of the evaluation environment

on the results. Furthermore, the observed single building evalua-

tion procedure does not only hinder the interpretation of the actual

performance of algorithms, it also makes comparisons between

publications nearly infeasible [31]. This is due to the evaluation of

algorithms in non-standardized settings and to the strong depen-

dence of the reported scores on the specific evaluation environment

which prevents direct comparisons.

To mitigate these issues it has been proposed to establish a collec-

tion of shared environments, i.e. a number of open source programs,

as a common foundation for the objective and systematic evaluation

of building energy optimization algorithms [31]. In this context,

each environment represents a test case, i.e. a typical scenario that

could be the target for such an optimization. An example could

be the optimization of the self-consumption rate of photovoltaic

panels in combination with a battery storage system or, alterna-

tively, the optimization of the energy costs of an air conditioning

system. While each environment alone may already serve as a valu-

able tool, the essential idea is that a collection of environments

should reflect the diversity of buildings in general, thus effectively

allowing the systematic and objective evaluation of building energy

optimization algorithms in a global perspective. However, such a

collection of benchmark environments will certainly only be of use
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if the individual members are "good" environments for the purpose

of evaluating building energy optimization algorithms. Thus, the

natural question arises, what defines a "good" environment, and

how one could achieve the creation of such a "good" environment.

Hence, this paper contributes a guide for the systematic design

of benchmark environments to evaluate building energy optimiza-

tion algorithms. Effectively, we provide a collection of topics and

questions that one should consider or discuss while designing such

an environment. In order to ensure that our proposed guide is as

complete as possible, we carried out an extensive analysis of topics

that are currently perceived important for design and application

of benchmark environments in the context of building energy opti-

mization. The results of this analysis are documented in Section 3.

The actual guide is presented in Section 4. While it appears gener-

ally sufficient to verbally discuss the introduced topics and guiding

questions while designing an environment, the main intention is to

document the outcome in a scientific publication in order to allow

others to comprehend the reasoning behind this design. In order to

provide a practical example for this process, we use our guide to de-

sign a new benchmark environment, and document this in Section

5. Furthermore, we discuss how a few more known scenarios could

be enhanced to become environments complying with the criteria

of our guide. Finally, we summarize our work in Section 6. Since the

process of evaluating optimization algorithms is subject to many

different scientific fields, and in order to prevent misinterpretation,

we begin in Section 2 by briefly introducing a nomenclature that is

used throughout our paper.

2 NOMENCLATURE
A benchmark is commonly understood as the actual performance

evaluation of optimization algorithms [3, 9, 11] on a selected test

set. Carrying out a benchmark is a non-trivial task, a best practice

guide to do so is e.g. given by Beiranvand et al. [3], but for this

paper it is sufficient to perceive a benchmark as a process of:

• Selecting a set of optimization algorithms.

• Selecting tasks used for evaluating the algorithms.

• Executing each task with each optimization algorithm and

reporting the obtained performance.

Following common convention [4, 9, 13, 25], we will denote a

task within a benchmark as environment. The environment oper-

ates as a sequential decision process with discrete time stepping.

At each time step, the environment yields a set of observations
and rewards as output. The former reflects the measured sensor

values while the latter usually corresponds to the quantity being

optimized. The optimization algorithm is expected to compute a

set of actions, these are the decision variable values, that are passed

to the environment. Based on these, the environment will advance

one time step and emit a new set of observations and rewards. This

is iterated until eventually a terminal state is reached. A practical

example could be the air conditioning of a room, for which the

observations could include the current temperature and the desired

setpoint. The reward signal could reflect the energy costs, usually in

addition to a penalty term for violating comfort constraints, while

the actions could correspond to the opening level of a valve con-

trolling the exchange of cool water between the air handling unit

and the heat exchanger. Finally, the environment denotes the room

with all hardware, or relevant to our work, a simulation code of the

same.

It should be noted that some authors tend to use the term test
function instead of environment. This is in particular the case for

publications addressing optimization algorithms that are not tai-

lored to specific applications, like e.g. general black box optimiza-

tion [11]. However, in such scenarios the test tasks are usually

actual functions, in a mathematical sense, while the term environ-

ment rather expresses the use of complex simulation code as we

expect it for the building energy optimization case addressed in this

paper. We will thus stick to the term environment by default, apart

from situations in which we explicitly like to express the meaning

above which is a mathematical function.

It should also be noted that the interaction with environments

in terms of actions, observations, and rewards at every time step is

heavily influenced by the conventions of reinforcement learning

research. However, it has been argued that the concept is general

enough to allow the interaction with other types of optimization

algoritms [31], which is why it has been applied in this work.

3 STATE OF THE ART
In order to ensure that our proposed guide is as complete as pos-

sible, an extensive analysis to identify characteristics of "good"

benchmarks for the evaluation of building energy optimization

algorithms was carried out. However, to our best knowledge and

research efforts, we could not identify a single scientific publication

that covered this topic explicitly. We thus focused on analyzing

closely related work, which is introduced in the following subsec-

tions. While reviewing these publications, it was not possible to

identify hard measures for "good" environments. Instead, we iden-

tified shared topics, like e.g. scenario or performance measure, that
reappear in different publications and that thus seem to be impor-

tant for the environments. Therefore, this section introduces these

as they appear in the reviewed literature. For the development of

the guide in Section 4 we discuss and elaborate on the relevance of

these topics in greater detail.

3.1 Publications Related to Building Energy
Optimization Benchmarks

The "CityLearn v1.0" environment [26] is by far the closest related

work found. The goal is to control the heat pumps and batteries of

ten buildings in parallel, such that these reduce energy consump-

tion and minimize peaks [27]. However, neither the corresponding

publication [26] nor the project website [27] provide any discus-

sion about the design of it, apart from motivating the necessity for

demand response and potential benefits of applying reinforcement

learning algorithms to control buildings. The environment is in fact

heavily inspired by OpenAI Gym, which is discussed in Subsection

3.4, including implications for the design of environments for the

evaluation of building energy optimization algorithms.

In [29] Waibel et al. discuss the suitability of applying mathe-

matical test functions to evaluate algorithms for building energy

optimization. They argue that it is relevant to examine the scope
of the optimization problem, here especially the fitness landscape,

and apply a method called fitness landscape analysis to compare

15 EnergyPlus simulations with 24 mathematical test functions.
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They also found it necessary to discuss the relevance of their se-
lected buildings, for elaborating the representativeness of these for

buildings in general.

3.2 Publications Related to Building Energy
Optimization Algorithms

A large amount of publications is available covering algorithms for

optimized operation of buildings and their hardware components

in order to minimize energy costs and consumption, maximize

user comfort, and/or reach a desired energy consumption pattern.

Usually, for showing the relevance of the introduced optimization

algorithm, the authors tend to select and utilize a benchmarking

environment for demonstrating the desired performance. In or-

der to assess the current practice for the design and application

of benchmark environments we began by directly searching for

relevant publications, from which we have chosen a representative

set [17, 18, 20, 21] for explicit reference. To broaden our focus be-

yond the sorting logic of typical search engines, we also considered

[1, 8, 12, 16, 30], which have been arbitrarily selected from [23].

The latter is an extensive review about optimized control systems

for building energy and comfort management. Finally, scanning the

proceedings of the ACMBuildSys 2018 and 2019 yielded [6, 7, 32, 33],

which represent more recent developments. The remainder of this

subsection will summarize the findings, i.e. how benchmarking

environments are selected and utilized in these publications.

As a first finding it can be noted that none of the investigated

publications [1, 6–8, 12, 16–18, 20, 21, 30, 32, 33] did use an environ-

ment that was explicitly designed to objectively compare building

energy optimization algorithms, most likely as such environments

do not exist yet. The scope of the utilized environments is there-

fore rather closely tailored towards the evaluated algorithms, i.e.

the environments seem to be explicitly engineered to match the

optimization algorithm. An example is the formulation of the en-

vironment as a linear program to evaluate the performance of a

linear optimization algorithm [18].

On the other hand, it seems common convention, e.g. in [1, 6, 7,

12, 17, 18, 20, 21, 32, 33], to describe the scenario represented by the
environment. Such elaboration usually introduces the optimization

target but also covers information about the represented building

itself, as well as the considered devices relevant for building energy

management. The provided level of detail varies between very high

level information like location and floor area, e.g. in [7, 8, 12], to fine

grained description of the construction, like heat loss coefficients of

facade elements in [21]. Furthermore, it is also common to describe

the way the scenario has been modeled. The model is either de-

scribed as a set of mathematical equations, e.g. in [1, 16, 18, 20], or it

is made clear that the scenario has been implemented in a building

simulation software, often EnergyPlus as in [6, 7, 17, 21, 32, 33].

Finally, all of the investigated publications implicitly or explic-

itly defined a performance measure, i.e. one ore more metrics that

indicate how well the algorithm performs w.r.t. the environment.

3.3 Publications Related to Benchmarking
Optimization Algorithms

Similar to the large corpus covering optimization algorithms for

building energy optimization, there also seems to exist a wide range

of scientific work that carried out benchmarks for optimization

algorithms in general. For example, Beiranvand et al. [3] list over 50

of such publications, which we will not review here as it appears out

of scope. However, the work of Beiranvand et al. itself is absolutely

relevant for this work as they discuss best practices for executing

benchmarks for optimization algorithms. Although they do not

address the design of test functions or environments explicitly,

some implications for "good" design can be found.

The first point of these implications targets the relevance of the
environment, as they propose to clearly define the reason of the

benchmark before it is carried out. Furthermore, they stress that

the environments utilized in the benchmark must be relevant in

that sense, i.e. the environments must be capable to evaluate the

optimization algorithms w.r.t. the investigated reason. A second

implication aims at the realism of the environment, as they suggest

that the environment should reflect a real world problem (here

in contrast to a designed test function), if the benchmark aims to

evaluate the performance of optimization algorithms for a prac-

tical application. Going on, a larger fraction of [3] is dedicated

to the design of a performance measure to evaluate the optimiza-

tion algorithms based on the collection of environments used in

a benchmark. The suggested measures include the typical choices

like accuracy and number of constraint violations, but also running

time and memory usage. Furthermore, Beiranvand et al. suggest to

prefer environments with known optimal solutions, as this allows

a more objective evaluation of the performance. Finally, they ad-

dress the scope by stating that it is common to group test functions

by mathematical types, e.g. whether the optimization problem is

convex or not.

The latter point is confirmed by Hansen et al. [11], which intro-

duce a collection of test functions for the evaluation of black-box op-

timization algorithms. Furthermore, they define what information

is gained for each test function if one uses this particular function

in a benchmark. For example, they state that a simple spherical

function yields information about the optimal convergence rates,

while most other test functions they propose are not convex and

thus more difficult.

3.4 Publications Related to Environments for
Reinforcement Learning

Reinforcement Learning (RL) can generally be perceived as an

approach that aims to learn optimal sequential decisions from in-

teractions with an environment [25]. Although research on RL has

been carried out for several decades, its popularity has risen signif-

icantly within recent years, which also led to many applications

in building energy management, e.g. by [6, 7, 32, 33]. The rising

popularity is very likely due to outstanding results in algorithmic

game playing, e.g. on Atari [15] or Go [24]. However, it appears

that these important advances were significantly facilitated by the

consequent separation of the development of environments and

algorithms, similar to our approach. In fact, the fundamental ideas

of this work are inspired by the development in RL in recent years.

The general concept of designing test problems to evaluate the

performance of RL algorithms is certainly as old as RL itself. How-

ever, the concept of developing designated environments, in a sense

used in this work, i.e. as software components conceived for the
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objective comparison of algorithms, is much younger. One of the

pioneers of such environments is certainly the Arcade Learning

Environment (ALE) [4] that is intended to evaluate the performance

of RL agents in general game playing, and that has been applied

in many high impact publications in the last years, e.g. [14, 15, 22].

Interestingly, the authors of the ALE provide no discussion about

its suitability to evaluate RL agents, apart from stating that the

included games are a challenging problem for RL. More relevant

here is the work by Machado et al. [13] that identifies conceptual

design flaws of the ALE by summarizing five years of application by

the scientific community. One of the most severe issues is related

to the computation of the performance measure, or more precisely,

the absence of a definition how the performance measure should be

computed. This has led to different definitions of the performance

measure by different authors applying the ALE, thus leading to

poor comparability of the results. A second issue is related to the

reproducibility. While it is immediately obvious that the environ-

ment should yield reproducible results, this has not always been

the case for the ALE. One reason for this has been poor clarity

about the intended usage pattern, e.g. how long a game is played

before a score is reported. Additionally, software updates to the

ALE’s source code have been identified to reduce the comparability

of results. As a result of the latter, it is now common to report

environments with name and a version number, e.g. in [26].

The rising popularity of environments like ALE has brought the

usability of these environments more into focus. As a consequence,

software collections have emerged that bundle several already avail-

able environments and allow the interaction with these environ-

ments over a standardized interface. The most popular of these

projects is OpenAI’s Gym [5, 19] which established the current de

facto standard for interaction between algorithm and environment.

4 A GUIDE FOR THE DESIGN OF SYSTEMATIC
BENCHMARK ENVIRONMENTS

The analysis of the state of the art in the section above has yielded

a diverse set of characteristics that seem important for "good" envi-

ronments. Furthermore, it was possible to identify common topics,

that can be used to cluster the characteristics into groups. Based

on these findings this section presents our main contribution, that

is a guide for designing systematic benchmark environments for

the evaluation of building energy optimization algorithms. To this

end we distilled the most important characteristics of "good" en-

vironments into guiding questions, i.e. questions that we would

expect authors of environments to answer within a corresponding

publication or documentation. These guiding questions are grouped

according to the associated topics, i.e. each of the following sub-

sections is devoted to one topic. Each subsection begins with a

definition of the topic, followed by the corresponding guiding ques-

tions and an explanatory text which specifies the question in more

detail, but also contains reasoning why the particular question is

important. Usually, we also present a short example.

4.1 Scenario
Considering the results presented in Subsection 3.2, the most fun-

damental topic for an environment is certainly the scenario, as it

defines what is actually being represented by it.

What is the optimization target?
Following common convention outlined in Subsection 3.2 it is cer-

tainly necessary to define the optimization target while describing

the scenario. The goal is to explicitly clarify the target for any

optimization algorithm evaluated with the proposed environment.

Typical examples could be the minimization of energy consumption

or the energy costs. Any constraint that must be considered during

optimization, e.g. temperature ranges to maintain thermal comfort,

should be listed too.

What characterizes the represented building and its devices?
Similar to the previous guiding question it is also common con-

vention to define the building represented by the environment as

well as the devices within the building, at least those that are rele-

vant for building energy management. The description should be

sufficiently detailed to allow discussion about the adequacy of the

model to reflect the building, but also provide the necessary infor-

mation for debating the relevance of the environment. Examples

for potentially relevant characteristics of buildings and devices are

given in Section 3.2.

How is the building/are the devices modeled?
Specific information about how the building along with the devices

is modeled is certainly necessary as a foundation for discussing

other topics, like scope or realism, and should be provided at appro-

priate level of detail accordingly, e.g. by listing relevant equations.

Additional information, however, is certainly better handled by

referring to source code published alongside, especially for very

complex models like e.g. those used by the EnergyPlus software.

How is stochasticity dealt with?
Stochasticity is naturally part of building energy optimization, e.g.

as measurement error or when weather forecasts are incorporated

into the optimization process [18]. Furthermore, stochastic ele-

ments have been found to make environments more challenging

and realistic [13]. We therefore suggest to systematically analyze

the scenario for stochastic elements, and model these in the envi-

ronment accordingly.

4.2 Relevance
As highlighted in Subsection 3.3, it is certainly important to clarify

the reason for benchmarking a priori. In the context of this work

such reason is clearly to evaluate the general performance of op-

timization algorithms for building energy management. What is

left to consider during the design of an environment is thus the

relevance of the environment for this particular application, i.e.

why a user should use the proposed environment.

How representative is the scenario for buildings in general?
Following our findings in Subsection 3.1 and 3.2, a first point for

debating the relevance of the environment is certainly the expres-

siveness of the computed metrics for buildings in general. One

should therefore define which buildings are represented by the

environment. As an example, one might show that the air condi-

tioning system represented in a proposed environment is typical

for office buildings in Northern America.

How is the environment different fromexisting environments?
Discussing the differences of the proposed environment from exist-

ing ones should support users while choosing environments for a
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particular benchmark. For example, it could be pointed out that the

environment targets office buildings while existing environments

represent private households.

4.3 Scope
During our analysis of the state of the art in Section 3 it has been

found that most environments are implicitly or explicitly designed

for the evaluation of certain types of optimization algorithms. We

refer to this as scope.

What types of optimization algorithms are addressed?
Any publication introducing an environment should define the

scope to allow potential users to evaluate if the environment is

suitable for the candidate optimization algorithms. Defining the

scope is straight forward if the environment has been designed for

the evaluation of certain types of optimization algorithms, by sim-

ply naming the targeted algorithms. An example is the CityLearn

challenge introduced in Subsection 3.1 that explicitly addresses

reinforcement learning algorithms. However, environments appear

more valuable if they can be applied to wider ranges of algorithms,

i.e. have a broader scope. We thus recommend to not design envi-

ronments for specific types of algorithms.

What characterizes the underlying optimization problem?
The evaluation whether a specific algorithm is able to solve an

environment is certainly harder if the environment does not ad-

dress certain types of algorithms. Following the findings listed in

Subsection 3.3 one should therefore characterize the underlying

optimization problem to support such evaluations. One might for

example specify that the optimization problem underlying a pro-

posed environment is non-linear but convex.

4.4 Realism
As pointed out in Subsection 3.3 it is good practice to evaluate

optimization algorithms that are developed for certain applications

in environments that reflect these applications realistically. In our

application we consider an environment to be realistic if there is

no difference for an optimization algorithm between interacting

with the environment or the building represented by it.

Are the sensors and actuators typically available in the rep-
resented scenario?
As a first point to discuss the realism we propose to question the

assumed hardware configuration for the represented building. It

is for example often assumed (e.g. in [6, 7, 18]) that detailed occu-

pancy information is available and can be used for optimization.

During the design of the environment one might thus discuss, if

occupancy sensors are typically available in the represented build-

ings, and if not, if retrofitting a presence detection system would

be economically viable. One might furthermore consider if the data

of the proposed hardware is available for optimization, as e.g. legal

or privacy concerns need to be considered.

How does the runtime of the optimization algorithm affect
the realism of the environment?
A second point addresses that some optimization algorithms tend

to require longer periods (minutes/hours) to compute an output.

On the other hand common environments, e.g. [4, 19], do simply

pause the simulation while awaiting input from the optimization

algorithm. This becomes certainly unrealistic if the runtime of the

optimizer is not much smaller than the time step length of the

environment, and should thus be considered during design.

How is the realism of the environment affected bymodeling
simplifications?
Naturally, any simulation model of reality is simplified to some

extent. An example for such a simplification in the context of this

work is the zone temperature in EnergyPlus simulation, which

is assumed to be constant everywhere in the zone. While such

simplifications may have no practical impact on the realism of the

environment, this point should nevertheless be discussed.

4.5 Performance Measure
Following the concepts introduced in Subsections 3.2 to 3.4 the

performance measure refers to one or more numeric values that

summarize the performance of the evaluated optimization algo-

rithm w.r.t. a specific environment and that is used to compare the

performance of several algorithms with each other.

How is the performance measure computed?
Defining performance measures traditionally does not seem to be

part of the environment design, but is rather left to the person carry-

ing out a benchmark [3, 4]. However, this procedure leads to poor

comparability between reported scores using the same environ-

ment, which is considered a severe issue [13]. We therefore suggest

to define the performance measure alongside the environment in-

cluding discussion why the performance measure is relevant for

evaluating and comparing optimization algorithms. As an exam-

ple one might use the relative energy cost savings as performance

measure for an environment reflecting a battery storage system

in a private household, and motivate this decision by stating that

the monetary savings potential is likely the main motivation for

purchasing a system that optimizes the operation of the storage

system.

Which values of performance measure can be considered a
bad or good result?
Considering the publications listed in Subsection 3.2, it appears com-

mon to report performance measures for optimization algorithms

targeting buildings as an improvement compared to a baseline con-

troller. An example for such a procedure is given by Chen et al.

[6] who reported energy savings of 16.7% for an air conditioning

system compared to the currently installed controller. However,

without any additional details it is hard to interpret whether this

performance is actually good or not. To overcome this issue we

suggest to discuss which values of the performance measure can

be considered a bad or good result. In order to identify bad perfor-

mance we suggest to keep the current procedure, i.e. to provide

the performance measure of a baseline. However, it appears espe-

cially relevant that the baseline is a strong one and reflects the

current state of the art. An example is given by Ding et al. [7] who

extensively discuss the quality of the controller that they use for

comparison. In order to additionally identify good performance it

is commonly suggested, e.g. in [3, 11], to provide the performance

measure of the optimal solution for comparison. If the optimal solu-

tion is unknown and cannot be estimated, it appears reasonable to

define a threshold that allows the identification of a good solution.

An example for such a procedure is the application of reinforcement
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Table 1: Overview of relevant topics for environments.

Topic Description

Scenario
Defines what is represented by the environment, the relevant parts of the

building, the modeling of these, and the optimization target.

Relevance
Describes why one should use the environment, the representativity of the

environments for buildings in general, and differences from existing environ-

ments.

Scope
Designates whether the environment is designed for specific optimization

algorithms and characterizes the underlying optimization problem.

Realism
Discusses the realism of the environment considering the assumed hardware,

runtime requirements, and modeling simplifications.

Performance Measure
Delineates how the score that is emitted by the environment is computed and

provides details to distinguish good from bad results.

Reproducibility Depicts how the environment must be used to reproduce the results and how

the environment should be referred to.

Interface
Determines how to exchange information with the environment including the

format and ranges of the data.

learning algorithms to computer games, where the highest possible

score is often unknown and a strong human player is chosen as

reference.

4.6 Reproducibility
As highlighted in Subsection 3.4 it is important that environments

deliver reproducible results, i.e. experiments can be repeated and

verified by others yielding identical performance measures.

What instructions must be followed to utilize the environ-
ment in its intended way?
Following the findings of [13], we suggest to provide clear usage in-

structions as a first step towards reproducibility. Besides describing

how a user should interact with the interface of the environment

(see Subsection 4.7) these instructions should also cover how the

environment must be installed to ensure the intended operation.

If the environment contains stochastic elements that affect the re-

ported performance metric, the user should also be advised how

to behave correctly in that light. For example, it is common for

reinforcement learning publications to repeat the interaction with

the environment five times and report the average score.

How should the environment be referred to?
As a second step towards reproducibility we suggest to define a

unique and novel name for the environment. Considering the results

outlined in Subsection 3.4, we furthermore encourage the usage

of a version number, to prevent inconsistency if breaking changes

must be made to the source code of the environment.

4.7 Interface
In order to evaluate a building energy optimization algorithm with

an environment, it is necessary to connect both programs. Here we

refer to the part of the environment that is exposed to the tested

algorithm as interface. Thus the interface allows the transportation

of observations and rewards from the environment to the optimiza-

tion algorithm, which is expected to compute a new action, which

is forwarded back to the environment with an interface call.

Which conventions does the interface follow?
While one could freely choose the design of the interface while

developing an environment, our findings of Subsection 3.4 have

indicated that it is instead common to follow common conventions.

This procedure is likely popular as it allows faster implementation

of both, the environment and the tested algorithm, the latter espe-

cially if many environments should be used for benchmarking. An

example for such a convention is OpenAI’s Gym.

What is represented by the values of observations, rewards
and actions?
It is common practice for interfaces to just exchange the bare data

and define how this data should be interpreted in some documenta-

tion that is provided alongside. Interfaces of environments, e.g. in

[6, 17, 27, 32], typically proceed similarly, that is, they provide ob-

servations, actions, and rewards as bare numbers or arrays of such,

while providing additional information on how the data should be

interpreted in the publication. If the environment would reflect the

air conditioning system of a room, for example, one would define

that the observations are provided as an array of two floats (e.g.

[22.8, 49.0]), the first representing the current temperature and the

second the current humidity in the room. Rewards and actions

should be defined accordingly.

What is the allowed value range for observations, rewards
and actions?
In addition to the previous guiding questions it is also good practice,

e.g. in [17, 29], to define the possible value range for observations,

rewards, and actions, as the range is usually relevant for adapting

algorithms to the application. Extending the example above one

would thus define that the possible values for the observations are

{5, . . . , 40} for temperature and {0, . . . , 100} for humidity.

4.8 Summary
A brief overview of relevant topics that should be considered during

the design of environments for the evaluation of building energy

optimization algorithms is presented in Table 1.
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Figure 1: Schematic of floor layout and the thermal zones.
Climate control to this section is provided by one AHU.

5 APPLICATION OF THE GUIDE
In order to demonstrate the relevance of the guide introduced above,

this section is devoted to its practical application. Our approach

is twofold. In the first subsection, we provide an example for the

design of an environment utilizing the guide as it was intended, i.e.

by providing answers and discussion w.r.t. the guiding questions.

This allows us to demonstrate that the guide is a useful tool for the

design of environments, while also providing a complete example

for a scientific documentation of such a design process. Furthermore,

it also allows us to publish a ready-to-use environment alongside

this publication, a link is provided in Supplementary Material. The

second subsection demonstrates the general utility of the guide

by discussing potential benefits of utilizing it for enhancing test

environments from other publications.

5.1 The TropicalPrecooling Environment
This subsection introduces the TropicalPrecooling environment

in detail. In order to prevent the description from becoming too

voluminous or even out of scope for this publication, it was decided

to build up on a scenario published in [28] that is the reduction

of energy costs incurred by a heating, ventilation, and air condi-

tioning (HVAC) system to cool a commercial building in tropical

climate, while ensuring thermal comfort to the occupants. Parts of

the following content, especially the scenario description, have thus

already been published in [28]. Here, we provide sufficient detail,

for clarity of exposition in the context of this paper, in order to give

a good example for documenting an environment. Furthermore,

it should be noted that the original publication primarily focused

on the evaluation of one specific optimization algorithm, while

in this publication we address the development of a benchmark

environment.

5.1.1 Scenario. The building considered in this environment is an

office and administration building located in a warm tropical city

in the southern hemisphere. In this location, no heating is required

in the winter months. The building houses about 250 people. The

office hours are between 8 am and 5 pmMonday to Friday. The rates

structure contracted with the local electricity utility is as follows.

There is a daily service fee of $2.68, a peak consumption charge

of 24.48 cents/kWh when electricity is consumed between 7 am

and 11 pm and an off-peak consumption charge of 9.78 cents/kWh

for electricity consumed outside of these hours. The lower and

upper zone temperature comfort bounds, as specified by the facility

manager, are given by:

𝑇𝑚𝑎𝑥
𝑐𝑜𝑚𝑓 𝑜𝑟𝑡

(𝑡) =
{
25 °𝐶 ; if 𝑡 ∈ {7 am, . . . , 5 pm}
29 °𝐶 ; otherwise

(1)

𝑇𝑚𝑖𝑛
𝑐𝑜𝑚𝑓 𝑜𝑟𝑡

(𝑡) =
{
23 °𝐶 ; if 𝑡 ∈ {7 am, . . . , 5 pm}
25 °𝐶 ; otherwise

(2)

The time window {7 am, . . . , 5 pm} is the core occupancy hours,

meaning it corresponds to the continuous time period when the

building and the zones are mostly occupied. However, this is only

applicable on weekdays as the HVAC system is turned off by de-

fault on weekends and after 5 pm on weekdays, unless people are

working late. Therefore, the optimization target is the minimiza-

tion of energy costs under consideration of the thermal comfort

constraints, i.e. exploiting the off-peak consumption rates in the

morning by precooling the building before the usual occupancy

hours. Following the current operation strategy of the building,

the optimization algorithm is requested to compute a schedule of

setpoint temperatures for the time window {4 am, . . . , 5 pm} once
per weekday at 2 am, in order to exploit the precooling potential.

The building consists of several sections that can be controlled

independently and the optimization challenge is similar for all

those. It is thus sufficient to model only one section to represent

the challenge of optimizing the building in total. The environment

reflects therefore Stage 1 Level 1, which is comprised of five thermal

zones, as shown in Fig. 1. Cooling to the building is provided by

a centralized chilled water plant. A dedicated air handling unit

(AHU) provides the desired ventilation and air conditioning to the

5 thermal zones. It consists of a variable speed drive (VSD) supply

air fan, i.e. one whose fan speed adjusts dynamically based on the

required air flow and cooling demand at any given time, a cooling

coil that acts as a heat exchanger, a return-air CO2 sensor, and

an outside air damper (OAD). The CO2 measurements are used to

modulate the OAD associated with the AHU to ensure that adequate

fresh air is brought inside the building, which is then mixed with

the return-air before being circulated to the zones. Moreover, it also

helps to maintain the average indoor CO2 concentration under the

recommended 1000 ppm limit for the vast majority of time.

The building introduced above is represented in the environment

as a simulation model which defines the relationship between the

actions computed by the evaluated optimization algorithm, i.e. the

schedule of temperature setpoints, and the variables needed for the

computation of the performance measure. The latter are the zone

temperature and energy costs, as defined in Subsection 5.1.5. To

this end, our modelling integrates the first law of thermodynamics

with regression analysis and can be represented as:

𝐶𝑧
𝑑𝑇𝑧

𝑑𝑡
= 𝑘𝑎 (𝑇𝑎 (𝑡) −𝑇𝑧 (𝑡))︸                 ︷︷                 ︸

Heat gain from outside

+

𝑘𝑜,1𝜃𝐶𝑂2 (𝑡) + 𝑘𝑜,2︸                 ︷︷                 ︸
Internal heat gain from occupants

+ ¤𝑄𝑐𝑜𝑜𝑙𝑖𝑛𝑔 (𝑡)︸       ︷︷       ︸
Zone cooling rate

(3)
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where 𝑇𝑧 is the zone temperature, 𝐶𝑧 is the zone thermal capac-

itance, 𝜃𝐶𝑂2 is the concentration of CO2 in ppm denoting zonal

occupancy, 𝑘𝑜,1 and 𝑘𝑜,2 are the linear regression coefficients that

map 𝜃𝐶𝑂2 to the internal heat gain due to occupancy, 𝑇𝑎 is the out-

side air temperature, and 𝑘𝑎 is the effective heat transfer coefficient

between the outside and the zone. In this example, CO2 concen-

tration denotes the average across the 5 thermal zones since the

sensor is housed in the return-air duct of the AHU. The building is

not equipped with occupancy sensors at a zone level. Consequently,

𝑇𝑧 represents the average zone temperature, i.e. of the combination

of zone temperatures across the 5 thermal zones shown in Fig. 1.

The zone cooling rate supplied by the HVAC is given by:

¤𝑄𝑐𝑜𝑜𝑙𝑖𝑛𝑔 = 𝑐𝑝,𝑎 [ ¤𝑚𝑠 (𝑡) (𝑇𝑠 (𝑡) −𝑇𝑧 (𝑡))] (4)

which is the well-known heat transfer equation [2]. Here, 𝑐𝑝,𝑎 is the

specific heat capacity of air, ¤𝑚𝑠 (𝑡) is the mass flow rate of supply

air to the zone, and 𝑇𝑠 (𝑡) is the temperature of the supply air. In

buildings where data for mass flow rate is unavailable, such as the

one in this study, it can be approximated using the control logic of

the dampers supplying the cold air. The dampers in the building

rely on proportional control, modulating between closed and fully

open based on the difference between the zone temperature 𝑇𝑧 (𝑡)
and the corresponding set-point temperature 𝑇𝑧,𝑆𝑃 (𝑡). Under this
approximation, we can express:

¤𝑚𝑠 (𝑡) ≈ ¤𝑚𝑠,𝑜 + 𝑘𝑐 (𝑇𝑧 (𝑡) −𝑇𝑧,𝑆𝑃 (𝑡)) (5)

where ¤𝑚𝑠,𝑜 and 𝑘𝑐 are the coefficients corresponding to the offset

and gain terms of the proportional controller.

In order to compute the required zone temperature trajectory

for the time window {4 am, . . . , 5 pm} of each simulated day, (3) is

used recursively to compute the zone temperature at the next time

step based on the zone temperature value at current simulation

time. The time step length is fixed to 5 minutes, and the initial zone

temperature 𝑇𝑧 (4 am) is taken from measurements at the existing

building that is reflected by the environment. These measurements

also include values for 𝜃𝐶𝑂2 and 𝑇𝑎 and are provided as part of the

environment source code. The energy costs for cooling the building

are approximated as:

𝐸 (𝑡) = − ¤𝑄𝑐𝑜𝑜𝑙𝑖𝑛𝑔 (𝑡)𝑒 (𝑡)/𝐶𝑂𝑃 (6)

where 𝑒 (𝑡) is the electricity price at time 𝑡 and 𝐶𝑂𝑃 is the coeffi-

cient of performance of the chiller, which is assumed as constant

value of 2.7. The efficacy of the model is addressed in detail in

[28] and omitted here for brevity. This also includes the approach

for estimating the regression parameters (𝑘𝑎 , 𝑘𝑜,1, 𝑘𝑜,2, ¤𝑚𝑠,𝑜 , and

𝑘𝑐 ). Without loss of generality 𝐶𝑧 is assumed to be unity. These

parameters are provided in the environment.

Finally, it should be noted that the scenario includes two sources

of uncertainty that are considered relevant for the optimization,

these are the development of the occupancy estimate and the out-

side air temperature during the day. Regarding the latter, one would

typically provide a temperature forecast to the optimization algo-

rithm, e.g. obtained from the bureau of meteorology. Naturally this

forecast carries some stochastic error. However, within the scope

of this work it was not possible to quantify the nature of this sto-

chastic error; we thus provide a perfect temperature forecast, i.e.

one with no error, to the evaluated algorithm. On the other hand,

occupancy of the building is considered to be building specific, and

it is thus left to the evaluated algorithm to account for it.

5.1.2 Relevance. Office buildings are ubiquitous, making them

ideal candidates for evaluating building energy optimization algo-

rithms. Buildings in tropical regions have relatively simple HVAC

installations since weather conditions do not necessitate any heat-

ing requirements. The air conditioning system represented by this

environment can thus be considered fairly representative for such

buildings. Furthermore the cooling demand appears fairly represen-

tative for office buildings too, as it follows the routine of occupants

arriving at work in the morning and departing from the workplace

in the evening. Finally, it should be noted that the time-of-use tariff

structure presented in this environment is also fairly common for

commercial electricity contracts around the world.

5.1.3 Scope. The environment developed in the earlier section

is amenable for solving using a variety of different optimization

techniques. The work in [28] develops one such solution by first

formulating a non-linear optimization problem and solving it di-

rectly using a special-purpose solver. In general, the environment

gives rise to solutions that can be obtained via pure data driven

approaches or by hybrid modelling techniques, i.e. one in which

thermodynamics can be combined with regression analysis, as has

been demonstrated in [28]. Alternatively, dynamic programming

algorithms can also be applied.

5.1.4 Realism. We believe that the optimization scenario repre-

sented by our environment is realistic because it relies on sen-

sor data readily captured by a building management system and

weather forecast data that can be obtained routinely from meteo-

rology services. Specifically, we do not rely on explicit occupancy

counts being available in the thermal zones, although this infor-

mation will indeed be very useful for optimizing cooling. Instead,

we use CO2 data as a proxy for occupancy. It is easy to retrofit

this sensor in a building owing to the need to ensure adequate

indoor air quality requirements. Moreover, CO2 sensors are cheap

and the data is inherently privacy-preserving while the use of oc-

cupancy sensors could risk leaking sensitive private information.

When using the approach in a day-ahead manner, any runtime of

an algorithm up to 2 hours per simulated day can be considered fast

enough. Finally, the inherent assumption made in the modelling is

that the chiller coefficient of performance (COP) is a constant of

2.7. This is in line with how the chillers are configured and the lack

of all measurement points needed to quantify COP accurately. It

is known that COP varies with time and so the assumption needs

to be relaxed when appropriate chiller data needed to estimate

COP accurately is known, in which case the modelling needs to be

modified suitably.

5.1.5 Performance Measure. It is common for scenarios similar to

ours, e.g. in [7, 33], to utilize a performance measure that balances

energy costs with thermal comfort. Following this approach we

define the performance measure as:

1 − 0.5

∑𝑇
𝑡 𝐸𝑐𝑎 (𝑡)∑𝑇
𝑡 𝐸𝑏𝑙 (𝑡)

− 0.5

∑𝑇
𝑡 |𝑃𝑀𝑉𝑐𝑎 (𝑡) |∑𝑇
𝑡 |𝑃𝑀𝑉𝑏𝑙 (𝑡) |

(7)

where the summation of the terms is applied over all time steps 𝑇

for all simulated days. The performance measure evenly considers
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the two terms representing the improvement of energy costs 𝐸 (𝑡)
and thermal comfort 𝑃𝑀𝑉 (𝑡), of the candidate algorithm 𝑐𝑎 relative

to the baseline approach 𝑏𝑙 . The latter represents the rule based

controller currently installed in the building which commences

cooling at 7 am and proceeds to bring the zone temperatures down

to 23.5 °C set-point as quickly as possible. Regarding the measure

for thermal comfort, we follow common convention and use pre-

dicted mean vote (𝑃𝑀𝑉 ) as introduced in [10], for which the best

value is 0 and the comfort range is usually considered withing the

range −0.5, . . . , 0.5. However, 𝑃𝑀𝑉 is computed based on various

parameters depending on temperature, humidity, metabolism, etc.,

while we are interested in reflecting the comfort ranges defined

by the facility manager as shown in (1) and (2). We thus use PMV

scaled to match these comfort ranges.

Finally, it is worth noting that the performance measure reflects

the improvement over the baseline strategy in percent, whereby an

algorithm as good as the baseline strategy would be scored 0 and

a perfect solution, i.e. one that always achieved 𝑃𝑀𝑉 = 0 without

producing energy costs, receives a score of 1.

5.1.6 Reproducibility. The intended usage of the environment fol-

lows an optimization of a building for which historic data about the

building operation under the baseline strategy has been recorded

during 57 days in spring and early summer. The task is thus to

design a suitable optimization algorithm based on the provided

data, which is then applied to the building and evaluated on the re-

maining 63 days with cooling demand in late summer and autumn.

The user of the environment should thus stick to the following

procedure to generate reproducible results:

from t r o p i c a l p r e c o o l i n g import T r o p i c a l P r e c o o l i n g
env = T r o p i c a l P r e c o o l i n g ( )
t e s t e d _ a l g o r i t hm . f i t ( env . g e t _ t r a i n i n g _ d a t a ( ) )
obs = env . r e s e t ( )
done = F a l s e
while not done :

a c t i o n s = t e s t e d _ a l g o r i t hm . g e t _ a c t i o n s ( obs )
obs , reward , done , i n f o = env . s t ep ( a c t i o n s )

s c o r e = env . compute_performance_measure ( )

The tested_algorithm object including its functions fit and get_actions
must be provided by the user.

5.1.7 Interface. Applying the current best practice, the interface
follows the conventions of OpenAI’s Gym [19] closely. The interac-

tion with the environment is thus realized as calling the env. reset ()
and env.step () functions as illustrated in the code listing above.

A detailed documentation about the objects that are provided as

observations and rewards and are expected respectively as actions

is omitted here for brevity. It can be found in the source code of

the environment, especially in the documentation of the env.step ()
method.

5.2 General Applicability
It is worth noting that it was possible to identify several of the

relevant characteristics for "good" environments for the evaluation

of building energy optimization algorithms as our analysis of the

state of the art was rather broad, i.e. also covered work related to

reinforcement learning and benchmarking optimization algorithms.

In fact, none of of the publications that we considered covered all

relevant topics introduced in Section 4. Vice versa, this also means

that all of these publications could benefit from a reevaluation of

the procedure used to evaluate the performance of the respective

optimization algorithms based on the findings of this work.

For example, it would certainly be beneficial for the interpreta-

tion of scores generated with the "CityLearn v1.0" environment if

the documentation of it would be extended with a discussion about

relevance and realism of the environment, as neither [26] nor [27]

provide any details why the represented scenario is indeed relevant

for the comparison of demand response algorithms.

Adding a discussion on relevance and realism of the utilized eval-

uation environments would also improve the publications reviewed

in Subsection 3.2, as these topics are widely ignored in these pa-

pers. Exception to these findings are [8, 18, 20] that at least partly

discourse on the relevance of utilized evaluation environments.

Finally, it should be noted that the examples above do not indi-

cate that the other topics of the guide are covered in the reviewed

publications to satisfactory extent. Instead the picture is more fine

grained for the remaining topics, that is, the topics are partly cov-

ered in some or many of the reviewed publications. A striking exam-

ple for this finding is the performance measure, which is explicitly

defined in several papers, while it is rarely seen that a lower bound,

e.g. an optimal solution, is provided to support interpretability of

the reported scores.

6 CONCLUSION
This paper addresses the performance evaluation of optimization

algorithms, especially in the context of building energy manage-

ment. Such evaluations are routinely part of scientific publications

that introduce novel or compare existing algorithms. The reported

scores are commonly highly related to the utilized environments.

In the context of this work, the latter are usually software com-

ponents that simulate buildings or parts of those. Considering the

currently common practices of how environments are developed

and used, the reported scores appear of questionable significance,

as e.g. environments are not developed independently of optimiza-

tion algorithms or reflect only one arbitrarily chosen building. To

overcome this issue it has been suggested to establish a collection

of shared environments as a common foundation for the objective

evaluation of building energy optimization algorithms. However,

such a collection will certainly only be of use if the individual

members are well designed w.r.t. the goal of evaluating building

energy optimization algorithms, which is why the design of suitable

environments is addressed in this work.

The foundation of our work is a detailed analysis of related publi-

cations, as documented in Section 3, that allowed the identification

of topics that are considered relevant for environments. These are:

scenario, relevance, scope, realism, performance measure, reproducibil-
ity and interface. Going on, a practical guide has been developed

that is the subject of Section 4, providing guiding questions and

explanations of these for each topic, and also reasoning why the

respective points are considered relevant. A brief overview of the

essential points is given in Table 1. Finally, Section 5 covers the

practical application of the guide, by introducing a novel environ-

ment but also discussing potential benefits for existing publications
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if the guide would be applied to improve the proposed or utilized

evaluation scenarios. Through this it was possible to demonstrate

that the guide is indeed a useful tool for the design of environments

for the evaluation of building energy optimization algorithms, but

also to provide a complete example for a scientific documentation

of an environment. The result of this design process, the Tropical-

Precooling environment, reflects the optimization of energy costs

for cooling an office building in tropical climate. It is published

alongside this publication and a link to access the source code is

provided in the section below.

To conclude the above we consider our work as a valuable step-

ping stone towards a collection of shared environments for the

evaluation of building energy optimization algorithms, thus sup-

porting the development of better and more general algorithms for

improving the sustainability of buildings.

SUPPLEMENTARY MATERIAL
The source code of the TropicalPrecooling environment includ-

ing further documentation can be found at: https://github.com/fzi-

forschungszentrum-informatik/tropical_precooling_environment
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