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Abstract

In many engineering domains, systems are composed of partially independent
subsystems—power systems are composed of distribution and transmission
systems, teams of robots are composed of individual robots, and chemical
process systems are composed of vessels, heat exchangers and reactors. Often,
these subsystems should reach a common goal such as satisfying a power
demand with minimum cost, flying in a formation, or reaching an optimal
set-point. At the same time, limited information exchange is desirable—for
confidentiality reasons but also due to communication constraints. Moreover, a
fast and reliable decision process is key as applications might be safety-critical.

Mathematical optimization techniques are among the most successful tools for
controlling systems optimally with feasibility guarantees. Yet, they are often
centralized—all data has to be collected in one central and computationally
powerful entity. Methods from distributed optimization control the subsystems
in a distributed or decentralized fashion, reducing or avoiding central coordina-
tion. These methods have a long and successful history. Classical distributed
optimization algorithms, however, are typically designed for convex problems.
Hence, they are only partially applicable in the above domains since many of
them lead to optimization problems with non-convex constraints.

This thesis develops one of the first frameworks for distributed and decen-
tralized optimization with non-convex constraints. Based on the Augmented
Lagrangian Alternating Direction Inexact Newton (ALADIN) algorithm, a bi-
level distributed ALADIN framework is presented, solving the coordination
step of ALADIN in a decentralized fashion. This framework can handle various
decentralized inner algorithms, two of which we develop here: a decentralized
variant of the Alternating Direction Method of Multipliers (ADMM) and a
novel decentralized Conjugate Gradient algorithm. Decentralized conjugate
gradient is to the best of our knowledge the first decentralized algorithm with
a guarantee of convergence to the exact solution in a finite number of iter-
ates. Sufficient conditions for fast local convergence of bi-level ALADIN are
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derived. Bi-level ALADIN strongly reduces the communication and coordi-
nation effort of ALADIN and preserves its fast convergence guarantees. We
illustrate these properties on challenging problems from power systems and
control, and compare performance to the widely used ADMM.

The developed methods are implemented in the open-source MATLAB toolbox
ALADIN-𝛼—one of the first toolboxes for decentralized non-convex optimiza-
tion. ALADIN-𝛼 comes with a rich set of application examples from different
domains showing its broad applicability. As an additional contribution, this
thesis provides new insights why state-of-the-art distributed algorithms might
encounter issues for constrained problems.
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In vielen Anwendungen bestehen Systeme aus einer Vielzahl von Subsyste-
men. Elektrische Energiesysteme bestehen aus Transportsystemen und Verteil-
systemen, Roboter Teams bestehen aus einzelnen Robotern und chemische
Prozesssysteme bestehen aus einzelnen Kesseln, Wärmetauschern und Reak-
toren. Oftmals arbeiten diese Subsysteme auf ein gemeinsames Ziel hin, wie
zum Beispiel die möglichst kostengünstige Deckung eines Energiebedarfs, das
Fliegen in einer bestimmten Formation oder die kostenoptimale Ansteuerung
eines Arbeitspunktes. Dabei ist ein möglichst geringer Informationsaustausch
wünschenswert—sei es aus Vertraulichkeitsgründen oder auch aus Gründen
limitierter Datenübertragungskapazität. Zusätzlich ist ein schneller und zuver-
lässiger Entscheidungsprozess essentiell—besonders im Falle sicherheitskri-
tischer Anwendungen.

Methoden der mathematischen Optimierung gehören zu den erfolgreichsten
Werkzeugen für die optimale Steuerung von Systemen mit Garantien. Noch
sind diese Verfahren oftmals zentralisiert—alle Daten werden in einer zen-
tralen, koordinierenden Einheit mit hoher Rechenleistung gesammelt. Meth-
oden der verteilten Optimierung steuern Subsysteme auf verteilte oder dezen-
trale Weise unter Reduktion oder Vermeidung zentraler Koordination. Diese
Methoden haben eine lange und erfolgreiche Historie. Klassische verteilte
Optimierungsverfahren wurden in den meisten Fällen für konvexe Probleme
entwickelt. Damit sind sie jedoch nur teilweise auf Probleme in den oben er-
wähnten Domänen anwendbar, da viele von ihnen auf Optimierungsprobleme
mit nichtkonvexen Nebenbedingungen führen.

Die vorliegende Arbeit entwickelt eine der ersten Verfahrensklassen für die
verteilte und dezentrale Optimierung unter nichtkonvexen Nebenbedingun-
gen. Basierend auf dem Augmented Lagrangian Alternating Direction Inexact
Newton (ALADIN) Algorithmus wird ein zweistufiges ALADIN Verfahren
präsentiert, welches den Koordinationsschritt ALADIN’s dezentral löst. Diese
Verfahrensklasse ist in der Lage mit verschiedenen inneren dezentrale Ver-
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fahren umzugehen, wobei zwei solcher Verfahren vorgestellt werden: eine
dezentrale Variante des Alternating Direction of Multipliers Method (ADMM)
Algorithmus und eine dezentrale Variante des konjugierte Gradienten Ver-
fahrens. Das dezentrale konjugierte Gradienten Verfahren ist nach unserem
Kenntnisstand das erste dezentrale Verfahren mit einer Konvergenzgarantie zur
exakten Lösung eines Koordinationsproblems in einer endlichen Anzahl von
Schritten. Hinreichende Bedingungen für die schnelle lokale Konvergenz des
zweistufigen ALADIN Verfahrens werden hergeleitet. Zusätzlich zu seinen
schnellen Konvergenzeigenschaften reduziert das zweistufige Verfahren den
Kommunikations- und Koordinationsbedarf ALADIN’s. Wir verdeutlichen
diese Eigenschaften anhand herausfordernder Anwendungsbeispiele, die in
elektrischen Energiesystemen sowie in der Optimalsteuerung auftreten, und
vergleichen die Leistungsfähigkeit zu dem weitverbreiteten ADMM Verfahren.

Die entwickelten Verfahren sind in der quelloffenen MATLAB Toolbox
ALADIN-𝛼 implementiert—eine der ersten Toolboxen für die dezentrale
nichtkonvexe Optimierung. ALADIN-𝛼 verfügt über vielfältige Anwendungs-
beispiele kommend aus verschiedenen Domänen, welches ihre breite Anwend-
barkeit unterstreicht. Als zusätzlichen Beitrag dokumentiert diese Arbeit neue
Einsichten über die Gründe, warum aktuelle verteilte Optimierungsverfahren
in manchen Fällen Schwierigkeiten beim Lösen von Optimierungsprobleme
unter Nebenbedingungen haben.
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Frequently Used Symbols

Distributed optimization

𝑥, 𝑧 primal variables
𝜆, 𝛾, 𝜇 dual variables
X feasible set
R set of subsystems
A set of active constraints

S, (S𝜇) set of (strongly) convex functions
𝜄X indicator function to the set X
𝜌 penalty parameter
Σ weighting matrix
(·)𝑘 outer iteration index
(·)𝑛 inner iteration index
(·)★ optimal value

Power systems

𝑦 admittance of a branch
𝑌 bus admittance matrix

𝐺, 𝐵 real/imaginary part of 𝑌
𝜃, 𝑣 voltage angle/magnitude

𝑠, 𝑝, 𝑞 apparent/active/reactive power
N set uf buses (nodes)
{N𝑖} partition of N
E set of branches (edges)
(·)𝑘 quantities related bus 𝑘
(·)𝑘𝑙 quantities related to the branch from bus 𝑘 to bus 𝑙

(·)g, (·)d, (·)s generation/demand/storage
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1 Introduction

In many engineering domains, one can observe a trend towards systems com-
posed of interconnected subsystems coordinating towards a common goal.
Examples range from power systems, which collaborate to satisfy power de-
mands, via robotics, collaborating to fulfill a certain task, to chemical engi-
neering, where reactors collaborate to produce a certain product in an optimal
fashion. Because of confidentiality reasons and communication constraints,
this collaboration should be achieved subject to limited information exchange
and limited central coordination while being fast and reliable.

One particular example for such systems are electricity grids. Electricity
grids are typically composed of smaller grids, each of which is operated
by one system operator. All together, they aim at a cheap and safe energy
supply. To achieve this goal, it is usually necessary to exchange grid models
and consumption data. Exchanging this data is, however, often problematic
because of confidentiality reasons. Moreover, avoiding a single point of failure
(e.g. a central coordinator) is also important for security reasons.

This thesis is about operating such systems by means of mathematical opti-
mization techniques.

Employing mathematical optimization

Mathematical optimization is one of the most successful techniques for con-
trolling systems automatically and optimally towards a goal. Mathematical
optimization problems are typically formulated as

min
𝑥

𝑓 (𝑥) subject to 𝑥 ∈ X, (1.1)

where 𝑓 : X → R is called the objective function, X is called the constraint
set or feasible set and 𝑥 is called the decision vector. The objective function
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min f

x ∈ X

(a) Centralized optimization.

min f1

Ax = b

x1 ∈ X1

min f2
x2 ∈ X2

min f3
x3 ∈ X3

(b) Distributed optimization.

min f1
x1 ∈ X1

min f2
x2 ∈ X2

min f3
x3 ∈ X3

(c) Decentralized optimization.

Figure 1.1: Distributed optimization, decentralized and centralized optimization.

𝑓 encodes the goal (such as minimizing the cost of power generation in an
electricity grid) and the constraint set X captures the underlying physical
model (such as an electricity grid model) and engineering limitations (such as
maximum generator outputs). Problems in form of (1.1) are typically solved by
centralized optimization algorithms in the sense that the data of all subsystems
is collected in one central entity. This entity solves the problem and broadcasts
the solution to the subsystems (Figure 1.1a).

Centralized optimization is often not desirable because of information aggre-
gation in a single entity, which implies the existence of a single point of failure.
Hence, techniques from distributed optimization are important. Distributed
optimization means to shift computation mainly to the subsystems with a co-
ordinating entity (Figure 1.1b).1 Distributed optimization algorithms typically
require problems, where 𝑓 and X have a special structure. One common
structure is

min
𝑥

∑︁
𝑖∈R

𝑓𝑖 (𝑥𝑖) subject to 𝑥𝑖 ∈ X𝑖 , 𝑖 ∈ R and
∑︁
𝑖∈R

𝐴𝑖𝑥𝑖 = 𝑏. (1.2)

1 Note that, although the terminology of “distributed algorithms” might be used slightly different
in computer science, there is an intimate connection between these two fields. We briefly
comment on this interconnection in Appendix D.
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Here, the optimization problem is distributed among a set of subsystems
R = {1, . . . , 𝑅}, where each subsystem has its own objective function 𝑓𝑖 (for
example encoding the generator cost of one system operator), its own decision
vector 𝑥𝑖 (encoding voltages and powers in the region controlled by the system
operator) and its own constraint setX𝑖 (containing the grid model and engineer-
ing constraints of one region). Coupling between the subsystems is considered
via a so-called consensus constraint

∑
𝑖∈R 𝐴𝑖𝑥𝑖 = 𝑏. This consensus constraint

encodes the need for compatible physical values at the interconnection points
between two neighboring subsystems (such as a matching power import/export
between neighboring system operators).

While distributed optimization reduces the amount of central coordination,
it still requires a coordinator. The appealing promise of decentralized opti-
mization algorithms is to overcome the need for this coordinator, i.e. they
avoid central coordination entirely and exchange information directly between
neighbored subsystems (Figure 1.1c).

Although distributed and especially decentralized optimization algorithms are
promising candidates for controlling systems with limited information ex-
change, classical distributed and decentralized algorithms are typically de-
signed for convex problems. In many practical applications, however, models
are non-linear leading to non-convex constraint sets. Hence, classical dis-
tributed and decentralized algorithms are often not applicable—at least not
with convergence guarantees. Moreover, classical algorithms are often slow in
practice.

In view of the above, the main research question of this thesis is as follows:

How to design efficient decentralized optimization algorithms
for problems with non-convex constraints under limited

information exchange and guaranteeing fast convergence?

Outline and contributions

Next, we outline the content of this thesis and highlight contributions of each
chapter.

3
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Chapter 2—Basics of Distributed Optimization

Chapter 2 briefly recalls basics of distributed optimization. We start with
the fundamentals of nonlinear programming such as optimality conditions
and prominent nonlinear programming algorithms. We continue by recalling
two popular classical distributed optimization algorithms serving as building
blocks for the algorithms we derive in Chapter 4 and serving as benchmark
algorithms for numerical tests in Chapter 5. We recall the basic form of
the Augmented Lagrangian Alternating Direction Inexact Newton (ALADIN)
algorithm, which builds the foundation of the bi-level ALADIN algorithm,
which we will develop in Chapter 4. Chapter 2 concludes with new insights
why classical distributed algorithms might exhibit severe issues for constrained
problems. We show that ALADIN is able to overcome these limitations by
its more advanced coordination step, which explicitly considers constraint and
curvature information.

Chapter 3—A survey on Distributed Optimization

In Chapter 3, we provide a literature review on distributed and decentralized
optimization algorithms from different fields. The review is new in this form,
since most literature reviews consider distributed algorithms from one partic-
ular community only. We conclude Chapter 3 by showing that most of the
approaches so far have difficulties especially for problems with non-convex
constraints.

Chapter 4—Bi-level Distributed ALADIN

Chapter 4 presents the main conceptual contribution of this thesis: a bi-level
distributed ALADIN framework combining basic ALADIN with condensing
techniques from nonlinear programming and an inner decentralization layer.2
By using condensing techniques, we significantly lower coordination and com-

2 For the sake of readability, we will simply write bi-level ALADIN in the following. Note
that we do not make any connection to bi-level optimization problems in the sense of nested
optimization problems [CMS07].
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munication requirements of ALADIN. Decentralization is achieved by solving
the coordination step by means of decentralized inner algorithms. To this end,
we propose a decentralized variant of ADMM and, as an alternative, a novel
decentralized variant of the conjugate gradient algorithm for solving the coor-
dination step of ALADIN. Decentralized conjugate gradient has the advantage
of converging in a finite number of iterations, while ADMM achieves at most
linear convergence. We derive both algorithms based on a new sparsity encod-
ing technique. As these two inner algorithms are both iterative in nature, they
introduce inexactness to the coordination step of bi-level ALADIN. We show
that bi-level ALADIN, nonetheless, preserves the fast convergence guarantees
of basic ALADIN if the inaccuracy in the coordination step of ALADIN decays
fast enough.

In summary, the contributions of Chapter 4 are

– one of the first decentralized optimization frameworks for problems with
non-convex constraints (bi-level ALADIN);

– a reduced-space variant of ALADIN, lowering its communication and
coordination requirements;

– a decentralized inner ADMM algorithm tailored to the coordination step
of bi-level ALADIN;

– a new decentralized inner conjugate gradient algorithm solving the co-
ordination step of ALADIN in a finite number of iterations;

– a new sparsity-encoding technique unifying the derivation of decentral-
ized inner algorithms;

– a convergence analysis of bi-level ALADIN under inexact coordination.

The results of this chapter appeared in [Eng+20b]. The sparsity encoding
technique is not published so far.

Chapter 5—Application to Power Systems

Chapter 5 applies ALADIN and bi-level ALADIN to Optimal Power Flow
(OPF) problems—an important problem class from power systems. We start
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by reviewing relevant literature on distributed OPF and conclude that state-of-
the art algorithms such as ADMM often lack convergence guarantees and often
exhibits slow convergence. As an alternative, we propose ALADIN variants
and compare ALADIN, condensed ALADIN and bi-level ALADIN to ADMM
as a state-of-the-art algorithms for distributed OPF. We provide a numerical
comparison in terms of convergence, coordination and communication for
practically relevant cases. Moreover, we show that ADMM leads to feasible
but not necessarily to optimal solutions in case of high penalization parameters
in combination with a feasible initial guess. This is particularly important in
the context of OPF as the combination of these two assumptions is sometimes
used in the distributed OPF literature.

In summary, the contributions of Chapter 4 are

– one of the first algorithms for solving distributed OPF problems with
guarantees;

– a performance comparison of basic ALADIN, bi-level ALADIN to
ADMM as prominent state-of-the-art algorithm;

– a mathematical and numerical comparison in terms of communication,
coordination and convergence of the above algorithms;

– a mathematical and numerical convergence analysis of ADMM for high
penalization parameters in combination with a feasible initial guess;

– an analysis of reasons for limited accuracy in case of using bi-level
ALADIN with ADMM as inner algorithm.

The results of this chapter have been published in [Eng+19b; Eng+17;
Eng+20b; EF18], where [Eng+19b] mainly focuses on numerical tests on
cases up to 300 buses. [EF18] analyzes the convergence of ADMM in case of
high penalization parameters in combination with a feasible initial point.

Chapter 6—The ALADIN-𝛼 toolbox

Chapter 6 presents an open-source toolbox, ALADIN-𝛼, implementing AL-
ADIN, bi-level ALADIN and the Alternating Direction Method of Multipliers
(ADMM) in a unified framework. This toolbox is designed to be modular hav-
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ing rapid-prototyping of distributed and decentralized optimization algorithms
in mind. ALADIN-𝛼 supports advanced features such as parallel computing
and parametric programming. The toolbox comes with a rich set of examples
from different engineering fields highlighting its broad applicability. Specifi-
cally, we illustrate possible applications of ALADIN-𝛼 beyond power systems
on a numerical example from distributed optimal control. ALADIN-𝛼 is one
of the first toolboxes for decentralized non-convex optimization.

More explicitly, the contributions of ALADIN-𝛼 can be summarized as

– one of the first toolboxes for distributed and decentralized optimization
with non-convex constraints;

– a modular framework for rapid-prototyping of distributed and decentral-
ized optimization;

– a unified interface making comparisons to state-of-the-art algorithms
such as ADMM easy;

– a wide range of numerical application examples from optimal control,
power systems, sensor networks, machine learning and robotics.

The results of this chapter have been submitted for publication in [Eng+20].

Chapter 7 summarizes this thesis and proposes promising directions of future
work.

7





2 Basics of Distributed Optimization

This chapter briefly reviews basics of nonlinear programming, where 𝑓 and
X in problem (1.1) are described by continuously differentiable functions.
We also describe widely-used distributed optimization algorithms, where the
derivation of dual decomposition is based on [Boy+11] and [BT89]. The
derivation of ADMM comes from [Hou+17] with the difference that here we
explicitly consider equality constraints. The optimality conditions are mainly
from [NW06] and the illustrating examples in Section 3.4 are novel.

2.1 Basics of nonlinear programming

Nonlinear programs (NLPs) are special cases of (1.1) in form of

min
𝑥∈R

𝑓 (𝑥) (2.1a)

subject to 𝑥 ∈ X = {𝑥 ∈ R𝑛𝑥 | 𝑔(𝑥) = 0, ℎ(𝑥) ≤ 0} (2.1b)

where 𝑔 : R𝑛𝑥 → R𝑛𝑔 and ℎ : R𝑛𝑥 → R𝑛ℎ are called equality and inequality
constraints and 𝑥 ∈ R𝑛𝑥 is called the decision vector of (2.1).1 Here, 𝑓 , 𝑔 and ℎ

are assumed to be sufficiently often continuously differentiable. Let us endow
the constraint set X with a norm ‖ · ‖ yielding a normed space (X, ‖ · ‖). Then
we can define minimizers to problem (2.1) as follows.

Definition 1 (Minimizers). We call 𝑥★ ∈ 𝑋 a local minimizer to problem (1.1),
if 𝑓 (𝑥★) ≤ 𝑓 (𝑥) for all 𝑥 ∈ B𝑟 (𝑥★) ∩X with B𝑟 (𝑥) = {𝑥 | ‖𝑥− 𝑥‖ < 𝑟}, 𝑟 > 0.
If 𝑓 (𝑥★) ≤ 𝑓 (𝑥) for all 𝑥 ∈ X, we call 𝑥★ a global minimizer to problem (1.1).

1 Other special cases are integer or mixed-integer problems for example, where X ⊆ R𝑛𝑥 ×Z𝑛𝑧 ;
or infinite-dimensional problems, where X is a subset of a function space. We refer to [Grö18]
for an overview many important classes of practical relevance.
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2 Basics of Distributed Optimization

If the above inequalities hold strictly, we call 𝑥★ a strict local minimizer respec-
tively strict global minimizer. We call A(𝑥) := {𝑖 ∈ {1, . . . , 𝑛ℎ} | ℎ𝑖 (𝑥) = 0}
the set of active or binding inequality constraints at a point 𝑥. We call prob-
lem (2.1) feasible, if X is non-empty.

2.1.1 Optimality conditions

How can one find minimizers to (2.1)? One approach is to derive opti-
mality conditions which (when solved) provide solution candidates to (2.1).
Many numerical algorithms rely on the first-order necessary Karush-Kuhn-
Tucker (KKT) conditions, which are a set of non-linear equations and non-
linear inequalities providing candidate solution points to (2.1). To ensure that
the KKT consitions hold true at a minimizer, one relies on constraint qual-
ifications. Here we recall the strongest constraint qualification—the linear
independence constraint qualification (LICQ).2

Definition 2 (Linear independence constraint qualification). Let 𝑥 be a feasible
point to (2.1). LICQ is said to hold at 𝑥, if ∇ℎ𝑖 (𝑥) and ∇𝑔𝑖 (𝑥) are linearly
independent for all 𝑖 ∈ A(𝑥) and for all 𝑖 ∈ {1, . . . , 𝑛𝑔}.

Now, we are ready to state the KKT conditions.

2 Weaker constraint qualifications exist, for example the Mangasarian-Fromovitz Constraint Qual-
ification (MFCQ) or the Abadie Constraint Qualification. Moreover, there are first-order op-
timality conditions which do not require constraint qualifications, for example the Fritz-John
optimality conditions [GGT04; BSS13]. However, these conditions are more difficult to evalu-
ate and thus we stick with the KKT conditions and LICQ which is a common approach in the
literature.
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2.1 Basics of nonlinear programming

Theorem 1 (First-order optimality KKT conditions). Let 𝑓 , 𝑔 and ℎ be contin-
uously differentiable and let 𝑥★ be a minimizer to (2.1) for which LICQ holds.
Then there exist unique vectors 𝛾★ ∈ R𝑛𝑔 and 𝜇★ ∈ R𝑛ℎ such that

0 = ∇ 𝑓 (𝑥★) +
∑︁

𝑖∈{1,...,𝑛𝑔 }
𝛾★𝑖 ∇𝑔𝑖 (𝑥★) +

∑︁
𝑗∈{1,...,𝑛ℎ }

𝜇★𝑖 ∇ℎ𝑖 (𝑥★), (2.2a)

0 = 𝑔(𝑥★), (2.2b)
0 ≥ ℎ(𝑥★), (2.2c)

𝜇★ ≥ 0, (2.2d)
0 = 𝜇★𝑖 ℎ𝑖 (𝑥★) for all 𝑖 ∈ {𝑖, . . . , 𝑛ℎ}. (2.2e)

We call (𝑥★, 𝛾★, 𝜇★) a KKT point, if it satisfies the KKT conditions (2.2).

Next, we recall sufficient conditions for optimality. Consider the Lagrangian
function to problem (2.1)

L(𝑥, 𝛾, 𝜇) := 𝑓 (𝑥) + 𝛾>𝑔(𝑥) + 𝜇>ℎ(𝑥),

where 𝛾> = (𝛾1, . . . , 𝛾𝑛𝑔 ) and 𝜇> = (𝜇1, . . . , 𝜇𝑛ℎ ).

Theorem 2 (Second-order sufficient condition [NW06, Thm 12.6]). Let 𝑥★ be
a KKT point where LICQ holds. Morover, let ∇2

𝑥𝑥L(𝑥★, 𝛾★, 𝜇★) be positive
definite on the subspace {𝑥 ∈ R𝑛𝑥 | ∇𝑔(𝑥★)𝑥 = 0}. Then, 𝑥★ is a strict local
minimizer to problem (2.1).3

Here, we denote the Jacobian matrix of 𝑔 as∇𝑔(𝑥) =
(
∇𝑔1 (𝑥), . . . ,∇𝑔𝑛𝑔 (𝑥)

)>.
Many numerical algorithms rely on solving (2.2) for obtaining solution can-
didates to (2.1). The second-order sufficient conditions can then be used
to distinguish minimizers from maximizers and saddle points. This forms
the basis for two of the most popular algorithms for nonlinear programming:
Sequential Quadratic Programming (SQP) and Interior Point (IP) methods.

3 Note that the subspace assumption {𝑥 ∈ R𝑛𝑥 | ∇𝑔 (𝑥★)𝑥 = 0} is slightly stronger than the
one in the literature, where this subspace can be further reduced by means of the inequality
constraint components ℎ𝑖 which are active at 𝑥★. However, this would make the presentation
much more technical and would not give much additional generality for our purposes. For a
more general version we refer to [NW06, Thm 12.6].
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2 Basics of Distributed Optimization

Observe that in the special case of equality constraints only, solving (2.2)
reduces to solving a nonlinear system of equations which can be solved via
standard Newton methods.

Convex problems

An important class of problems are convex optimization problems. Hence, let
us recall basics of convex optimization.

Definition 3 (Convex set). A set X ⊆ R𝑛𝑥 is called convex if the line between
any two points 𝑥1, 𝑥2 ∈ X lies entirely in X, i.e. 𝜃 𝑥1 + (1 − 𝜃) 𝑥2 ∈ X for all
𝜃 ∈ (0 1).

If the above inequality holds strictly for all 𝑥1, 𝑥2 ∈ X, 𝑥1 ≠ 𝑥2, X is called
strictly convex.

Definition 4 (Convex function). A function 𝑓 : X ↦→ R is called convex if its
epigraph is convex, i.e. if for all 𝑥1, 𝑥2 ∈ X, we have 𝑓 (𝜃 𝑥1 + (1 − 𝜃) 𝑥2) ≤
𝜃 𝑓 (𝑥1) + (1 − 𝜃) 𝑓 (𝑥2) for all 𝜃 ∈ (0 1).

If the above inequality holds strictly for all 𝑥1 ≠ 𝑥2, 𝑓 is called strictly convex.

Definition 5 (Strongly convex function). If 𝑓 is differentiable and
(
∇ 𝑓 (𝑥1) −

∇ 𝑓 (𝑥2)
)> (𝑥1 − 𝑥2) ≥ 𝜇 ‖𝑥1 − 𝑥2‖22 holds for all 𝑥1, 𝑥2 ∈ X, 𝑓 is called strongly

convex with parameter 𝜇.

We denote the set of convex functions with S and the set of strongly convex
functions with parameter 𝜇 with S𝜇. Note that any strongly convex function
is strictly convex but not vice versa.

Convex optimization problems are special cases of (1.1), where 𝑓 and X are
convex. In case of nonlinear programming problems (2.1), this means that the
inequality constraints ℎ are convex and the equality constraints 𝑔 are affine
[Boy+04]. A nice property of convex problems is that their minima 𝑓 (𝑥★) are
unique (if they exist). Moreover, if 𝑓 is strongly convex also the minimizer 𝑥★
is unique. In addition, the KKT conditions (2.2) are necessary and sufficient
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2.1 Basics of nonlinear programming

for convex problems and thus one can omit the evaluation of the conditions
of Theorem 2. Furthermore, specialized algorithms for convex optimization
problems exist where some of them can be solved in polynomial time. Although
we focus on non-convex optimization in this work, we will use these results
from convex optimization in some of our derivations.

Next, we recall some basics from convex optimization which are essential to
our later developments. In convex optimization, the dual problem (which is
a maximization problem) to a (primal) minimization optimization problem is
often useful since one can recover the solution to the primal problem from the
solution to the dual problem under certain conditions. In many cases, the dual
problem is considerable easier to solve than the primal problem—thus many
algorithms focus on solving the dual problem. Recovering the solution to the
primal problem from the dual is possible particularly in absence of a duality
gap, for which we recall conditions next.

Consider the partial Lagrangian of (2.1) with respect to 𝑔, L(𝑥, 𝛾) = 𝑓 (𝑥) +
𝛾>𝑔(𝑥). Then, the dual function to (2.1) is defined as

𝑞(𝛾) := inf
𝑥∈X
L(𝑥, 𝛾) = inf

𝑥∈X
𝑓 (𝑥) + 𝛾>𝑔(𝑥) (2.3)

with X := {𝑥 ∈ R𝑛𝑥 | ℎ(𝑥) ≤ 0}. Moreover, the dual problem to (2.1) is

sup
𝛾

𝑞(𝛾). (2.4)

This leads to the following theorem.

Theorem 3 (Strong duality under Slater’s condition [Ber99, Props 5.1.4, 5.1.5,
5.3.1]). Let 𝑓 be convex on X and let 𝑔 and ℎ be convex, let (2.1) be feasible.
Moreover, let some point 𝑥 with ℎ(𝑥) < 0 exist (Slater’s condition). Then,

sup
𝛾

𝑞(𝛾) = inf
𝑔 (𝑥)=0,ℎ (𝑥) ≤0

𝑓 (𝑥),

i.e. there is no duality gap between (2.1) and (2.4). Moreover, the set of
maximizers to (2.4),D, is the same as the set of dual solutions to (2.1) and the
set of primal solutions is given by the minimizers to

min
𝑥∈X
L(𝑥, 𝛾★), 𝛾★ ∈ D . (2.5)
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2 Basics of Distributed Optimization

Roughly speaking, this means that if the problem at hand is convex and Slater’s
condition holds, one can “replace” the original problem with it’s dual. After
solving the dual problem, a primal solution 𝑥★ can be recovered by means of
(2.5).

Remark 1 (Slater’s condition). Note that Slater assumption is standard in
convex optimization and not overly restrictive. For special problem classes
moreover, the assumptions can be relaxed. If ℎ is affine for example, the strict
feasibility condition can be relaxed to feasibility [Ber99, Prop 5.2.1]. Thus
for feasible and convex quadratic programs for example, Slater’s condition is
always satisfied.

2.1.2 Sequential quadratic programming

There are four main branches for solving non-linear and possibly non-convex
optimization problems in form of (2.1):

• gradient-based methods;

• sequential quadratic programming (SQP);

• interior point (IP) methods;

• augmented Lagrangian methods;

and combinations thereof. Gradient-based methods are typically used for
large-scale problems, where second-order information is too expensive to eval-
uate. SQP and IP methods are very successful and exhibit fast convergence
to local minimizers in many cases. However, each iteration is more costly
compared with gradient-based methods. Augmented Lagrangian methods are
often used for large-scale problems and as a building block for other algorithms
(also within SQP). Here, we review the fundamental basics of SQP and aug-
mented Lagrangian methods, because both are essential for understanding of
the Augmented Lagrangian Alternating Direction Inexact Newton (ALADIN)
algorithm. Gradient methods and interior point methods are not considered
here—instead we refer to the textbooks [NW06; Ber99; Wri97; Nes13] for
details.
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2.1 Basics of nonlinear programming

SQP algorithms can be derived in two different ways. One is based on the
idea of solving (2.1) by sequentially approximating the problem by a quadratic
program (QP) where its name comes from. We recall the second way here,
viewing SQP as solving the optimality conditions (2.2) by a Newton-type
method. In absence of inequality constraints, the KKT conditions (2.2) for
problem (2.1) read

𝐹 (𝑥, 𝛾) :=

(
∇ 𝑓 (𝑥) + 𝛾>∇𝑔(𝑥)

𝑔(𝑥)

)
!
= 0. (2.6)

To solve this problem (and thus finding KKT points), let us apply a Newton-type
method defined via the iteration

𝑞𝑘+1 = 𝑞𝑘 − (𝑀𝑘 )−1𝐹 (𝑞𝑘 ), (2.7)

where 𝑞𝑘 := (𝑥𝑘 , 𝛾𝑘 ) and 𝑀 𝑘 is a non-singular approximation of ∇𝐹 (𝑞𝑘 ).
The Newton-type iteration (2.7) applied to (2.6) yields(

𝐵𝑘 ∇𝑔(𝑥𝑘 )>

∇𝑔(𝑥𝑘 ) 0

) (
𝑥𝑘+1−𝑥𝑘

𝛾𝑘+1−𝛾𝑘

)
=

(
∇ 𝑓 (𝑥𝑘 ) + 𝛾𝑘>∇𝑔(𝑥𝑘 )

𝑔(𝑥𝑘 )

)
, (2.8)

where 𝐵𝑘 is an approximation of∇2
𝑥𝑥L(𝑥𝑘 , 𝛾𝑘 ).4 In the next paragraph we will

recall that if an SQP algorithm is initialized close enough to a local minimizer
(𝑥★, 𝛾★), the pair (𝑥, 𝛾) will converge to (𝑥★, 𝛾★) at locally quadratic rate
provided that ∇2

𝑥𝑥L(𝑥, 𝛾) is positive definite and LICQ holds at (𝑥★, 𝛾★). SQP
can be extended to problems with inequalities—we refer to [NW06, Chap. 18]
for details.

Local convergence of Newton-type methods

Next, we give a proof of local convergence and convergence rates for the above
Newton iteration (2.8). We consider approximations of the KKT matrix 𝑀𝑘

instead of exact ones. These approximations are important for example if one

4 Positive definiteness of 𝐵𝑘 is essential for local convergence of Newton-type methods. These
methods differ in the way they compute 𝐵𝑘 , cf. [NW06, Ch 3.4].
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2 Basics of Distributed Optimization

would like to use Hessian approximations 𝐵𝑘 ≈ ∇2
𝑥𝑥L(𝑥𝑘 , 𝛾𝑘 ) instead of exact

Hessians ∇2
𝑥𝑥L(𝑥𝑘 , 𝛾𝑘 ) when using Newton-type methods in context of SQP.

When doing so, the local convergence rate depends also on the “quality” of
these approximations. Local convergence of the iteration (2.8) is guaranteed
by the following theorem.

Theorem 4 (Local convergence of Newton-type methods [Die16, Thm 8.1]).
Suppose that 𝐹 (𝑞★) = 0 holds. Moreover, suppose that 𝑞𝑘 is initialized close-
enough to 𝑞★, i.e. with ‖𝑞𝑘 − 𝑞★‖ <

2(1−𝛾)
𝜔

where 𝛾 and 𝜔 are defined
below. Then, the iterates generated by (2.8) converge to 𝑞★ and satisfy the
convergence-rate estimate

‖𝑞𝑘+1 − 𝑞★‖ ≤
(
𝜅 + 𝜔

2
‖𝑞𝑘 − 𝑞★‖

)
‖𝑞𝑘 − 𝑞★‖, (2.9)

if there exists an 𝜔 < ∞ and a 𝜅 < 1 such that(𝑀𝑘 )−1 (𝑀 𝑘 − ∇𝐹 (𝑞𝑘 ))
 ≤ 𝜅𝑘 ≤ 𝜅, (2.10a)(𝑀𝑘 )−1

(
∇𝐹 (𝑞) − ∇𝐹 (𝑞𝑘 )

) ≤ 𝜔

2
‖𝑞𝑘 − 𝑞‖. (2.10b)

Here the former inequality (2.10a) is called compatibility condition and the lat-
ter inequality (2.10b) is a Lipschitz condition. The proof of Theorem 4 is given
in Appendix A.4 for the sake of completeness and because of its importance
for the convergence analysis of ALADIN. Next, we provide examples for local
convergence rates to provide some intuition on the effect of the two conditions
(2.10a) and (2.10b) in Theorem 4.

Example 1 (Convergence rates of Newton-type methods). Assume that ∇𝐹
is Lipscitz continuous. Then, if we choose a non-singular 𝑀𝑘 , the Lipschitz
condition (2.10b) is always satisfied.

For checking the compatibility condition (2.10a), consider three variants of
Jacobian approximations 𝑀𝑘 : exact Jacobians with 𝑀𝑘 = ∇𝐹 (𝑞𝑘 ); damped
Newton with 𝑀 𝑘 = ∇𝐹 (𝑞𝑘 ) + 𝛿𝐼 for some 𝛿 > 0; and damped Newton with
vanishing damping 𝑀𝑘 = ∇𝐹 (𝑞𝑘 ) + 10−𝑐𝑘 𝐼 for some 𝑐 > 0. For the first case,
it immediately follows by (2.10a) that 𝜅 = 0. Thus, we have local quadratic
convergence by (2.9) (cf. Section A.1 for a brief overview on convergence rate
estimates).
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(b) Linear conv. faster than superlinear.

Figure 2.1: Pure Newton (blue), damped-Newton (red) and damped-Newton with vanishing damp-
ing (yellow) for solving sin(𝑥) = 0.

For damped Newton, condition (2.10a) reads ‖(∇𝐹 (𝑞𝑘 ) + 𝛿𝐼)−1 (∇𝐹 (𝑞𝑘 ) +
𝛿𝐼 −∇𝐹 (𝑞𝑘 ))‖ =

(∇𝐹 (𝑞𝑘 ) + 𝛿𝐼)−1
 𝛿 = 𝜅, where one can make 𝜅 arbitrarily

small by choosing a small 𝛿 if ∇𝐹 (𝑞𝑘 ) is non-singular. This yields linear
convergence with arbitrary fast modulus 𝜅.

For damped Newton with vanishing damping term we have 𝜅𝑘 := ‖(∇𝐹 (𝑞𝑘 ) +
10−𝑐𝑘 𝐼)−1‖10−𝑐𝑘 converging to zero for 𝑘 → ∞. Thus, if ∇𝐹 (𝑞𝑘 ) is non-
singular, one obtains superlinear convergence.

Example 2 (Linear convergence is not necessarily slow). Let us consider the
problem of solving 𝐹 (𝑥) = sin(𝑥) = 0. Figure 2.1a shows the convergence of
pure Newton’s method (blue), damped Newton’s method (red) with 𝛿 ∈ {0.8, 2}
and damped-Newton with vanishing damping (yellow) and 𝑐 ∈ {0.3, 0.1}. One
can clearly see that by choosing appropriate 𝛿 and 𝑐, one can make convergence
of the damped Newton variants almost as fast as the pure Newton’s method.
Thus, linear convergence does not necessarily mean that convergence is slow—
it largely depends on the convergence modulus 𝜅. This is especially relevant
since damped-Newton methods for example typically converge at a quite fast
linear rate if the damping parameter is sufficiently small. First-order methods
such as ADMM, which we will introduce later, can be quite slow but both
algorithms are guaranteed to converge linearly for certain problem classes.

Remark 2 (Singular∇𝐹 (𝑞★)). Note that if∇𝐹 (𝑞★) is singular, the convergence
rate is in general linear only—also with exact Jacobians 𝑀𝑘 = ∇𝐹 (𝑞𝑘 ). In that
case, the Lipschitz condition (2.10b) is violated, since ‖(∇𝐹 (𝑞𝑘 ))−1‖ → ∞ for
𝑞𝑘 → 𝑞★. Thus, the second last step of the proof of Theorem 4 (Appendix A.4)

17



2 Basics of Distributed Optimization

can not be performed. In this case we only know that by continuity of ∇𝐹,∫ 1
0

(𝑀𝑘 )−1 (
∇𝐹

(
𝑞★ + 𝑡 (𝑞𝑘 − 𝑞★)

)
− ∇𝐹 (𝑞𝑘 )

) 𝑑𝑡 is bounded yielding linear
convergence. As an example consider the problem 𝐹 (𝑥) = 𝑥2 = 0 with 𝑥★ = 0.
Then the Newton iteration reads 𝑥𝑘+1 = 𝑥𝑘 − (𝑥𝑘 )2/(2𝑥𝑘 ) = 𝑥𝑘/2 and thus by
taking norms ‖𝑥𝑘+1−0‖ ≤ 1/2 ‖𝑥𝑘−0‖. Notice that in this case, regularization
procedures have to be considered as ∇𝐹 becomes increasingly ill conditioned
close to 𝑞★ and thus factorization of 𝑀𝑘 becomes problematic.

Remark 3 (Local vs. global convergence). Note that one distinguishes between
local and global convergence in optimization algorithms. Local convergence
characterizes the convergence behavior of algorithms when initialized close to
a local minimizer. In order to reach this region of local convergence, typically
globalization routines ar required. These routines take aim at driving the
iterates into the region of local convergence and should then typically “deac-
tivate”. However, note that although one might guess that if an algorithm is
globally convergent, it converges to a local minimizer from any initial point.
This is unfortunately not the case. Typically it is only guaranteed to converge
to a stationary point of a so-called merit function, which can for example be
the augmented Lagrangian. Unfortunately, not all stationary points of the aug-
mented Lagrangian are local minimizers [Ber99, Chap 4.3]. Especially in case
of non-convex constraints, the situation of linearly dependent constraint lin-
earizations can occur contradicting the assumption of linear independence of
the constraints sometimes made for the global convergence analysis of nonlin-
ear programming algorithms [BT95, Sec 4]. We give a concrete example what
kind of difficulties can occur especially in context of non-convex constraints in
Section 2.3.3.

2.1.3 Multiplier methods

Instead of working on the optimality conditions (2.2) directly and updating
primal and dual variables in a simultaneous step, there is a different class
of algorithms called multiplier methods [Ber82; Ber99]. There, the idea
is to update primal and dual variables separately. This has advantages in
several contexts—especially for developing distributed algorithms as in some
cases the primal updates can be done in a distributed fashion under certain
conditions. There are two basic approaches in this class of algorithms: one
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2.1 Basics of nonlinear programming

working on the Lagrangian function and a second one working on the so-called
augmented Lagrangian function which adds some kind of regularization term
to the objective function without changing the minimizer. The augmented
Lagrangian for (2.1) (in case of equality constraints only) is defined as

L𝜌 (𝑥, 𝛾) := 𝑓 (𝑥) + 𝛾>𝑔(𝑥) + 𝜌

2
‖𝑔(𝑥)‖22.

Note that for 𝜌 = 0, one recovers the standard Lagrangian. The method of mul-
tipliers now proceeds in two simple steps: First, we estimate a certain Lagrange
multiplier 𝜆𝑘 . Then we minimize the Lagrangian/augmented Lagrangian with
respect to 𝑥 in a separate step. The resulting algorithm, summarized in Al-
gorithm 1, is guaranteed to converge to a minimizer of (2.1) if the multiplier
estimates are close enough to 𝜆★. If we would estimate the multipliers cor-
rectly, multiplier methods converge in one step if 𝜌 is large enough, cf. [Ber99,
Sec 3.2.1]. Moreover, multiplier methods converge to a global minimizer of
(2.1) for 𝜌 → ∞ [Ber99, Prop 4.2.1]. However, note that although this result
is very appealing from an theoretical point of view, in practice driving 𝜌 to
∞ is problematic due to the corresponding ill-conditioning of ∇2L𝜌 (𝑥, 𝛾) and
the necessity to minimize L𝜌 globally which is hard to achieve by practical
solvers. If we choose the multiplier update to

Algorithm 1 General multiplier method
Initialization: 𝛾0, 𝜌
Repeat:

1) 𝑥𝑘+1 = argmin
𝑥
L𝜌 (𝑥, 𝛾𝑘 )

2) 𝛾𝑘+1 ← 𝛾𝑘

𝛾𝑘+1 = 𝛾𝑘 + 𝑐𝑘𝑔(𝑥𝑘 ), (2.11)

the method is called method of multipliers.
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2 Basics of Distributed Optimization

2.2 Distributed optimization algorithms

Now let us consider optimization problems with special structure leading to
distributed optimization algorithms. Note that in the literature various forms
of such structures are employed [ND11]. In many cases, they can be converted
into each other. We give a brief overview on these structures in Appendix A.2.
Here, we consider problems in so-called affinely-coupled separable form

min
𝑥𝑖 ,...,𝑥𝑅

∑︁
𝑖∈R

𝑓𝑖 (𝑥𝑖) (2.12a)

subject to 𝑔𝑖 (𝑥𝑖) = 0, ∀𝑖 ∈ R, (2.12b)
ℎ𝑖 (𝑥𝑖) ≤ 0, ∀𝑖 ∈ R, (2.12c)∑︁

𝑖∈R
𝐴𝑖𝑥𝑖 = 𝑏. (2.12d)

where R = {1, . . . , 𝑁} is the set of agents or subsystems, to each of which
we assign an objective function 𝑓𝑖 : R𝑛𝑥𝑖 → R, equality constraints 𝑔𝑖 :
R𝑛𝑥𝑖 → R𝑛𝑔𝑖 and inequality constraints ℎ𝑖 : R𝑛𝑥𝑖 → R𝑛ℎ𝑖 . We assume that all
𝑓𝑖 , 𝑔𝑖 and ℎ𝑖 are sufficiently often continuously differentiable. The agents are
coupled trough (2.12d) which is called consensus or coupling constraint. Note
that many practical problems in form of (2.1) can be reformulated in form of
(2.12) by introducing auxilliary variables, cf. Appendix A.2. Next, we recall
one of the earliest distributed optimization methods called dual decomposition
[Eve63].

2.2.1 Dual decomposition

To simplify notation, we use the indicator function 𝜄X : 𝑋 → R ∪ {∞},

𝑥 ↦→
{

0 if 𝑥 ∈ X
∞ else
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2.2 Distributed optimization algorithms

in the subsequent analysis. With the indicator function we can reformulate
(2.12) as

min
𝑥1 ,...,𝑥𝑅

∑︁
𝑖∈R

𝑓𝑖 (𝑥𝑖) (2.13a)

subject to
∑︁
𝑖∈R

𝐴𝑖𝑥𝑖 = 𝑏, (2.13b)

with 𝑓𝑖 := 𝑓𝑖 + 𝜄X𝑖 andX𝑖 := {𝑥𝑖 ∈ R𝑛𝑥𝑖 | 𝑔𝑖 (𝑥𝑖) = 0, ℎ𝑖 (𝑥𝑖) ≤ 0}. As the name
indicates, dual decomposition is closely related to solving the dual problem
to (2.13). Let us assume that the assumptions made in Theorem 3 (convexity,
Slater’s condition) hold true for problem (2.13). Then we can replace (2.13)
by its dual problem

sup
𝜆

𝑞(𝜆) = sup
𝜆

min
𝑥∈X

∑︁
𝑖∈R

𝑓𝑖 (𝑥𝑖) + 𝜆>
(∑︁
𝑖∈R

𝐴𝑖𝑥𝑖 − 𝑏

)
. (2.14)

One very simple way to solve (2.14) is to apply a gradient method. If 𝑓 is strictly
convex and X is compact, one can show that 𝑞 is continuously differentiable
and its gradient is given by

∇𝑞(𝜆) =
∑︁
𝑖∈R

𝐴𝑖𝑥𝑖 (𝜆) − 𝑏,

where 𝑥𝑖 (𝜆) is computed by evaluating the dual function 𝑞 [Ber99, Prop 6.1.1].
The gradient iteration for maximization of (2.14) then is

𝜆𝑘+1 = 𝜆𝑘 + 𝛼 ∇𝑞(𝜆𝑘 ), (2.15)

where 𝛼 ∈ (0 1) is a stepsize parameter. Observe that 𝑞 is separable, i.e we can
write 𝑞 as 𝑞(𝜆) = ∑

𝑖∈R 𝑞𝑖 (𝜆) −𝜆>𝑏, where 𝑞𝑖 (𝜆) = min𝑥𝑖 ∈X𝑖 𝑓𝑖 (𝑥𝑖) +𝜆>𝐴𝑖𝑥𝑖 ,
so for fixed 𝜆, 𝑞 can be evaluated in parallel. The resulting gradient method is
called dual decomposition and summarized in Algorithm 2, whereL𝑖 (𝑥𝑖 , 𝜆) :=
𝑓𝑖 (𝑥𝑖) + 𝜆>𝐴𝑖𝑥𝑖 . Note that dual decomposition is very effective when the
minimization in the evaluation of the dual can be replaced by an explicit
expression (e.g. when solving strictly convex QPs).

An advantage of dual decomposition is that it is very simple to implement.
Moreover, if the 𝐴𝑖s are sparse (i.e. there are many 𝐴𝑖s with zero rows), it
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2 Basics of Distributed Optimization

Algorithm 2 Dual decomposition
Initialization: 𝜆0, {𝛼𝑘 }
Repeat:

1) 𝑥𝑘+1
𝑖

= argmin
𝑥𝑖 ∈X𝑖

L𝑖 (𝑥𝑖 , 𝜆𝑘 ) ∀𝑖 ∈ R (parallel)

2) 𝜆𝑘+1 = 𝜆𝑘 + 𝛼𝑘 (∑𝑖∈R 𝐴𝑖𝑥
𝑘+1
𝑖
− 𝑏) (centralized)

is possible to evaluate step 2) of Algorithm 2 in a decentralized fashion as
computing the components of 𝜆𝑘 involves summands of the subsystems with
nonzero rows in 𝐴𝑖 only. On the other hand, dual decomposition requires strict
convexity of 𝑓 and compactness ofX, or strong convexity of 𝑓 as otherwise the
minimizer in step 1) might not exist.5 In turn this means that for general convex
problems, dual decomposition might fail. Moreover, as dual decomposition is
a gradient method with a fixed stepsize, convergence is in general sublinear
only [Nes18, Thm 2.1.14].

2.2.2 Alternating Direction Method of Multipliers

To overcome its weaknesses (in particular the restriction to strictly/strongly
convex problems), dual decomposition can be combined with the method of
multipliers from Section 2.1.3 yielding the Alternating Directions Method of
Multipliers (ADMM). Herein, the idea is to use the augmented Lagrangian (in-
stead of the Lagrangian) adding an additional convexification term rendering
this algorithm applicable to convex but not necessarily strictly convex prob-
lems. Unfortunately the augmentation term in the first step of the method of
multipliers jeopardizes the separability of L hindering evaluation of the dual
function in parallel.6 To overcome this issue, one usually constructs an aug-
mented problem to (2.13a) introducing variable copies 𝑧 of 𝑥 and then executes

5 This can be the case even for very simple problems. For example, consider a problem with affine
cost. Then the problem in step 1) might be unbounded from below and dual decomposition
would fail.

6 As an alternative, one can also see ADMM as a dual ascent method, where one solves a modified
but equivalent version of (2.13a) with a penalization term 𝜌/2‖∑𝑖∈R 𝐴𝑖 𝑥𝑖 −𝑏 ‖ in the objective
[Boy+11].
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2.2 Distributed optimization algorithms

the first step of the method of multipliers (Section 2.1.3) in an “alternating” or
coordinate descent fashion recovering partial separability. We will now briefly
recall ADMM for the augmented problem and then show how our problem
(2.13a) fits into this setting.

The augmented problem in so called two-block form reads

min
𝑥,𝑧

𝑓 (𝑥) + 𝑔(𝑧) (2.16)

subject to 𝐶𝑥 + 𝐷𝑧 = 𝑐. (2.17)

For applying the method of multipliers, we consider the augmented Lagrangian

L𝜌 (𝑥, 𝑧, 𝜆) = 𝑓 (𝑥) + 𝑔(𝑧) + 𝜆> (𝐶𝑥 + 𝐷𝑧 − 𝑐) + 𝜌

2
‖𝐶𝑥 + 𝐷𝑧 − 𝑐‖22 . (2.18)

We apply the method of multipliers (Algorithm 1) to problem (2.16) with
one key difference: instead of performing a joint minimization with respect
to 𝑥 and 𝑧 in step 1), we perform the minimization with respect to 𝑥 and with
respect to 𝑧 in two separate steps. This yields ADMM shown in Algorithm 3.

Algorithm 3 Alternating Direction of Multipliers Method (ADMM)
Initialization: 𝑧0, 𝜆0, 𝜌
Repeat:

1) 𝑥𝑘+1 = argmin𝑥 L𝜌 (𝑥 , 𝑧𝑘 , 𝜆𝑘 )
2) 𝑧𝑘+1 = argmin𝑧 L𝜌 (𝑥𝑘+1, 𝑧 , 𝜆𝑘 )

3) 𝜆𝑘+1 = 𝜆𝑘 + 𝜌(𝐶𝑥𝑘+1 + 𝐷𝑧𝑘+1 − 𝑐)

Now consider problem (2.13a). Let us write (2.13a) in two-block form by
introducing variable copies 𝑧𝑖 = 𝑥𝑖 for all 𝑖 ∈ R yielding

min
𝑥1 ,...,𝑥𝑅 ,𝑧1 ,...,𝑧𝑅

∑︁
𝑖∈R

𝑓𝑖 (𝑥𝑖) + 𝜄C (𝑧) (2.19a)

subject to 𝐴𝑖 (𝑥𝑖 − 𝑧𝑖) = 0 ∀𝑖 ∈ R, (2.19b)
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2 Basics of Distributed Optimization

where C := {𝑧 ∈ R𝑛𝑥 | ∑
𝑖∈R 𝐴𝑖𝑧𝑖 = 𝑏}. Then, the augmented La-

grangian (2.18) reads

L𝜌 (𝑥, 𝑧, 𝜆) =
∑︁
𝑖∈R

𝑓𝑖 (𝑥𝑖) + 𝜄C (𝑧) + 𝜆>𝑖 𝐴𝑖 (𝑥𝑖 − 𝑧𝑖) +
𝜌

2
‖𝐴𝑖 (𝑥𝑖 − 𝑧𝑖)‖22, (2.20)

where 𝜆> = (𝜆>1 , . . . , 𝜆
>
𝑁
). Now it becomes clear why introducing additional

auxiliary variables and alternating minimization helps: if one fixes 𝑧 in (2.20)
and minimize with respect to 𝑥, the minimizations with respect to 𝑥𝑖 are
independent of each other and can be executed in parallel. This yields a parallel
version of ADMM for problem (2.13a) shown in Algorithm 4. Note that the

Algorithm 4 Parallel ADMM for problem (2.13)
Initialization: 𝑧0

𝑖
, 𝜆0

𝑖
for all 𝑖 ∈ R, 𝜌

Repeat:
1) 𝑥𝑘+1

𝑖
= argmin

𝑥𝑖 ∈X𝑖
𝑓𝑖 (𝑥𝑖) + 𝜆𝑘>𝑖 𝐴𝑖𝑥𝑖 + 𝜌

2 ‖𝐴𝑖 (𝑥𝑖 − 𝑧𝑘
𝑖
)‖22, 𝑖 ∈ R (parallel)

2) 𝑧𝑘+1 = argmin
𝑧∈C

∑
𝑖∈R −𝜆𝑘>𝑖 𝐴𝑖𝑧𝑖 + 𝜌

2 ‖𝐴𝑖 (𝑥
𝑘+1
𝑖
− 𝑧𝑖)‖22 (centralized)

3) 𝜆𝑘+1
𝑖

= 𝜆𝑘
𝑖
+ 𝜌𝐴𝑖 (𝑥𝑘+1𝑖

− 𝑧𝑘+1
𝑖
), 𝑖 ∈ R (parallel)

“coordination step” minimizing L𝜌 with respect to 𝑧 is a convex QP which
requires central computation. However, this step can be simplified to a simple
averaging step between subsystems under certain conditions [Boy+11]. This
renders ADMM a decentralized algorithm which can be executed purely based
on neighbor-to-neighbor communication. On the other hand, the multiplier
update step is also executable in parallel. Note that there are further specialized
variants of ADMM mostly differing in the underlying problem structures.
Many of them can be reformulated in two-block form, we provide several
examples in Appendix A.2.

Due to the augmentation term, if either X is bounded or 𝐴 has full row
rank, ADMM is guaranteed to converge also for non-strictly convex problems
[BT89, Prop 4.2] [Boy+11, App A]. The convergence rate, however, depends
on strict convexity of 𝑓 and does not directly carry over from the method of
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2.2 Distributed optimization algorithms

multipliers.7 If 𝑓 is convex, convergence of ADMM is generally sublinear
[HY15]. Under certain conditions such as strong convexity [DY16; GB16;
Shi+14] or a combination of other conditions including strict convexity [HL17],
linear convergence can be achieved.8

Remark 4 (ADMM variants). There are various variants and derivations of
ADMM differing in the order of the updates as well as in the problem setup.
Moreover, multi-block variants of ADMM exist, where more than two blocks
of variables are considered [HL17; LMZ15]. The overview paper [Boy+11]
provides an excellent overview on the most common form of ADMM.

To illustrate that distributed optimization methods can be very useful in com-
puter science and especially in machine learning, we present an application
example of ADMM applied to support-vector machines used for classification
problems.

Example 3 (ADMM for machine learning: support-vector machines). A stan-
dard method for classification are Support-Vector Machines (SVMs) aiming at
separating sets of points by a hyperplane. For SVMs, distributed optimization
might be interesting primarily in case of very large data sets. One reason is
computational speedup, but also data privacy is a reasons why one would like
to compute on multiple machines in case of sensitive data [FCG10]. An linear
SVM (for two classes) can be cast as the optimization problem

min
𝑤,𝑏

∑︁
𝑗∈Y

(
1 − 𝜎𝑗 (𝑤>𝑦 𝑗 − 𝑏)

)
+ +

𝛿

2
‖𝑤‖22, (2.21)

where (𝑥)+ := max(0, 𝑥), 𝑦 𝑗 ∈ R𝑛𝑦 are given data points collected in the set
Y = {1, . . . , 𝑁𝑦} [CL11]. These points are classified into two groups labeled
with 𝜎𝑗 ∈ {−1, 1}. The optimization variables 𝑤 ∈ R2 and 𝑏 ∈ R define the
affine subspace separating the two groups of points.

7 One explanation for this is the fact that the convergence rate estimates of the method of multipliers
depends on the exact minimization of L𝜌 jointly with respect to 𝑥 and 𝑧. In ADMM, however,
one executes a form of block-coordinate descent yielding ane inexact minimization.

8 Moreover, ADMM is convergent for special classes of non-convex problems, cf. [WYZ19;
HLR16]. However, for general non-convex problems, there is—to the best of the author’s
knowledge—no convergence guarantee for convergence.
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We would like to distribute computation among R = {1, . . . , 𝑅} proces-
sors. For doing so, we partition the data points 𝑦𝑖 into 𝑅 groups Y𝑖 with⋃

𝑖=1,...,𝑁 Y𝑖 = Y. Hence, problem (2.21) can be written as

min
{𝑤𝑖 }𝑖∈R , {𝑏𝑖 }𝑖∈R ,�̄�,�̄�

∑︁
𝑖∈R

∑︁
𝑗∈Y𝑖

(
1 − 𝜎𝑗 (𝑤>𝑖 𝑦 𝑗 − 𝑏𝑖)

)
+ +

𝛿

2
‖𝑤𝑖 ‖22,

subject to 𝑤𝑖 = �̄�, 𝑏𝑖 = �̄�, 𝑖 = 1, . . . , 𝑅

which is in form of (2.12).9 The augmented Lagrangian then reads

L𝜌 ({𝑤𝑖}𝑖∈R ,{𝑏𝑖}𝑖∈R , �̄�, �̄�) =
∑︁
𝑖∈R

∑︁
𝑗∈Y𝑖

(
1 − 𝜎𝑗 (𝑤>𝑖 𝑦 𝑗 − 𝑏𝑖)

)
+ +

𝛿

2
‖𝑤𝑖 ‖22

+ 𝜆>𝑤𝑖 (𝑤𝑖 − �̄�) + 𝜆𝑏𝑖 (𝑏𝑖 − �̄�) + 𝜌

2
‖𝑤𝑖 − �̄�‖22 +

𝜌

2
‖𝑏𝑖 − �̄�‖22.

ADMM leads to the iterates

(𝑤𝑘+1>
𝑖 , 𝑏𝑘+1𝑖 ) = arg min

𝑤𝑖 ,𝑏𝑖

∑︁
𝑗∈Y𝑖

(
1 − 𝜎𝑗 (𝑤>𝑖 𝑦 𝑗 − 𝑏𝑖)

)
+ +

𝛿

2
‖𝑤𝑖 ‖22 + 𝜆

>
𝑤𝑖 (𝑤𝑖 − �̄�)

+ 𝜆𝑏𝑖 (𝑏𝑖 − �̄�) + 𝜌

2
(
‖𝑤𝑖 − �̄�‖22 + ‖𝑏𝑖 − �̄�‖22

)
, 𝑖 ∈ R.

(�̄�𝑘+1>, �̄�𝑘+1) = 1
|R |

∑︁
𝑖∈R
(𝑤𝑘+1>

𝑖 , 𝑏𝑘+1𝑖 ),

(𝜆𝑘+1>
𝑤𝑖 , 𝜆𝑘+1

𝑏𝑖 ) = (𝜆
𝑘>
𝑤𝑖 , 𝜆

𝑘
𝑏𝑖) + 𝜌

(
(�̄�𝑘+1>

𝑖 , �̄�𝑘+1𝑖 ) − (𝑤𝑘+1>
𝑖 , 𝑏𝑘+1𝑖 )

)
, 𝑖 ∈ R.

Note that the first (and by far most expensive) step of the above iterates can
be implemented in parallel.10 Note that this first step essentially solves an
independent SVM problem only considering the data only from Y𝑖 with two
additional summands in the objective function repsresenting information form
the other data sets by the global averages �̄� and �̄�.

9 Except for 𝑓𝑖 being non-smooth. However, ADMM can in general also be applied to non-smooth
problems as the one considered here [Boy+11].

10 Note that the summands involving the multipliers 𝜆𝑤𝑖 and 𝜆𝑏𝑖 in the second step cancel out as
it can be shown they are zero after the first iteration [Boy+11, Chap 7]. Moreover, observe that
the parallel step can be implemented by a QP solver.
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Figure 2.2: Convergence of the ADMM-based SVM.
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Figure 2.3: Centralized and distributed SVM result.

This implementation is especially useful for large datasets: in this case, the data
can be distributed equally among all processors by choosing the same carnality
for each Y𝑖 . This way, each subsystem needs approximately the same time to
solve its local SVM. By doing so, one can (theoretically) keep the execution
time constant when increasing the number of processors simultaneously with
the increase in the number of data points. However, keep in mind that such
decomposition makes sense only for large problems and when using multiple
processors, or in case privacy is of concern. For small datasets standard
centralized convex QP algorithms (e.g. interior point methods) will usually
outperform ADMM.
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2 Basics of Distributed Optimization

To test the ADMM-based SVM, we consider a set of 2, 000 data points dis-
tributed equally among 𝑅 = 10 processors, where 𝑟𝑘 = 𝜌((�̄�𝑘+1>

𝑖
, �̄�𝑘+1

𝑖
) −

(�̄�𝑘>
𝑖

, �̄�𝑘
𝑖
)) is the dual residual, i.e. the degree of stationarity in the KKT

conditions (2.2a). We use 𝜌 = 𝛿 = 1 as ADMM and SVM parameters, cf.
[Boy+11, Chap 3.3]. The datasets are partitioned in the worst-possible way
to exclude good solutions by chance: we choose 5 subsystems with all positive
datapoints and 5 subsystems with all negative datapoints. Figure 2.2 shows the
convergence of the ADMM-based SVM. One can see that ADMM converges
quite slowly and only to a limited accuracy. However, Figure 2.2 depicts the
resulting hyperplane computed by the centralized and the distributed SVM.
The two hyperplanes are almost indistinguishable. This is typical for ADMM:
it converges to medium accuracy in a hand-full iterations and then slows
down. However, as for many applications this level of accuracy is sufficient—
especially in context of machine learning—ADMM seems to be an excellent
choice for these applications.

2.2.3 Basic ALADIN

A fundamental limitation of dual decomposition and ADMM are their con-
vergence guarantees only for convex or strictly convex problems. One of the
very few algorithms for non-convex problems is the Augemented Lagrangian
Alternating Direction Inexact Newton (ALADIN) algorithm [HFD16]. A main
advantage of ALADIN is its local quadratic convergence rate and local con-
vergence guarantees also for non-convex problems.

In contrast to ADMM, ALADIN does not introduce auxiliary variables 𝑧

into the problem formulation. It directly deals with the partial augmented
Lagrangian of (2.12) with respect to (2.12d)

L𝜌 (𝑥, 𝜆) =
∑︁
𝑖∈R

𝑓𝑖 (𝑥𝑖) + 𝜄X𝑖 + 𝜆>
(∑︁
𝑖∈R

𝐴𝑖𝑥𝑖 − 𝑏

)
+ 𝜌

2

∑︁
𝑖∈R

𝐴𝑖𝑥𝑖 − 𝑏

2

2

. (2.22)
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Consider the method of multipliers, but instead of applying a full minimization
of L𝜌 with respect to 𝑥 we apply only one equality-constrained SQP step
yielding

min
𝑥

∑︁
𝑖∈R

1
2
Δ𝑥>𝑖 𝐵

𝑘
𝑖 Δ𝑥𝑖 + ∇ 𝑓 >𝑖 (𝑥𝑖)Δ𝑥𝑖 + 𝜆𝑘>

(∑︁
𝑖∈R

𝐴𝑖 (𝑥𝑖 + Δ𝑥𝑖) − 𝑏

)
+ 𝜌

2

∑︁
𝑖∈R

𝐴𝑖 (𝑥𝑖 + Δ𝑥𝑖) − 𝑏

2

2

(2.23)

subject to �̃�𝑖 (𝑥𝑘𝑖 ) + ∇�̃�𝑖 (𝑥𝑘𝑖 )Δ𝑥𝑖 = 0, ∀𝑖 ∈ R,

where we combine equality constraints and active inequality constraints in
�̃�𝑖 (𝑥𝑖)> =

(
𝑔𝑖 (𝑥𝑖)>, (ℎ𝑖 (𝑥𝑖)>)A(𝑥𝑖)

)
. Here, the matrix 𝐵𝑘

𝑖
is a positive

definite approximation of the Hessian of the full Lagrangian, i.e. 𝐵𝑘
𝑖
≈

∇2
𝑥𝑖 𝑥𝑖

(
𝑓𝑖 (𝑥𝑘𝑖 ) + 𝛾>𝑖 𝑔𝑖 (𝑥𝑘𝑖 ) + 𝜇>𝑖 ℎ𝑖 (𝑥𝑘𝑖 )

)
. For the multiplier update we apply

the standard dual ascent step from the method of multipliers (2.11)

𝜆𝑘+1 = 𝜆𝑘 + 𝛼𝑘

(∑︁
𝑖∈R

𝐴𝑖𝑥
𝑘+1
𝑖 − 𝑏

)
.

In principle, one could apply this algorithm now to equality-constrained prob-
lems. This would yield a very effective algorithm since if 𝜌 is large enough,
the QP (2.23) becomes strongly convex and thus it can be replaced by solving
the KKT conditions (2.2) which is a linear system of equations. However, if
inequality constraints are present, the question arises how to obtain the active
set A(𝑥𝑘 ). An alternative is to consider inequality constraints in (2.23), but
this would make (2.23) substantially more difficult to solve, since the KKT
conditions (2.2) also entail inequality constraints in this case.

ALADIN uses a different approach: it introduces a local NLP step very similar
to step 1) of ADMM (Algorithm 4). This step reads

min
𝑥𝑖

∑︁
𝑖∈R

𝑓𝑖 (𝑥𝑖) + 𝜆𝑘>𝐴𝑖𝑥𝑖 +
𝜈

2
‖𝑥𝑖 − 𝑧𝑘𝑖 ‖2Σ𝑖

, (2.24)

where Σ𝑖 is a (usually diagonal) positive definite scaling matrix and where
we introduce auxiliary variables 𝑧𝑘 serving as a second iterate in ALADIN.
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2 Basics of Distributed Optimization

As an active set for (2.23), one can use the active set from the minimization
of problem (2.24). This has additionally the charm that, if derivative-based
numerical solvers are used to solve (2.24), one can reuse these derivatives for
setting up (2.23). Note that (2.24) is separable, i.e. the minimization can be
parallelized. Combining the above yields the ALADIN algorithm summarized
in Algorithm 5. Note that �̃�𝑖 (𝑥𝑘𝑖 ) = 0 in Algorithm 5 as feasibility is ensured
in step 1) and that ∇�̃� is the block-diagonal concatenation of all ∇𝑔𝑖 .

Algorithm 5 Basic ALADIN
Initialization: 𝑧0

𝑖
, 𝜆0, Σ𝑖 � 0 for all 𝑖 ∈ R, 𝜈, 𝜌

Repeat:
1) Solve for all 𝑖 ∈ R

𝑥𝑘𝑖 = argmin
𝑥𝑖 ∈X𝑖

𝑓𝑖 (𝑥𝑖) + 𝜆𝑘>𝐴𝑖𝑥𝑖 +
𝜈

2
‖𝑥𝑖 − 𝑧𝑘𝑖 ‖

2
Σ, (parallel)

2) Compute ∇ 𝑓
𝑖
(𝑥𝑘

𝑖
), 𝐵𝑘

𝑖
≈ ∇2

𝑥𝑖 𝑥𝑖

(
𝑓
𝑖
(𝑥𝑘

𝑖
) + 𝛾>

𝑖
𝑔
𝑖
(𝑥𝑘

𝑖
) + 𝜇>

𝑖
ℎ
𝑖
(𝑥𝑘

𝑖
)
)
, ∇�̃�𝑖 (𝑥𝑘𝑖 ).

3) Solve the coordination QP

Δ𝑥𝑘 = argmin
Δ𝑥

∑
𝑖∈R

1
2Δ𝑥

>
𝑖
𝐵𝑘
𝑖
Δ𝑥𝑖 + ∇ 𝑓 >𝑖 (𝑥

𝑘
𝑖
)Δ𝑥𝑖 (centralized)

+ 𝜆𝑘>
(∑

𝑖∈R 𝐴𝑖 (𝑥𝑘𝑖 + Δ𝑥𝑖) − 𝑏

)
+ 𝜌

2
‖∑𝑖∈R 𝐴𝑖 (𝑥𝑘𝑖 + Δ𝑥𝑖) − 𝑏‖22

subject to ∇�̃�(𝑥𝑘 )Δ𝑥 = 0.

4) Set 𝑧𝑘+1
𝑖

= 𝑥𝑘
𝑖
+ Δ𝑥𝑘

𝑖
and 𝜆𝑘+1 = 𝜆𝑘 + 𝜌

(∑
𝑖∈R 𝐴𝑖𝑥𝑖 − 𝑏

)
. (parallel)

Remark 5 (Slack variables for numerical stability). In [HFD16], the QP step
(2.23) is replaced by the equivalent formulation

min
Δ𝑥,𝑑

∑︁
𝑖∈R

1
2
Δ𝑥>𝑖 𝐵

𝑘
𝑖 Δ𝑥𝑖 + ∇ 𝑓 >𝑖 (𝑥𝑘𝑖 )Δ𝑥𝑖 + 𝜆𝑘>𝑑 + 𝜇

2
‖𝑑‖22

subject to �̃�𝑖 (𝑥𝑘𝑖 ) + ∇�̃�𝑖 (𝑥𝑘𝑖 )Δ𝑥𝑖 = 0 ∀𝑖 ∈ R, (2.25)∑︁
𝑖∈R

𝐴𝑖 (𝑥𝑘𝑖 + Δ𝑥𝑖) − 𝑏 = 𝑑 | 𝜆QP,
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2.3 What’s wrong with constraints?

where 𝑑 ∈ R𝑛𝑐 are slack variables. These slack variables are important for
numerical stability of ALADIN in implementations. For the understanding
of ALADIN, this formulation does not add much, but due to their practical
importance we will consider this formulation in the following.

Remark 6 (Computation of 𝜆𝑘+1). Note that 𝜆𝑘+1 coincides with 𝜆QP from
(2.25). This can be seen from the optimality conditions to (2.25), 𝜆QP =

𝜆𝑘 + 𝜌𝑑 = 𝜆𝑘 + 𝜌 (∑𝑖∈R 𝐴𝑖𝑥𝑖 − 𝑏).

Remark 7 (Globalization of ALADIN). Note that for global convergence, i.e.
convergence from remote starting points, a globalization rountine is necessary.
This means that step 3) of ALADIN is replaced by

𝑧𝑘+1𝑖 = 𝑧𝑘𝑖 + 𝛼1 (𝑥𝑘𝑖 − 𝑧𝑘𝑖 ) + 𝛼2Δ𝑥
𝑘
𝑖 , 𝜆𝑘+1 = 𝜆𝑘 + 𝛼3 (𝜆QP − 𝜆𝑘 ),

where the step-sizes𝛼1, 𝛼2 and𝛼3 are determined by these routines. The setting
𝛼1 = 𝛼2 = 𝛼3 = 1 recovers step 3) of Algorithm 5, which is called the full step
variant of ALADIN. One globalization routine is given in [HFD16], however it
is highly centralized and computationally intense. In the present work we focus
on local convergence, i.e. on convergence for initial guesses close enough to
a local minimizer where a globalization routine can be omitted.

2.3 What’s wrong with constraints?

In this subsection we will briefly comment on difficulties, which can arise in
the application of distributed optimization algorithms to constrained problems.
Constraints are important in many cases—particularly for applications in power
systems and control which we have in mind.

2.3.1 Alternating projections in ADMM and ALADIN

Constrained problems might lead to difficulties in alternating direction methods
such as ADMM. As outlined before, the core idea of ADMM is to minimize the
augmented LagrangianL𝜌 with respect to two distinct variable blocks 𝑥 and 𝑧 in
an alternating fashion to obtain separability. The name “alternating direction”
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2 Basics of Distributed Optimization

already suggests, ADMM is a kind of alternating projection method between
the two types of constraints—local constraints and consensus constraints. This
can be seen by the two different constraint sets X𝑖 and C in the minimization
steps of Algorithm 4. These alternating projections might lead to very slow
convergence of ADMM as we will see next.

An example

Let us consider a convex feasibility problem (i.e. 𝑓 ≡ 0) with a local constraint
set X

min
𝑥

𝜄X (𝑥) subject to 𝐴𝑥 = 𝑏. (2.26)

Then ADMM (Algorithm 3 simplifies to the following alternating projection
procedure

𝑥𝑘+1 = ΠX (𝑧𝑘 − 𝑢𝑘 )
𝑧𝑘+1 = ΠC (𝑥𝑘+1 + 𝑢𝑘 )
𝑢𝑘+1 = 𝑢𝑘 + 𝑥𝑘+1 − 𝑧𝑘+1,

where ΠC : R𝑛𝑥 → C denotes the orthogonal projection on the “consensus
constraint set C = {𝑥 ∈ R𝑛𝑥 | 𝐴𝑥 = 𝑏}, see [Boy+11, Sec 3.1.1]. Let us
consider the 2-dimensional example

C = {𝑥 ∈ R2 | 𝑥2 = 0} and X = {𝑥 ∈ R2 | ‖𝑥 − 𝑥‖22 ≤ 𝑟2},

with 𝑥 =
(
10 50.99

)> and 𝑟 = 51. The set of optimal solutions is given by
X★ = X ∩ C = {𝑥 ∈ R2 | (𝑐 0)>, 𝑐 ∈ [8.99 11.01]}.

Figure 2.4 depicts the two feasible sets X and C considered in step 1) and
step 2) of ADMM with the corresponding iterates starting from the initial
point 𝑧0 = (0, 0.5)> and 𝑢0 = (0, 0)>. One can clearly see the alternating
projections in both algorithms: the iterates {𝑥𝑘 } stay feasible in X and the
iterates {𝑧𝑘 } stay feasible in C—thus “alternating” between these two sets.11

11 For ALADIN, the iterates {𝑧𝑘 } slightly deviate from C as the consensus constraints (2.12d)
are considered in the penalization term of L𝜌.
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2.3 What’s wrong with constraints?

Figure 2.4: ALADIN and ADMM iterates for problem (2.26).

For ADMM convergence is slow since pure projection between both sets makes
almost no progress toward their intersection. For ALADIN, the situation is
different since here also curvature information of the constraint set X (i.e.
the constraint linearizations ∇�̃�(𝑥𝑘 ) in step 2) of Algorithm 5) is considered
driving the iterates much faster to X ∩ C. This can be seen from the step
directions (𝑥𝑘 − 𝑧𝑘 ) being almost tangential to the boundary of X.

Remark 8 (Description of feasible sets). Note that considering constraint lin-
earizations in ALADIN comes at the cost of requiring the feasible set X to
be described by differentiable constraint functions 𝑔 and ℎ, i.e. X = {𝑥 ∈
R𝑛𝑥 | 𝑔(𝑥) = 0, ℎ(𝑥) ≤ 0} as in (2.1b). This can be seen as a restriction to the
class of distributed problems, to which ALADIN is applicable. ADMM on the
other hand does not have such a restriction and is thus able to handle a general
convex constraint set. In view of the fact that the majority of practical applica-
tions has constraint sets described by differentiable functions, not considering
this information means to accept a unnecessary poor performance.
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Figure 2.5: Infeasibility in C over the iteration index.

2.3.2 Integrator wind-up in ADMM

Apart from slow convergence from alternating projections, there seems to be a
second effect in ADMM slowing down its performance. This effect is related to
the multiplier update in step 3) of ADMM (Algorithm 4) acting as a integrator.

Figure 2.5 shows the infeasibility of the iterates {𝑥𝑘 } in terms of the constraint
set C, i.e. |𝑥𝑘2 | over the iteration index 𝑘 . Here one can see that not only
ALADIN converges much faster than ADMM in terms of total iterations, but
also that the accuracy in the constraint violation one can reach with ADMM
seems to be limited to a level of around 10−2. This is surprising, as ADMM is
shown to converge monotonically [HY15].

Figure 2.6 also shows the the infeasibility of the iterates {𝑥𝑘 } in terms of the
constraint set C but for a much larger number of iterations and additionally
also the scaled dual variables 𝑢𝑘 . Here, one can observe a very surprising
effect: whereas in the primal space, there is no visible progress for more than
600 iterations, the dual variables change slightly. After about 700 iterations,
the primal variables converge suddenly and to a very high accuracy.

By having a look at the dual variables, one can see why: they integrate to a
value of about 6 in the first few iterations and then converge only very slowly
to their optimal value of zero, which seems to hinder the primal values from
convergence.

One might ask why this is the case. From Figure 2.4 one can see that ADMM
performs quite large alternating projection steps, which drive the dual variable
to a high value in the first iterations, since the multiplier update rule “integrates”
the distance (𝑥𝑘+1 − 𝑧𝑘+1). Once the 𝑧𝑘 iterates reached the feasible set, the
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Figure 2.6: Infeasibility in C and scaled dual variables.

alternating behavior continues although the iterates 𝑧𝑘 are already feasible. As
in this new area of oscillation (Figure 2.4, second plot), the distance (𝑥𝑘+1−𝑧𝑘+1)
is quite small, it takes several hundreds of iterations to dismount the before
integrated value of the multipliers. Once they reached their optimal value,
ADMM suddenly converges. Observe that for this example, the behavior is
independent of 𝜌, since 𝜌 does not appear in the ADMM iterations. Thus, this
effect can not be overcome by tuning.

To the best of our knowledge, this effect is not investigated in the literature in
detail so far. Moreover, it seems to be one reason for very slow convergence
of ADMM for some OPF problems (cf. Section 5.4.1).

2.3.3 Non-convex constraints

Many distributed algorithms require the feasible set to be convex. If one
nonetheless applies these algorithms to problems with non-convex constraints,
the convergence is not guaranteed. Thus, the question arises, whether there
is a particular difficulty for distributed algorithms to handle non-convex con-
straints. Next, we will show that this is not the case. More specifically, we will
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show an example, where all here considered algorithms diverge—including
centralized methods such as the method of multipliers and SQP diverge con-
tradicting the common wisdom that they can achieve convergence to a local
minimizer from an arbitrary initialization by considering suitable globalization
routines.

With this, we would like to emphasized that there is an inherent difficulty asso-
ciated with certain kinds of non-convex constraints from which all algorithms
suffer—not only the distributed ones. This should shape our expectation that
it is hardly possible to design distributed algorithms which are able to handle
general non-convex constraints. The best we can achieve also here is local
convergence—i.e. convergence from an initial point close enough to a local
minimizer.12

What’s wrong with non-convex constraints?

Consider the non-convex problem 12 This problem can be written as

min
𝑥

10−2
(
(𝑥1 − 8)2 + (𝑥2 − 1)2

)
+ 𝑖X1 (𝑥) + 𝑖X2 (𝑥) (2.28)

with a non-convex constraint set X1 = {𝑥 ∈ R2 | 𝑥2 − sin(𝑥1) = 0} and
a constraint set X2 = {𝑥 ∈ R2 | (0.15, −1) 𝑥 = 0}. The contour lines
of the objective and the feasible are depicted in Figure 2.7. The feasible
set consists of three points X = {(0, 0)>,±(2.72, 0.41)>}, one of which
(𝑥★ = (2.72, 0.41)>) is globally optimal.

Three of the four considered algorithms—ADMM, ALADIN and the method
of multipliers—are based on minimizing the augmented Lagrangian which for
𝜆 = 0 reads

L𝜌 (𝑥, 0) = 10−2
(
(𝑥1 − 8)2 + (𝑥2 − 1)2

)
+ 𝑖X1 (𝑥) +

𝜌

2
‖(0.15, −1) 𝑥‖22 .

12 One expectation are centralized global optimization algorithms such as 𝛼-branch-and-bound
[Ste17]. However, these global optimization techniques are typically very expensive and often
due to that not applicable to large problems.
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Figure 2.7: Contour plots and feasible set of problem (2.27).
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Figure 2.8: Feasible set and contours of (2.29) for 𝜌 = 108.

The theory of augmented Lagrangian-based methods predicts that if we iter-
atively minimize L𝜌 for a fixed multiplier 𝜆𝑘 and we let 𝜌 → ∞, then these
methods will converge to the globally optimal solution to (2.27) regardless of
the update rule for 𝜆𝑘 [Ber99, Prop. 4.2.1]. At first glance, this sounds very
promising, but let us have a closer look on L𝜌 when increasing 𝜌. Figure 2.8
shows the contour lines and the feasible set of the problem

min
𝑥
L𝜌 (𝑥, 0) (2.29)

for 𝜌 = 108. One can clearly see thatL𝜌 (𝑥, 0) has two local minima in the plot-
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Figure 2.9: Iterates of ADMM, ALADIN, the method of multipliers, and SQP for problem (2.27).

ted range: one at the global optimal solution to problem (2.27), (2.72, 0.41)>
but also another one at (7.7, 0.98)> which is not even a feasible point. This
highlights an inherent practical difficulty of augmented Lagrangian methods
for non-convex constraints: if L𝜌 is iteratively minimized with local solvers
(which is often the case in practice), then the method might converge to a point
which is neither feasible nor optimal.13 The premise of the before mentioned
theorem is that L𝜌 is minimized globally, which can not be guaranteed here
due to using local solvers. Consequently, this can be observed in ADMM,
ALADIN and the method of multipliers if their subproblems are solved with
local solvers.
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Numerical behavior

Figure 2.9 shows the iterates for ADMM, ALADIN and the method of mul-
tipliers from an initial point 𝑥0 = (5, −0.5) and 𝜆0 = 0. One can observe
the convergence to the infeasible point (2.72, 0.41)> for all these methods
and similar to the previous chapter the “alternating behavior” of ALADIN and
ADMM being projecting between the two constraint sets defined by 𝑔 and
𝐴𝑥 = 𝑏.

Moreover, for SQP, after several iterations close to the infeasible point, SQP
produces iterates far from any feasible point (indicated by the blue arrow in
Figure 2.9). The reason for this is that ∇𝑔 and 𝐴 become very close to linearly
dependent at (2.72, 0.41)> leading to intersection points of the spaces spanned
by ∇𝑔 and 𝐴 very far away from the previous iterate. Globalization routines
do also not help here. Most of the global convergence proofs for SQP require
either an a priori assumption boundedness of the iterates {𝑥𝑘 }, {𝜆𝑘 } [Sol09],
or they require linearly independent constraint linearizations [BT95, Thm 4.1],
which are both violated in this case. Even if these assumptions hold, the
convergence of SQP methods is typically guaranteed to a stationary point of
some merit function such as L𝜌 [BT95, Thm 4.2]. However, these stationary
points do not necessarily correspond to a local minimizer as we observed in
our example.

Note that this effect can not occur for convex problems. In this case, all sub-
problems are also convex and solvers necessarily return global optima. In
summary, we can conclude the following: Especially non-convex constraints
are difficult to handle—not only for distributed but also for centralized algo-
rithms. Thus, designing distributed algorithms with convergence guarantees
from arbitrary initial points might be out of reach. However, in practical prob-
lems we often have initial guesses close enough to local minimizers making
these algorithms nonetheless very successful in many domains. A similar class
of counterexamples for interior-point methods can be found in [WB00].

13 This effect is even strengthened if the local solvers are initialized at the previous iterate which
is also often done in practice for computational efficiency reasons.
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3 A Survey on Distributed
Optimization

In this chapter, we provide an overview on the state-of-the art of distributed
optimization algorithms. Moreover, we investigate what makes these algo-
rithms hard to apply in many practical applications. The amount of literature
on distributed optimization grows very fast and this overview is far from being
complete. However, we tried to identify main lines of research and aimed at
identifying important works for each of these lines.

We categorize the research on distributed optimization along three main lines
of research:

• primal-dual algorithms,

• primal algorithms,

• and internal decomposition algorithms.

Whereas primal-dual methods are mainly based on Lagrangian relaxation (cf.
Section 2.2), primal methods work purely in primal space, i.e. they do typi-
cally not update any form of Lagrange multipliers. The third line of research
considers internal decomposition methods. These methods decompose oper-
ations of standard nonlinear programming algorithms such as solving a linear
system of equations. We begin with primal-dual methods as one of the earliest
approaches on distributed optimization.

3.1 Primal-dual algorithms

Early works on distributed optimization trace back to Everett Dantzig, Wolfe
and Benders [Eve63; DW60; Ben62] in the 1960s. These first works mainly
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1960 1980 today2000

Bender’s/Dantzig-Wolfe decomp.

dual decomp.

ADMM

distributed subgradient

distributed interior point

EXTRA, NEXT, ...

Figure 3.1: Timeline of distributed optimization algorithms.

considered Lagrangian relaxation for strictly convex problems and decompo-
sition methods for linear programs. Later, the Lagrangian relaxation was com-
bined with augmented Lagrangian techniques developed mainly by Hestenes,
Powell and Miele [Pow69; Hes69; Mie+71; Mie+72] to improve numerical
stability and to provide guarantees also for convex but not strictly convex
problems. This led to first versions of ADMM with improved convergence
guarantees and improved practical convergence [GM76; GM75; EB92]. Many
of these duality-based works are summarized excellent textbooks by Bertsekas
and Tsitsiklis [BT89] and Censior and Zenios [CZ97]. A timeline of distributed
optimization approaches is shown in Figure 3.1.

Renewed interest in the late 2000s

Distributed optimization gained new interest in the late 2000s mainly in the
field of machine learning and imaging science, where ADMM outperformed
state-of-the art methods in certain applications [ABF10; SMG10; GM12].
Moreover, new applications in signal recovery emerged [CP07; CP11]. The
main motivation here was computational speedup, i.e. to find methods for
parallel computing.1 Moreover, state-of-the-art methods have been shown to
be a special case of ADMM [GO09; Gol+14] allowing their treatment in a
unified framework.

Duality-based optimization methods were used in communication networks
[Chi+07] beginning already in the late 1990s [KMT98; LL99]. Similar ap-
proaches were used in wireless sensor networks [MBG10; SRG08], in signal

1 A nice example for this need is given in [BMN01]. There, the authors consider a image-
reconstruction problem from from positron emission tomography. Even an evaluation of one
gradient of the objective took 15 to 45 min there, so there is no chance for using Newton-based
schemes such as IP or SQP methods.
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processing [ZGC09] and in certain fields of machine learning (support-vector
machines) [FCG10]. A different version of dual decomposition is established
in [NS08] called proximal center method. Herein—instead of minimizing the
augmented Lagrangian in an alternating fashion to achieve separability—the
author adds two linear proximal terms which are separable and lead to a dif-
ferentiable dual function. An early dual-decomposition based approach for a
multi-agent setting was presented in [TTM11]. The highly influential paper
[Boy+11] showed that many of the above works can be treated in a unified
framework based on ADMM. The importance of this framework lies in its
generality—the convergence analysis of [Boy+11] carries over to the above
applications. An even more general convergence analysis of decomposition
methods (including ADMM) based on augmented Lagrangians is given in
[ST14]. A dual method combining with smoothing and an excessive gap
technique for convex problems is presented in [TDSD13]. The numerical re-
sults in this work are promising and the method has a main advantage over
other primal-dual methods: the parameters are updated automatically. Using
an accelerated scheme in the dual step yields a convergence rate of O(1/𝑘2)
for general convex problems. A generalization is given in [TND16] includ-
ing techniques from [Nes05a; Nes05b] allowing for inexact solutions of the
subproblems and providing automatic parameter updates.

The works starting with [WO12] consider a network setting, i.e. they introduce
consensus constraints on characteristic matrices of the underlying communi-
cation graph (incidence matrix, Laplace matrix, cf. Appendix A.2). [Shi+14]
considers a problem formulation in form of (A.10). This leads to an edge-
based formulation (ADMM maintains two Lagrange multipliers per edge).
[MO17] develops a node-based formulation, where one Lagrange multiplier
vector is maintained for each node in the network, where the network con-
straint is encoded based on a Laplacian formulation similar to (A.12). Both
cases lead to sublinear/linear convergence under convexity/strong convexity as-
sumptions. The very recent work [Mao+20] presents a decentralized method
for unconstrained non-convex consensus optimization with guarantees in a
network setting.

43



3 A Survey on Distributed Optimization

Recent works considering non-convex objectives

Recently, primal-dual algorithms were successfully extended to problems with
non-convex objective function, but convex constraint set with guarantees. An
ADMM-like algorithm, where the augmented Lagrangian is minimized in a
block-coordinate descent scheme, is presented in [HJ14] based on the conver-
gence analysis of [ABS13]. The analysis is based on new concepts beyond
convexity such as the Kurdyka-Łojasiewicz (KL) property and Lipschitz/reg-
ularity assumptions. The KL property is for example fulfilled, if the objec-
tive and the constraint functions are-semi algebraic. This line of analysis is
combined in [HJ16] with generalized equations from [ZA10] to a distributed
control setting. The KL framework is developed further in [BST18; ST19a].
Approaches applying ADMM in the field of optimal control can be found in
[KCD15; RCG17; BG19]. A dual second order method decomposing strictly
convex QPs from optimal control along the time-axis is presented in [FSD15].

The works [Cha+16b; Cha+16a] show that ADMM with standard consensus
and strongly convex 𝑓𝑖s converges linearly even under asynchronous operation
with bounded communication delay. [CDZ15] and [CZ17] present an ADMM-
flavoured method providing convergence guarantees also for non-convex 𝑓𝑖
under strong second-order sufficient conditions but with convex constraint
sets. Moreover, [HLR16; LP15] analyze the convergence properties of ADMM
for non-convex problems including certain classes of non-convex constraints.
An more general convergence analysis is given in [WYZ19] including the
[HLR16; LP15] as special cases. The line of analysis of [WYZ19] is extended
in [GGC20] to problems, where the consensus constraint (2.12d) can be a
multiaffine mapping.

Remark 9 (Relation to operator splitting methods). There are excellent works
generalizing primal-dual distributed algorithms in the framework of operator
splitting and proximal methods [CP11; Sta+16; PB14]. This perspective paves
the way for unified convergence analysis. Moreover, it leads to suggestions
for effective preconditioning [GB15; GB17]. However, this point of view is
beyond the scope of the present work as it requires a large amount additional
mathematical prerequisites from operator splitting theory. We refer to [BC11]
and the above works for further details.
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Table 3.1: Typical properties of primal-dual decentralized algorithms.

update idea convergence pros/cons

𝑥𝑘+1 ∈ argmin𝑥 L𝜌 (𝑥, 𝜆𝑘 )2
𝜆𝑘+1 = 𝜆𝑘 + 𝜌(𝐴𝑥 − 𝑏)
L𝜌 : augmented Lag.
𝜌 : stepsize

maximize dual +
evaluate primal
distributedly

𝑓 ∈ S : O(1/𝑘)
/

O(1/𝑘2)
𝑓 ∈ S𝜇 : O(𝜏𝑘 )

+ decentralized
+ robust
+ extension to certain

non-convex settings
- tuning
- non-conv constraints?

Pros and cons of primal-dual methods

Primal-dual methods are very successfully applied in many contexts—especially
for convex problems. For certain applications—e.g. in embedded optimal
control, signal recovery and machine learning—they lead to promising perfor-
mance [Ste+20; CP07]. However, most of the primal-dual approaches suffer
from two drawbacks:

• the constraint-set is often restricted to be convex;

• and the convergence rate is typically linear/sublinear for strongly con-
vex/convex problems.

We refer to [DY16; GB16; PSB14] and [HY12] for a detailed convergence
analysis.

Recent overviews on decentralized optimization considering primal and dual
approaches can be found in [NOR18; NOW18; Boy+11; Yan+19; HM11].
Examples on the application of ADMM to machine learning problems can
be found in [Tay+16; Sul+19]. Recent surveys on optimization methods for
machine learning including primal and dual methods can be found in [Ber15b;
BCN18; SNW12]. Overviews on splitting methods for control with emphasis
on time-wise decomposition are given in [Sta+16; Fer+17].

Typical properties of primal-dual algorithms are summarized in Table 3.1.

2 By setting 𝜌 = 0 one obtains dual decomposition.
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3.2 Primal algorithms

The second main line of reserach are primal first-order methods. These meth-
ods are usually decentralized variants of the gradient/subgradient or proximal
gradient method producing iterates purely in the primal space. Hence, they
do usually not maintain any form of Lagrange multipliers. We give a brief
overview on latest developments in a network setting. For a recent and compre-
hensive analysis on their centralized counterparts we refer to [Bec17; Ber15a].

Classical approaches

In contrast to dual methods, primal distributed methods are distributed in
the design of the optimization algorithms. One of the most general settings
is given in [TBA86], which is also one of the earliest and most influential
papers on primal methods in distributed optimization. To illustrate the idea
of primal methods and to be able to classify relevant literature, we give a
simplified version of the iteration scheme typically used in primal methods
(assuming deterministics, synchronization, no communication delays and a
one-dimensional decision vector). This (simplified) iteration reads

𝑥𝑘+1 = 𝑊 𝑘𝑥𝑘 − Λ𝑘 𝑠𝑘 . (3.1)

Here, 𝑊 𝑘 is a so-called mixing matrix and 𝑠𝑘 encodes some form of gradien-
t/subgradient or Newton step with respect to the individual objective function
terms 𝑓𝑖 , and Λ𝑘 is a diagonal matrix providing positive stepsizes for each 𝑠𝑘

𝑖
.

The matrix 𝑊 𝑘𝑥𝑘 can be seen as a kind of averaging step between neighbors
driving the individual 𝑥𝑖 toward a consensus and the vector 𝑠𝑘 contains some
desirable direction of descent in the objective function driving the iteration
towards optimality. The connectivity of the Network is here encoded in the
matrix 𝑊 𝑘 (which might be time-varying).3 Convergence of these methods
is guaranteed in a very general setting including asynchronous operation and
communication delays [Ber83; TBA86]. An example for an early application
of this framework to distributed reinforcement learning can be found in [Tsi94].

3 The matrix𝑊 𝑘 has to fulfill certain assumptions, e.g. it has to be stochastic or doubly stochastic
meaning that all entries have to be non-negative and the column sums of 𝑊 𝑘 have to be all one.
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Consensus and first-generation algorithms

In the 2000s, so-called consensus algorithms gained significant interest [JLM03;
Boy+05; OFM07; OT09; Blo+05].4 Consensus algorithms compute (roughly
speaking) weighted-averages between neighbored agents sequentially until a
certain level of consensus (i.e. level of “equalness” in the primal variables)
is reached. Thus, the iteration of consensus algorithms is 𝑥𝑘+1 = 𝐴𝑥𝑘 . By
using tools from classical discrete-time control theory, one can accelerate con-
vergence of consensus algorithms by choosing 𝐴 in a certain manner. From
this perspective it seems natural that consensus algorithms are closely related
to the before-mentioned primal algorithms. The work [BT07] showed that
some of them are a special case of the earlier work [TBA86], where roughly
speaking speaking the vector 𝑠𝑘 in the primal optimization framework (3.1)
is zero. However, these development renewed interest in decentralized primal
algorithms and led to the development of decentralized subgradient meth-
ods (DSG) for non-smooth 𝑓𝑖s (e.g. for 𝑙1-regularized problems) [NO09].
Thereby the authors exploit that consensus problem can equivalently be for-
mulated as a feasibility problem, i.e. one minimizes a zero function encoding
consensus as a constraint which is mathematically described by a constraint
set X = {𝑥 ∈ R𝑛𝑥 | 𝑥1 = 𝑥2 =, . . . ,= 𝑥𝑅} [Ned+14]. The decentralized
subgradient method was extended to a stochastic setting with subgradient-
projection where all agents have knowledge over a global constraint set and
thus also decentralized constrained and non-smooth optimization became pos-
sible [SRNV10; Ned11].

In [DAW12], DSG was extended to a decentralized proximal gradient method
based on [Nes09; DAW10] allowing for constraints in a deterministic, syn-
chronous and undelayed setting. It also analyzes the influence of the network
structure on the convergence. In the same setting, a decentralized primal-dual
subgradient method was proposed in [ZM12]. All the above methods require a
diminishing step site to converge to an optimal solution—one reason for making

4 A consensus problem is a problem, where multiple entities have to agree on something. Exam-
ples for this can be opinion dynamics, where after a while the population agrees on a certain
political decision; sensor networks where multiple measurements have to be aggregated, i.e.
there has to be a “consent” on the measured value; formation control, where autonomously
flying objects have to agree on a certain formation, or self-organize biological systems, where
swarms of animals (e.g. fishes) move in a certain direction.
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them slow compared to other methods [NOR18]. To accelerate convergence,
primal methods based on Nesterov’s accelerated gradient ([Nes83]) for un-
constrained problems over networks have been proposed in [CO12; JXM14].
They exhibit an improved sublinear convergence rate. The work [YLY16]
analyzes the convergence of DSG schemes in case of a fixed stepsize. Therein
authors show that in case of a fixed stepsize, the accuracy of DSG is limited
by the stepsize, i.e. DSG converges to a more exact solution with a smaller
stepsize. On the other hand, this slows down convergence and hence there is
a tradeoff between convergence speed and achievable accuracy which can be
seen as a drawback of DSG methods. This effect is called the exactness-speed
dilemma. An extension of the analysis of DSG and prox-DSG methods to the
non-convex regime is given in [ZY18] showing that most properties from the
convex setting are preserved. This work considers new analysis tools suitable
for the non-convex case and shows convergence to stationary points (and to
limit cycles) under almost the same conditions as in the convex case. An suffi-
cient conditions for optimal convergence in time-varying networks applicable
to the algorithms before is given in [Rog+19].

Second-generation algorithms

A major drawback of the algorithms from before is the need for a diminishing
stepsize to guarantee their converges making them typically slow. A new type
of decentralized primal method called Exact First Order Algorithm (EXTRA)
was developed in [Shi+15b] overcoming this difficulty. The main idea there
is to introduce a correction term in the decentralized gradient schemes from
before, compensating the non-stationarity of the 𝑓𝑖s in the limit. The correction
term is a sum of previous iterates—hence, one has to maintain one additional
vector while iterating. The update formulas are

𝑥𝑘+1 = 𝑊 𝑘𝑥𝑘 − Λ𝑘 𝑦𝑘 , (3.2a)
𝑦𝑘+1 = 𝑊 𝑘 𝑦𝑘 + ∇ 𝑓 (𝑥𝑘+1) − ∇ 𝑓 (𝑥𝑘 ). (3.2b)

Here, the first term in (3.2b), 𝑊 𝑘 𝑦𝑘 , is the newly introduced compensation
term. By doing so one yields convergence also for a fixed step size overcom-
ing the exactness-speed dilemma. EXTRA yields sublinear convergence for
convex objective functions and linear convergence for strictly convex objec-
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tive functions. An extension to constrained problems based on the proximal
gradient method is given in [Shi+15a]. Also numerically, EXTRA has shown
to outperform existing DSG schemes. A similar scheme (Aug-DGM) was
proposed in [Xu+15] allowing for uncoordinated stepsizes. Algorithms very
similar to EXTRA and Aug-DGM haven been proposed in [Ned+17; QL18].
In [Ned+17], the developed (DIGing) algorithm provides convergence guar-
antees for strongly convex functions over time-varying graphs using new ar-
guments from control theory (small-gain theorem). The authors of [QL18]
prove sublinear convergence for convex functions. An extension of [Ned+17]
to uncoordinated stepsizes is given in [NOS17]. A Nesterov-accelerated (Acc-
DNGD) is given in [QL19] with significantly improved sublinear convergence
rate. Asynchronous operation and time-varying directed graphs with linear
convergence proof is considered in [Pu+20] with a similar approach given in
[XK18]. [MJ18] presents and algorithm similar to DIGing with improved prac-
tical convergence and a substantial reduction in communication. Non-convex
objectives are considered in [TT17].

A different line of research in distributed primal methods was proposed in
[Scu+14]. Therein, the main idea based on [RHL13] is to use a proximal-
gradient like scheme, where non-convex parts of the objective are linearized
and the evaluation of the proximal operator is done in a Jacobi or Gauss-Seidel
like procedure. This leads to convergence to stationary points also in case of
non-convex 𝑓 with a convex constraint set. Note that this method also needs
a diminishing stepsize. These ideas are combined with a dynamic consensus
algorithm from [ZM10] leading to a very effective algorithm [DLS16] called
NEXT with an empirically linear rate of convergence and convergence speed
similar to ADMM. An extension to arbitrary and time-varying digraphs is
given in [SSP16] (SONATA) containing NEXT, Aug-DGM and DIGing as
special cases.

Decentralized Newton-methods

Another main line of research is primal decentralized optimization based
on Newton-Methods. The article [JOZ09] considers a decentralized New-
ton scheme very similar to the one we will use later for bi-level ALADIN. The
consensus constraint is defined via a graph incidence matrix, i.e. each node
maintains only one decision variable. The scheme is unconstrained. The New-
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ton step is computed via a decentralized consensus scheme. Errors in the step
computation are included in the convergence analysis. A similar approach is
proposed in [TBJ19], where in contrast to the method before, the dual Hessian
is converted into a system of symmetric diagonally dominant (SDD) matrices
and this new (lifted) system is solved by a decentralized solver specifically de-
signed for SDD systems. A combination of Newton based ideas with average
consensus is given in [MLR17; Mok+16] which converge quite slow even for
strongly convex problems. The approach in [Var+16] is at least able to gain a
practically linear rate of convergence.

Pros and cons of primal methods

A main advantage of primal methods are that thy often come with advanced
features such as asynchronous operation, considering time-delays or a changing
network topology. However, their convergence is typically very slow although
second-generation algorithms made significant progress towards acceleration
of convergence. Moreover, having optimization problems from power systems
or for distributed optimal control in mind, the current state-of-the art primal
methods have the major drawback that they do often not consider constraints. If
constraints are considered, they are typically assumed to be convex. Moreover,
knowledge of the global constraint set by all agents is sometimes required.

We refer to [NOW18; NOW18; Ned14; Yan+19] for excellent and more com-
prehensive reviews of distributed primal methods.

As constraints are of major importance in the applications from power systems
and control we have in mind, we do not consider primal methods further in
this thesis.

19 The convergence of first-generation algorithm is sublinear mainly due to the required diminishing
stepsize. If a constant stepsize is used, however, convergence might be faster but the “exactness”
of the solution is limited in that case [NOR18; YLY16]. This effect is called the exactness-speed
dilemma.
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Table 3.2: Typical properties of first and second generation primal decentralized algorithms.

update idea convergence pros/cons

1st
ge

ne
ra

tio
n

𝑥𝑘+1 = 𝑊 𝑘 𝑥𝑘 − Λ𝑘𝑠𝑘

𝑊 𝑘 : mixing matrix
Λ𝑘 : stepsize
𝑠𝑘 : step direction

consensus +
gradient/
Newton step

𝑓 ∈ S, S𝜇 :
O(1/

√
𝑘)

/
O(1/𝑘)19

+ decentralized
+ very simple iteration
+ simple subproblems
+ (changing topology)
+ (directed graphs)
- convex X required
- exactness-speed

dilemma19

- very slow

2nd
ge

ne
ra

tio
n 𝑥𝑘+1 = 𝑊 𝑘 𝑥𝑘 − Λ𝑘 𝑦𝑘

𝑧𝑘+1 = ∇ 𝑓 (𝑥𝑘+1) − ∇ 𝑓 (𝑥𝑘 )
𝑦𝑘+1 = 𝑊 𝑘 𝑦𝑘 + 𝑧𝑘+1

𝑊 𝑘 : mixing matrix
Λ𝑘 : stepsizes

consensus +
gradient
tracking

𝑓 ∈ S : O(1/𝑘)
𝑓 ∈ S𝜇 : O(𝜏𝑘 )

+ no exactness-speed
dilemma

+ decentralized
+ simple iteration
+ simple subproblems
+ (changing topology)
+ (directed graphs)
- convex X required
- slow

3.3 Internal decomposition methods

The third main line of research are internal decomposition methods. Internal
decomposition aims at distributing certain steps from centralized nonlinear
programming methods such as interior point methods or SQP. By doing so,
the convergence guarantees of the “host algorithm” are inherited. In interior
point and SQP, the most expensive centralized operation is solving a liner
system of equations (KKT systems) in each iteration. Whereas for interior
point methods decomposition of the KKT system is often straight-forward, for
SQP methods the situation is a bit more difficult. Here, one has to consider an
extra routine detecting the active set or, alternatively, use a method which can
handle constraints as an inner algorithm.

Classically, parallel linear algebra routines such as the Gauss-Seidel, the Jacobi
iteration or the conjugate gradient method were employed for distributed com-
putation of the KKT system [BT89, Chap 2], [Saa03, Chap 4]. However, these
classical methods usually decompose along rows/columns of the KKT matrix
aiming for load balancing and they are thus typically not directly applicable to
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a multi-agent setting. Domain decomposition methods (or Schur-complement
methods) [Saa03, Chap 14] are more suited for the multi-agent setting and we
will use similar techniques in Chapter 4.

Distributed interior-point and SQP methods

Early works on distributed interior point methods for convex problems in form
of (2.12) start with [HOS01], where the KKT system is solved by specialized
solvers for block-tridiagonal systems. A Schur-complement-based approach
is presented in [GG07] and [GG09], where [GG09] efficiently exploits nested
tree structures. The work [NS09] combines dual decomposition with ideas
from interior point methods, where the KKT system is condensed based on a
Schur-complement technique and subsequently solved by a centralized linear
solver. A generalization thereof is presented in [Din+13] coming with a novel
convergence analysis allowing for inexact solutions of the subproblems. The
follow-up work [LT20] generalized this work for broader problem classes based
on tools from [ST19b] and a polynomial-time complexity is established. A
general structure-exploiting interior point method for problems in form of
(2.12) is presented in [PHA14], where the KKT system is solved via ADMM.

Examples for distributed implementations of interior point methods of time-
dependent problems (e.g. from optimal control) can be found in [ZLB08;
Kan+14; Wor+14; HSS17] In these works, decomposition is typically done
over time, i.e. the problems are often in form of (2.12) but whereR is a time in-
dex rather than a set of subsystems. An augmented-Lagrangian based parallel
interior point method for this setting is given in [CSL16]. One recent exam-
ple of using Schur-complement techniques is implemented in the PARDISO
solver [Sch+01] in combination with the very successful interior point method
implementation IPOPT [WB06; Ver+17; KFS18; KKS20a; KKS20b]. The
main focus of these implementations is the applications to time-dependent
problems from power systems such as multi-stage optimal power flow or
security-constrained optimal power flow—however the methods used there
are in principle applicable to many problems with a similar sparsity structure.
A similar approach with application to spatial decomposition in power systems
is presented in [Lu+18].
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Table 3.3: Typical properties of internal decomposition methods.

update idea convergence pros/cons(
−𝑔𝑘

𝑏

)
=

(
𝐻 𝑘 𝐴𝑘>

𝐴𝑘 0

) (
Δ𝑥𝑘

Δ𝜆𝑘

)
𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘Δ𝑥𝑘

𝜆𝑘+1 = 𝜆𝑘 + 𝛼𝑘Δ𝜆𝑘

𝐻 𝑘 : block-Hessian
𝐴𝑘 : structured Jacobian

exploit structure
in 𝐻, 𝐴 (+ solve
decentralized)

𝑓 ∈ S :5

O(𝜏 (1/𝜏)𝑘 )
/

O(𝑘−𝑘 )
/
O(𝜏𝑘 )

+ very fast
+ non-convex constraints
- steps expensive
- distributed
- no advanced features

(changing topology etc.)
- globalization

For a multi-agent setting, an approach based on primal barrier functions is
presented in [BPJ17] and a primal-dual based approach is presented in [BJ17].
These works guarantee convergence with decentralized barrier parameter up-
dates.

An early partially parallel SQP version is presented in [Lei+03]. [Sch15]
presents a commercial distributed SQP method.

Pros and cons of internal decomposition methods

Internal decomposition methods are in general well-suited for constrained
optimization. They typically consider some form of constraint-linearization
in their step computation, thus the curvature information of the constraints is
effectively exploited often leading to very fast convergence of these methods
also in the constrained case. However, as all of these methods are second-
order (i.e. they use Hessian and Jacobian information), step-computation
is in general much more expensive. Using Schur-complement and reduced-
space techniques can substantially reduce the dimension of the KKT system.
However, solving the KKT system is in general highly centralized. Moreover,
these methods are typically not tailored to a multi-agent setting. They are
rather designed for parallel computing.

5 The convergence rate depends on the precision of solving the KKT system and on the “exactness”
of the Hessian 𝐻 𝑘 . Exact Hessians with an exact solutions to the KKT system leads to quadratic
convergence, approximations like BFGS lead to superlinear convergence, cf. Example 2.

53



3 A Survey on Distributed Optimization

Table 3.4: Overview on main lines of research for distributed optimization.

primal-dual primal internal decomp.
1st generation 2nd generation

examples dual decomp.,
ADMM,
...

consensus,
distributed
subgradient, ...

EXTRA,
NEXT,
DIGing, ...

distributed IP,
distributed SQP

distribution via dualization,
alternating direction

averaging averaging linear algebra,
dualization

constraints via projection projection projection barrier/active set

section Section 3.1 Section 3.2 Section 3.3
overviews in [HM11; Boy+11]

[Sta+16; NOR18]
[NOW18; Yan+19]

[NOW18; NOW18]
[Ned14; Yan+19]

[Wor+14; ZLB08]

For our applications in power systems and control, techniques from internal
decomposition seem to be excellent fits as we often have non-convex objectives
and constraints. However, one challenge is to reduce the complexity for solving
the KKT system.

Mixed approaches

Finally, there are a few algorithms which are hard to categorize along the above
lines of research. One of them is an alternating trust region method [HJ17]
which converges linearly to local minimizers. The second one is the Aug-
mented Lagrangian Alternating Direction Inexact Newton (ALADIN) method
[HFD16]. ALADIN can be viewed as a mix between primal-dual and SQP
methods combining distributed optimization with the fast (superlinear or even
quadratic) convergence properties of SQP. In contrast to many other methods
from before, these two methods are able to handle non-convex constraints. A
decomposition scheme for time-wise decomposition of optimal control prob-
lems based on ALADIN is presented in [Kou+16].
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3.4 Comparison of algorithms

Let us assess the before mentioned algorithm classes in view of desired prop-
erties for distributed optimization. Classical primal-dual algorithms such as
ADMM and dual decomposition are well investigated and work robustly for a
wide range of practical (convex) problems. Moreover, convergence guarantees
have recently been extended to special classes of non-convex problems. For
separable problem structures, they are able to operate in a decentralized fash-
ion although centralized parameter tuning might be required. Their amount of
communication is usually very small and recently also advanced features such
as operating on directed graphs or asynchronous operation have been investi-
gated. However, in case of constrained problems, certain undesired alternating
projection effects might occur (cf. Section 2.3).

Primal algorithms do very well in decentralized operation as they do not assume
a special structure of the problem and the communication graph can be chosen
independently from the problem formulation. Moreover, similar to primal-
dual methods, the communication overhead per iteration is quite small and
many of these algorithms are able to operate on directly graphs with changing
topology and asynchronously. On the other hand, at least first-generation
primal algorithms are very slow. The convergence rate of second-generation
algorithms can be similar to primal-dual methods. A drawback of primal
algorithms is that considering constraints (even convex ones) is often not
possible.

Internal decomposition methods are often not decentralized as they often aim
for parallel computing and computational speedup than for a multi-agent set-
ting. As they often solve a reduced KKT system, the communication overhead
is quite large and the coordination problem might be expensive to solve due
to additional centralized operations such as the update of barrier parameter in
interior point methods. However, very fast convergence is often guaranteed
also for problems with non-convex objective and constraints.

Lastly, ALADIN is a mixture between primal-dual methods and internal de-
composition methods inheriting the fast convergence properties of internal
decomposition methods and the convergence guarantees for constrained non-
convex problems. Moreover—in contrast to internal decomposition methods—
ALADIN offers of distribution by detecting the active constraints locally and
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Table 3.5: Existing works in view of desired properties for distributed algorithms.

primal-dual primal internal dec. ALADIN

decentralization + ++ - - -
convergence guarantees conv. conv. non-conv non-conv

convergence speed o (- -), o ++ +++
communication ++ ++ - - - - -

broad applicability ++ - - + +
constraint-handling + – ++ ++
advanced features6 + ++ - - - -

reducing the coordination step to a linear system of equations. However, com-
pared to primal-dual and primal methods, its coordination and communication
effort is quite large. The properties of primal-dual, primal and internal decom-
position methods in view of the requirements for distributed optimization are
summarized in Table 3.5. Therein (+) and (++) indicate that the considered
algorithm fulfills the listed property and (-) and (- -) indicate that it does not.

Prospect for application in power systems and control

The present thesis has mainly applications from power systems and optimal
control in mind. Characteristic in these two classes of problems are non-
convex constraints which essentially leave two classes of distributed algorithms
for further investigation: primal-dual methods and internal decomposition
methods. As ALADIN is a mix between these two it seems to be an excellent
fit. However, as indicated above, ALADIN has a quite heavy coordination step
and requires a quite large amount of central communication. Motivated by
this fact, a main focus of the present thesis will be to develop a decentralized
ALADIN-based algorithm preserving its favorable convergence guarantees and
reducing its communication requirements. In the next chapter, we present a
new algorithmic framework fulfilling these requirements which we call bi-level
ALADIN.

6 With advanced features we mean features such as asynchronous operation, the ability to handle
communication delays, operation over directed graphs or a changing graph topology.
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4 Bi-level Distributed ALADIN

In the previous sections we highlighted that the core advantages of ALADIN
are its fast local convergence guarantees, and an efficient handling of non-
convex constraints. Disadvantages are a large amount of communication and
a missing decentralization. This chapter proposes a framework in which both
is possible—operation based on neighbor-to-neighbor communication (de-
centralized optimization) and reducing the communication overhead while
preserving ALADIN’s fast local convergence guarantees.

By having a closer look at Algorithm 5, one can observe that only the coordi-
nation step 2) requires central coordination and global communication.1 Thus,
the idea of this chapter is decentralize this step by means of decentralized inner
algorithms.

Large parts of this section are based on [Eng+20b; Eng+19b]. The sparsity
encoding techniques and the decentralized conjugate gradient algorithm are
improved versions from [Eng+20b] and not published so far. The convergence
analysis in Section 4.5 is a unified version of [Eng+20b], which does not require
any results from [HFD16] and is purely based on nonlinear programming
theory from Chapter 2. Similar approaches can also be found in the literature
on numerical methods for optimal control [Kou+16; FSD15].

4.1 Reducing communication by condensing

In a first step, we apply so-called reduced-space or condensing techniques to
the coordination QP of ALADIN. By doing so, we reduce the dimension of the

1 A globalization also requires either central coordination or costly additional communication.
However, as stated before, here we focus on a local algorithm. Designing distributed globaliza-
tion routines is still an open problem.
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4 Bi-level Distributed ALADIN

QP and thus ALADIN’s communication overhead. The basic ideas for doing
so are from the literature for nonlinear programming [NW06].

Recall the coordination QP of ALADIN including slack variables (2.25)

min
Δ𝑥,𝑑

∑︁
𝑖∈R

1
2
Δ𝑥>𝑖 𝐵

𝑘
𝑖 Δ𝑥𝑖 + ∇ 𝑓 >𝑖 (𝑥𝑘𝑖 )Δ𝑥𝑖 + 𝜆𝑘>𝑑 + 𝜌

2
‖𝑑‖22 (4.1a)

subject to 𝐶𝑘
𝑖 Δ𝑥𝑖 = 0 ∀𝑖 ∈ R, (4.1b)∑︁

𝑖∈R
𝐴𝑖 (𝑥𝑘𝑖 + Δ𝑥𝑖) − 𝑏 = 𝑑 | 𝜆QP. (4.1c)

The first technique we apply is the so-called nullspace-method [NW06, Ch.
12] eliminating the constraint linearizations 𝐶𝑘

𝑖
∈ R𝑛𝑘

ℎ𝑖
×𝑛𝑥𝑖 from (4.1b). To

this end, we need a basis of the nullspace of 𝐶𝑘
𝑖
. Let us construct a matrix

𝑍 𝑘
𝑖
∈ R𝑛𝑥𝑖×(𝑛𝑥𝑖−𝑛𝑘

ℎ𝑖
) with 𝐶𝑘

𝑖
𝑍 𝑘
𝑖

= 0 for all 𝑖 ∈ R forming a basis of this
nullspace with its columns.2 This allows parameterizing Δ𝑥𝑖 = 𝑍 𝑘

𝑖
Δ𝑣𝑖 and

thus

min
Δ𝑣,𝑑

∑︁
𝑖∈R

1
2
Δ𝑣>𝑖 �̄�

𝑘
𝑖 Δ𝑣𝑖 + �̄�𝑘>𝑖 Δ𝑣𝑖 + 𝜆𝑘>𝑑 + 𝜈

2
‖𝑑‖22 (4.2a)

subject to
∑︁
𝑖∈R

𝐴𝑖𝑥
𝑘
𝑖 + �̄�𝑘

𝑖 Δ𝑣𝑖 − 𝑏 = 𝑑 | 𝜆QP. (4.2b)

In case of many active constraints, also the reduced Hessian �̄�𝑘
𝑖

:= 𝑍 𝑘>
𝑖

𝐵𝑘
𝑖
𝑍 𝑘
𝑖
,

the reduced gradient �̄�𝑘
𝑖

:= 𝑔𝑘>
𝑖

𝑍 𝑘
𝑖

and the reduce coupling matrices �̄�𝑘
𝑖
=

𝐴𝑖𝑍
𝑘
𝑖

are much smaller in dimension compared with (4.1). We also reduce
dimension of the decision vector Δ𝑥𝑖 from 𝑛𝑥𝑖 to 𝑛𝑥𝑖 − 𝑛𝑘ℎ𝑖 . Hence, we reduce
communication when solving (4.2) instead of (4.1) in step 2) of ALADIN. A
detailed communication analysis will be given in Section 4.6.

2 If rows of 𝐶𝑘
𝑖

are linearly dependent though, the number of rows of 𝑍 𝑘
𝑖

is 𝑛𝑥𝑖 − 𝑛𝑘
ℎ𝑖
+ 𝑑𝑘

𝑖
,

where 𝑑𝑘
𝑖

is the number of linearly dependent rows of 𝐶𝑘
𝑖

.
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4.1 Reducing communication by condensing

The Schur complement

Employing the Schur-complement allows to further reduce the dimensionality
of the QP (4.2). For doing so, we need form the inverse of �̄�𝑘

𝑖
. Hence, we

assume the following.

Assumption 1. The reduced Hessian approximation �̄�𝑘
𝑖

is symmetric and
positive definite for all iterates 𝑘 ∈ N and all 𝑖 ∈ R.

This assumption holds for example if ∇𝑥𝑥L(𝑥𝑘 , 𝜆𝑘 , 𝜌𝑘 ) is positive definite on
the range space spanned by ∇ℎ(𝑥𝑘 ) for all 𝑘 ∈ N. However, it also holds by
choosing an appropriate Hessian approximation �̄�𝑘

𝑖
such that the assumption

holds. We will further comment on how to do so in Chapter 6. Moreover, we
assume the following.

Assumption 2. The matrix 𝐴 = [𝐴1, . . . , 𝐴𝑅] has full row rank.

As 𝐵𝑘
𝑖
� 0, the KKT conditions (2.2) for problem (4.2) are necessary and

sufficient for a global minimizer to (4.2). The Lagrangian to (4.2) is

LQP (Δ𝑣, 𝑑, 𝜆QP) :=
∑︁
𝑖∈R

1
2
Δ𝑣>𝑖 �̄�

𝑘
𝑖 Δ𝑣𝑖+�̄�𝑘>𝑖 Δ𝑣𝑖 + 𝜆𝑘>𝑑 + 𝜌

2
‖𝑑‖22

+ 𝜆QP>

(∑︁
𝑖∈R

𝐴𝑖𝑥
𝑘
𝑖 + �̄�𝑘

𝑖 Δ𝑣𝑖 − 𝑏 − 𝑑

)
.

Thus, the KTT conditions ∇LQP (Δ𝑣, 𝑑, 𝜆QP) = 0 read

�̄�𝑘Δ𝑣 + �̄�𝑘 + �̄�𝑘>𝜆QP = 0, (4.3a)
𝜆𝑘 + 𝜌𝑑 − 𝜆QP = 0, (4.3b)

𝐴𝑘𝑥𝑘 + �̄�𝑘Δ𝑣 − 𝑏 − 𝑑 = 0, (4.3c)

where �̄�𝑘 = diag𝑖∈R (�̄�𝑘
𝑖
), �̄�𝑘 = (�̄�𝑘>1 , . . . , �̄�𝑅>1 )

>, �̄� = ( �̄�1, . . . , �̄�𝑅) and
Δ𝑣 = (Δ𝑣>1 , . . . ,Δ𝑣

>
𝑅
)>. Here, diag𝑖∈R (𝐻𝑖) denotes diagonal concatenation of
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4 Bi-level Distributed ALADIN

matrices 𝐻𝑖 indexed by the set R. By eliminating (4.3b) with 𝑠 = 1
𝜌
(𝜆QP−𝜆𝑘 ),

we obtain

�̄�𝑘Δ𝑣 + �̄�𝑘 + �̄�𝑘>𝜆QP = 0, (4.4a)

𝐴𝑘𝑥𝑘 + �̄�𝑘Δ𝑣 − 𝑏 − 1
𝜌
(𝜆QP − 𝜆𝑘 ) = 0. (4.4b)

In order to further reduce dimensionality of (4.4), we rearrange (4.4a) as

Δ𝑣 = −�̄�𝑘−1 (�̄�𝑘 + �̄�𝑘>𝜆QP), (4.5)

where we used Assumption 1. Inserting to (4.4b) yields(
�̄�𝑘 �̄�𝑘−1

�̄�𝑘>︸         ︷︷         ︸
:=𝑆𝑘

+ 1
𝜌
𝐼

)
𝜆QP = 𝐴𝑘𝑥𝑘 − �̄�𝑘 �̄�𝑘−1

�̄�𝑘︸                 ︷︷                 ︸
:=𝑠𝑘

−𝑏 + 1
𝜌
𝜆𝑘 . (4.6)

Exploiting block structure

Because of the block structure of �̄�𝑘 and �̄� in (4.6), one can write

𝑆𝑘 = �̄�𝑘 �̄�𝑘−1
�̄�𝑘> =

∑︁
𝑖∈R

�̄�𝑘
𝑖 �̄�

𝑘−1

𝑖 �̄�𝑘>
𝑖 =

∑︁
𝑖∈R

𝑆𝑘𝑖 (4.7)

with 𝑆𝑘
𝑖

:= �̄�𝑘
𝑖
�̄�𝑘−1

𝑖
�̄�𝑘>
𝑖

. Moreover,

𝑠𝑘 = 𝐴𝑥𝑘 − �̄�𝑘 �̄�𝑘−1
�̄�𝑘 =

∑︁
𝑖∈R

𝐴𝑖𝑥
𝑘
𝑖 − �̄�𝑖 �̄�

𝑘−1

𝑖 �̄�𝑘𝑖 =
∑︁
𝑖∈R

𝑠𝑘𝑖 (4.8)

with 𝑠𝑘
𝑖

:= 𝐴𝑘
𝑖
𝑥𝑘
𝑖
− �̄�𝑖 �̄�

𝑘−1

𝑖
�̄�𝑘
𝑖
. Observe that the variables 𝑆𝑘

𝑖
and 𝑠𝑘

𝑖
can be

computed entirely locally the subsystems 𝑖 ∈ R. Hence, it suffices that the
subsystems communicate these two quantities to a coordinator, which then
solves (4.6).

Note that (4.6) is a linear system of equations of dimension of the number
of consensus constraints 𝑛𝑐 , which is typically much smaller than the total
number of variables 𝑛𝑥 + 𝑛𝑔 + 𝑛𝑐 . If one solves (4.6) for 𝜆QP, all Δ𝑣𝑖 and Δ𝑥𝑖
can be computed by back substitution in (4.5) and by Δ𝑥𝑘

𝑖
= 𝑍 𝑘

𝑖
Δ𝑣𝑘

𝑖
.

60
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Figure 4.1: Sparsity patterns of {𝑆𝑖 }𝑖∈{1,2,3} for the 5-bus system (Figure 5.2b).

In summary, this subsection showed that instead of solving (4.1) one can solve
(4.6) in the coordination step 2) of ALADIN (Algorithm 5). This reduces
communication and coordination drastically in case of problems with many
active constraints. In this case, it suffices to communicate sensitivities of
reduced dimension (Schur complements) 𝑆𝑘

𝑖
and vectors 𝑠𝑘

𝑖
instead of the full

sensitivities. However, note that although this version of ALADIN requires
less communication, ALADIN still requires central coordination. In the next
subsection we derive an algorithm solving (4.6) in a decentralized fashion
rendering ALADIN a decentralized optimization algorithm.

4.2 Decentralization of coordination

Next we develop two algorithms solving the reduced coordination step (4.6) in
a decentralized fashion, which means purely based on neighbor-to-neighbor
communication. For doing so, we first analyze the sparsity pattern of 𝑆𝑖 .

The sparsity of 𝑆𝑖

Although the matrix 𝑆 is generally dense, the matrices 𝑆𝑖 are not necessarily.
Figure 4.1 shows the sparsity patterns from an optimization problem from
power systems which we will use in Chapter 5. Here, certain rows/columns
seem to be structurally zero. This is the case since often the rows of 𝐴𝑖

express coupling between variables in two different subsystems. The zero
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4 Bi-level Distributed ALADIN

rows/columns in 𝑆𝑖 come from the zero rows in 𝐴𝑖 of all remaining subsystems.
In the following we call the two subsystems 𝑖, 𝑗 ∈ R, which share a common
non-zero row in their 𝐴𝑖 assigned to this row.

Definition 6. A subsystem 𝑖 ∈ R is called assigned to consensus constraint
𝑐 ∈ C = {1, . . . , 𝑛𝑐} if the 𝑐th row of 𝐴𝑖 is non-zero.

Moreover, we collect all subsystems assigned to consensus constraint 𝑐 ∈ C in

R(𝑐) := {𝑖 ∈ R | 𝑖 assigned to 𝑐 ∈ C},

and we collect all consensus constraints assigned to a subsystem 𝑖 ∈ R in

C(𝑖) := {𝑐 ∈ C | 𝑖 ∈ R(𝑐)}.

With that, we are ready to make a statement on the sparsity of 𝑆𝑖 .

Lemma 1. The rows and columns of 𝑆𝑖 and the entries of 𝑠𝑖 with 𝑐 ∉ C(𝑖) are
zero.

Proof. By Definition 6, all rows of �̄�𝑘
𝑖
= 𝐴𝑖𝑍

𝑘
𝑖

with 𝑐 ∉ C(𝑖) are zero. It
follows immediately that the rows and columns of 𝑆𝑘

𝑖
= �̄�𝑘

𝑖
�̄�𝑘−1

𝑖
�̄�𝑘>
𝑖

and the
entries of 𝑠𝑘

𝑖
= 𝐴𝑘

𝑖
𝑥𝑘
𝑖
− �̄�𝑖 �̄�

𝑘−1

𝑖
�̄�𝑘
𝑖

with 𝑐 ∉ C(𝑖) are zero. �

4.2.1 Exploiting sparsity for decentralization

The idea now is to exploit this sparsity for decentralization. Our goal is to
formulate (4.6) as (∑︁

𝑖∈R
𝑆𝑘𝑖

)
𝜆QP =

∑︁
𝑖∈R

𝑠𝑘𝑖 , (4.9)

where 𝑆𝑘
𝑖

and 𝑠𝑘
𝑖

are formed entirely locally and preserve the sparsity of 𝑆𝑘
𝑖

and 𝑠𝑘
𝑖
. Two quantities hindering us are 1

𝜌
𝐼 and ( 1

𝜌
𝜆𝑘 − 𝑏) in (4.6) which do

not “belong” to any of the subsystems.
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4.2 Decentralization of coordination

The main idea in the following is, to “distribute” 1
𝜌
𝐼 and ( 1

𝜌
𝜆𝑘 − 𝑏) to subprob-

lems, which are assigned to the corresponding consensus constraint. To this
end, we define

𝑆𝑘𝑖 := 𝑆𝑘𝑖 +
𝑛𝑐∑︁
𝑐=1

𝜄C(𝑖) (𝑐)
|R(𝑐) | 𝜌 𝐼𝑐 , and 𝑠𝑘𝑖 := 𝑠𝑘𝑖 +

𝑛𝑐∑︁
𝑐=1

𝜄C(𝑖) (𝑐)
|R(𝑐) | 𝜌 (𝜆

𝑘
𝑐−𝑏𝑐)𝑒𝑐 . (4.10)

where 𝐼𝑐 is a zero matrix except for [𝐼]𝑐𝑐 = 1, 𝜄C (·) is the indicator function
of the set C, and 𝑒𝑐 ∈ R𝑛𝑐 is the 𝑐th unit vector. This way, the sparsity patterns
of 𝑆𝑘

𝑖
and 𝑠𝑘

𝑖
are preserved and (4.6) is reformulated in form of (4.9).

This sparsity pattern can in turn be exploited by ADMM leading to a decen-
tralized ADMM. To this end, we express (4.9) as a strongly convex QP.

Lemma 2. The QP

min
�̄�

1
2
�̄�>

𝑅∑︁
𝑖=1

𝑆𝑖�̄� −
𝑅∑︁
𝑖=1

𝑠>𝑖 �̄� (4.11)

is strongly convex, it’s minimizer is unique and solves (4.9).

Proof. First, we prove strong convexity of (4.11), i.e. 𝑆 :=
∑𝑅

𝑖=1 𝑆𝑖 � 0.
By Assumption 1 we have �̄�𝑘

𝑖
� 0 and hence �̄�𝑘 � 0. Thus, �̄�𝑘−1 � 0.

Furthermore, by 𝑍 𝑘 having full column rank, �̄�𝑘 = 𝐴𝑍 𝑘 has full row rank by
Assumption 2. Hence, 𝑦 := �̄�𝑘𝑥 ≠ 0 for all 𝑥 ≠ 0 and thus 𝑆𝑘 = �̄�𝑘 �̄�𝑘−1

�̄�𝑘> �
0 by 𝑦>�̄�𝑘−1

𝑦 > 0. By the definition of 𝑆, (4.10), we have 𝑆 = 𝑆 + 1
𝜌
𝐼 � 0 by

𝑆 � 0.

Let us show that 𝑆𝑖 = 𝑆>
𝑖

. We have 𝑆>
𝑖
= ( �̄�𝑘 �̄�𝑘−1

�̄�𝑘>)> = �̄�𝑘 (�̄�𝑘−1 )> �̄�𝑘> =

�̄�𝑘 (̄�̄�𝑘> )−1 �̄�𝑘>. By Assumption 1, we have �̄�𝑘> = �̄�𝑘 and hence the assertion
follows.

It remains to show that the minimizer of (4.11) is unique and coincides with
the solution to (4.9). Uniqueness follows from strong convexity. Again from
strong convexity, the first-order necessary conditions are also sufficient for a
minimum. They read 1

2 (
∑𝑅

𝑖=1 𝑆𝑖 +
∑𝑅

𝑖=1 𝑆
>
𝑖
)�̄� −∑𝑅

𝑖=1 𝑠𝑖 = 0 and thus coincide
with (4.9) by symmetry of 𝑆. �
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Figure 4.2: Sparsity patterns for
{
𝐼C(𝑖)

}
𝑖∈{1,2,3} .

4.2.2 Decentralized ADMM

To derive a decentralized variant of ADMM (d-ADMM), we restate (4.11)
in so-called consensus form (A.9). We introduce matrices 𝐼C(𝑖) ∈ R |C (𝑖) |×𝑛𝑐
mapping from global Lagrange multipliers �̄� ∈ R𝑛𝑐 to local ones 𝜆𝑖 ∈ R |C (𝑖) |
by 𝜆𝑖 := 𝐼C(𝑖) �̄�. These matrices are defined as the horizontal concatenation of
unit vectors 𝑒𝑐 ∈ R𝑛𝑐 indexed by the set R as 𝐼R :=

(
𝑒>𝑠

)
𝑠∈R ∈ R |R |×𝑛𝑐 . Alter-

natively, these matrices may be viewed as identity matrices, where certain rows
have been “deleted” eliminating zero rows/columns in 𝑆𝑖 and 𝑠𝑖 . Figure 4.2
shows exemplary sparsity patterns of {𝐼C(𝑖) }𝑖∈R for an example from power
systems from Section B.4. The matrices 𝐼C(𝑖) have an interesting property,
namely that 𝑆𝑖 and 𝑠𝑖 are invariant under multiplication with 𝐼>C(𝑖) 𝐼C(𝑖) .

Lemma 3 (Invariance of 𝑆𝑖 and 𝑠𝑖 under multiplication with 𝐼>C(𝑖) 𝐼C(𝑖) ). It
holds that 𝐼>C(𝑖) 𝐼C(𝑖)𝑆𝑖 = 𝑆𝑖 and 𝐼>C(𝑖) 𝐼C(𝑖) 𝑠𝑖 = 𝑠𝑖 .

Proof. By definition, 𝐼C(𝑖) is composed of unit vectors for which 𝑒>
𝑖
𝑒
𝑗
= 1, if

and only if 𝑖 = 𝑗 and 𝑒>
𝑖
𝑒
𝑗
= 0 else. Thus, 𝐼>C(𝑖) 𝐼C(𝑖) is an identity matrix with

zero rows/columns for all rows/columns indexed by 𝑐 ∉ C(𝑖). As these rows
are anyways zero in 𝑆𝑖 and 𝑠𝑖 by Lemma 1, the assertion follows. �
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4.2 Decentralization of coordination

Algorithm 6 d-ADMM for problem (4.12)
Initialization: �̄�0

𝑖
, 𝛾0

𝑖
for all 𝑖 ∈ R, 𝜌

Repeat for all 𝑖 ∈ R:

1) 𝜆𝑛+1
𝑖

=

(
𝑆𝑘
𝑖
+ 𝜌𝐼

)−1 (
𝑠𝑘
𝑖
− 𝛾𝑛

𝑖
+ 𝜌�̄�𝑛

𝑖

)
(local)

2) �̄�𝑛+1
𝑖

= (Λ𝑖)−1 ∑
𝑗∈𝑁 (𝑖) 𝐼𝑖 𝑗𝜆

𝑛+1
𝑗

(neighbor-to-neighbor)

3) 𝛾𝑛+1
𝑖

= 𝛾𝑛
𝑖
+ 𝜌(𝜆𝑛+1

𝑖
− 𝐼C(𝑖) �̄�

𝑛+1) (local)

With that, we are able to reformulate (4.11) in consensus form. Con-
sider 𝑓𝑖 (�̄�) := 1

2 �̄�
>𝑆𝑖�̄� − 𝑠>

𝑖
�̄� as local objectives. By Lemma 3, 𝑓𝑖 (�̄�) =

𝑓𝑖 (𝐼>C(𝑖) 𝐼C(𝑖) �̄�) = 𝑓𝑖 (𝐼>C(𝑖)𝜆𝑖). Thus, problem (4.11) can be written as

min
𝜆1 ,...,𝜆𝑅 ,�̄�

∑︁
𝑖∈R

𝑓𝑖 (𝐼>C(𝑖)𝜆𝑖)

subject to 𝜆𝑖 = 𝐼C(𝑖) �̄� | 𝛾𝑖 for all 𝑖 ∈ R,
(4.12)

with Lagrange multipliers 𝛾𝑖 ∈ R |C (𝑖) | .

Solution via ADMM

Let us evaluate the ADMM iterations (Algorithm 3) for problem (4.12). The
Augmented Lagrangian for (4.12) is

L𝜌 (𝜆1, . . . , 𝜆𝑅, �̄�, 𝛾1, . . . , 𝛾𝑅) =∑︁
𝑖∈R

𝑓𝑖 (𝐼>C(𝑖)𝜆𝑖) + 𝛾
>
𝑖 (𝜆𝑖 − 𝐼C(𝑖) �̄�) +

𝜌

2
‖(𝜆𝑖 − 𝐼C(𝑖) �̄�)‖22.

(4.13)

Necessary conditions for minimizing (4.13) with respect to 𝜆1, . . . , 𝜆𝑅 are

𝑆𝑘𝑖 𝜆
𝑛+1
𝑖 − 𝑠𝑘𝑖 + 𝛾𝑛𝑖 + 𝜌(𝜆𝑛+1𝑖 − �̄�𝑛𝑖 ) = 0, for all 𝑖 ∈ R,

where 𝑆𝑘
𝑖

:= 𝐼C(𝑖)𝑆
𝑘
𝑖
𝐼>C(𝑖) and 𝑠𝑘

𝑖
:= 𝐼C(𝑖) 𝑠

𝑘
𝑖
. Rearranging terms yields step 1)

of Algorithm 6.
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Step 2) of Algorithm 3 minimizes (4.13) with respect to �̄�. The first-order
optimality conditions are∑︁

𝑖∈R
−𝐼>C(𝑖)𝛾

𝑛
𝑖 − 𝜌𝐼>C(𝑖) (𝜆

𝑛+1
𝑖 − 𝐼C(𝑖) �̄�

𝑛+1) = 0. (4.14)

Step 3) of Algorithm 3 is

𝛾𝑛+1𝑖 = 𝛾𝑛𝑖 + 𝜌(𝜆𝑛+1𝑖 − 𝐼C(𝑖) �̄�
𝑛+1). (4.15)

Summing up for all 𝑖 ∈ R yields∑︁
𝑖∈R

𝛾𝑛+1𝑖 =
∑︁
𝑖∈R

𝛾𝑛𝑖 + 𝜌(𝜆𝑛+1𝑖 − 𝐼C(𝑖) �̄�
𝑛+1).

Multiplying by 𝐼>C(𝑖) from the left together with (4.14) implies that
∑

𝑖∈R 𝐼
>
C(𝑖)𝛾

𝑛+1
𝑖

=

0 after the first ADMM iteration. Hence (4.14) becomes∑︁
𝑖∈R

𝐼>C(𝑖)𝜆
𝑛+1
𝑖 − 𝐼>C(𝑖) 𝐼C(𝑖) �̄�

𝑛+1 = 0. (4.16)

Multiplying by 𝐼C( 𝑗) from the left yields∑︁
𝑖∈R

𝐼C( 𝑗) 𝐼
>
C(𝑖)︸     ︷︷     ︸

:=𝐼 𝑗𝑖

𝜆𝑛+1𝑖 − 𝐼C( 𝑗)

∑︁
𝑖∈R

𝐼>C(𝑖) 𝐼C(𝑖)︸          ︷︷          ︸
:=Λ

�̄�𝑛+1 = 0. (4.17)

Since 𝐼C( 𝑗) 𝐼
>
C( 𝑗) = 𝐼 and 𝐴𝐵 = 𝐵𝐴 for diagonal matrices 𝐴, 𝐵, we have

𝐼C( 𝑗)Λ�̄�
𝑛+1 = 𝐼C( 𝑗) 𝐼

>
C( 𝑗) 𝐼C( 𝑗)Λ�̄�

𝑛+1 = 𝐼C( 𝑗)Λ𝐼
>
C( 𝑗) 𝐼C( 𝑗) �̄�

𝑛+1 = Λ 𝑗 �̄�
𝑛+1
𝑗 ,

where we define Λ𝑖 := 𝐼C(𝑖)Λ𝐼
>
C(𝑖) . Hence, (4.17) can be written as

�̄�𝑛+1𝑗 =
(
Λ 𝑗

)−1 ∑︁
𝑖∈R

𝐼 𝑗𝑖𝜆
𝑛+1
𝑖 .
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Figure 4.3: Coupling matrices 𝐼12 and 𝐼13 corresponding to the matrices
{
𝐼C(𝑖)

}
𝑖∈{1,2,3} shown

in Figure 4.2.

As 𝐼 𝑗𝑖 = 0 for 𝑗 ∉ 𝑁 (𝑖), we can replace 𝑖 ∈ R by 𝑖 ∈ 𝑁 ( 𝑗), where we define
the neighborhood 𝑁 (𝑖) of subsystem 𝑖 ∈ R by

𝑁 (𝑖) := { 𝑗 ∈ R | there exists a 𝑐 ∈ C with 𝑖, 𝑗 ∈ R(𝑐)}.

The identity 𝐼 𝑗𝑖 = 0 for 𝑗 ∉ 𝑁 (𝑖) follows from this definition and the definition
of 𝐼C(𝑖) . This yields step 2) of Algorithm 6.

Note that in Algorithm 6 we have entirely local steps (step 1) and step 3))
and one neighbor-to-neighbor step (step 2)). This means that the algorithm
is decentralized, i.e. all communication is done locally between neighbors
and a central entity is not required. Superscripts (·)𝑛 denote d-ADMM it-
erates. Quantities with superscripts (·)𝑘 do not change during the d-ADMM
iterations—they refer to (outer) ALADIN iterations. Furthermore, note that the
initial guesses for �̄�0

𝑖
have to be consistent, i.e. they have to satisfy �̄�0

𝑖
= 𝐼C(𝑖) �̄�

0

for all 𝑖 ∈ R.

Observe that the matrices 𝐼𝑖 𝑗 ∈ R |C (𝑖) |× |C ( 𝑗) | encode “coupling information”
between the subsystems. More specifically, they define which entries of the
vectors 𝜆𝑖 , and in subsystem 𝑖 ∈ R belong which entry of the vectors 𝜆 𝑗 in
subsystem 𝑗 ∈ R. Furthermore, observe that 𝐼𝑖𝑖 = 𝐼. The sparsity patterns of
𝐼12 and 𝐼13 corresponding to 𝐼C(1) , 𝐼C(2) , 𝐼C(3) from Figure 4.2 are illustrated
in Figure 4.3. One can observe that subsystem 1 only requires the first four
entries of 𝜆2 from subsystem 2.

d-ADMM is guaranteed to converge to the minimizer of (4.12) and the mini-
mizer of (4.12) corresponds to the solution of (4.9) by Lemma 2. Hence, we
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1

3

2

Figure 4.4: Communication graph for our power systems example.

achieved our goal of deriving a decentralized version in the coordination step
of ALADIN.

Remark 10 (Global variable consensus vs. general consensus). An alternative
way of reformulating (4.11) would be via the (simpler) so-called global variable
consensus [Boy+11]

min
𝜆1 ,...,𝜆𝑅 ,�̄�

∑︁
𝑖∈R

𝑓𝑖 (𝜆𝑖)

subject to 𝜆𝑖 = �̄� | 𝛾𝑖 , for all 𝑖 ∈ R.
(4.18)

as we did in [Eng+20b]. However, this leads to the situation that 𝑓 =
∑

𝑖∈R 𝑓𝑖
loses it’s strict convexity property with respect to the inflated variable block
𝜆> = (𝜆>1 , . . . , 𝜆

>
𝑅
) if not all 𝑓𝑖 depend on all components of 𝜆𝑖 as we have

here because of the sparsity of 𝑆𝑖 . This is not the case in (4.12) since we
eliminate locally redundant variables by means of the matrices 𝐼C(𝑖) . This is
important since convexity vs. strict convexity can lead to sublinear vs. linear
convergence for ADMM [MO17; HY12; GB16; HL17; Shi+14].

Remark 11 (Communication graph). One can regard the set of subsystems R
as nodes and the set E := {(𝑖, 𝑗) ∈ R × R | there exists a 𝑐 ∈ C with 𝑖, 𝑗 ∈
R(𝑐)} as edges in a communication graph 𝐺 = (N , E). The edges of this
graph can equivalently be characterized by all (𝑖, 𝑗) for which 𝐼𝑖 𝑗 ≠ 0. For
the example from power systems from Section B.4, the graph is fully connected
and displayed in Figure 4.4.
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4.2 Decentralization of coordination

4.2.3 Decentralized conjugate gradient

Using d-ADMM as an inner coordination algorithm has the advantage that only
very few information has to be exchanged between neighboring subsystems,
namely the average primal values �̄�. However, ADMM requires tuning which
might be difficult (cf. Section 5.5) and the convergence rate is at most linear.

To address these drawbacks, the idea of this section is to develop a decentral-
ized variant of the conjugate gradient algorithm (d-CG) with fast convergence.
A main advantage of CG is, its convergence guarantee in at most 𝑛𝑐 steps to the
exact solution of a linear system of equations [NW06, Ch. 5.1]. Although this
property is weakened in practice due to numerical round-off errors, the prac-
tically observed convergence rate is superlinear, which is very fast compared
with other methods such as ADMM [BK01].

The idea of CG is to iteratively minimize (4.11) by generating iterates {�̄�𝑛}
which are 𝑆-conjugate to each other, i.e. �̄�𝑛>𝑆�̄�𝑚 = 0 for all 𝑛 ≠ 𝑚. 𝑆-
conjugacy can be seen as a generalization of orthogonality. Performing a
one-dimensional minimizations along these conjugate directions {�̄�𝑛} yields
the conjugate gradient algorithm [NW06, Ch. 5.1]. The iterations are given
by

𝛼𝑛 =
𝑟𝑛>𝑟𝑛

𝑝𝑛>𝑆𝑝𝑛
, (4.19a)

�̄�𝑛+1 = �̄�𝑛 + 𝛼𝑛𝑝𝑛, (4.19b)
𝑟𝑛+1 = 𝑟𝑛 − 𝛼𝑛𝑆𝑝𝑛, (4.19c)

𝛽𝑛 =
𝑟𝑛+1>𝑟𝑛+1

𝑟𝑛>𝑟𝑛
, (4.19d)

𝑝𝑛+1 = 𝑟𝑛+1 + 𝛽𝑛𝑝𝑘 , (4.19e)

where the initialization has satisfy 𝑟0 = 𝑝0 = 𝑠−𝑆�̄�0. Now, let us again use the
sparsity results from Lemma 1, Lemma 3 and the following additional result.

Lemma 4. It holds that
∑

𝑖∈R 𝐼
>
C(𝑖)Λ

−1
𝑖

𝐼C(𝑖) = 𝐼.

Proof. Since Λ is diagonal, and by definition of 𝐼C(𝑖) as the concatena-
tion of unit vectors, we have Λ−1

𝑖
= (𝐼C(𝑖)Λ 𝐼>C(𝑖) )

−1 = 𝐼C(𝑖)Λ
−1 𝐼>C(𝑖) .
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Combination with Lemma 3 and 𝐴𝐵 = 𝐵𝐴 for diagonal matrices yields∑
𝑖∈R 𝐼

>
C(𝑖)Λ

−1
𝑖

𝐼C(𝑖) =
∑

𝑖∈R 𝐼
>
C(𝑖) 𝐼C(𝑖)Λ

−1 𝐼>C(𝑖) 𝐼C(𝑖) =∑
𝑖∈R 𝐼

>
C(𝑖) 𝐼C(𝑖) 𝐼

>
C(𝑖) 𝐼C(𝑖)Λ

−1 =
∑

𝑖∈R 𝐼
>
C(𝑖) 𝐼C(𝑖)Λ

−1 = ΛΛ−1 = 𝐼. �

The main idea in decentralized conjugate gradient is to exploit sparsity in
(4.19a)-(4.19e) by the mappings 𝐼C(𝑖) which we used already for d-ADMM. Let
us start by defining—similar to d-ADMM—local equivalents for all involved
variables �̄�, 𝑟 and 𝑝

𝜆𝑖 := 𝐼C(𝑖) �̄�, 𝑟𝑖 := 𝐼C(𝑖)𝑟, and 𝑝𝑖 := 𝐼C(𝑖) 𝑝. (4.20)

With these definitions, we decompose (4.19a). For doing so, we define 𝛼𝑛 =
𝜂𝑛

𝜎𝑛 and 𝜂𝑛 := 𝑟𝑛>𝑟𝑛. The idea is to write this identity in terms of 𝑟𝑛
𝑖

instead
of 𝑟𝑛. By Lemma 4, we write 𝜂 as

𝑟𝑛>𝑟𝑛 = 𝑟𝑛>𝐼 𝑟𝑛 = 𝑟𝑛>
(∑︁
𝑖∈R

𝐼>C(𝑖)Λ
−1
𝑖 𝐼C(𝑖)

)
𝑟𝑛.

Defining 𝜂𝑖 := 𝑟𝑛>
𝑖

Λ−1
𝑖
𝑟𝑛
𝑖

and by using (4.20) we obtain

𝜂 = 𝑟𝑛>𝑟𝑛 =
∑︁
𝑖∈R

𝑟𝑛>𝑖 Λ−1
𝑖 𝑟𝑛𝑖 =

∑︁
𝑖∈R

𝜂𝑖 ,

where 𝜂𝑖 can be computed locally. However, note that the sum
∑

𝑖∈R 𝜂𝑖 requires
global communication of one scalar 𝜂𝑖 per subsystem. This yields step 3) (a)
and step 4) of Algorithm 7. Next, we decompose the denominator 𝜎𝑛 :=
𝑝𝑛>𝑆𝑝𝑛 in (4.19a). By the definition of 𝑆, 𝑝𝑖 and by Lemma 3, the denominator
can be written as

𝜎𝑛 = 𝑝𝑛>
∑︁
𝑖∈R

𝑆𝑖 𝑝
𝑛 = 𝑝𝑛>

∑︁
𝑖∈R

𝐼>C(𝑖) 𝐼C(𝑖)𝑆𝑖 𝐼
>
C(𝑖) 𝐼C(𝑖) 𝑝

𝑛 =
∑︁
𝑖∈R

𝑝𝑛>𝑖 𝑆𝑖 𝑝
𝑛
𝑖 =

∑︁
𝑖∈R

𝜎𝑛
𝑖

This yields step 1) and step 5) (c) of Algorithm 7. Let us consider (4.19b) and
(4.19e). They are entirely local steps since multiplying both equations by 𝐼C(𝑖)
from the left yields

�̄�𝑛+1𝑖 = �̄�𝑛𝑖 +
𝜂𝑛

𝜎𝑛 𝑝
𝑛
𝑖

and 𝑝𝑛+1
𝑖

= 𝑟𝑛+1
𝑖
+ 𝜂𝑛+1

𝜂𝑛 𝑝𝑘
𝑖
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Algorithm 7 d-CG for problem (4.12)
Initialization: 𝜆0 and 𝑟0 = 𝑝0 = 𝑠 − 𝑆𝜆0

Repeat for all 𝑖 ∈ R:
1) 𝜎𝑛 =

∑
𝑖∈R 𝜎𝑛

𝑖
(scalar global sum)

2) 𝑟𝑛+1
𝑖

= 𝑟𝑛
𝑖
− 𝜂𝑛

𝜎𝑛

∑
𝑗∈𝑁 (𝑖) 𝐼𝑖 𝑗𝑢

𝑛
𝑗

(neighbor-to-neighbor)

3) (a) 𝜂𝑛+1
𝑖

= 𝑟𝑛+1
𝑖

Λ−1
𝑖
𝑟𝑛+1
𝑖

(b) 𝜆𝑛+1
𝑖

= 𝜆𝑛
𝑖
+ 𝜂𝑛

𝜎𝑛 𝑝𝑖 (local)

4) 𝜂𝑛+1 =
∑
𝑖∈R 𝜂

𝑛+1
𝑖

(scalar global sum)

5) (a) 𝑝𝑛+1
𝑖

= 𝑟𝑛+1
𝑖
+𝜂

𝑛+1

𝜂𝑛 𝑝𝑛
𝑖

(b) 𝑢𝑛+1
𝑖

= 𝑆𝑖 𝑝
𝑛+1
𝑖

(c) 𝜎𝑛+1
𝑖

= 𝑝𝑛+1>
𝑖

𝑆𝑖 𝑝
𝑛+1
𝑖

(local)

comprising step 5) (a) and step 3) (b) of Algorithm (7). In a last step, we need to
decompose (4.19c) which requires neighbor-to-neighbor communication due
to the product 𝑆𝑝𝑛 as we shall see. Again, by Lemma 3 and by the definitions
of 𝑝𝑖 and 𝑆 𝑗 , we have

𝑟𝑛+1 = 𝑟𝑛 − 𝜂𝑛

𝜎𝑛
𝑆𝑝𝑛 = 𝑟𝑛 − 𝜂𝑛

𝜎𝑛

∑︁
𝑗∈R

𝑆 𝑗 𝑝
𝑛 = 𝑟𝑛 − 𝜂𝑛

𝜎𝑛

∑︁
𝑗∈R

𝐼>C( 𝑗)𝑆 𝑗 𝑝
𝑛
𝑗 .

Multiplying by 𝐼C(𝑖) from the left yields

𝑟𝑛+1𝑖 = 𝑟𝑛𝑖 −
𝜂𝑛

𝜎𝑛

∑︁
𝑗∈𝑁 (𝑖)

𝐼𝑖 𝑗𝑆 𝑗 𝑝
𝑛
𝑗 = 𝑟𝑛𝑖 −

𝜂𝑛

𝜎𝑛

∑︁
𝑗∈𝑁 (𝑖)

𝐼𝑖 𝑗𝑢
𝑛
𝑗 ,

where we recall that 𝐼𝑖 𝑗 := 𝐼C(𝑖) 𝐼
>
C( 𝑗) and 𝑢𝑛

𝑗
:= 𝑆 𝑗 𝑝

𝑛
𝑗
. Note that we only

sum over the neighbors of subsystem 𝑖 as 𝐼𝑖 𝑗 = 0 if 𝑗 ≠ 𝑁 (𝑖). Moreover, the
quantities 𝑢𝑛

𝑗
= 𝑆 𝑗 𝑝

𝑛
𝑗

can again be computed locally by each subsystem. This
yields step 2) and step 5) (b) of Algorithm 7.

Remark 12 (Decentralized operation via hopping). Note that although for
computing 𝜂 and 𝜎 global communication is required, this communication
may also be executed in decentralized fashion via “hopping”. By that we
mean that each subsystem adds it’s 𝜂𝑖 to the sum which was received from a
neighbor until each subsystem was reached. By a second “hopping” round,
the sum can then be “broadcasted” to all subsystems. In general, such an
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approach is somewhat problematic as it requires all subsystems to wait until
one hopping round has to be performed, which can potentially take a long time
in case of bad local communication links as these delays sum up. However, as
in d-CG we only have one scalar per subsystem independently of the problem
size, this approach might be justified.

4.2.4 Consistent initialization

Note that d-CG requires a consistent initialization satisfying 𝑟0 = 𝑝0 = 𝑠−𝑆𝜆0.
Multiplying this equation by 𝐼C(𝑖) from the left and using 𝐼>C(𝑖) 𝐼C(𝑖)𝑆𝑖 = 𝑆𝑖
yields

𝑟0
𝑖 = 𝑝0

𝑖 =
∑︁
𝑗∈R

𝐼C(𝑖) 𝑠 𝑗 −
∑︁
𝑗∈R

𝐼C(𝑖)𝑆 𝑗𝜆
0 =

∑︁
𝑗∈R

𝐼𝑖 𝑗 𝑠 𝑗 −
∑︁
𝑗∈R

𝐼𝑖 𝑗𝑆 𝑗𝜆
0
𝑗 . (4.21)

Thus, when using a zero initialization 𝜆0 = 0, one needs one extra neighbor-to-
neighbor step for initialization of d-CG. When using warm starting—i.e. using
the solution of the previous outer bi-level ALADIN iteration as an initial guess
𝜆0
𝑗
≠ 0—one needs one additional neighbor-to-neighbor step for computing

the second term in (4.21). Note that the vectors 𝜆0
𝑗

are all known locally from
the previous outer bi-level ALADIN iteration. For d-ADMM such a step is
not required as 𝑠𝑖 is explicitly considered in step 1) of Algorithm 6. For warm
starting, one can use 𝜆0

𝑖
directly from the previous iteration.

4.3 Comparing d-ADMM and d-CG

Next, we briefly compare important properties of d-ADMM and d-CG.

4.3.1 Information exchange

The required information exchange and the locally maintained variables for
d-ADMM (Algorithm 6) and d-CG (Algorithm 7) are graphically illustrated in
Figure 4.5. Both algorithms require the same amount of information exchange
between neighbors: whereas d-ADMM exchanges the matrix-vector product
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I13u1

I31u3

σ3
η3η1

σ1

Figure 4.5: Information exchange and local variables for d-ADMM and d-CG.

Table 4.1: Properties of d-CG and d-ADMM for problem (4.12).

convergence rate d-CG d-ADMM

theoretical 𝑛𝑐-step linear/sublinear
practical superlinear linear/sublinear

tuning no yes
local variables four two

𝐼𝑖 𝑗𝜆𝑖 , d-CG exchanges the matrix-vector product 𝐼𝑖 𝑗𝑢𝑖 . A key difference in
d-CG is the additionally required global communication of the two scalars 𝜂
and 𝜎 per iteration. Moreover, for d-CG, one has to maintain four variables
per node, whereas d-ADMM requires to maintain two variables per node.

4.3.2 Convergence properties

d-ADMM and d-CG exhibit different convergence properties. The conjugate
gradient algorithm (theoretically) yields the exact solution in at most 𝑛𝑐 steps
[NW06] which is a very strong guarantee. However, in practice convergence is
typically slower as conjugate gradient is quite sensitive to numerical round-off
errors coming from finite precision arithmetic. Nonetheless one can observe
superlinear convergence [BK01]. The convergence rate of ADMM is either
sublinear for convex problems or linear for strongly convex problems, cf.
Chapter 3. A further advantage of d-CG compared with d-ADMM is that no
tuning of the step size is needed as this is done “automatically” in step 1) and
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4 Bi-level Distributed ALADIN

step 4) of Algorithm 7. The properties of d-CG and d-ADMM are summarized
in Table 4.1.

Remark 13 (Different version of d-ADMM in [Eng+20b]). In [Eng+20b]
we used a different version of d-ADMM. A major difference is that in the
present version, redundant variables in (4.12) are eliminated and thus all 𝑓𝑖
are strongly convex. Hence, in the present case, we obtain linear convergence
(cf. [Yan+16; WO13; NOR18]) Moreover, note that the derivation of D-ADM
and d-CG in [Eng+20b] is different as we do not use the matrices 𝐼𝑖 𝑗 there for
encoding sparse communication.

4.4 Bi-level distributed ALADIN in summary

The overall bi-level distributed ALADIN algorithm is summarized in Algo-
rithm 8. Observe the similarity to basic ALADIN in Algorithm 5. There are
two main differences between these two algorithms: First, instead of computing
full sensitivities like gradients, Hessians, Jacobians in step 1) of Algorithm 5,
one computes Schur complements 𝑆𝑖 and 𝑠𝑖 by (4.10) reducing the amount of
reuquired communication compared to Algorithm 5. Moreover, in step 2), the
condensed coordination step is computed in a decentralized fashion leading to
an overall decentralized algorithm. The residual ‖𝑟𝑘

𝜆
‖ quantifies the “amount of

inexactness” in the coordination step due to decentralized conjugate gradients
and decentralized ADMM and will be defined in the next subsection.

4.5 Convergence analysis

Recall that d-CG and d-ADMM solve the coordination QP (4.1) with a finite
precision only. Thus, the convergence analysis from [HFD16] can not directly
be used for bi-level ALADIN. In the following we show, that the favorable
convergence properties of ALADIN can be preserved if the error in the in-
exact solution to (4.1) and the error due to Hessian approximation decays
fast enough. For doing so, we use techniques from inexact Newton methods
[DES82; HFD16]. Our analysis contains the analysis of basic ALADIN as a
special case. The overall proof is outlined in Figure 4.6. The main idea is to
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4.5 Convergence analysis

Algorithm 8 Bi-level distributed ALADIN
Initialization: Initial guess (𝑧0, 𝜆0), parameters Σ𝑖 � 0, 𝜈, 𝜌 > 0.
Repeat:

1) Solve in parallel for all 𝑖 ∈ R

𝑥𝑘𝑖 = argmin
𝑥𝑖 ∈X𝑖

𝑓𝑖 (𝑥𝑖) + (𝜆𝑘 )>𝐴𝑖𝑥𝑖 +
𝜈

2

𝑥𝑖 − 𝑧𝑘𝑖

2

Σ𝑖
(4.22)

and compute condensed sensitivities 𝑆𝑖 and 𝑠𝑖 .
2) Coordination Step: Solve (4.9) centrally or decentrally with d-CG or d-ADMM

with residuum ‖𝑟𝑘
𝜆
‖ small enough such that (4.33) holds for 𝜆𝑘+1.

3) Set 𝜆𝑘+1 ← 𝜆𝑘 and 𝑧𝑘+1
𝑖
← 𝑥𝑘

𝑖
+ Δ𝑥𝑘

𝑖
.

combine the property that the local problems in step 1) of ALADIN form a
Lipschitz continuous map in terms of (𝑧𝑘 , 𝜆𝑘 ) and step 2) can be viewed as an
SQP step making results from Newton-type methods for fast local contraction
applicable (cf. Section 2.1.2).

Lipschitzness of the parallel step

Let us start by analyzing the Lipschitz property of the parallel step 1) in basic
ALADIN (Algorithm 5). This step is important mainly because of two reasons:
It minimizes the local NLPs while at the same time staying close to the previous
iterate 𝑧𝑘 , where the distance to 𝑧𝑘 can be controlled by 𝜈. The hope is that the
minimizer of the NLP brings us closer to a local minimizer (although this is
theoretically not proven so far, but often it does in practice). The second and
maybe even more important feature of this step is that it determines an active
set A(𝑥𝑘 ) for which the constraint linearizations of the inequality constraints
are held constant in the coordination QP. This renders the coordination QP an
equality constrained QP instead of a mixed equality-inequality constrained QP,
which is substantially cheaper to solve.

Next, we use standard results from parametric programming to show that the
mapping formed by step 1) of basic ALADIN is Lipschitz continuous with
respect to (𝑧𝑘 , 𝜆𝑘 ). We will then use this result to show show overall fast linear
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pk =

xkκk
λk

 q̄k =

z̄k¯̃κk

λ̄k


local step coord. step

quadratic contraction
(Theorem 3)

“Lipschitz”
(Theorem 2)

(a) Variables in local/coordination step.

contraction properties
of Newton-type methods

(Theorem 3)

local step is Lipschitz
w.r.t. (zk, λk)
(Theorem 2)

covergence of
bi-level ALADIN
(Theorem 4)

ideas from inexact
Newton methods

(b) Proof dependencies.

Figure 4.6: Outline of the bi-level ALADIN proof.

to quadratic local convergence of bi-level ALADIN. The theorem is originally
from [Rob80, Thm 4.1], but here stated in form of [FI90, Thm 5.2].

Theorem 5 (Lipschitz property for parametric programming). Consider the
parametric programming problem

min
𝑥∈R𝑛

𝑓 (𝑥, 𝑝) subject to 𝑔(𝑥, 𝑝) = 0 and ℎ(𝑥, 𝑝) ≤ 0. (4.23)

Let LICQ (Definition 2) and the conditions of Theorem 2 (SOSC) and hold at
(𝑥★, 𝑝) with 𝜇★ > 0 (strict complementarity), where 𝑥★ is the solution to (4.23)
for a given 𝑝 = 𝑝. Then there exists a 𝜒 < ∞ such that in a neighborhood of
𝑝 it holds true that

‖𝑥 − 𝑥★‖ ≤ 𝜒‖𝑝 − 𝑝‖. (4.24)

By defining 𝑝> := (𝜆𝑘>, 𝑧𝑘>
𝑖
) it is obvious to see that the local problems in

step 1) in Algorithm 5 are in form of (4.23). Thus, if we are able to ensure
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that LICQ, SOSC and strict complementarity hold at 𝑥★
𝑖
, we can use (4.24) in

our local convergence analysis. Hence, we have to ensure that the Hessian of
the Lagrangians sufficiently positive definite to ensure that SOSC holds. This
can be ensured by choosing 𝜈 and Σ𝑖 large enough/sufficiently positive definite
such that locally

∇2
𝑥𝑥

(
𝑓𝑖 (𝑥𝑘𝑖 ) + 𝜅𝑘>𝑖 ℎ𝑖 (𝑥𝑘𝑖 )

)
+ 𝜈Σ𝑖 � 0 (4.25)

is satisfied. This corresponds to the statement in [HFD16, Lemm 3].

Coordination is a Newton-type step

Next, we analyze the progress towards a local minimizer in the coordination
QP (4.1). We evaluate the first-order KKT conditions (2.2) for the coordination
QP which is a linear system of equations. Then we compare this linear system
to the KKT system from an Newton-type step applied to the KKT conditions of
problem (2.12) to highlight their similarity. This will make convergence results
from Newton-type methods (Theorem 4) applicable yielding local quadratic
convergence of ALADIN.

Let us start by evaluating the KKT conditions for the coordination QP (4.1).
Note that as 𝐵𝑘

𝑖
� 0 on the nullspace of 𝐶𝑘

𝑖
, the coordination QP (4.1) is

strongly convex and thus the KKT conditions are necessary and sufficient for
solving (2.25) (cf. Section 2.1.1). The Lagrangian to (4.1) is

L(Δ𝑥, 𝑠, 𝜅, 𝜆) = 1
2
Δ𝑥>𝐵𝑘Δ𝑥 + ∇ 𝑓 (𝑥𝑘 )>Δ𝑥 + 𝜆𝑘>𝑠 + 𝜌

2
‖𝑠‖22

+ 𝜅>𝐶𝑘Δ𝑥 + 𝜆>
(
𝐴

(
𝑥𝑘 + Δ𝑥

)
− 𝑏 − 𝑠

)
,

where 𝜅> =
(
𝜅>1 , . . . , 𝜅

>
𝑅

)
are the Lagrange multipliers associated with (4.1b).

Here we use concatenated notation for all variables, i.e. Δ𝑥> =
(
Δ𝑥>1 , . . . ,Δ𝑥

>
𝑅

)
,
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4 Bi-level Distributed ALADIN

𝐴 = (𝐴1, . . . , 𝐴𝑅), 𝐵𝑘 := diag𝑖∈R (𝐵𝑘
𝑖
), 𝐶𝑘 := diag𝑖∈R (𝐶𝑘

𝑖
) and ∇ 𝑓 (𝑥𝑘 )> =(

∇ 𝑓1 (𝑥𝑘1 )
>, . . . ,∇ 𝑓𝑅 (𝑥𝑘𝑅)>

)
. Thus, the KKT conditions read

∇Δ𝑥L(Δ𝑥, 𝑠, 𝜅, 𝜆) = 𝐵𝑘Δ𝑥 + ∇ 𝑓 (𝑥𝑘 ) + 𝐴>𝜆 + 𝐶𝑘>𝜅 = 0, (4.26a)
∇𝑠L(Δ𝑥, 𝑠, 𝜅, 𝜆) = 𝜆𝑘 + 𝜌𝑠 − 𝜆 = 0, (4.26b)
∇𝜅L(Δ𝑥, 𝑠, 𝜅, 𝜆) = 𝐶𝑘Δ𝑥 = 0, (4.26c)

∇𝜆L(Δ𝑥, 𝑠, 𝜅, 𝜆) = 𝐴

(
𝑥𝑘 + Δ𝑥

)
− 𝑏 − 𝑠 = 0. (4.26d)

Rearranging (4.26b) yields 𝑠 = 1
𝜌
(𝜆 − 𝜆𝑘 ). Eliminating 𝑠 in (4.26d), defining

Δ𝜆 := 𝜆 − 𝜆𝑘 , and expanding (4.26a) with ±𝐶𝑘>𝜅 and ±𝐴>�̃�𝑘 reveals that

∇Δ𝑥L(Δ𝑥, 𝑠, 𝜅, 𝜆) = 𝐵𝑘Δ𝑥 + ∇ 𝑓 (𝑥𝑘 ) + 𝐴>Δ𝜆 + 𝐴>𝜆𝑘 + 𝐶𝑘>Δ𝜅 + 𝐶𝑘>𝜅 = 0,
∇𝜅L(Δ𝑥, 𝑠, 𝜅, 𝜆) = 𝐶𝑘Δ𝑥 = 0,

∇𝜆L(Δ𝑥, 𝑠, 𝜅, 𝜆) = 𝐴

(
𝑥𝑘 + Δ𝑥

)
− 𝑏 − 𝜌−1Δ𝜆 = 0.

with Δ𝜅 = 𝜅 − 𝜅. Thus,

©«
𝐵𝑘 𝐴> 𝐶𝑘>

𝐴 − 1
𝜌
𝐼 0

𝐶𝑘 0 0

ª®®¬︸                  ︷︷                  ︸
=:𝑀 ( (𝑥> , 𝜅>)>)

©«
Δ𝑥

Δ𝜆

Δ𝜅

ª®®¬ =
©«
−∇ 𝑓 (𝑥𝑘 ) − 𝐴>𝜆𝑘−𝐶𝑘>𝜅

−𝐴𝑥𝑘 + 𝑏
0

ª®®¬︸                             ︷︷                             ︸
=:𝑚( (𝑥> , 𝜅> , 𝜆>)>)

. (4.28)

The dependence of 𝑀 on 𝜅 stems from the dependence of ∇2
𝑥𝑥L(𝑥, 𝜆, 𝜅) on 𝜅

(in case of exact Hessians).

Similarity to an SQP step for problem (2.12)

The Lagrangian of the affinely-coupled separable problem (2.12) reads

L(𝑥, 𝜅𝐸 , 𝜅𝐼 , 𝜆) = 𝑓 (𝑥) + 𝜅>𝐸𝑔(𝑥) + 𝜅>𝐼 ℎ(𝑥) + 𝜆> (𝐴𝑥 − 𝑏),
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where 𝑓 =
∑

𝑖∈R 𝑓𝑖 , 𝜅>
𝐸

= (𝜅>
𝐸1, . . . , 𝜅

>
𝐸𝑅
), 𝜅>

𝐼
= (𝜅>

𝐼1, . . . , 𝜅
>
𝐼 𝑅
), 𝑔> =

(𝑔>1 , . . . , 𝑔
>
𝑅
), ℎ> = (ℎ>

𝑖
, . . . , ℎ>

𝑅
) and 𝐴 = (𝐴1, . . . , 𝐴𝑅). Then, the KKT

conditions read

𝐹 (𝑞★) := ∇L(𝑥★, 𝜅★𝐸 , 𝜅★𝐼 , 𝜆★)

=

©«
∇ 𝑓 (𝑥★) + ∇𝑔(𝑥★)>𝜅★

𝐸
+ ∇ℎ(𝑥★)>𝜅★

𝐼
+ 𝐴>𝜆★

𝐴𝑥★ − 𝑏

𝑔(𝑥★)
(ℎ(𝑥★))A(𝑥★)

ª®®®®¬
= 0,

(4.29)

where 𝑞> := (𝑥>, 𝜅>, 𝜆>) with 𝜅> := (𝜅>
𝐸
, 𝜅>

𝐼
). An exact Newton step applied

to (4.29), ∇𝐹 (𝑞𝑘 )Δ𝑞 = 𝐹 (𝑞𝑘 ), yields

©«
∇2
𝑥𝑥L(𝑥𝑘 , 𝜅𝑘𝐸 , 𝜅𝑘𝐼 , 𝜆𝑘 ) 𝐴> ∇𝑔(𝑥𝑘 )> ∇

(
ℎ(𝑥𝑘 )

)>
A(𝑥★)

𝐴 0 0 0
∇𝑔(𝑥𝑘 ) 0 0 0

∇
(
ℎ(𝑥𝑘 )

)
A(𝑥★) 0 0 0

ª®®®®®¬
©«
Δ𝑥

Δ𝜆

Δ𝜅𝐸

Δ𝜅𝐼

ª®®®®¬
=

©«
−∇ 𝑓 (𝑥𝑘 ) − ∇𝑔(𝑥𝑘 )>𝜅𝑘

𝐸
− ∇ℎ(𝑥𝑘 )>𝜅𝑘

𝐼
− 𝐴>𝜆𝑘

−𝐴𝑥𝑘 + 𝑏
−𝑔(𝑥𝑘 )

−
(
ℎ(𝑥𝑘 )

)
A(𝑥★)

ª®®®®®¬
.

(4.30)

By comparing (4.30) with (4.28) one can see that for exact Hessians 𝐵𝑘 = ∇2
𝑥𝑥L

and Jacobians 𝐶𝑘> =
(
∇𝑔(𝑥𝑘 )> ∇

(
ℎ(𝑥𝑘 )

)>
A(𝑥★)

)
, both equations coincide

apart from the term − 1
𝜌
𝐼. For 𝜌 →∞ both equations coincide exactly. Hence,

the coordination step of ALADIN can be interpreted as an inexact Newton
step to (2.12). Note that Theorem 4 allows for such an “inexactness” in the
compatibility condition (2.10a), but the convergence rate depends on whether
this inexactness vanishes asymptotically.

Overall convergence under inexact coordination

Now let us use Theorem 4 to prove local convergence of ALADIN. For doing
so, we have to check whether the conditions of Theorem 4 are satisfied. The
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Lipschitz condition (2.10b) holds by assuming Lipschitzness of the gradients
and Hessians/Jacobians in 𝑓 , 𝑔 and ℎ in (2.12) and by assuming that LICQ and
SOSC are satisfied (to exclude the case that the KKT matrix is rank-deficient
at 𝑞★). For the compatibility condition (2.10a), let us assume that we use exact
Hessians 𝐵𝑘 = ∇2

𝑥𝑥L(𝑥𝑘 , 𝜅𝑘 , 𝜆𝑘 ). Then, the compatibility condition reads (by
using the left-hand sides of (4.30) and (4.28))

𝛾𝑘 :=
(𝑀𝑘 (𝜌𝑘 ))−1 (𝑀𝑘 (𝜌𝑘 ) − ∇𝐹 (𝑞𝑘 ))

 = (𝑀𝑘 (𝜌𝑘 ))−1 1/𝜌𝑘 · 𝐼 .
Since 𝑀𝑘 (𝜌𝑘 ) → ∇𝐹 (𝑞𝑘 ) for 𝜌𝑘 → ∞,

(𝑀𝑘 (𝜌𝑘 ))−1
 converges to a fixed

number and 1/𝜌𝑘 converges to zero which means that we can make 𝛾𝑘 arbitrar-
ily small (and especially smaller than one) as required by Theorem 4. Thus,
the conditions of Theorem 4 are satisfied3 and we can use the contraction
inequality (2.9) in our following convergence analysis.

Apart from the inexactness introduced by the term 1
𝜌
𝐼 from before, we have

a second kind of inexactness: the inexactness coming from an inexact step
computation from the before-mentioned two inner algorithms d-ADMM and
d-CG. Thus, we include this second source of inexactness in our convergence
analysis. For doing so, we use ideas from inexact Newton methods [DES82].
Let us denote the primal-dual iterate after the coordination step 3) of basic
ALADIN (Algorithm 5) with 𝑞> = (𝑧>, 𝜅>, 𝜆>) and let us denote an inexact
primal-dual iterate to step 3) by 𝑞.

We analyze the effect of the inexactness. The distance of the inexact iterate
𝑞𝑘+1 to a local primal-dual solution 𝑞★ reads𝑞𝑘+1 − 𝑞★  ≤ 𝑞𝑘+1 − 𝑞𝑘+1 + ‖𝑞𝑘+1 − 𝑞★‖ ≤𝑞𝑘+1 − 𝑞𝑘+1 + 𝜔

2
‖𝑝𝑘 − 𝑝★‖2 + 𝛾

𝑝𝑘 − 𝑝★
 , (4.31)

where we expanded with±𝑞𝑘+1, used the triangular inequality and the Newton-
type contraction from Theorem 4, where we denote the primal-dual iterate after
step 1) of basic ALADIN with 𝑝> = (𝑥>, 𝜅>, 𝜆>). In order to preserve conver-
gence, we need to bound

𝑞𝑘+1 − 𝑞𝑘+1 in (4.31) representing the “inexactness”

3 We consider local convergence here. Thus, the condition ‖𝑞𝑘 − 𝑞★ ‖ <
2(1−𝛾)

𝜔
has to be

satisfied by a suitable primal-dual initialization.
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of the solution to (4.1). In order to do so, let us define the residual to the KKT
system (4.28) as

𝑟𝑘𝑞 := 𝑀 (𝑝𝑘 ) (𝑞𝑘+1 − 𝑝𝑘+1) − 𝑚(𝑝𝑘 , 𝜆𝑘 ). (4.32)

Since 𝑀 (𝑝𝑘 ) (𝑞𝑘+1 − 𝑝𝑘+1) − 𝑚(𝑝𝑘 , 𝜆𝑘 ) = 0 by definition of 𝑞𝑘+1, we have

‖𝑞𝑘+1 − 𝑞𝑘+1‖ = ‖(𝑀 (𝑝𝑘 ))−1 (𝑟𝑘𝑞 + 𝑚(𝑝𝑘 , 𝜆𝑘 ) − 𝑚(𝑝𝑘 , 𝜆𝑘 )
)
‖

≤ ‖(𝑀 (𝑝𝑘 ))−1‖‖𝑟𝑘𝑞 ‖.

Combination with (4.31) and defining 𝛽 := ‖𝑀 (𝑝𝑘 )−1‖ yields𝑞𝑘+1 − 𝑞★  ≤ 𝛽‖𝑟𝑘𝑞 ‖ +
𝜔

2
‖𝑝𝑘 − 𝑝★‖2 + 𝛾

𝑝𝑘 − 𝑝★
 .

By assuming LICQ, strict complemntarity and SOSC we know that by Theo-
rem 5 that the mapping formed by the local problems in ALADIN Lipschitz
with constant 𝜒. Thus, we get𝑞𝑘+1 − 𝑞★  ≤ (

𝛽‖𝑟𝑘𝑞 ‖ + 𝛾𝑘
)
𝜒
𝑞𝑘 − 𝑞★ + 𝜔

2
𝜒2 𝑞𝑘 − 𝑞★2

.

Enforcing a bound on the inaccuracy in the solution to the coordination QP
stemming from inner algorithms

‖𝑟𝑘𝑞 ‖ ≤ 𝜂𝑘 ‖𝑚(𝑝𝑘 , 𝜆𝑘 )‖ (4.33)

yields𝑞𝑘+1 − 𝑞★  ≤ (
𝛽 𝛿 𝜂𝑘 + 𝛾𝑘

)
𝜒
𝑞𝑘 − 𝑞★ + 𝜔

2
𝜒2 𝑞𝑘 − 𝑞★2

, (4.34)

where 𝛿 is a Lipschitz constant of 𝑚.

Note that if the sequences {𝜂𝑘 } and {𝛾𝑘 } are bounded by constants 𝜂, 𝛾 small
enough such that ‖𝑞𝑘 − 𝑞★‖ < 2(1 − 𝜒 𝛽 𝛿 𝜂𝑘 − 𝜒 𝛾𝑘 ) (𝜔 𝜒2)−1 is satisfied in
each iteration, linear convergence of ALADIN is guaranteed. By additionally
enforcing bounds on the sequences {𝜂𝑘 } and {𝛾𝑘 }, i.e. 𝜂𝑘 = 𝑂 (‖𝑞𝑘 −𝑞★‖) and
𝛾𝑘 = 𝑂 (‖𝑞𝑘 − 𝑞★‖) we can make the convergence quadratic. Alternatively,
enforcing 𝜂𝑘 , 𝛾𝑘 → 0 yields superlinear convergence.
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4 Bi-level Distributed ALADIN

We summarize our results from this section in the following Theorem.

Theorem 6 (Convergence of bi-level distributed ALADIN).
Consider bi-level distributed ALADIN (Algorithm 8) with Σ𝑖 and 𝜈 such that
(4.25) holds. Suppose Assumption 2 and the conditions of Theorem 2 hold. Let
the solution to the condensed QP (4.9) satisfy (4.33) for a bounded sequence
{𝜂𝑘 }𝑘∈N < 𝜂 and let 𝑞0 be close enough to a primal-dual minimizer 𝑞★.

Then bi-level distributed ALADIN converges to 𝑝★

• at linear rate if 𝜂 and 𝛾 are small enough; and

• at quadratic rate if 𝜂𝑘 = 𝑂 (‖𝑞𝑘 − 𝑞★‖) and 𝛾𝑘 = 𝑂 (‖𝑞𝑘 − 𝑞★‖).

Theorem 6 follows directly from inequality (4.34) and the definitions of linear
and quadratic convergence (cf. Section A.1).

In basic ALADIN, the coordination problem (4.9) is solved exactly and thus
𝜂𝑘 ≡ 0. Thus, basic ALADIN can be seen as a special case of bi-level ALADIN.
Moreover, the convergence analysis given here can be extended to the case
where the the local NLPs are solved with a finite precision only [Eng+19b]
using similar techniques as we did here. We omit this extension as it adds more
technical complications without adding much insight. Moreover, a BFGS-
ALADIN variant we presented in [Eng+19b] is included in this framework as
a particular choice of 𝐵𝑘

𝑖
. We do not consider this variant here.

Remark 14 (KKT matrix modifications). Note that the compatibility condi-
tion (2.10a) and the corresponding requirements on {𝛾𝑘 } cover a variety of
modifications of the KKT matrix 𝑀—not only the modifications with respect
to 1

𝜌
𝐼. The error due to Hessian approximations like BFGS or the error due

to regularization procedures for ensuring positive definiteness of 𝐵𝑘
𝑖

can be
further sources of inexactness, or errors because of approximations in the
constraint linearizations 𝐶𝑘 .

Remark 15 (Evaluation of the error condition (4.33)). In order to guarantee
local convergence one has to ensure that (4.33) holds for a suitable sequence
{𝜂𝑘 } < 𝜂. Intuitively this means, that the residual ‖𝑟𝑘𝑞 ‖ has to become smaller
as ALADIN proceeds and thus the accuracy in the coordination step has
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to get higher as we get closer to a local minimizer as 𝑚(𝑝𝑘 , 𝜆𝑘 ) → 0 for
𝑞𝑘 → 𝑞★. But evaluating ‖𝑟𝑘𝑞 ‖ at each iteration is expensive and yields
additional overhead, which one would like to avoid. There is an option to
overcome this limitation: instead of evaluating ‖𝑟𝑘𝑞 ‖ one can equivalently
evaluate the residual in the reduced system (4.9), 𝑟𝑘

𝜆
. This can be seen as

follows. As we use the nullspace method, the last row of 𝑚 in (4.28) is always
zero by 𝐶𝑘𝑍 𝑘 = 0. Hence, it remains to evaluate the first and second row
of (4.28). Again, by using the nullspace-parametrization Δ𝑥 = 𝑍 𝑘Δ𝑣 from
Section 4.1, one can enforce a zero residual in the first row (by multiplying
with 𝑍 𝑘> from the left and exploiting 𝐶𝑘𝑍 𝑘 = 0)

�̄�𝑘Δ𝑣 + �̄�𝑘 + �̄�𝑘 �̄�𝑘+1 = 0,

where we recall that �̄�𝑘+1 denotes the inexact version of 𝜆𝑘+1. Inserting into
the second row yields the residual

𝑟𝑘𝜆 = ( �̄�𝑘 (�̄�𝑘 )−1 �̄� + 1
𝜌
𝐼)𝜆𝑘+1 + �̄�𝑘 (�̄�𝑘 )−1�̄� − �̄�𝑣𝑘 + 1

𝜌
𝜆𝑘 + 𝑏 = 𝑆𝜆𝑘+1 − 𝑠.

With that, we have 𝑟𝑘𝑞 = (0> 0> 𝑟𝑘>
𝜆
)> and thus ‖𝑟𝑘𝑞 ‖ = ‖𝑟𝑘𝜆 ‖. Hence, we can

use 𝑟𝑘
𝜆

for evaluating (4.33) instead of 𝑟𝑘𝑞 .

4.6 Comparison of variants

Next, we compare the two developed bi-level variants with basic ALADIN,
ALADIN with condensing and ADMM as one of the most prominent primal-
dual methods. We denote bi-level ALADIN with ADMM with b-ADMM
in the following, and bi-level ALADIN with conjugate gradients with b-CG.
Our evaluation mainly focuses on communication effort, coordination effort,
convergence guarantees and practical convergence.

Communication

As reducing communication was one of our main motivations for developing
bi-level ALADIN, let us start by analyzing the amount of communication.
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4 Bi-level Distributed ALADIN

We analyze communication by counting the number of floating point numbers
(floats) which have to be exchanged per iteration.

We begin by analyzing basic ALADIN. Here we have to communicate all com-
ponents necessary to construct problem (4.1), i.e. the Hessian approximations
𝐵𝑖 , the gradients of the local objective functions∇ 𝑓𝑖 (𝑥𝑘𝑖 ), the Jacobians𝐶𝑘

𝑖
and

the primal variables 𝑥𝑖 . Note that we do not count the communication of 𝐴𝑖 and
𝑏 since they stay constant during the iterations and have to be communicated
only once. The Hessian approximation 𝐵𝑘

𝑖
is a symmetric matrix, requiring to

communicate 𝑛𝑥𝑖 (𝑛𝑥𝑖 + 1)/2 floats. The Jacobian 𝐶𝑘
𝑖

calls for communicating
(𝑛𝑔𝑖+𝑛𝑘ℎ𝑖) 𝑛𝑥𝑖 floats, where 𝑛𝑘

ℎ𝑖
is the number of active inequality constraints in

outer iteration 𝑘 . Furthermore, the primal iterates 𝑥𝑖 and the gradients ∇ 𝑓𝑖 (𝑥𝑘𝑖 )
lead to 𝑛𝑥𝑖 additional floats from each subsystem. In total, this means that we
get a forward commincation for basic ALADIN of∑︁

𝑖∈R
𝑛𝑥𝑖 (𝑛𝑥𝑖 + 1)/2 + 𝑛𝑥𝑖 (𝑛𝑔𝑖 + 𝑛𝑘ℎ𝑖) + 2𝑛𝑥𝑖

floats per ALADIN iteration if we do not exploit structural zeros in any of
the before mentioned vectors/matrices. In the backward step 3) of ALADIN
(Algorithm 5), 𝑧𝑘+1

𝑖
and 𝜆𝑘+1have to be communicated leading to (∑𝑖∈R 𝑛𝑥𝑖 +

𝑛𝑐) floats in backward communication.

For the condensed ALADIN variant, all subsystems have to communicate
their reduced Schur-complement matrices 𝑆𝑖 ∈ R |C (𝑖) |× |C (𝑖) | and vectors 𝑠𝑖 ∈
R |C (𝑖) | . As 𝑆𝑖 is symmetric, this leads to a forward communication of∑︁

𝑖∈R
|C(𝑖) |

(
|C(𝑖) | + 1

)
/2 + |C(𝑖) |.

In the backward step only 𝜆𝑘+1 has to be communicated leading to 𝑛𝑐 floats in
backward communication.

For b-ADMM (Algorithm 6), the matrix vector product 𝐼𝑖 𝑗𝜆
𝑛+1
𝑗

has to be
communicated in each inner iteration. As the total number of non-zero entries
in 𝐼𝑖 𝑗 is equal to the number of consensus constraints assigned to subsystem
𝑖 ∈ R, we have |C(𝑖) | floats for for each inner ADMM iteration. Thus, we
need to communicate

∑
𝑖∈R |C(𝑖) | in each d-ADMM iteration on a neighbor-to-

neighbor basis. This yields a total forward communication of 𝑛AD ∑
𝑖∈R |C(𝑖) |
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Table 4.2: Per-step forward communication (number of floats) for different bi-level ALADIN
variants and ADMM.

ALADIN variant global local backward

basic
∑︁
𝑖∈R

𝑛𝑥𝑖

(
𝑛𝑥𝑖 + 1

2
+ 𝑛𝑔𝑖 + 𝑛

𝑘
ℎ𝑖
+ 2

)
-

∑︁
𝑖∈R

𝑛𝑥𝑖 + 𝑛𝑐

condensed
∑︁
𝑖∈R

|C (𝑖) |
(
|C (𝑖) | + 3

)
2

- 𝑛𝑐

bi-level (CG) 2𝑛CG𝑅 𝑛CG
∑︁
𝑖∈R
|C (𝑖) | -

bi-level (ADMM) - 𝑛AD
∑︁
𝑖∈R
|C (𝑖) | -

pure ADMM -
∑︁
𝑖∈R
|C (𝑖) | -

floats per outer ALADIN iteration, where 𝑛AD is the number of d-ADMM
iterations. As all 𝜆𝑛

𝑖
are known locally already during the d-ADMM iterations,

no backward communication is needed. Furthermore, for d-ADMM there is
no need for global communication.

Similar to d-ADMM, in d-CG the matrix-vector products 𝐼 𝑗𝑖𝑢 𝑗 have to be com-
municated leading to local communication of 𝑛CG ∑

𝑖∈R |C(𝑖) | floats, where
𝑛CG is the number of inner d-CG iterations. Additionaly, d-CG needs the
global communication of two floats per subsystem and per inner d-CG itera-
tion leading to 2𝑅𝑛CG floats. Also for d-CG no backward communication is
required as 𝜆𝑖 is already known locally.

For ADMM directly applied to (2.12), there are variants similar to Algorithm 4
requiring the exchange of the coupling variables only [Boy+11]. This leads to
a communication overhead of

∑
𝑖∈R |C(𝑖) | floats per ADMM iteration. From

this, at first glance it seems that ADMM outperforms the ALADIN variants
by far in terms of communication. However, keep in mind that due to its weak
convergence rate guarantees, ADMM might need much more iterations in total
to achieve the same accuacy compared in ALADIN—so for evaluating the total
amount of communication one has to multiply these numbers by the numbers
of iterations needed. We will investigate this effect numerically in Section 5.6.
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4 Bi-level Distributed ALADIN

Table 4.3: Bi-level ALADIN compared to distributed optimization algorithms.

primal-dual primal internal dec. ALADIN bi-level ALADIN

decentralization + ++ - - - + (++)
convergence guarantees conv conv non-conv non-conv non-conv

convergence speed o (- -), o ++ +++ ++ (+++)
communication ++ ++ - - - - +

broad applicability ++ - - + + +
advanced features + ++ - - - - - -

Convergence properties and rates

As shown in Theorem 6, bi-level has similar (local) convergence properties
than basic ALADIN with one difference: the convergence rate here depends on
the accuracy in the coordination step and on the quality of the Hessian approx-
imations. If the accuracy increases and the approximation error decreases fast
enough in terms of the distance to a local minimizer, quadratic convergence
rate can be preserved.

The properties of bi-level ALADIN compared with primal, primal-dual and
internal decomposition methods are summarized in Table 4.3. Here, one can
see that with bi-level ALADIN we overcome the two main limitations of basic
ALADIN:

• the required amount of communication,

• and the lack of decentralization.

At the same time, the favorable convergence properties of ALADIN are to a
large extend preserved.

It remains to show how these methods perform in practice. We will do so in
the next section with main focus on problems from power systems. A further
example from distributed optimal control is given in Section 6.6.
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4.7 Summary and conclusion

4.7 Summary and conclusion

In this section we presented a framework called bi-level ALADIN, which is one
of the first decentralized optimization algorithms for non-convex optimization
with fast local convergence guarantees. In bi-level ALADIN, we use methods
from nonlinear programming such as the nullspace method and the Schur-
complement to substantially reduce the dimension of the coordination QP of
basic ALADIN. Moreover, we showed how to exploit problem structure to solve
the coordination problem in a decentralized fashion making bi-level ALADIN a
decentralized algorithm. We presented two algorithms for doing so—a variant
of ADMM derived similar to other variants in the literature and a decentralized
variant of the conjugate gradient method, which is to the best of our knowledge
novel. The versions of d-ADMM and d-CG given here are improved versions
of [Eng+20b], where ADMM is guaranteed to convergence linearly due to a
strongly convex formulation of the coordination QP. Moreover, the here used
variant of the conjugate gradient method omits the precomputing step from
[Eng+20b] leading to a substantial improvement in local communication for
d-CG. Additionally, we showed that the fast local convergence properties of
ALADIN are preserved in bi-level ALADIN, if the error in the coordination
step decays fast enough.
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This chapter evaluates the performance of ALADIN, bi-level ALADIN and
ADMM on Optimal Power Flow (OPF) problems—an important problem class
from power systems. We start with main motivations for using distributed
optimization methods for OPF.

We consider the AC power system model from [GS94; Sch17; FR16; FGM18].
The problem formulation for distributed OPF is from [Eng+19b; Eng+17].
The numerical results of basic ALADIN and ADMM are similar to [Eng+19b;
Eng+20b]. The analysis of the role of a feasible initial point in Section 5.4.3
is from [EF18]. The analysis of bi-level ALADIN for OPF in Section 5.5 is
mainly from [Eng+20b]. Parts of the convergence analysis of d-ADMM and
the numerical communication analysis are new in this thesis.

5.1 How to operate power systems?

The main purpose of power power systems is to deliver power from generators
to power consumers. Thereby, the consumer’s demand should be satisfied at
any time and to an arbitrary amount. In a classical setting, there are no storage
elements. This implies that the generated power has to match the power
demand exactly in each step in time. Although power demands can typically
not be influenced, there is a certain degree of freedom in power generation.
Namely, one can decide which generator takes which share of total active and
reactive power demand satisfaction. This can be exploited for a cost-effective
operation.

Engineering constraints also have to be considered. Transmission lines for
example have thermal limits allowing them to carry a limited current only.
Consumer devices and grid components are only guaranteed to work properly
in specified ranges around the nominal voltage. Having this in mind, one can
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ask the following important question: how to choose the generator inputs such
that

• all power demands are satisfied;

• all technical limitations are met;

• and in a cost-effective fashion?

One of the most promising ways of approaching this question is to encode
the above question in an optimization problem called the Optimal Power Flow
problem. Optimal power flow computes cost-optimal generator set points
while satisfying power demands and technical limitations. We give a brief
introduction to OPF in Appendix B.

New challenges in today’s power system

For formulating an OPF problem, a grid model is required. Grid models,
however, contain sensitive data. This includes the model data itself but also
consumption data potentially revealing sensitive information about consumer
behavior. Moreover, power system are often required to be (𝑁 − 1)-secure,
that is, a single point of failure is not acceptable due to data aggregation and
the existence of a single point of failure. Moreover, in many countries, there
are many grid operators which are cooperatively responsible for operating the
grid in an economically optimal and safe fashion. In Germany for example,
there are four transmission system operators and more than 800 distribution
system operators [Bun19], which have to coordinate in some way. The map of
the German distribution grid operators, Figure 5.1, graphically illustrates the
dimension of this problem. Here, the question arises how to coordinate these
grid operators.

Distributed and especially decentralized optimization algorithms seems to be
an excellent fit for addressing the above challenges. Distributed optimization
offers systematic coordination while reducing complexity by shifting com-
putation overhead to the subsystems (grid operators). At the same time the
information exchange and centralized coordination are limited.
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5.1 How to operate power systems?

Figure 5.1: Distribution grid operators in Germany [ene20].
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5.2 Distributed optimal power flow

In order to apply distributed and decentralized optimization algorithms such
as ADMM and (bi-level) ALADIN, we have to express the OPF problem
mathematically in structured form (1.2),

min
𝑥

∑︁
𝑖∈R

𝑓𝑖 (𝑥𝑖) subject to 𝑥𝑖 ∈ X𝑖 , 𝑖 ∈ R and
∑︁
𝑖∈R

𝐴𝑖𝑥𝑖 = 𝑏. (5.1)

Here, the set R represents the set of regions or system operators, 𝑓𝑖 encodes
the cost of power generation in each region, and X𝑖 captures the grid model
and technical limitations in each region.

Due to renewable generation, today electrical grids are often operated close to
their capacity limits. Thus, one has to consider grid models capturing effects
which occur in this case such as the effect of reactive power and voltage limits.
The most common model considering these effects is the so-called AC model,
which we recall in Appendix B. Therein, we also show how to formulate
the AC model in form of (5.1). Solving (5.1) via distributed or decentralized
algorithms is called distributed optimal power flow.

5.3 Literature review

Next, we provide an overview on main lines of research for distributed OPF. In
Chapter 3 we have seen, that most distributed and decentralized optimization
algorithms are designed for convex problems. Moreover, even if they can
handle non-convexity, this is typically in the objective function but not in the
constraints. Unfortunately, in AC optimal power flow problems we have non-
convex constraints (cf. Appendix B). To cope with this issue, one can identify
four main lines of research in the literature:

• Early works propose internal decomposition methods mainly focusing
on decomposing the KKT system in Newton’s method or in interior point
methods [Com92].

• The second line of research staring in the 90s of the last century applies
primal-dual convex optimization algorithms to OPF [Ers14a; Bal+99;
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HPK02; SPG13]. Although they work well in many cases, convergence
can not be guaranteed and their convergence rate is often slow as we will
see later in this section.

• A third line of research simplifies the problem constraints obtaining
convex problems for which primal-dual distributed algorithms exhibit
convergence guarantees. Approximations like DC optimal power flow or
semidefinite relaxations belong to this class [Low14a; DZG13a; CA98].

• As indicated in Chapter 3, few distributed algorithms with convergence
guarantees for non-convex problems exist and are applied to OPF—two
of them are ALADIN and bi-level ALADIN [Eng+19b; Eng+20b], and
a third one is an alternating trust-region method [HJ17].

Internal decomposition methods

Let us start with internal decomposition methods as they were among the
first decomposition methods applied to power flow and also to optimal power
flow problems. Note that as outline in section Chapter 3, these methods were
mainly designed for computational speedup coming from limited computation
power at that time. One of the first works [FP78] considers a combination
of clustering techniques and block elimination in the KKT system. This
line of research was extensively investigated in the 1980s, e.g. for power
system state estimation [WHB81] even in asynchronous schemes [TPG83].
Advanced structure-exploiting factorization techniques are used in [VNM83;
BA86; SAY87; ETA90; OKS90; SVN93], where most of these works are
summarized in the technical report [Com92]. Some of these block-elimination
techniques have a similar flavor as the reduction methods we used in Section 4.1
for bi-level ALADIN, especially the works [FP78; SAY87]. Although these
methods are transferable to OPF, in their original form they typically address
power flow or state-estimation problems. More recent examples for internal
decomposition in interior point methods can be found in [Yan+11] and [LT18],
where in [LT18] the authors yield very promising numerical results also for
large-scale systems. Note that all of the before-mentioned methods still require
central coordination for solving the reduced KKT system and also for other
operations such as barrier-parameter updates. Thus, these methods offer only
a limited degree of distribution.
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A second branch works on decomposing the KKT conditions instead of the
decomposing the KKT system. The main idea is to hold all variables which are
not involved in the corresponding subsystem fixed and to solve the resulting
simplified subproblems independently from each other. The method doing so is
called Optimality Condition Decomposition (OCD), first proposed in [CNP02;
Con+06] and further investigated for OPF in [NPC03; HA09]. In [CNP02],
the convergence rate of OCD is shown to be linear under certain technical
conditions. One weakness of the above methods is—although they might work
well in certain practical problems—that the convergence of these methods
seems not to be fully analyzed at present. In [CNP02], a sufficient condition
for convergence of OCD to a first-order stationary point is developed. However,
to the best of our knowledge, it remains unclear whether this condition holds for
arbitrary OPF problems [Ers14a]. A similar approach based on decomposing
the KKT conditions without tuning parameters can be found in [BB06].

Remark 16 (Relation to classical Gauss-Seidel methods). Note that also the
classical Gauss-Seidel method for power flow problems [HO93; Glo11] can be
considered as a nodally “distributed algorithm”. Therein, each node computes
individual voltage updates based on the current iterates of neighbored nodes.
However, as the non-convexity of the power flow equations suggests, also
the classical literture indicates that the Gauss-Seidel method often diverges
[Glo11, Chap. 6.5].

Primal-dual algorithms

We continue with (convex) primal-dual optimization algorithms based on aug-
mented Lagragians directly applied to the non-convex AC OPF. Early primal-
dual methods use dual decomposition [AQC99], ADMM [WSL01], and re-
lated augmented Lagrangian methods such as the auxiliary problem principle
(APP) [Bal+99; HPK02; AKA07] for solving the OPF problem in a distributed
fashion. APP is evaluated against other augmented Lagrangian methods like
ADMM and a Predictor-Corrector Proximal Multiplier Method in [KB00]—all
of them showing a comparable performance. This line of research continues
until today—especially ADMM [Ers14b], with recently refined parameter-
update schemes in [Ers15]. Although ADMM converges to modest accuracy
for medium-sized grids (similar to many other augmented Lagrangian meth-
ods), recent attempts on large-scale grids indicate that convergence becomes
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increasingly difficult for with increasng problems size and might work only
with special partitioning techniques [GHT17]. Moreover, all of these methods
are in general not guaranteed to converge and divergence seems to occur in
practice [Chr+17a]. If they converge, they achieve at maximum a linear con-
vergence rate. But the convergence modulus can be quite large as we shall see
later. Moreover, if an increasing sequence of the penalty parameter in combi-
nation with a feasible initialization is used (as done for example in [GHT17]),
one can show that these methods converge to a feasible but not necessarily
optimal point (cf. Section 5.4.3). One strength of augmented-Lagrangian and
similar methods is that they seem to converge quite stable in terms of converg-
ing to modest accuracy for OPF—at least up to medium-sized grids. Recently,
an augmented-Lagrangian based scheme for radial grids with guarantees for
the AC model is presented in [Liu+17].

Convex relaxations and approximations

A different approach uses convex relaxations and approximations of the power
flow equations yielding convex problems for which the before presented algo-
rithms are—in contrast to the full AC-OPF problem—guaranteed to converge.
A classical approach for doing so is based on the DC power flow approximation
[GS94] to which augmented Lagrangian-based approaches have been applied
in [LHA94; CA98; BB03; Fei+15]. The advantage of this approach is that
classical augmented Lagrangian methods converge with guarantees and with
modest communication requirements for the relaxed problems. However, im-
portant physical quantities such as voltage magnitudes and the reactive power
are not considered in the DC model making it non-applicable for many prac-
tical applications. Especially for distribution grids—which is one of the most
important field of application for modern OPF methods—the accuracy of the
DC model can be poor [BZ16; Chr+17a]. Recent approaches combining the
DC model with modern distributed algorithms such as ALADIN can be found
in [Jia+20; Jia+19]. Another approach for convex modeling of radial grids is
the so-called LinDistFlow model [BW89] which is based on the assumption of
a flat voltage profile. The resulting convex OPF problem is solved via ADMM
in [ŠBC14]. However, in view of the large voltage deviations in distribution
grids cause by renewable power injection, this assumptions hardly holds in
many practical situations.
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Table 5.1: Distributed optimization for optimal power flow—state-of-the-art.

assumptions guarantees pros/cons representative works

ALADIN good initializa-
tion

yes + performance
+ accuracy
- communication
- coordination

[Eng+17; Eng+19b;
MSL19],
(ALADIN-DC: [Jia+20;
Jia+19])

th
is

th
es

is

ADMM convexity, (feasi-
ble initialization,
large 𝜌)

no + coordination
+ communication
- performance
- accuracy

[Ers14a; Ers15; KB00;
Bal+99; DZG13a;
LC13]

ADMM-DC DC power flow yes + simple
- no voltages/

reactive power

[LHA94; CA98; BB03;
Fei+15]

ADMM-SDP radial grid,
phase shifters

(yes) + alg. guarantees
+ elegant theory
- assumptions
- problem inflation

[Bai+08; LL12;
Mol+13; Low14a;
DZG13a; Low14b;
PL17; Chr+17a]

OCD technical condi-
tion

unclear + decentralization
+ communication
- scalability, guar-
antees?

[NPC03; HA09;
HKW15]

lit
er

at
ur

e

internal de-
composition

- from
“host”
algorithm

+ convergence of
host algorithm

+ scalability
- coordination
- decentralization

[FP78; TPG83; VNM83;
BA86; SAY87; ETA90;
OKS90; SVN93;
Com92], [LT18; KFS18;
Yan+11]

alternating
trust region

yes + high accuracy
- tested for small

grids only

[HJ17]

“augmented
Lagrangain-
like” algo-
rithms (APP,
PCPM)

convexity no + coordination
+ communication
- performance
- accuracy

[Bal+99; KB00; HPK02]

96



5.3 Literature review

Instead of the DC approximation, a related line of research employs convex
relaxations of the power flow equations via Semi-Definite Programming (SDP).
Therein, the idea is to lift the OPF problem to a higher dimensional space in
which it becomes convex if a certain rank constraint is dropped [Bai+08;
Mol+13]. This relaxed and inflated problem is then solved by a distributed or
decentralized convex optimization algorithm obtaining convergence guarantees
[DZG13b; PL17; Chr+17b]. The crux in this approach is that the solution of
the relaxed problem might not satisfy the before-mentioned rank condition and
thus the solution of the original OPF might not be recoverable from the relaxed
problem. Under certain assumptions on the technical equipment such as small
transformer resistances or a radial grid topology, e.g. radial grids [LL12;
Low14b; Low14a] this “back-mapping” is guaranteed to exist, although these
assumptions pose severe limitations on the class of problems to which this
approach is applicable. However, there is an ongoing debate whether the
assumptions made are realistic [Chr+17a] and, moreover, one can show that
the recovering the solution from an SDP relaxation might fail even for very
small systems [KDS16]. Furthermore, the number of decision variables when
using SDPs is squared leading to very large SDPs (especially for large systems)
which can lead to tractability issues [Cap16].

Recent non-convex distributed algorithms

Recently, new algorithms designed for non-convex distributed nonlinear pro-
gramming have been proposed which are able to handle the AC model directly
and with guarantees without relying on relaxations or approximations. One
of them is based on an alternating trust-region approach using a decentralized
variant of conjugate gradients and alternating projection methods with conver-
gence guarantees at linear rate for linearly-constrained non-convex problems
[HJ17]. The approach was successfully applied to small OPF problems rang-
ing from 9 to 56 buses. A second approach is based on ALADIN which we
will present in this chapter [Eng+19b].

An overview of the previously outlined lines of research with main strengths
and weaknesses of each line is given in Table 5.1. For more detailed overviews
on general and distributed methods for OPF we refer to [Mol+17; Cap16].
Note that we consider ADMM and ALADIN to be in “this thesis” in Table 5.1
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Table 5.2: Grid partitioning (excluding auxiliary buses).

Test Case |A | Regions N𝑖

5 4 {1, 5}, {2, 3}, {4}
118 13 {1–32, 113–115, 117}, {33–67}, {68–81, 116, 118}, {82–112}

in the sense that we compare the performance of these two algorithms in this
work.

Remark 17 (Related OPF problems). Considering problems with integer vari-
ables such as certain versions of the reactive power dispatch problem is beyond
the scope of the present work. For first distributed approaches in this direction
we refer to [Mur+18; Mur+19]. Moreover, note that although our approaches
is also applicable to temporal decomposition, we focus on spatial decompo-
sition here. Examples for temporal decomposition in OPF with storage or
generator ramp constraints can be found for example in [KFS18; AC00; XS01;
CCD05]. Therein, similar to internal decomposition methods, the main goal
is computational tractability.

Note that these problem formulations have strong interconnections to the theory
of economic model predictive control [Fau+18] originally developed for the
optimal control of time-invariant dynamical systems. First attempts connecting
these two worlds and transferring latest methodological developments from this
field to power systems are proposed in [FGM18; FE19; Köh+17].

5.4 ADMM for Optimal Power Flow

Now, let us apply distributed optimization algorithms from Section 2.2 to OPF.
We start with ADMM for two reasons: first, as outlined in Section 5.3, ADMM
is one of the most prominent methods for distributed optimization in general
and particularly for distributed OPF [Ers14b; KB00; GHT17]. Secondly, we
will use ADMM as a benchmark algorithm for evaluating the performance of
ALADIN and the bi-level ALADIN scheme.
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(a) IEEE 118-bus system.

1 2 3

45

generator
consumer

(6, 7)

(8, 9)(10, 11)

(12, 13)
N1

N2

N3

(b) Modified 5-bus system from [LB10].

Figure 5.2: Numerical examples.

99



5 Application to Power Systems

Throughout this chapter, we use a 5-bus system from [LB10] as a tutorial
example and the IEEE 118-bus as a more realistic test system as numerical ex-
amples. Both systems are shown in Figure 5.2. The corresponding partitioning
are given in Table 5.2. In al cases, we tune ADMM for best performance. Note
that the 5-bus system is particularly designed to be hard: we chose a partition-
ing in which a large amount of power has to be exchanged between region one
(as mainly generating region) and the other two regions (as mainly demanding
regions). Moreover, we put line limits particularly on lines connecting regions
which will lead to difficulties—especially for ADMM as we shall see later.
Results for ALADIN and ADMM for further benchmark systems up to 300
buses can be found in [Eng+19b].

5.4.1 Typical numerical results

Next, we show typical numerical results when applying ADMM to OPF prob-
lems. Figure 5.3 shows the convergence behavior of ADMM for the 5-bus
example from Figure 5.2b for three different values of the tuning parameter
𝜌ADM ∈ {102, 103, 104} neglecting line limits. The upper subfigures depict the
values of all active power injections 𝑝𝑔 and reactive power injections 𝑞𝑔 over the
iteration index 𝑘 ∈ N.1 To characterize convergence, we consider three differ-
ent metrics: the consensus violation ‖𝐴𝑥𝑘 ‖∞ at the current iterate 𝑥𝑘 , charac-
terizing the maximum mismatch of active/reactive power or voltage at coupling
nodes; the distance to the minimizer 𝑥★, ‖𝑥𝑘−𝑥★‖∞;2 the distance of the current
objective function value 𝑓 𝑘 := 𝑓 (𝑥𝑘 ) to a local minimum 𝑓★ := 𝑓 (𝑥★), and
𝑟𝑘 := ∇ 𝑓 (𝑥𝑘 ) +∑ 𝑗∈R 𝛾

𝑘>
𝑖
∇𝑔𝑖 (𝑥𝑘 ) +

∑
𝑗∈R 𝜌

𝑘>
𝑖
∇ℎ𝑖 (𝑥𝑘 ) +𝜆𝑘> (∑𝑖∈R 𝐴𝑖𝑥

𝑘
𝑖
− 𝑏)

for (2.12) measuring the degree of stationarity (dual feasibility) in the KKT
conditions (2.2a). Note that we use the infinity norm ‖ · ‖∞ here for scale-
independence.

One can see that with proper tuning of 𝜌ADM, ADMM is able to reach a
medium accuracy of 10−2 . . . 10−3 within about 100 iterations. This is typical
for ADMM and also observed in many other applications [Boy+11].

1 We use the standard per-unit (p.u.) normalization system here, cf. [GS94] for details.
2 We compute the reference solution 𝑥★ via the centralized interior-point solver IPOPT.

100



5.4 ADMM for Optimal Power Flow

0 50 100 150

10
-3

10
0

0 50 100 150

-2000

0

2000

0 50 100 150
10

-2

10
0

0 50 100 150

10
0

10
5

50 100 150

0

2

4

6

50 100 150

0

1

2

Figure 5.3: ADMM for the 5-bus system for 𝜌ADM ∈ {102, 103, 104 } .

Remark 18 (Multiple local minimizers). Note that as OPF is non-convex, there
are possibly multiple local minimizers [Buk+13; LW15]. However, practical
experience shows that in most cases there is only one technically meaningful
high-voltage solution and local solvers converge to that solution if initialized
properly [Cap16; Mom+97]. Here, all algorithms converged to the same local
minimum for the standard initialization (every value zero except for the voltage
magnitude which is initialized with 1, flat start). The theoretical foundations
of existence and uniqueness of solutions to the power flow equations is subject
to ongoing and future work [CS19; Sim18; MH19].

Scaling-up to 118 Buses

Scaling up to large grids is often hard. Different numerical issues are more
likely to occur with a higher dimension, for example linearly-dependent con-
straint linearizations and finding an initial point close to a local minimizer
might also be harder. Figure 5.4 shows the numerical performance of ADMM
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Figure 5.4: ADMM for the IEEE 118-bus system with 𝜌ADM ∈ {102, 103, 104 }, and 𝑝
g
𝑘

at nodes
𝑘 ∈ {10, 25, 26, 65}.

for the IEEE 118-bus system from Figure 5.2a. One can see that ADMM needs
about 150 iteration to converge to a modest accuracy of 10−2 in the distance
to the local minimizer, which is round about twice as much compared to the
5-bus system.

5.4.2 The role of special constraints

ADMM works quite well im many settings such as for the 5-bus or 118-bus OPF
problem. However, next we show a practical example, where the convergence
to the same level of accuracy is at least a factor of 10 larger compared with the
before mentioned cases solely by adding line limits to the OPF problem. Note
that this modification does neither change the problem class (non-convex NLP),
nor the problem size. The line limits are indicated as red bars in Figure 5.2.
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Figure 5.5: ADMM for the 5-bus system for 𝜌ADM ∈ {102, 103, 104 } and active line limits.

The numerical results are shown in Figure 5.5. Here, ADMM needs about
1.500 iterations to reach the same level of accuracy of around 10−2.

5.4.3 The role of a feasible initialization

Recent works applying ADMM to OPF problems suggest using increasing
sequences for the penalty parameter 𝜌ADM [Ers15]. In [GHT17] this rule is
combine with a feasible initial point for large test systems. Next we investigate
the practical and theoretical implications of these modifications.

Figure 5.6 shows the convergence behavior of ADMM for a very large value of
𝜌ADM = 109 with and without initialization at a feasible initialization. One can
see that with a feasible initialization, ADMM stays at the initial point which is
feasible, but the gap of the cost to the optimal one 𝑓 𝑘 − 𝑓★ is large and does
not decay to zero. This means that there is insufficient progress in terms of
optimality. This can be explained by the role of the penalization parameter in
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Figure 5.6: ADMM for the 5-bus system and 𝜌ADM = 109, active line limits initialized with
(yellow) and without (red) a feasible initial point.

ADMM (Algorithm 4): in case 𝜌ADM is large, the constraints 𝑔𝑖 and ℎ𝑖 are
satisfied and as 𝐴𝑖 has full row-rank, ALADIN will return 𝑥𝑘+1

𝑖
= 𝑧𝑘

𝑖
in step 1)

forced by the quadratic penalization term 𝜌ADM

2 ‖𝐴𝑖 (𝑥𝑖 − 𝑧𝑘
𝑖
)‖22. One can think

of the following two steps 2) and 3) as a kind of averaging step of the coupling
variables, which will also not change if the variables 𝑥𝑘

𝑖
do not change. Hence,

ADMM gets stuck at a feasible point in this case.

Mathematical analysis

Next, we analyze this effect also mathematically for ADMM in case of 𝑏 = 0,
which we have for OPF (cf. Appendix B). Note that in the analysis we use 𝜌

instead of 𝜌ADM for simplified notation.

Proposition 1 (Feasibility and 𝜌 →∞ implies 𝑥𝑘+1
𝑖
−𝑥𝑘

𝑖
∈ null(𝐴𝑖)). Consider

the application of ADMM (Algorithm 4) to problem (2.12) for 𝑏 = 0. Suppose
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that, for all 𝑘 ∈ N, the local problems in step 1) have unique minimizers 𝑥𝑘
𝑖

fulfilling the LICQ. For �̃� ∈ N, let 𝜆 �̃�
𝑖

be bounded and 𝑧 �̃� ∈ ⋃
𝑖∈R X𝑖∩C. Then,

the ADMM iterates satisfy 𝑥 �̃�+1
𝑖

= 𝑥 �̃�
𝑖

Proof. The proof is divided into four steps. Steps 1)-3) establish technical
properties used to derive the above assertion in Step 4).

Step 1). At iteration �̃� , the local steps of ADMM are

𝑥 �̃�𝑖 (𝜌) = argmin
𝑥𝑖 ∈X𝑖

𝑓𝑖 (𝑥𝑖) +
(
𝜆 �̃�
𝑖

)>
𝐴𝑖𝑥𝑖 +

𝜌

2

𝐴𝑖

(
𝑥𝑖 − 𝑧 �̃�𝑖

)2

2
. (5.2)

Now, by assumption, all 𝑓𝑖 are twice continuously differentiable (hence
bounded on X𝑖), 𝜆 �̃�

𝑖
is bounded and all 𝑧 �̃�

𝑖
∈ X𝑖 . Thus, for all 𝑖 ∈ R,

lim
𝜌→∞

𝑥 �̃�
𝑖
(𝜌) = 𝑧 �̃�

𝑖
+ 𝑣 �̃�

𝑖
with 𝑣 �̃�

𝑖
∈ null(𝐴𝑖).

Step 2).The first-order stationarity condition of (5.2) can be written as

−∇ 𝑓𝑖 (𝑥 �̃�𝑖 ) − 𝛾 �̃�>
𝑖 ∇ℎ𝑖 (𝑥 �̃�𝑖 ) = 𝐴>𝑖 𝜆

�̃�
𝑖 + 𝜌𝐴>𝑖 𝐴𝑖

(
𝑥 �̃�𝑖 − 𝑧 �̃�𝑖

)
, (5.3)

where 𝛾 �̃�>
𝑖

is the multiplier associated to ℎ𝑖 . Multiplying the multiplier update
formula from step 3) with 𝐴>

𝑖
from the left we obtain 𝐴>

𝑖
𝜆𝑘+1
𝑖

= 𝐴>
𝑖
𝜆𝑘
𝑖
+

𝜌𝐴>
𝑖
𝐴𝑖 (𝑥𝑘𝑖 − 𝑧𝑘

𝑖
). Combined with (5.3) this yields 𝐴>

𝑖
𝜆 �̃�+1
𝑖

= −∇ 𝑓 (𝑥 �̃�
𝑖
) −

𝛾 �̃�>∇ℎ𝑖 (𝑥 �̃�𝑖 ). By differentiability of 𝑓𝑖 and ℎ𝑖 and regularity of 𝑥 �̃�
𝑖

this implies
boundedness of 𝐴>

𝑖
𝜆 �̃�+1
𝑖

.

Step 3). Next, we show by contradiction that Δ𝑥 �̃�
𝑖
∈ null(𝐴𝑖) for all 𝑖 ∈ R and

𝜌 → ∞. By expressing 𝑧𝑖 as 𝑧𝑖 = 𝑥 �̃�
𝑖
+ Δ𝑥𝑖 in step 2) of ADMM, the update

reads

min
Δ𝑥

∑︁
𝑖∈R

𝜌

2
Δ𝑥>𝑖 𝐴

>
𝑖 𝐴𝑖Δ𝑥𝑖 − 𝜆 �̃�+1>

𝑖 𝐴𝑖Δ𝑥𝑖 s.t.
∑︁
𝑖∈R

𝐴𝑖 (𝑥 �̃�𝑖 + Δ𝑥𝑖) = 0. (5.4)

Observe that any Δ𝑥 �̃�
𝑖
∈ null(𝐴𝑖) is a feasible point to (5.4) as

∑
𝑖∈R 𝐴𝑖𝑥

�̃�
𝑖
= 0

by step 1) of this proof and by feasibility of 𝑧 �̃�
𝑖
. Consider a feasible can-

didate solution Δ𝑥𝑖 ∉ null(𝐴𝑖) for which
∑

𝑖∈R 𝐴𝑖 (𝑥 �̃�𝑖 + Δ𝑥𝑖) = 0. Clearly,
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𝜆 �̃�+1>
𝑖

𝐴𝑖Δ𝑥𝑖 (𝜌) will be bounded. Hence for a sufficiently large value of 𝜌,
the objective of (5.4) will be positive. However, for any Δ𝑥𝑖 ∈ null(𝐴𝑖) the
objective of (5.4) is zero, which contradicts optimality of the candidate so-
lution Δ𝑥𝑖 ∉ null(𝐴𝑖). Hence, choosing 𝜌 sufficiently large ensures that any
minimizer of (5.4) lies in null(𝐴𝑖).

Step 4). It remains to show 𝑥 �̃�+1
𝑖

= 𝑥 �̃�
𝑖
. Recall that we used 𝑧 �̃�+1 = 𝑥 �̃� + Δ𝑥 �̃� in

the previous step. Given Steps 1-3) this yields 𝑧 �̃�+1 = 𝑧 �̃� + 𝑣 �̃� +Δ𝑥 �̃� and hence𝐴𝑖

(
𝑥𝑖 − 𝑧 �̃�+1𝑖

)2

2
=

𝐴𝑖

(
𝑥𝑖 − 𝑧 �̃�𝑖 + 𝑣 �̃�𝑖 + Δ𝑥 �̃�𝑖

)2

2
=

𝐴𝑖

(
𝑥𝑖 − 𝑧 �̃�𝑖

)2

2
.

Observe that this implies that, for 𝜌 →∞, problem (5.2) does not change from
step �̃� to �̃� + 1 by step 3) of Algorithm 4 as 𝜆 �̃�+1 = 𝜆 �̃� since by step 3) of this
proof also 𝑥𝑘+1

𝑖
− 𝑧𝑘

𝑖
lies in the nullspace of 𝐴𝑖 . This proves the assertion. �

The above proposition shows that the problems in step 1) of Algorithm 4 and
also 𝜆𝑘

𝑖
do not change for subsequent iterates, once ADMM is at a feasible

point together with 𝜌 → ∞. With the assumption that the local solvers are
deterministic, i.e. they yield the same solution for same problem data this
implies that ADMM stays at this feasible point, cf. Corollary 1 in [EF18].

Termination by consensus violation and alternating projections

A second important insight is that a small consensus violation ‖𝐴𝑥𝑘 ‖ does not
necessarily imply that the algorithm is close to a local minimizer. Otherwise,
ADMM would terminate immediately in case of a feasible initial guess and a
high penalization parameter. It tells something of the feasibility of the current
step, but the objective function value 𝑓 𝑘 might be far from being optimal.
This is especially relevant here as ‖𝐴𝑥𝑘 ‖ is sometimes used as termination
criterion for ADMM for OPF in the literature [Ers15; Ers14a]. In Appendix C
we provide two additional analytical examples illustrating the above behavior.

In the opposite case of an infeasible initial guess in combination with a very
high penalization, ADMM starts projecting the iterates 𝑥𝑘 and 𝑧𝑘 back and
forth between the consensus constraint set C and the local nonlinear constraints
(power flow equations and bounds) X𝑖 , cf. Algorithm 4. This can for example
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Table 5.3: ALADIN parameters

𝜈0 𝑟𝜈 �̄� 𝜌0 𝑟𝜌 �̄�

5-bus 103 1.1 108 104 2 2 · 106

118-bus 102 1.1 108 103 2 2 · 106

be seen by the large values of ‖𝐴𝑥𝑘 ‖∞ in Figure 5.6. This is similar to the
examples for alternating projections from Section 2.3.1.

5.5 ALADIN for Optimal Power Flow

Next, we investigate the convergence behavior of ALADIN (Algorithm 5) and
bi-level ALADIN (Algorithm 8) for OPF. In all cases, we initialize ALADIN
with a flat start3, we use the regularization technique from [Eng20a] and
ALADIN parameters given in Table 5.3. Moreover, we use diagonal scaling
matrices Σ with entries of 102 for voltage angles and magnitudes and entries 1
for active and reactive power injection.

Figure 5.7 shows the convergence of ALADIN for the 5-bus system with and
without line limits, and for the IEEE 118-bus system. One can see that for all
cases, ALADIN converges quite fast and almost independently of the problem
size and the considered constraints (with/without line limits) in less than 20 it-
erations to a very high accuracy in all indicators. Observe that here we achieve
accuracies of about 10−10 whereas for ADMM we achieved 10−2 . . . 10−3. This
indicates that ALADIN is less scale-dependent and problem dependent com-
pared with ADMM—likely a consequence of the relationship to SQP methods
and because of constraint information in the coordination step. Moreover,
note that in all cases we use a flat-start initialization—hence ALADIN does
not rely on any sort of feasible initial guess. The large improvements in the
accuracy of ALADIN compared with ADMM can especially be observed in
the convergence of reactive power injections 𝑞g: whereas after 15 iterations
they are more or less converged for ALADIN in the 5-bus system (Figure 5.7

3 In the OPF context, a flat start is the initial guess where the voltage magnitudes are initialized
with 1 p.u. and all other values with 0.
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Figure 5.7: ALADIN for the 5-bus system without line limits (yellow), with line limits (red) and
for the 118-bus system (blue) with flat start.

red lines), for ADMM even after 1.500 itertions there seem to be significant
changes regardless of the parameter 𝜌ADM, cf. Figure 5.5.

5.5.1 Bi-level distributed ALADIN

Next, we investigate convergence of bi-level ALADIN for the 118-bus OPF
case. For b-CG we use a fixed number of 70 inner iterations and for b-
ADMM we use 60, 100 and 200 inner iterations. Both variants require a
minimum number of inner iterations (70 for b-CG and 60 for b-ADMM) to
converge—i.e. to fulfill the accuracy requirement from inequality (4.33). We
use 𝜌ADM

inn = 10−2 as the optimal penalization parameter for inner ADMM. For
both inner algorithms, we use warm-starting. Pure ADMM uses 𝜌ADM = 104

which was the optimal value achieving best overall performance.
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Figure 5.8: ALADIN (yellow), bi-level ALADIN with CG (dashed blue), bi-level ALADIN with
ADMM (dashed orange) and ADMM (purple) for the 118-bus system.

Figure 5.8 shows the convergence behavior of basic ALADIN, b-ADMM, b-
CG and pure ADMM. The graphs for ADMM and for basic ALADIN are the
same as before but displayed for the sake of comparison. One can see that b-CG
reaches almost the same overall performance compared with basic ALADIN.
This is interesting as CG also provides a limited accuracy only in the inner
step.

For b-ADMM on the other hand, this is different: the achievable accuracy
of the whole algorithm seems to depend on the number of inner iterations in
ADMM. This can be seen that ‖𝐴𝑥𝑘 ‖∞ and ‖𝑥𝑘 − 𝑥★‖∞ stop decaying after
around 10 outer iterations in Figure 5.8. Another difficulty when using ADMM
as inner algorithm is tuning. We will investigate these two effects next.
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Figure 5.9: Accuracy of inner ADMM after 100 iterations for different values of 𝜌ADM
inn and after

𝑘 ∈ {1, 4, 16} outer iterations of bi-level ALADIN for 118-bus OPF.

5.5.2 Tuning inner ADMM

ADMM as an inner algorithm requires a serious amount of tuning. Figure 5.9
shows the accuracy in the inner problem (4.9), ‖𝑆𝑘𝜆𝑛−𝑠𝑘 ‖∞, over the parameter
𝜌ADM

inn for a fixed amount of 100 inner d-ADMM iterations after 𝑘 ∈ {1, 4, 16}
outer bi-level ALADIN iterations. One can see, that for the pair (𝑆1, 𝑠1), there
are two different optimal values for 𝜌ADM

inn located at two different regions at
around 10−2 and at around 100 after one outer iteration. This is one reason
making tuning difficult.

Moreover, the optimal 𝜌ADM
inn changes significantly while ALADIN proceeds:

after four outer ALADIN iterations, i.e. for (𝑆4, 𝑠4), the optimal value is
located at about 100 and after 16 iterations it is located at around 102 to 103.
This is a second reason making tuning of inner ADMM algorithm extremely
difficult since this requires that ADMM has to be re-tuned after each outer
ALADIN iteration.

A similar conclusion can be drawn from Figure 5.10. This figure shows the
residual of the coordination step (4.9), ‖𝑆𝑘𝜆𝑛 − 𝑠𝑘 ‖∞, for d-ADMM (Algo-
rithm 6) and for d-CG (Algorithm 7) in the first ALADIN iteration (left) and
after 16 ALADIN iterations (right). Also from this figure one can conclude
that the optimal parameter for inner ADMM changes by four orders of magni-
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Figure 5.10: Convergence of d-CG and d-ADMM for the 118-bus OPF problem different values
of 𝜌ADM

inn after one outer ALADIN iteration (left) and after 16 outer iterations (right).

tude from about 10−2 in the beginning to 102. Moreover one can see another
interesting effect which is a possible explanation for the limited accuracy from
Figure 5.10: whereas d-ADMM converges to a level of a bout 10−10 in the
beginning of the ALADIN iterates, in later iterations the achievable accuracy
seems to be limited to 10−3 Note that this can not be influenced by tuning of
𝜌ADM

inn . We tried different tuning parameters and 𝜌ADM
inn = 102 showed the best

convergence and all other tuning parameters led to worse results. This effect
seems interesting not to be investigated in the literature so far. In Appendix C
we elaborate on this effect and we present an example, where this effect occurs
already for very small problems.

For d-CG, in contrast, this effect does not occur and d-CG converges to high
accuracies in all cases. Moreover, d-CG is parameter-free and does thus not
require any tuning.

Remark 19 (Preconditioning for d-ADMM/d-CG). By preconditioning of
(4.9), one can significantly accelerate convergence of d-ADMM and d-CG
[GB17; Ste+20; Saa03]. However, note that preconditioning is also a cen-
tralized operation in general, where it has to be investigated whether the
additional communication/coordination effort is outweighed by less iterations
in d-ADMM/d-CG. In applications, where, the coefficient matrix 𝑆𝑘 does not
change significantly from one step to another, offline preconditioning seems
promising (e.g. in a control setting [Sta+16]). However, as we have shown
previously, the coefficient matrix in bi-level ALADIN changes significantly and
thus offline preconditioning seems less promising—in view of changes in the
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5 Application to Power Systems

Table 5.4: Total forward communication until convergence (floats) for 118-bus OPF.

ALADIN variant global local global local
𝛿 = 10−2 𝛿 = 10−4

basic 852,992 0 1,066,240 0
condensed 13,152 0 16,440 0

bi-level (CG) 1,120 11,200 1,400 14,000
bi-level (ADMM-100) 0 24,000 - -
bi-level (ADMM-200) 0 36,000 - -

pure ADMM 0 2,840 0 6,320

active set but also in view of the fact that curvature information changes in
each ALADIN outer iteration.

5.6 Comparing communication

Next, we compare the forward communication from Section 4.6 for all algo-
rithms numerically. Recall that in Section 4.6 we analyzed the communication
effort per iteration. Here we analyze the total amount of communication, i.e.
the number of floats which have to be communicated in sum until a pre-defined
accuracy in the decision variables is reached. So here the “speed” of the algo-
rithm plays a significant role since the amount of per-step communication is
multiplied by the total number of iterations. We compare the algorithms for a
given accuracy in the primal variables 𝛿 = ‖𝑥𝑘 − 𝑥★‖∞.

Table 5.4 and Table 5.5 show the total amount of forward communication
for all investigated distributed optimization algorithms for the 118-bus OPF
(Table 5.4) example and the 5-bus OPF example with line limits (Table 5.5).
Hereby distinguish two different values for the accuracy 𝛿 for both grids: a
low accuracy case and a high accuracy case. As predicted in Section 4.6,
the condensed ALADIN variant significantly reduces the amount of required
communication. For the 118-bus system, the reduction is quite large with
a factor of round about 60 and for the 5-bus system with a factor of 5 a bit
smaller. Note that the reduction here mainly depends on the number of coupling
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Table 5.5: Total forward communication until convergence (floats) for 5-bus OPF with line limits.

ALADIN variant global local global local
𝛿 = 10−1 𝛿 = 10−2

basic 13,368 0 14,482 0
condensed 2,688 0 2,912 0

bi-level (CG) 1,820 10,920 2,240 13,440
bi-level (ADMM-100) - - - -
bi-level (ADMM-200) - - - -

pure ADMM 0 11,580 - -

variables 𝑛𝑐 in relation to the number of decision variables 𝑛𝑥 . For the 5-bus
system this ration is quite large making the reduction in communication smaller.

Moreover, one can observe that bi-level ALADIN with CG requires round
about the same communication for the 118-bus system as the reduced space
variant—but now this is mainly local communication. For the 5-bus system,
b-CG requires slightly more communication than condensed ALADIN. b-
ADMM needs an about a factor 2-3 larger amount of local communication
mainly due to the slower convergence in the inner problem compared with
b-CG.

Pure ADMM requires less communication compared with all other variants in
the low-accuracy case (𝛿 = 10−2) for the 118-bus system. However, as ADMM
typically becomes quite slow in later iterations, the gap becomes smaller with
higher accuracy requirements. For an accuracy of 𝛿 = 10−4 for example, the
reduction factor of ADMM is only 2 instead of 5 for 𝛿 = 10−2.

For the 5-bus system with line limits (Table 5.5) this effect is extreme: as
ADMM becomes very slow here (cf. Figure 5.5), ADMM needs more com-
munication than b-CG. Moreover, the achievable accuracy of pure ADMM
within 2, 000 iterations is no more than 10−2. Moreover, b-ADMM did not
converge at all for this case since the achiveable accuracy in the inner problem
was not high enough to achieve an accuracy of 10−1.
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5.7 Summary and conclusion

The previous sections showed that ADMM can be applied successfully to
OPF problems and converges quite robustly in many cases. However, ADMM
has in general no convergence guarantee and divergence seems to occur in
practice [Chr+17a]. Moreover, often convergence is possible only up to a
limited accuracy and ADMM might require a large number of iterations to
achieve even that accuracy. Although this level of accuracy is often sufficient
in an OPF context as many parameters such as the power demands are anyways
known only up to a limited certainty [Cap16], one has to be aware of the fact that
a consensus violation ‖𝐴𝑥‖ ≠ 0 always means that the solution is infeasible
to some degree. This implies that active/reactive power at interconnection
points do not match perfectly and when applying ADMM to real systems and
one has to account for that with and underlying controllers compensating this
mismatch. Furthermore, we showed that the performance of ADMM can vary
greatly depending on the type of constraints considered (with or without line
limits for example).

We also showed that a feasible initialization in combination with high pe-
nalization parameters leads to feasible but not necessarily optimal solutions
for ADMM. Moreover, we concluded that that consensus violation (‖𝐴𝑥𝑘 ‖∞)
alone, as sometimes used in the literature [GHT17; Ers15], is in general insuf-
ficient for termination. Especially in combination with the above combination
of a feasible initialization with a feasible initial point this can lead to an ar-
bitrary fast termination of ADMM. In this case, one can essentially enforce
convergence of ADMM in one step in this case by choosing a sufficiently large
𝜌 although the current iterate is far from a local minimizer. Moreover, the as-
sumption of a feasible initial guess seems strong. Finding a feasible point has
about the same complexity as the full OPF problem itself and again requires a
strong central coordinator jeopardizing the goals of distributed optimization.

Applying ALADIN variants

As an alternative to ADMM, we proposed different ALADIN variants. AL-
ADIN has the appealing property of a theoretically very fast local convergence,
which we also observed in practice. One drawback of ALADIN are its compa-
rably large communication and coordination requirements. As an alternative,

114



5.7 Summary and conclusion

Table 5.6: ADMM, ALADIN and bi-level ALADIN for AC OPF.

guarantees speed communication coordination robustness accuracy

ADMM −− o + ++ + -
ALADIN ++ ++ −− − o ++

bi-level ALADIN ++ ++ + + o ++

we proposed a condensed variant of ALADIN, substantially reducing coordi-
nation and communication requirements. Moreover, with bi-level ALADIN,
decentralized is also possible, while preserving ALADIN’s fast local conver-
gence properties. We showed that the performance of bi-level ALADIN with
conjugate gradients (b-CG) is almost indistinguishable from basic ALADIN’s
performance although conjugate gradients introduce inexactness in the co-
ordination step. For b-ADMM this is different: the achievable accuracy of
b-ADMM seems to depend on the number of inner ADMM iterations. This
comes from the fact that ADMM is able to solve the coordination problem up
to a certain accuracy only and this effect can not be overcome by tuning. We
also showed that this effect occurs already for very small-scale problems (cf.
Appendix C). Moreover, tuning of inner ADMM can be difficult. However,
b-ADMM offers full decentralization in the sense that it does not require any
form of global scalar sum such as b-CG. The convergence rate of all the before
mentioned ALADIN variants seems to be independent from the problem size
and also from the considered constraints, which was not the case for ADMM.
For large problems tuning of all ALADIN variants and also ADMM becomes
increasingly difficult.

The properties of ADMM, ALADIN, and bi-level ALADIN are summarized
in Table 5.6.

Choosing an algorithm

Choosing an appropriate algorithm is difficult. Whereas ADMM works well
in many cases, convergence might be very slow and thus ADMM might take
a long time to converge. The ALADIN variants usually converge very fast
and decentralization is possible via bi-level ALADIN although tuning might
become difficult for larger grids. If a high accuracy is required, ALADIN is
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5 Application to Power Systems

certainly first-choice. Moreover, ALADIN is guaranteed to converge for an
initial point close enough to a local minimizer, which ADMM is not. In terms
of total communication, ADMM has often a slightly lower footprint.
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6 The ALADIN-𝛼 toolbox

In this chapter, we present an open-source MATLAB toolbox, ALADIN-
𝛼, implementing ALADIN, bi-level ALADIN and ADMM with a unified
interface.

Major parts of this chapter are from [Eng+20]. We limit ourself to a brief
overview here, for a more detailed description of options and subroutines we
refer to [Eng+20] and to the documentation website [Eng20b].

6.1 Features of ALADIN-𝛼

ALADIN-𝛼 is intended for rapid prototyping of distributed and decentralized
optimization algorithms and aims at user-friendliness. The only user-provided
information are objective and constraint functions—derivatives and numerical
solvers are generated automatically by algorithmic differentiation routines and
external state-of-the-art NLP solvers. A rich set of examples coming with
ALADIN-𝛼 covers problems from robotics, power systems, sensor networks
and chemical engineering underpinning its application potential.

ALADIN-𝛼 supports

• bi-level ALADIN and the condensed variant of ALADIN from Chap-
ter 4;

• a BFGS Hessian extension from [Eng+19b];

• parametric NLPs enabling distributed Model Predictive Control (MPC);

• heuristics for regularization and parameter tuning.

The ADMM variant from Algorithm 4 is also included. ALADIN-𝛼 can
be executed in parallel mode via the MATLAB parallel computing toolbox.
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6 The ALADIN-𝛼 toolbox

This can lead to a substantial speed-up, for example, in distributed estimation
problems. However, although distributed optimization can be used for parallel
computing, computation speed or real-time feasibility is currently not a primary
focus of the toolbox. A documentation and many application examples of
ALADIN-𝛼 are available under [Eng20b].

6.2 Literature review

Despite the various practical applications of distributed optimization, only
very few software toolboxes are freely available. Even if one can find one of
the rare examples, these tools are typically tailored to a specific application at
hand and typically address convex problems. Examples are several versions of
ADMM applied to a plethora of applications summarized in [Boy+11], with
code available under [Boy+20]. An implementation of ADMM for consen-
sus problems can be found under [Mot+20]. A tailored implementation of
ADMM for OPF problems using an algorithm from [GHT17] can be found
under [Guo20]. However, there is a lack of multi-purpose software tools for
distributed optimization and we were not able to find any open-source imple-
mentations for generic distributed non-convex optimization problems. Also
with respect to decentralized non-convex optimization, we were not able to
find any publicly available code.

However, for parallel optimization efficient structure-exploiting tools exist. A
closed-source parallel interior point software is OOPS [GG07]. The open-
source package qpDunes is tailored towards parallel solutions of QPs arising
in model predictive control [FSD15]. For general QPs, the partially paralleliz-
able solver OSQP seems promising [Ste+20]. PIPS is a collection of algorithms
solving structured linear programs, QPs, and general NLPs in parallel [CPZ14;
Lub+11]. The software HiOp is tailored towards structured and very large-scale
NLPs with few nonlinear constraints based on interior point methods [Pet19;
PCA19]. Moreover, combining parallel linear algebra routines (e.g. PARDISO
[Sch+01]) with standard nonlinear programming solvers (e.g. IPOPT [WB06])
also leads to partially parallel algorithms [Cur+12; KFS18]. All these tools
are implemented in low-level languages such as C or C++ leading to a high
computational performance. However, their focus is mainly on computational
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speedup via parallel computing rather than distributed and decentralized opti-
mization in a multi-agent setting.

6.3 Parametric problem setup

ALADIN-𝛼 solves structured optimization problems of the form

min
𝑥1 ,...,𝑥𝑛𝑠

∑︁
𝑖∈R

𝑓𝑖 (𝑥𝑖 , 𝑝𝑖) (6.1a)

subject to 𝑔𝑖 (𝑥𝑖 , 𝑝𝑖) = 0 | 𝜅𝑖 , ∀𝑖 ∈ R, (6.1b)
ℎ𝑖 (𝑥𝑖 , 𝑝𝑖) ≤ 0 | 𝛾𝑖 , ∀𝑖 ∈ R, (6.1c)
𝑥
𝑖
≤ 𝑥𝑖 ≤ 𝑥𝑖 | 𝜂𝑖 , ∀𝑖 ∈ R, (6.1d)∑︁

𝑖∈R
𝐴𝑖𝑥𝑖 = 𝑏 | 𝜆, (6.1e)

which is a slight modification of (2.12) introducing box constraints separately.
We do so for numerical efficiency reasons—some local solvers are able to
handle box constraints by specialized routines. Moreover, problem (6.1) allows
for parameter vectors 𝑝𝑖 ∈ R𝑛𝑝𝑖 . This can be useful for example in Model
Predictive Control or if one would like to solve the same distributed problem
multiple times for a variety of parameters.

6.4 Software structure

6.4.1 Code structure

In order to avoid side-effects and to make code-modification easy for beginners,
we choose a procedual/functional programming style. We decided to imple-
ment all core features in MATLAB to enable easy rapid-prototyping. The over-
all structure of run_ALADIN()—which is the main function of ALADIN-𝛼—is
shown in Figure 6.1. First, a preprocessing step performs a consistency check
of the input data and provides default options. The createLocSolAndSens()
function initializes the local parameterized NLPs and sensitivities for all sub-
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a) preprocessing

createCoordQP(), solveQP(),solveQPdec()

computeALstep()

checkInput(), setDefaultOpts()

createLocSolAndSens()b) problem/sensitivity setup

iterateAL()

f) solve the coordination QP

g) compute primal/dual step

ALADIN main loop

parallelStep(), BFGS(),

e) Hessian approx./regularization

c) solve local NLPs

d) evaluate sensitivities

in
p
ar
a
ll
el

h) postprocessing displaySummary(), displayTimers()

parallelStepInnerLoop(),

updateParam(), regularizeH()

Figure 6.1: Structure of run_ALADIN() in ALADIN-𝛼.

problems 𝑖 ∈ R. For constructing the local NLPs and sensitivities, we use
CasADi due to its algorithmic differentiation features and the possibility to
interface many state-of-the-art NLP solvers such as IPOPT [WB06; And+19].
CasADi itself relies on pre-compiled code making function and derivative
evaluation fast. A reuse option allows reusing the CasADi problem setup.
When the reuse mode is activated (e.g. when ALADIN-𝛼 is used within an
MPC loop), createLocSolAndSens() is skipped resulting in a significant
speed-up for larger problems.

In the ALADIN main loop iterateAL(), the function parallelStep()
solves the local NLPs and evaluates the Hessian of the Lagrangian (or it’s
approximation e.g. when BFGS is used), the gradient of the objective, and the
Jacobian of the active constraints (sensitivities) at the NLP’s solution. Regular-
ization is done in parallelStep() if needed. Moreover, in case the nullspace
method or bi-level ALADIN is used, the computation of the nullspcaces and
the Schur-complements is done locally shifting substantial computational bur-
den from the centralized coordination step to parallelStep(). The function
updateParam() computes dynamically changing ALADIN parameters for
numerical stability and speedup.

The coordination QP is constructed in the function createCoordQP(). We
use problem (2.25) including slack variables for numerical stability. Differ-
ent dense and sparse solvers for solving the coordination QP are available
in solveQP(). Most of them are based on solving the first-order necessary
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sProb locFuns ffi

ggi

hhi

llbx

uubx

AA

res = run ALADIN(sProb, opts)

opts . . .
. . .

res xxOpt

lamOpt

iter

timers

Figure 6.2: The sProb data structure for defining problems in form of (6.1).

conditions which is a linear system of equations. Available solvers are the
MATLAB linear-algebra routines linsolve(), pinv(), the backslash op-
erator and MA57 based on the MATLAB LDL-decomposition routine. Using
sparse solvers can speed up the computation time substantially. Note that only
MA57 and the backslash-operator support sparse matrices. The solver can be
specified by setting the solveQP option. In case of convergence problems
from remote starting points, it can help to reduce the primal-dual stepsize of
the QP step by setting the stepSize in the options to a values smaller than 1.

6.4.2 Data structures

The main data structure for defining problems in form of (6.1) is a struct called
sProb (cf. Figure 6.2). In this data structure, the objective functions { 𝑓𝑖}𝑖∈R
and constraint functions {𝑔𝑖}𝑖∈R and {ℎ𝑖}𝑖∈R are collected in cells which are
contained in a struct called locFuns. Furthermore, sProb collects lower/upper
bounds (6.1d) in cells called llbx and uubx. The coupling matrices {𝐴𝑖}𝑖∈R
are collected in AA. Optionally, one can provide NLP solvers and sensitivities—
in this case the problem setup in createLocSolAndSens() is skipped leading
to a substantial speedup in runtime for larger problems. Optionally one specify
initial guesses in zz0 and initial Lagrange multipliers lam0. The second
ingredient for ALADIN-𝛼 is an opts struct. There, one can specify the
variant of ALADIN-𝛼 and algorithmic parameters. A full list of options with
descriptions can be found under [Eng20b].

ALADIN-𝛼 returns a struct as output. This cell contains a cell of locally
primal optimal solutions xxOpt with {𝑥★

𝑖
}𝑖∈R . lamOpt are the optimal la-

grange multipliers for the consensus constraints (6.1e), 𝜆★. Moreover the field
iter contains information about the ALADIN iterates such as primal/dual
iterates and timers contains timing information. Note that run_ALADIN()
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6 The ALADIN-𝛼 toolbox

and run_ADMM() have the same function signature in terms of sProb—only
the options differ.

6.5 A tutorial example

Next, we provide two numerical examples illustrating how to use ALADIN-𝛼
in practice. The first one is a minimalistic example showing how to formulate
problems in form of (6.1) and solving this problem with ALADIN-𝛼.

First, we investigate how to reformulate a tutorial optimization problem in
partially separable form 6.1. Let us consider the non-convex NLP

min
𝑥1 ,𝑥2∈R

𝑓 (𝑥) = 2 (𝑥1 − 1)2 + (𝑥2 − 2)2 (6.2a)

subject to − 1 ≤ 𝑥1 · 𝑥2 ≤ 1.5. (6.2b)

In order to apply ALADIN-𝛼, problem (6.2) needs to be in form of (6.1). To
get there, let us introduce auxiliary variables 𝑦1, 𝑦2 with 𝑦1 ∈ R and 𝑦2 =

(𝑦21 𝑦22)>. Let us couple these variables again by introducing a consensus
constraint

∑
𝑖 𝐴𝑖𝑦𝑖 = 0 with 𝐴1 = 1 and 𝐴2 = (−1 0). Furthermore, let

us reformulate the objective function 𝑓 by local objective functions 𝑓1 (𝑦1) :=
2 (𝑦1−1)2 and 𝑓2 (𝑦2) = (𝑦22−2)2 with 𝑓 = 𝑓1+ 𝑓2. Moreover, we reformulate
the global inequality constraint (6.2b) by a local two dimensional constraint
function ℎ2 = (ℎ21 ℎ22)> with ℎ21 (𝑦2) = −1 − 𝑦21 𝑦22 and ℎ22 (𝑦2) = −1.5 +
𝑦21 𝑦22. Combining these reformulations yields

min
𝑦1∈R,𝑦2∈R2

2 (𝑦1 − 1)2 + (𝑦22 − 2)2 (6.3a)

subject to − 1 − 𝑦21 𝑦22 ≤ 0, −1.5 + 𝑦21𝑦22 ≤ 0, (6.3b)
𝑦1 + ( −1 0 ) 𝑦2 = 0, (6.3c)

which is in form of problem (6.1). Note that the solutions to (6.2) and (6.3)
coincide but (6.3) is of higher dimension, thus one can view the reformulation
as a kind of lifting to a space of higher dimensionality. Moreover, observe
that this reformulation contains a general strategy for reformulating problems
in form of (6.1): if there is nonlinear coupling in the objective functions or
the constraints, introducing auxiliary variables and enforcing them to coincide
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% define symbolic variables

y1 = sym(’y1’,[1,1],’real’);

y2 = sym(’y2’,[2,1],’real’);

% define symbolic objectives

f1s = 2*(y1−1)^2;

f2s = (y2(2)−2)^2;

% define symbolic ineq. constraints

h2s = [ −1−y2(1)*y2(2); ...

−1.5+y2(1)*y2(2)];

% convert symbolic variables to

% MATLAB functions

f1 = matlabFunction(f1s,’Vars’,{y1});

f2 = matlabFunction(f2s,’Vars’,{y2});

h1 = @(y1)[];

h2 = matlabFunction(h2s,’Vars’,{y2});

% define symbolic variables

y_1 = SX.sym(’y_1’, 1);

y_2 = SX.sym(’y_2’, 2);

% define symbolic objectives

f1s = 2 * (y_1 − 1)^2;

f2s = (y_2(2) − 2)^2;

% define symbolic ineq.

constraints

h1s = [];

h2s = [ −1 − y_2(1)*y_2(2); ...

−1.5 + y_2(1)*y_2(2)];

% convert symbolic variables to

% MATLAB functions

f1 = Function(’f1’, {y_1}, {f1s});

f2 = Function(’f2’, {y_2}, {f2s});

h1 = Function(’h1’, {y_1}, {h1s});

h2 = Function(’h2’, {y_2}, {h2s});

% define objectives

f1 = @(y1) 2 * (y1 − 1)^2;

f2 = @(y2) (y2(2) − 2)^2;

% define inequality constraints

h1 = @(y1) []

h2 = @(y2) [ −1 − y2(1) * y2(2);...

−1.5 + y2(1) * y2(2)];

Figure 6.3: Tutorial example with three different ways of problem setup.

by an additional consensus constraint in form of (6.1e) yields purely affine
coupling. With that strategy, one can reformulate most nonlinear program in
form of (6.1e).

Solution with ALADIN-𝛼
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6 The ALADIN-𝛼 toolbox

% define coupling matrices

A1 = 1;

A2 = [−1, 0];

% collect problem data in sProb struct

sProb.locFuns.ffi = {f1, f2};

sProb.locFuns.hhi = {h1, h2};

sProb.AA = {A1, A2};

% start solver with default opts

sol = run_ALADINnew(sProb);

================================================

== This is ALADIN−alpha v0.1 ==

================================================

QP solver: MA57

Local solver: ipopt

Inner algorithm: none

No termination criterion was specified.

Consensus violation: 6.6531e−12

Maximum number of iterations reached.

−−−−−−−−−−−−− ALADIN−alpha timing −−−−−−−−−−

t[s] %tot %iter

Tot time......: 3.92

Prob setup....: 0.19 4.8

Iter time.....: 3.72 95

−−−−−−−−−

NLP time......: 1.1 29.7

QP time.......: 0.11 2.8

Reg time......: 0.02 0.6

Plot time.....: 2.27 60.8

================================================

Figure 6.4: Collection of variables and output of ALADIN-𝛼.
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Figure 6.5: ALADIN-𝛼 iteration plot for tutorial problem (6.3).

To solve (6.3) with ALADIN-𝛼, we set up our problem formulation in a struct
sProb as described in Section 6.4.2. To illustrate different possibilities of
problem setup for ALADIN-𝛼, we construct the objective and constraints
functions in three different ways: a), via the MATLAB symbolic toolbox, b),
via the CasADi symbolic framework and, c), directly via function handles. All
these ways are shown in Figure 6.3.

After defining objective and constraint functions, all function handles and the
coupling matrices 𝐴𝑖 are collected in the struct sProb (Figure 6.4). We call the
run_ALADIN() function with an empty options struct leading to computation
with default parameters. These steps and the resulting ALADIN-𝛼 report
after running run_ALADIN() is shown on the right pane of Figure 6.4. In
the ALADIN-𝛼 report, the reason for termination and timing of the main
ALADIN-𝛼 steps is displayed. Note that plotting takes a substantial amount
of time—so it advisable to deactivate online plotting if it is not needed for
diagnostic reasons. Figure 6.5 shows the plotted figures while ALADIN-𝛼 is
running. The figures show (in this order) the consensus violation ‖𝐴𝑥 − 𝑏‖∞,
the local step sizes ‖𝑥𝑘 − 𝑧𝑘 ‖∞, the step size in the coordination step ‖Δ𝑥𝑘 ‖∞
and the changes in the active set. From these figures one usually can recognize
divergence quite fast and also can get a feeling on the effectiveness e.g. for new
internal heuristics or the degree of accuracy reached after a certain number of
iterations.

6.6 Applications beyond optimal power flow

ALADIN-𝛼 comes with a rich set of examples. These examples include
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example field directory online docs

examples/ alexe15.github.io/ALADIN.m/
mobile robots robotics/control robots robotEx

optimal power flow power systems optimal_power_flow redComm
sensor network estimation sensor_network ParallelExample

chemical reactors chem./control chemical_reactor

Table 6.1: Application examples of ALADIN-𝛼.

• an example for distributed optimal control of a chemical reactor, which
we will present in the next section;

• an example for distributed optimal control of mobile robots [Meh+17;
Eng+20b];

• an example for distributed estimation in mobile sensor networks from
Houska et al. [HFD16];

• a logistic regression example from machine learning.

Furthermore, we included several test problems form the Hock-Schittkowski
test collection [HS80]. The code for all these examples is available in the
examples\ folder of ALADIN-𝛼. Furthermore, we provide textual descrip-
tions of these examples in the documentation of ALADIN-𝛼 online [Eng20b].
The application examples are summarized in Table 6.1.

6.7 Distributed control of a chemical reactor

Next, we show how to use ALADIN-𝛼 for distributed optimal control of a
chemical reactor. This OCP can serve as a basis for distributed model predictive
control [RMD17; SWR11; MA17]. The chemical process we consider here
consists of two CSTRs and a flash separator as shown in Figure 6.6 [Cai+14;
CLM11]. The goal is to steer the reactor to the optimal setpoint

𝑢>𝑠 = (0 0 0 )
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Figure 6.6: Reactor-separator process.

and

𝑥>𝑠 = (369.53 3.31 0.17 0.04 435.25 2.75
0.45 0.11 435.25 2.88 0.50 0.12)

from an initial point

𝑥(0)> = (360.69 3.19 0.15 0.03 430.91 2.76
0.34 0.08 430.42 2.79 0.38 0.08).

After applying a fourth-order Runge-Kutta scheme for discretization, the dy-
namics of the CSTRs and the flash separator are given by

𝑥𝑘+1𝑖 = 𝑞𝑖 (𝑥𝑘𝑖 , 𝑢𝑘𝑖 , 𝑧𝑘𝑖 ) for 𝑖 ∈ R,

where 𝑞𝑖 : R𝑛𝑥𝑖 × R𝑛𝑢𝑖 × R𝑛𝑧𝑖 → R𝑛𝑥𝑖 are the dynamics of the 𝑖th vessel and
where R := {1, 2, 3} is the set of vessels. Here, 𝑥>

𝑖
= (𝑥𝐴𝑖 , 𝑥𝐵𝑖 , 𝑥𝐶𝑖 , 𝑇𝑖) are the

states with 𝑥𝐴𝑖 , 𝑥𝐵𝑖 (103 mol/m3) being the concentrations of the reactants, 𝐴,
𝐵 and𝐶 and𝑇 (K) is the temperature. The inputs 𝑢𝑖 = 𝑄𝑖 (103 J/h) denote the
heat-influxes of the individual vessel and 𝑧𝑖 are copied states of the neighbored
reactors influencing reactor 𝑖, i.e. 𝑧𝑖 := (𝑥 𝑗 ) 𝑗∈𝑁 (𝑖) . Note that the feed-stream
flow rates 𝐹10, 𝐹20, 𝐹3, 𝐹𝑅 and 𝐹𝑝 are fixed and given. Detailed equations for
the dynamics of the CSTRs/separator are given in [CLM11].
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The optimal control problem

With the above, we are ready to formulate a discrete-time optimal control
problem

min
(𝑥𝑘

𝑖
, 𝑧𝑘

𝑖
,𝑢𝑘

𝑖
)

∀𝑘∈I[1 𝑇 ]
∀𝑖∈R

∑︁
𝑖∈R

∑︁
𝑘∈I[1 𝑇 ]

1
2
(𝑥𝑘𝑖 − 𝑥𝑖𝑠)>𝑄𝑖 (𝑥𝑘𝑖 − 𝑥𝑖𝑠) +

1
2
(𝑢𝑘𝑖 − 𝑢𝑖𝑠)>𝑅𝑖 (𝑢𝑘𝑖 − 𝑢𝑖𝑠)

s.t. 𝑥𝑘+1𝑖 − 𝑞𝑖 (𝑥𝑘𝑖 , 𝑢𝑘𝑖 , 𝑧𝑘𝑖 ) = 0, 𝑥0
𝑖 = 𝑥𝑖 (0) ∀𝑘 ∈ I[1 𝑇 ] , ∀𝑖 ∈ R,

𝑢
𝑖
≤ 𝑢𝑘𝑖 ≤ �̄�𝑖 , 𝑥

𝑖
≤ 𝑥𝑘𝑖 , ∀𝑘 ∈ I[1 𝑇 ] , ∀𝑖 ∈ R, (6.4)∑︁

𝑖∈R
𝐴𝑖

(
𝑥𝑘>𝑖 𝑧𝑘>𝑖 𝑢𝑘>𝑖

)>
= 0 ∀𝑘 ∈ I[1 𝑇 ] ,

with lower/upper bounds on the inputs 𝑢 = −𝑢 = (5 · 104 1.5 · 105 2 · 105)>
and lower bounds on the states 𝑥𝑘

𝑖
= 0 for all times 𝑘 ∈ I[1 𝑇 ] and all vessels

𝑖 ∈ R. The weighting matrices are chosen to 𝑄𝑖 = diag(20 103 103 103)
and 𝑅𝑖 = 10−10. The matrices 𝐴𝑖 are selected such that they represent the
constraint 𝑧𝑖 := (𝑥 𝑗 ) 𝑗∈𝑁 (𝑖) . The sampling time is Δℎ = 0.01ℎ and the
horizon is 𝑇 = 10 h. By defining 𝑥>

𝑖
:=

(
𝑥𝑘>
𝑖

𝑧𝑘>
𝑖

𝑢𝑘>
𝑖

)
𝑘∈I[1 𝑇 ]

, 𝑓𝑖 (𝑥𝑖) :=∑
𝑘∈I[1 𝑇 ]

1
2 (𝑥

𝑘
𝑖
− 𝑥𝑖𝑠)>𝑄𝑖

(𝑥𝑘
𝑖
− 𝑥𝑖𝑠) +

∑
𝑘∈I[1 𝑇−1]

1
2 (𝑢

𝑘
𝑖
− 𝑢𝑖𝑠)>𝑅𝑖

(𝑢𝑘
𝑖
− 𝑢𝑘

𝑖𝑠
),

𝑔𝑖 (𝑥𝑖) :=
(
𝑥𝑘+1
𝑖
− 𝑞𝑖 (𝑥𝑘𝑖 , 𝑢𝑘𝑖 , 𝑧𝑘𝑖 )

)
𝑘∈I[1 𝑇−1]

, and ℎ𝑖 (𝑥𝑖) :=
(
(𝑢

𝑖
− 𝑢𝑘

𝑖
𝑢𝑘
𝑖
− �̄�𝑖

𝑥
𝑖
− 𝑥𝑘

𝑖
)>

)
𝑘∈I[1 𝑇 ]

one can see that the OCP (6.4) is in form of (6.1) and thus
solvable by ALADIN-𝛼 (𝑥𝑖 here corresponds to 𝑥𝑖 in (6.1)).

Numerical results

Figure 6.7 shows the resulting input and state trajectories for one OCP (6.4)
for basic ALADIN and ADMM after 20 iterations, and for ADMM after
100 iterations. At first-glance all trajectories are quite close to each other.
However, small differences in the input trajectories can be observed. Figure 6.9
shows the convergence indicators from Chapter 5 over the iteration index 𝑘 .
In logarithmic scale, these differences can be quite large. Fore example the
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Figure 6.7: Optimal input trajectories computed by ALADIN & ADMM.

Figure 6.8: Optimal state trajectories computed by ALADIN & ADMM.
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Figure 6.9: Convergence of ALADIN and ADMM for OCP (6.4).

consensus gap ‖𝐴𝑥𝑘 −𝑏‖∞ is in an order of 101 after 20 iterations which means
that the physical values at the interconnection points have a maximum mismatch
of 101. ALADIN converges quite fast and also to a very high accuracy. All
trajectories were computed with run_ALADIN() and run_ADMM().
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7 Summary and Outlook

This thesis aimed at designing distributed and decentralized optimization al-
gorithms for problems with non-convex constraints. In this context, a fast
convergence under limited information exchange is key.

Chapter 2—Basics of Distributed Optimization

To build a foundation for algorithm development and for reviewing the litera-
ture of current distributed optimization methods, we briefly recalled distributed
optimization algorithms such as the classical Alternating Direction Method of
Multipliers (ADMM) and the more recent Augmented Lagrangian Alternat-
ing Direction Inexact Newton (ALADIN). We provided illustrative examples
showing that classical algorithms such as ADMM might exhibit slow converge
due to the lack of constraint information in the coordination step in combination
with alternating projections. We also showed that ALADIN is able to overcome
these limitations due to considering constraint information in its coordination
step. Moreover, we emphasized that for certain non-convex problems, global
convergence is out of reach—even for centralized algorithms.

Chapter 3—A survey on distributed optimization

We provided a literature review on distributed optimization in Chapter 3.
Here, we showed that distributed and decentralized optimization algorithms
from different communities are barely able to handle constrained non-convex
problems from power systems and control we have in mind. To this end, we
categorized the literature on distributed optimization along three main lines
of research: primal algorithms, primal-dual algorithms and internal decom-
position methods. Typically, the communities working on either of the above
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7 Summary and Outlook

research lines are mostly disconnected—this literature review attempted to take
a more general perspective.

We showed that especially primal-dual algorithms and internal decomposition
methods seem to be promising because of their effective constraint-handling
capabilities. We classified ALADIN as a combination of primal-dual and inter-
nal decomposition methods combining the best of these two lines of research:
distribution and fast convergence for non-convex problems. We emphasized
that—despite of its very promising convergence properties—drawbacks of AL-
ADIN are its high communication and coordination requirements, and a lack
of decentralization.

Chapter 4—Bi-level Distributed ALADIN

In Chapter 4 we developed one of the first frameworks for decentralized opti-
mizatio with convergence guarantees for problem with non-convex constraints.
We presented two specific decentralized algorithms for distributing the coor-
dination step of ALADIN: a decentralized variant of ADMM and a novel
decentralized variant of the conjugate gradient algorithm. Decentralized con-
jugate gradient has the appealing property of a convergence in a finite number
of steps, whereas state-of-the-art algorithms such as ADMM are often guaran-
teed to converge at a linear rate at most and the convergence modulus can be
slow. Decentralized conjugate gradients and decentralized ADMM introduce
inexactness into the coordination step of ALADIN. We showed mathemati-
cally that, despite this inexactness, the very fast local convergence properties
of ALADIN can be preserved if the error in the coordination step decays fast
enough.

Possible directions for future work

As bi-level ALADIN is guaranteed to convergence locally at present, further
research on distributed and decentralized globalization routines seems to be
important. Moreover, the amount of tuning one has to invest typically increases
with the problem size. Globalization routines and internal auto-tuning routines
are thus promising candidates to address these challenges.
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The amount of communication and the overall convergence of bi-level AL-
ADIN depends on the accuracy and thus on the number of inner iterations
in the coordination step. Distributed preconditioning might help here to re-
duce the number of inner iterations. Similarly, a dynamic adjustment of the
termination criterion in the coordination step might help to decrease the total
communication requirements of by using less inner iterations.

Chapter 5—Application to Power Systems

In Chapter 5, we evaluated the performance of bi-level ALADIN on optimal
power flow problems up to several hundred buses. We started by reviewing
relevant literature in this context and concluded that current approaches either
have no convergence guarantee for AC OPF, use oversimplified models or
relaxations, where the solution to the original problem might not be recoverable
from the relaxed problem. Other algorithms require a large amount of central
coordination.

We proposed ALADIN and bi-level ALADIN as alternatives and compared
their performance ADMM as one of the most-frequently used distributed op-
timization methods for OPF. We showed that bi-level ALADIN is able to con-
verge much faster than ADMM—also for a limited amount of inner iterations.
Moreover, we highlighted that bi-level ALADIN with conjugate gradients is
able to reach about the same low communication footprint of ADMM for
certain problems, while converging to a much higher accuracy.

We also showed that for bi-level ALADIN with ADMM as an inner algorithm,
the achievable accuracy is often limited due to the limited accuracy achievable
by ADMM in the inner loop. This effect seems not to be investigated in the
literature so far. Moreover, we showed that tuning of inner ADMM might
be difficult since the optimal penalization parameter changes with the outer
ALADIN iterations.

In the distributed OPF literature, high penalization parameters in combination
with a feasible initial point is sometimes used for ADMM. We showed numer-
ically and mathematically that, in its extreme, this combination makes ADMM
getting stuck at the initial point. We also showed that pure ADMM is able to
converge only up to a limited accuracy for the problems we consider.
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Possible directions for future work

The considered OPF problem forms the basis for many other problems such
as reactive power dispatch problems, state estimation problems, power flow
problems, and redispatch problems [Du+19; Mur+18] all of which might
benefit from distributed optimization. Also multi-stage OPF problems, where
OPF problems are coupled in time via storages might be of interest [FE19].
Broadening the view from power systems to energy systems, application in
other domains such as building control [Su+20; Zwi+19] seems promising as
also here a limited information exchange and decentralized computation are
often desirable.

Investigating the slow convergence of ADMM for certain problem classes and
particularly in context of OPF in more detail seems to be important. Especially
the modulus switching from Appendix C is key, since slow convergence can
be observed even for very small problems without constraints. This is relevant
for bi-level ALADIN, as ADMM as inner algorithm suffers from this slow
convergence and make the achievable accuracy of bi-level ALADIN with
ADMM limited for OPF.

Tuning of bi-level ALADIN becomes increasingly difficult with a growing
problem size—also for problems from power systems. Hence, testing new
globalization routines and internal heuristics on problems from power systems
seems worth investigating.

Chapter 6—The ALADIN-𝛼 toolbox

In Chapter 6, we presented one of the first general-purpose open source tool-
boxes for decentralized non-convex optimization named ALADIN-𝛼 imple-
menting the algorithms from the preceding chapters. The toolbox enables
rapid-prototyping of distributed and decentralized algorithms in a modular
framework. The MATLAB toolbox comes with a rich set of code examples
for distributed and decentralized optimization from different engineering fields
ranging from power systems, via chemical engineering, to mobile sensor net-
works and robotics to machine learning, highlighting its broad applicability.

We investigated numerical performance of ALADIN in comparison with
ADMM on an optimal control problem for a three-vessel chemical reactor.
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Moreover, ALADIN-𝛼 comes with advanced features such as parallel comput-
ing and parametric programming enabling its usage in context of distributed
model predictive control.

Possible directions for future work

It seems promising to develop a generalized variant of ALADIN-𝛼, where
the user can pass own solvers and differentiation routines eliminating the
dependency on the automatic differentiation tool CasADi. This might help to
speed up computation—especially for large problems.

For optimal control, a real-time implementation of ALADIN-𝛼 with code
generation seems promising. An implementation in free languages such as
Julia or Python also seems important to enlarge the possible user base.

Closing remarks

With bi-level ALADIN, we presented one of the first families of algorithms
for decentralized optimization with non-convex constraints. We showed that
bi-level ALADIN is guaranteed to converge fast under a limited information
exchange. We demonstrated that these properties also hold in practice for rel-
evant problems from power systems and control. Moreover, we presented one
of the first toolboxes for decentralized non-convex optimization implementing
the algorithms from this thesis.

However, these are merely first steps and future will tell which algorithms work
robustly for a broad variety of problems.
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A Mathematical Background

A.1 Mathematical Basics

We recall some basic mathematical results, which we used in our derivations.

Matrix norms

Recall that the following properties of matrix/vector norms for matrices 𝐴, 𝐵 ∈
R𝑛×𝑚 and scalars 𝛼 ∈ R must hold

‖𝐴‖ ≥ 0 (positive-valuedness), (A.1a)
‖𝛼𝐴‖ = |𝛼 |‖𝐴‖ (absolute homogenity), (A.1b)

‖𝐴 + 𝐵‖ ≤ ‖𝐴‖ + ‖𝐵‖ (triangular inequality), (A.1c)
‖𝐴‖ = 0 iff 𝐴 = 0 (definiteness). (A.1d)

Note that we assume in all our derivations that matrix norms are induced
by their corresponding vector norm, i.e. for a given vector norm ‖ · ‖ on
R𝑛, the induced matrix norm for a matrix 𝐴 ∈ R𝑛×𝑚 with respect to ‖ · ‖ is
‖𝐴‖ := sup𝑥∈R𝑛 , ‖𝑥 ‖=1 ‖𝐴𝑥‖. For induced matrix norms, the following property
holds additionally

‖𝐴𝐵‖ ≤ ‖𝐴‖‖𝐵‖ (sub-multiplicativity).

Moreover we will need that given two matrices 𝐴 ∈ R𝑛×𝑚, 0 ∈ R𝑛×𝑙 , we have
‖(𝐴 0)‖ = sup‖ (𝑥> 𝑦>) ‖=1 ‖(𝐴 0) (𝑥> 𝑦>)>‖ = sup‖𝑥 ‖=1 ‖𝐴𝑥‖ = ‖𝐴‖,
where the last step follows from the fact that the fact that the choice of 𝑦 does
not change the supremum of ‖𝐴𝑥‖.
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Another important property which we will use is the “triangular inequality for
integrals” for integrable functions 𝐹 : R→ R𝑛,∫ 𝑏

𝑎

𝐹 (𝑡)𝑑𝑡
 ≤ ∫ 𝑏

𝑎

‖𝐹 (𝑡)‖𝑑𝑡, (A.2)

which can be shown by the above properties and the definition of the Riemann
integral.

Definiteness of matrices

A matrix 𝑀 ∈ R𝑛×𝑛 is called positive definite if 𝑥>𝑀𝑥 ≥ 0 for all 𝑥 ∈ R𝑛.
If the before inequality holds strictly, 𝑀 is called strictly positive definite.
Equivalently, we write 𝑀 � 0 and 𝑀 � 0.

Fundamentals from calculus

By the fundamental theorem of calculus we have for any continuously-
differentiable function 𝑔 : [𝑎 𝑏] → R∫ 𝑡2

𝑡1

𝑔′(𝑡)𝑑𝑡 = 𝑔(𝑡1) − 𝑔(𝑡2).

For an extension to the multivariate case let us consider a continuously differ-
entiable vector-valued function 𝑓 : R𝑛 → R. Define 𝑔(𝑡) := 𝑓 (𝑎 + 𝑡 (𝑏 − 𝑎))
and thus 𝑔′(𝑡) = ∇ 𝑓 (𝑎 + 𝑡 (𝑏 − 𝑎))> (𝑏 − 𝑎). Then we have∫ 1

0
∇ 𝑓 (𝑎 + 𝑡 (𝑏 − 𝑎))> (𝑏 − 𝑎) 𝑑𝑡 = 𝑓 (𝑏) − 𝑓 (𝑎).

The extension to a vector field 𝐹 : R𝑛 → R𝑚 is done by concatenation of
single-valued functions 𝑓𝑖 : R𝑛 → R as 𝐹 (𝑥) := ( 𝑓1 (𝑥), . . . , 𝑓𝑚 (𝑥))> yielding∫ 1

0
∇𝐹 (𝑎 + 𝑡 (𝑏 − 𝑎))> (𝑏 − 𝑎) 𝑑𝑡 = 𝐹 (𝑏) − 𝐹 (𝑎), (A.3)
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for some 𝑎, 𝑏 ∈ R𝑛, where ∇𝐹 is the Jacobian of 𝐹 and the integral is evaluated
component-wise.

Convergence of sequences

In context of optimization algorithm, two question are of significant interest:
first of all, the question “Does the sequence generated by the algorithm converge
to a minimizer/stationary point?” and, secondly “If it converges, how fast does
it converge to that point?”.

Let us address the first question. A sequence {𝑥𝑘 } in the metric space
(R𝑛, 𝑑 (𝑥, 𝑦) = ‖𝑥 − 𝑦‖) is called convergent to a point 𝑥★ if for any 𝜖 > 0 one
can find an 𝑁 such that ‖𝑥𝑘 − 𝑥★‖ < 𝜖 for all 𝑛 > 𝑁 . Not that for a sequence
satisfying ‖𝑥𝑘+1 − 𝑥★‖ ≤ 𝑐‖𝑥𝑘 − 𝑥★‖ with 𝑐 ∈ [0 1) one can always find such
an 𝑁 , since by iterating this equality we have ‖𝑥𝑁 − 𝑥★‖ ≤ 𝑐𝑁 ‖𝑥0 − 𝑥★‖ ≤ 𝜖

by choosing an 𝑁 large enough. Thus, one can show convergence to 𝑥★ by
showing that the above inequality holds.

To characterize the “speed” of convergence we distinguish between four ba-
sic convergence rates (with increasing speed): Q-sublinear, Q-linear, Q-
superlinear and Q-quadratic convergence. The “Q” here stands for quotient
convergence. Consider a sequence {𝑐𝑘 }𝑘 that converges to 𝑐. We say that this
sequence is Q-linearly convergent to 𝑐 with modulus 𝜇 ∈ (0, 1) if1

lim sup
𝑘→∞

|𝑐𝑘+1 − 𝑐 |
|𝑐𝑘 − 𝑐 |

= 𝜇.

We say that {𝑐𝑘 } is Q-sublinearly convergent if the above limit converges to 1
and superlinearly convergent if it converges to 0. We say that {𝑐𝑘 } converges
Q-quadratically to 𝑐 if

lim sup
𝑘→∞

|𝑐𝑘+1 − 𝑐 |
|𝑐𝑘 − 𝑐 |2

= 𝜇 < ∞.

1 Linear convergence essentially means exponential convergence in the sense that a linearly
convergent series can be upper bounded by a exponentially covergent sequence. The name
“linearly” convergence comes from the fact that a linearly convergent series looks linear in a
semilogarithmic plot.
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Figure A.1: Convergence rates in comparison.

Note that in view of the above definition of linear convergence, if we can
find a sequence satisfying |𝑐𝑘+1 − 𝑐 | ≤ 𝜇 |𝑐𝑘 − 𝑐 |, with 𝜇 ∈ (0, 1), linear
convergence with modulus 𝜇 immediately follows. Similarly, we can conclude
quadratic convergence from an inequality |𝑐𝑘+1 − 𝑐 | ≤ 𝜇 |𝑐𝑘 − 𝑐 |2. Figure A.1
shows examples of sublinear, linear, superlinear and quadratically convergent
sequences.

Note that there is an issue in the above definitions in case the sequence can
only be upper bounded by a fast convergent sequence but does not decrease
in each step in the above sense. This might be problematic since some op-
timization methods do not produce a descent in the objective function value
in each step. Consider for example the sequence 𝑐𝑘 = 𝑒−𝑘 (1 + sin(10 𝑘 𝜋

2 )).
This sequence somehow converges “intuitively linearly” to zero but not in
the sense of the above definition since lim sup𝑘→∞

𝑒−(𝑘+1) (1+sin(10 (𝑘+1) 𝜋2 ))
𝑒−𝑘 (1+sin(10 𝑘 𝜋

2 ))
=

𝑒−1 (1+sin(10 (𝑘+1) 𝜋2 ))
(1+sin(10 𝑘 𝜋

2 ))
> 1.

Therefore, it makes sense to use a weaker notion of convergence rate, the
root convergence (𝑅-convergence), where convergence is characterized by
a majorizing, upper bounded, and 𝑄-convergent sequence {𝑐𝑘 }. In view
of that we say that the sequence {𝑐𝑘 } converges 𝑅-{linearly, superlinearly,
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Figure A.2: 𝑅-convergence vs. 𝑄-convergence.

quadratically} to 𝑐 if there exists a 𝑄-{linearly, superlinearly, quadratically}
sequence {𝑐𝑘 } converging to zero such that

|𝑐𝑘 − 𝑐 | ≤ 𝑐𝑘 .

For the above example we can the define the 𝑄-linearly convergent sequence
𝑐𝑘 = 2𝑒−𝑘 ≥ 𝑒−𝑘 (1 + sin(10 𝑘 𝜋

2 )) and thus 𝑅-linear convergence of {𝑐𝑘 }
follows. Figure A.2 illustrates the above example. Note that trivially each
𝑄-linearly convergent sequence is 𝑅-linearly convergence but the converse is
not true.

𝑅-convergence can be indicated using the order notation. For the above exam-
ple we can simply write |𝑐𝑘 − 𝑐 | = O(𝑒−𝑘 ) indicating 𝑅-linear convergence
of {𝑐𝑘 } to 𝑐. We say that a function (sequence) 𝑓 : R → R is of order
𝑔 : R → R with respect to 𝑎 ∈ R ∪ {−∞,∞} if there exists a 𝑐 > 0 such
that | 𝑓 (𝑥) | ≤ 𝑐 |𝑔(𝑥) | for 𝑥 → 𝑎. Here we usually mean the limiting behavior
with repsect to 𝑎 = ∞ but in optimization this notion is also sometimes used
for describing residuals in Taylor series expansions where 𝑎 is the point of
expansion.

Moreover, there exist several ways of characterizing the convergence of op-
timization methods. They can be characterized in terms of a distance to a
local minimizer (or a stationary point), i.e. ‖𝑥𝑘 − 𝑥★‖ = O(·), in terms of the
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objective function value | 𝑓 (𝑥𝑘 ) − 𝑓 (𝑥★) | = O(·) or in terms of stationarity of
the objective function (in the unconstrained case) ‖∇ 𝑓 (𝑥𝑘 )‖ = O(·). In the
present work, we refer to the first case, i.e. convergence estimates considering
the distance to a local minimizer if not stated differently. Note that, however,
particularly in context of distributed optimization, convergence is often de-
fined in terms of the objective function value. Under certain conditions such as
Lipschitz continuity or strong convexity one can transfer estimates in terms of
the objective function to a result in terms of the distance to a local minimizer
[Ber99, Chap 1.2] [Bec17] but not always. Sometimes convergence results are
stated in terms of a specific accuracy, i.e. the number of iterations needed to
reach a specific accuracy in the objective function value | 𝑓 (𝑥𝑘 ) − 𝑓 (𝑥★) | < 𝜖

[Bec+18] which we will not use in the present work.

A.2 Distributed problem formulations

Here, we give a brief overview on common problem formulations used in the
literature. Recall that in the present work we consider problems in form of
(2.12),

min
𝑥𝑖 ,...,𝑥𝑅

∑︁
𝑖∈R

𝑓𝑖 (𝑥𝑖) (A.4a)

subject to 𝑔𝑖 (𝑥𝑖) = 0, ∀𝑖 ∈ R, (A.4b)
ℎ𝑖 (𝑥𝑖) ≤ 0, ∀𝑖 ∈ R, (A.4c)∑︁

𝑖∈R
𝐴𝑖𝑥𝑖 = 𝑏, (A.4d)

where 𝑓𝑖 ,𝑔𝑖 and ℎ𝑖 are smooth. A common technique to simplify problem
(A.4) is to replace 𝑓 by 𝑓𝑖 := 𝑓𝑖 + 𝜄X𝑖 , where 𝜄 is the indicator function of the
set X𝑖 := {𝑥𝑖 ∈ R𝑛𝑥𝑖 | 𝑔𝑖 (𝑥𝑖) = 0, ℎ𝑖 (𝑥𝑖) ≤ 0}, cf. Section 2.2.1. This yields
an equivalent problem

min
𝑥1 ,...,𝑥𝑅

𝑁∑︁
𝑖=1

𝑓𝑖 (𝑥𝑖) (A.5a)

subject to
∑︁
𝑖∈R

𝐴𝑖𝑥𝑖 = 𝑏. (A.5b)
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Note that if all 𝑔𝑖 are affine and all ℎ𝑖 are convex, all 𝑓𝑖s are convex but possibly
non-differentiable and discontinuous functions, which render derivative-based
algorithms such as gradient-based methods or SQP methods non-applicable.
However, some algorithms such as ADMM can handle such discontinuities
under certain circumstances. By introducing auxiliary variables 𝑧𝑖 ∈ R𝑛𝑥𝑖 , we
can write (A.5) as

min
𝑥,𝑧

𝑓 (𝑥) + 𝜄C (𝑧)

subject to 𝑥𝑖 − 𝑧𝑖 = 0, ∀𝑖 ∈ R

with 𝑓 =
∑

𝑖∈R 𝑓𝑖 and where C = {𝑧 ∈ R𝑛𝑥 ‖ ∑
𝑖∈R 𝐴𝑖𝑧𝑖 − 𝑏 = 0}. This

problem is now in the famous two-block form

min
𝑥,𝑧

𝑓 (𝑥) + 𝑔(𝑧) (A.6)

subject to 𝐴𝑥 + 𝐵𝑧 = 𝑐, (A.7)

used in many contexts of distributed optimization [BT89, Chap 3.4], [Bec17,
Chap 10], [PB14; EB92; Och+14; BT09; DLS16; GB16; Boy+11]. This form
is often used in so-called operator splitting schemes having a different view on
distributed optimization from a operator-theoretic perspective [EB92; GOY17;
BC11]. Note that the ADMM is shown to be a special case of the so-called
Douglas-Rachford-splitting algorithm [Gab83]. Generally, splitting schemes
can often efficiently exploit the fact that one of the two functions 𝑓 or 𝑔 is
separable which is also here case for 𝑓 . Note that these splitting schemes often
rely on convexity which can be ensured by choosing convex 𝑓𝑖 and ℎ𝑖 and affine
𝑔𝑖 .

Consensus problems

In many cases, distributed optimization approaches consider unconstrained
problems in form of

min
𝑥

∑︁
𝑖∈R

𝑓𝑖 (𝑥). (A.8)
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in the literature [Shi+14; Shi+15b; NO09; MO17; DLS16; NOP10; Boy+11;
ZK14; NOS17]. Here, the 𝑓𝑖 are typically continuous but they might not
be differentiable, i.e. they might consider non-smooth components but do
typically not encode constraints via the indicator function as in the previous
subsection. Note that here all 𝑓𝑖 depend on one common decision vector 𝑥.
Similar to the above, by introducing 𝑅 copies of 𝑥, 𝑧𝑖 ∈ R𝑛𝑥 , it is possible to
transform (A.8) into so-called consensus form

min
𝑥,𝑧𝑖

∑︁
𝑖∈R

𝑓𝑖 (𝑧𝑖) (A.9a)

subject to 𝑧𝑖 = 𝑥 for all 𝑖 ∈ R (A.9b)

which is again in two-block form (A.6). Note that in this formulation, the
network structure is not explicitly considered which makes this form interesting
mostly in parallel computing contexts. Next, we will review problem structures
considering the network structure.

Connection to optimization over networks

Many works consider distributed optimization over networks [DLS16; Shi+14;
Shi+15b; NO09; TT17]. Therein, problem (A.8) is typically reformulated as
consensus problems but subject to certain communication constraints which
are encoded as a graph 𝐺 = {N , E}. One option for doing so [Shi+14] is to
introduce global auxiliary variables 𝑧𝑖 𝑗 only for the edges (𝑖, 𝑗) ∈ E yielding

min
𝑥𝑖 ,𝑧𝑖 𝑗

∑︁
𝑖∈R

𝑓𝑖 (𝑥𝑖) (A.10)

subject to 𝑥𝑖 = 𝑧𝑖 𝑗 , 𝑥 𝑗 = 𝑧𝑖 𝑗 for all (𝑖, 𝑗) ∈ E . (A.11)

Note that (A.10) is again in two-block form (A.6). An alternative option
is copying all variables and enforcing consensus directly via characteristic
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matrices of 𝐺 such as the Laplacian matrix 𝐿 ∈ R |N |×|N | or its incidence
matrix 𝐼 ∈ R |N |×|E | [Dor18] for one-dimensional problems. This yields

min
𝑥𝑖

∑︁
𝑖∈R

𝑓𝑖 (𝑥𝑖) (A.12)

subject to 𝐿𝑥 = 0 or 𝐼>𝑥 = 0. (A.13)

Applying ADMM or a gradient/subgradient method reveals that it suffices to
exachange information only between neighbors, i.e. over the edges (𝑖, 𝑗) ∈ E.
Note that due to these reformulations, properties of 𝐺 such as connectedness
or algebraic connectivity influence the convergence properties of the resulting
decentralized algorithms, where stronger connectivity typically leads to faster
convergence [Shi+14].

Algorithms for (A.8) are developed without explicitly introducing the graph
properties into the problem formulation [NO09; Shi+15b; NOS17; DLS16;
YLY16]. In these works, typically matrices 𝑊 encoding connectivity infor-
mation are directly introduced into the iteration schemes e.g. of a gradient
method. Recent overviews on optimization over networks can be found in
[NOW18; NOR18], cf. [Dor18] for an introduction from a control-theoretic
perspective.

The here-used connectivity encoding technique

In the present work we use network encoding which is closets related to the
edge-based technique form the previous paragraph. Our formulation is more
general as the before-introduced techniques in the sense that it allows for
multiple decision variables per node, where all these decision vectors can be
of a different dimension. This already shows that in the context of our work we
mainly rely on “complexity in the nodes” in the sense that usually we have few
nodes, each of which has a quite complex subproblem. Rather than defining
the graph a-priori, we follow a different route: we define our communication
graph based on the sparsity in the consensus matrices {𝐴𝑖}. In view of (A.4),
we have a node set R to each of which we assign a decision vector 𝑥𝑖 , for all
𝑖 ∈ R. We define the edges of the graph via the non-zero entries in {𝐴𝑖}: two
subsystems 𝑖, 𝑗 ∈ R are called neighbored (and thus we assign an edge (𝑖, 𝑗)
to the set E) if there is a row 𝑐 ∈ C which is non-zero in bot corresponding
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𝐴𝑖 and 𝐴 𝑗 . This way, our formulation is more general compared to the other
formulations above since we allow for multiple variables per node and for
multiple interconnections between two nodes.

Moreover, other couplings exists such as objective coupling, where the coupling
between variables takes place in the objective function. However, typically they
can be reformulated in constrained-coupled form. We refer to [NND11] for a
more detailled treatment in context of control.

A.3 Consensus reformulation preserves LICQ

In order to use distributed optimization methods, it is often necessary to refor-
mulate problems in affinely-coupled separable form (2.12) as we have seen for
OPF in Section B.4. One approach for doing so is copying decision variables
which couple the subsystems nonlinearly and coupling them again by an ad-
ditional affine equality constraints which then immideately leads to problems
in form of problem (2.12). In this case, an important question is whether or
not we “destroy” certain nice properties of the original problems such as con-
straint qualifications from Definition 2. Next, we show that this is not the case,
i.e. that copying variables and adding additional affine coupling constraints
preserves LICQ.

Let us assume we have an optimization problem with two blocks of variables
𝑥 ∈ R𝑛𝑥 , 𝑦 ∈ R𝑛𝑦 subject to equality constraints 𝑔 : R𝑛𝑥 × R𝑛𝑦 → R𝑛𝑔 with
𝑛𝑔 ≤ 𝑛𝑥 + 𝑛𝑦 . We now want to show that a introducing auxiliary variables
𝑧 ∈ R𝑛𝑦 preserves LICQ.

If LICQ holds for 𝑔, we have

rank (∇𝑔(𝑥, 𝑦)) = 𝑛𝑔

in a small neighborhood of (𝑥★, 𝑦★). If we minimize over an extended set of
variables (𝑥, 𝑦, 𝑧) ∈ R𝑛𝑥+2𝑛𝑦 , the constraints are given by

�̃�(𝑥, 𝑦, 𝑧) :=

(
𝑔(𝑥, 𝑧)
𝑦 − 𝑧

)
= 0.
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Moreover

∇�̃�(𝑥, 𝑦, 𝑧) =
(
∇𝑥 �̃�(𝑥, 𝑦, 𝑧) 0 ∇𝑧 �̃�(𝑥, 𝑦, 𝑧)

0 𝐼 −𝐼

)
. (A.14)

By LICQ, the first row of (A.14) has rank 𝑛𝑔. Using the identity

rank (𝐴> 𝐵>)> = rank(𝐴) + rank(𝐵 − 𝐵𝐴>𝐴)

then yields rank (∇𝑔(𝑥, 𝑦, 𝑧)) = 𝑛𝑔 + 𝑛𝑦 . This shows that LICQ is preserved.

A.4 Proof of Theorem 4

The proof is similar to standard proofs for Newton-type methods from [Die16;
NW06; Ber99] and given here for the sake of a self-contained presentation and
because of it’s importance for the convergence analysis of ALADIN. The idea
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is to estimate the distance to a local primal-dual solution to (2.12) 𝑞★. With
the Newton-type iteration (2.7) we get

‖𝑞𝑘+1 − 𝑞★‖ = ‖𝑞𝑘 − 𝑞★ − (𝑀𝑘 )−1𝐹 (𝑞𝑘 )‖
= ‖𝑞𝑘 − 𝑞★ − (𝑀𝑘 )−1 (𝐹 (𝑞𝑘 ) − 𝐹 (𝑞★))‖
= ‖(𝑀𝑘 )−1𝑀𝑘 (𝑞𝑘 − 𝑞★)

− (𝑀 𝑘 )−1
∫ 1

0
∇𝐹

(
𝑞★ + 𝑡 (𝑞𝑘 − 𝑞★)

)
(𝑞𝑘 − 𝑞★)𝑑𝑡‖

= ‖(𝑀𝑘 )−1 (𝑀𝑘 − ∇𝐹 (𝑞𝑘 )) (𝑞𝑘 − 𝑞★)

−
∫ 1

0
(𝑀𝑘 )−1

(
∇𝐹

(
𝑞★ + 𝑡 (𝑞𝑘 − 𝑞★)

)
− ∇𝐹 (𝑞𝑘 )

)
(𝑞𝑘 − 𝑞★)𝑑𝑡‖

≤
(𝑀𝑘 )−1 (𝑀𝑘 − ∇𝐹 (𝑞𝑘 ))

 𝑞𝑘 − 𝑞★
+

∫ 1

0

(𝑀𝑘 )−1
(
∇𝐹

(
𝑞★ + 𝑡 (𝑞𝑘 − 𝑞★)

)
− ∇𝐹 (𝑞𝑘 )

) 𝑑𝑡 𝑞𝑘 − 𝑞★
≤ 𝜅

𝑞𝑘 − 𝑞★ + ∫ 1

0
𝜔‖𝑞𝑘 − 𝑞‖𝑑𝑡

𝑞𝑘 − 𝑞★
=

(
𝜅 + 𝜔

2
‖𝑞𝑘 − 𝑞★‖

)
‖𝑞𝑘 − 𝑞★‖,

where we used (in this order) 𝐹 (𝑞★) = 0, the fundamental theorem of calcu-
lus (A.3), continuous differentiability of 𝐹 and adding ±(𝑀 𝑘 )−1∇𝐹 (𝑞𝑘 ) (𝑞𝑘 −
𝑞★) and pulling it into the integral, (in one step) the triangular inequality—
(A.2)—submultiplicativity—and standard properties of integrals, the Lips-
chitz condition (2.10a) and compatibility condition (2.10b) and the positiv-
ity of norms, and finally evaluation of the integral. Convergence follows
by inserting ‖𝑞𝑘 − 𝑞★‖ <

2(1−𝜅)
𝜔

into the contraction estimate leading to
‖𝑞𝑘+1 − 𝑞★‖ < ‖𝑞𝑘 − 𝑞★‖ which is sufficient for convergence to 𝑞★. �
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Using a sufficiently accurate grid models is extremely important. In this sec-
tion, we will provide a brief introduction to the AC power system model provid-
ing a sufficient accuracy for decision making on a seconds-to-hours time scale.
This model describes the nonlinear relation between the injected/consumed
powers at all nodes and the corresponding voltages. One often-employed alter-
native is the so-called DC-model which is often employed in context of power
system optimization.1 Note that this model is often insufficient due to the lack
of voltage and reactive power modeling.

B.1 The AC model

Let us make the assumption we use for the AC model explicit. We assume

(i) time-scale separation;

(ii) sufficiently short transmission lines;

(iii) the absence of nodal shunts and transformers;

(iv) a symmetric power system;

(v) and a constant-power load model.

1 The DC models assumes constant voltages, no resistances in transmission lines and small
voltage angles yielding a linear model of power systems enabling to use all benefits from convex
optimization. However, while these assumptions represent the physical laws in transmission
grids quite well, in distribution grids they are often violated to a large degree for example due
to high resistances and high power injections from renewables at weak nodes leading to quite
large voltage angle differences [WW13].
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Assumption (i) implies that we have a steady-state and transient phenomena
can be neglected; assumption (i) together with assumption (ii) allows for using
a 𝜋-equivalent model of transmission-lines/cables. Assumption (iii) is mainly
made for simplified presentation, including shunts and transformers poses no
significant difficulty from an algorithmic perspective—however it somewhat
complicates model derivation. Assumption (iv) implies that we can represent
all three phase by their single-phase equivalent. Assumption (v) is made to
be able to avoid the difficulty of handling different load models which is quite
common under for the here-considered steady-state problems [Ari+18].

Remark 20 (Discussion of the above assumptions). Finer-grained models
exists allowing to violate the above assumptions. Examples include using
hyperbolic equations for the transmission lines (or even partial differential
equations) [GS94, Chap 6], using three-phase model for unbalanced grids,
using voltage-dependent demands [Ari+18], considering voltage-regulated
buses and considering transformers and line shunts. However, there is always a
trade-off between sufficiently accurate modeling and complexity of the resulting
problem. One usually aims at using a model which captures the relevant
effects in to sufficient accuracy, but neglects further effects in order to keep the
resulting optimization problems tractable. With the set of assumptions given
here, we are still able to handle voltage bounds and reactive power.

The AC power flow equations

We model an electrical grid by an undirected graph 𝐺 = (N , E,Y), where
N = {1, . . . , 𝑁} is the set of buses, E ⊆ N × N is the set of branches and
Y : E → C2, (𝑘, 𝑙) ↦→ (𝑦𝑘𝑙 , 𝑦𝑠𝑘𝑙) is a map assigning a line admittance and a
shunt admittance to each branch. We use these the admittances in a 𝜋-branch
model shown in Figure B.1. In order to derive the relationships between
bus powers and all bus voltages, we investigate the relationship between the
complex powers flowing into/out of the branch 𝑠𝑘𝑙 , 𝑠𝑙𝑘 ∈ C and the voltage
phasors at the beginning/end of the branch 𝑢𝑘 ∈ C and 𝑢𝑙 ∈ C by means of
circuit theory.

The complex power flowing from node 𝑘 to node 𝑙 is 𝑠𝑘𝑙 = 𝑢𝑘𝑖
∗
𝑘𝑙

, where
𝑖𝑘𝑙 ∈ C is the complex current over the branch (𝑘, 𝑙) and 𝑧∗ denotes the
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Figure B.1: 𝜋-line model of a branch.

complex-conjugate of 𝑧 ∈ C. Furthermore we have 𝑖𝑘𝑙 = (𝑢𝑘 − 𝑢𝑙)𝑦𝑘𝑙 and
𝑖𝑘𝑙 = 𝑖𝑘𝑙 − 𝑢𝑘

𝑦𝑠
𝑘𝑙

2 . Thus,

𝑠𝑘𝑙 = 𝑢𝑘

(
(𝑢∗𝑘 − 𝑢

∗
𝑙 )𝑦
∗
𝑘𝑙 + 𝑢

∗
𝑘

𝑦𝑠∗
𝑘𝑙

2

)
. (B.1)

By the law of energy conservation, the complex (net) power at node 𝑘 , 𝑠𝑘 has
to be the sum of all powers flowing into connected transmission lines yielding

𝑠𝑘 =

𝑁∑︁
𝑘=1

𝑢𝑘

(
(𝑢∗𝑘 − 𝑢

∗
𝑙 )𝑦
∗
𝑘𝑙 + 𝑢

∗
𝑘

𝑦𝑠∗
𝑘𝑙

2

)
for all 𝑘 ∈ N . (B.2)

By defining a bus admittance matrix

[𝑌𝑘𝑙] :=


𝑁∑︁

𝑚=1
𝑦𝑘𝑚 +

𝑦𝑠
𝑘𝑚

2
, if 𝑘 = 𝑙,

−𝑦𝑘𝑙 , if 𝑘 ≠ 𝑙,

we can write (B.2) compactly as

𝑠 = diag(𝑣)𝑌 ∗𝑣∗. (B.3)

Here, 𝑣 = (𝑢𝑘 )𝑘=1,...,𝑁 ∈ C𝑁 is the vector of all nodal voltages, 𝑠 =

(𝑠𝑘 )𝑘=1,...,𝑁 ∈ C𝑁 denotes the vector of all complex power injections and
we define diag(z) ∈ Cnz×nz as a diagonal matrix with the entries of 𝑧 ∈ C𝑛𝑧
on the main diagonal. If multiple components such as loads, generators and
storages are connected to one node we have

𝑠𝑘 = 𝑠
g
𝑘
− 𝑠d

𝑘 − 𝑠s
𝑘 for all 𝑘 ∈ N , (B.4)
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Figure B.2: Apparent power balance at node 𝑘.

where 𝑠
g
𝑘
∈ C denotes apparent power of a generator, 𝑠d

𝑘
∈ C denotes the

apparent power demand and 𝑠s
𝑘
∈ C denotes the apparent power of a storage

all connected to bus 𝑘 . If there is no generator/demand/storage at a node, we
set the corresponding power to zero.

As numerical algorithms are typically designed for real-valued spaces, we have
to transform (B.3) to the real domain. Here, we have different possibilities: we
can represent the complex voltages 𝑢𝑘 at all nodes 𝑘 = 1, . . . , 𝑁 in cartesian
coordinates 𝑢𝑘 = 𝑣re

𝑘
+ 𝑗𝑣im

𝑘
or in polar coordinates 𝑢𝑘 = 𝑣𝑘𝑒

𝑗 𝜃𝑘 , where 𝑣𝑘 is
the voltage magnitude and 𝜃𝑘 is the voltage angle at node 𝑘 . The same choice
we have for the complex line admittances 𝑦𝑘𝑙 . The choice of these coordinates
leads to different forms of the power flow equations—for details we refer to the
excellent survey [FR16]. Here we use the combination of polar coordinates for
𝑣 and 𝑠, and rectangular coordinates for𝑌 = 𝐺 + 𝑗𝐵, which is the most popular
formulation for OPF. By doing so and by taking real and imaginary parts of
(B.3) we get

Re(𝑠𝑘 ) = 𝑝𝑘 = 𝑣𝑘

𝑁∑︁
𝑘=1

𝑣𝑙 (𝐺𝑘𝑙 cos(𝜃𝑘𝑙) + 𝐵𝑘𝑙 sin(𝜃𝑘𝑙)), (B.5a)

Im(𝑠𝑘 ) = 𝑞𝑘 = 𝑣𝑘

𝑁∑︁
𝑘=1

𝑣𝑙 (𝐺𝑘𝑙 sin(𝜃𝑘𝑙) − 𝐵𝑘𝑙 cos(𝜃𝑘𝑙)), (B.5b)

for all nodes for all nodes 𝑘 ∈ N , where 𝜃𝑘𝑙 := 𝜃𝑘 − 𝜃𝑙 and where 𝑝𝑘 is called
the active power and 𝑞𝑘 is called the reactive power at node 𝑘 . Note that 𝑝𝑘 and
𝑞𝑘 are net powers (i.e. the residual between generation and demand at node
𝑘); substituting 𝑝𝑘 and 𝑞𝑘 in (B.5) with the corresponding real/imaginary part
of equation (B.4) yields power flow equations in terms of component powers.
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B.2 Power flow analysis

B.2 Power flow analysis

Recall that classically the only quantities which we can directly influence in
power systems are active and reactive power injections from generators 𝑝g

𝑘
and

𝑞
g
𝑘
. But how to compute the voltage angles 𝜃𝑘 and voltage magnitudes 𝑣𝑘 for

given power injection and demand? This question is subject of so-called power
flow analysis.

As the power flow equations (B.5) are usually not algebraically solvable for
(𝑣, 𝜃), we have to use iterative methods. Let us write the power flow equa-
tions (B.5) with (B.4) as

𝐹𝑘 (𝜒𝑘 ) :=
(
𝑝

g
𝑘
− 𝑝d

𝑘
− 𝑝s

𝑘
− 𝑣𝑘

∑𝑁
𝑘=1 𝑣𝑙 (𝐺𝑘𝑙 cos(𝜃𝑘𝑙) + 𝐵𝑘𝑙 sin(𝜃𝑘𝑙))

𝑞
g
𝑘
− 𝑞d

𝑘
− 𝑞s

𝑘
− 𝑣𝑘

∑𝑁
𝑘=1 𝑣𝑙 (𝐺𝑘𝑙 sin(𝜃𝑘𝑙) − 𝐵𝑘𝑙 cos(𝜃𝑘𝑙))

)
= 0

for all nodes except the first node 𝑘 = 2, . . . , 𝑁 with 𝜒𝑘 := (𝑣𝑘 , 𝜃𝑘 , )>. Let
us assume that the variables 𝑝

g
𝑘
, 𝑞

g
𝑘
, 𝑝d

𝑘
, 𝑝s

𝑘
, 𝑞d

𝑘
and 𝑞s

𝑘
are fixed and given

here. This yields an implicit function �̃� (𝑥) := (𝐹𝑘 (𝜒𝑘 ))𝑘=2,...,𝑁 , where 𝑥 :=
(𝜒𝑘 )𝑘=2,...,𝑁 .

Bus one is not included in �̃� and has a special role here: technically speaking,
this bus has to compensate the power demand (active and reactive power)
which is not covered by the other generators. Physically this follows from
the law of energy conservation. Mathematically, this follows from the fact
that the last power flow equation can be expressed as a linear combination of
the other power flow equations (if no shunts are present as we assume here)
implying that one of the power flow equations is “redundant”. This leads to
the situation that we can not apply the implicit function theorem for locally
inverting �̃� (because of the singularity of ∇𝐹). Hence, also iterative methods
such as Newton-type methods would fail. The common approach for tackling
this issue is to introduce a so-called slack-bus at a bus with a large generator
(typically bus one), where instead of fixing the net powers 𝑝1 and 𝑞1, we fix
the voltage angle 𝜃1 and voltage magnitude 𝑣1. Hence, the active and reactive
powers become “free variables” at this node in the sense that they are a result
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B Power System Fundamentals

rather than a precondition of our computation.2 Thus, the extended implicit
function reads

𝐹 (𝑥) :=
(
𝑣1 − 𝑣ref

1 , 𝜃1 − 𝜃ref
1 , (𝐹𝑘 (𝜒𝑘 ))𝑘=2,...,𝑁

)
!
= 0, (B.6)

with 𝑥 :=
(
𝑝1, 𝑞1, (𝑣𝑘 , 𝜃𝑘 )𝑘 )𝑘=2,...,𝑁

)
where 𝑣ref

1 and 𝜃ref
1 are constant and

given reference values. Note that the components of 𝐹 become linearly in-
dependent and ∇𝐹 (𝑥) becomes invertible. The above equations can now be
solved by standard Newton-type methods from Section 2.1.2, which is then
called a power-flow study.

Remark 21 (Different bus types). Note that we assume here for simplicity that
we only have two bus types: “pq-buses”, where active and reactive power is
given and a slack bus, where the voltage angle and magnitude are given. In
many works, also a third bus type is considered (“pv-buses”), where active
power and the voltage magnitude are given and the voltage angle and the
reactive power are unknown. This comes from the fact that some generators
are equipped with voltage regulators, which keep the voltage magnitude at a
certain value by injecting reactive power. We leave this out for simplicity here
as our goal is to outline main idea of power flow computations and we refer to
[GS94; WW13] for further details.

B.3 Optimal power flow

The classical goal of optimal power flow is to compute (in a certain sense)
optimal set-points for all controllable devices in a grid such that a certain cost
function is minimized. Thereby, technical and physical limitations such as
power generation limits of the power flow equations (B.5) are considered.

2 This assumption is technically sound if a large generator is connected to the first bus which can
typically be ensured by an appropriate numbering of the buses.
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B.3 Optimal power flow

In many cases, the objective function in OPF is the sum of the cost function
for active power generation of all generators [Zhu15; FR16]

𝑓 (𝑥) :=
𝑁∑︁
𝑘=1

𝑓
g
𝑘
(𝑝g

𝑘
),

where we have 𝑥 := (𝜒𝑘 )𝑘=1,...,𝑁 with 𝜒𝑘 := (𝑣𝑘 , 𝜃𝑘 , 𝑝g
𝑘
, 𝑞

g
𝑘
)> and 𝑝d

𝑘
, 𝑝s

𝑘
, 𝑞d

𝑘
,

𝑞s
𝑘

fixed and given. In contrast to the power flow problem from the previous
subsection, all generator powers are “free” variables now, i.e. we would like
to compute them optimally. The individual generator cost functions are often
chosen as quadratic functions

𝑓
g
𝑘
(𝑝g

𝑘
) := 𝑎𝑘 (𝑝g

𝑘
)2 + 𝑏𝑘 𝑝g

𝑘
+ 𝑐𝑘

for all 𝑘 = 1, . . . , 𝑁 with 𝑓
g
𝑘
≡ 0 for non-generator buses. Note that the genera-

tor cost generally does not depend on the reactive power injection 𝑞
g
𝑘
. Reactive

power can be seen as a power to charge and discharge transmission lines and
inductive/capacitive loads—thus this energy oscillates between consumer and
is thus not related to any generation cost (except for slightly changing grid
losses).

Power generators are usually subject to active and reactive power limitations.
These limitations come from operation limits of the power generation units and
for the reactive power mainly from current limitations in the generator stator
winding. Moreover, voltage magnitudes have to stay withing certain bounds
to ensure proper functioning of the connected devices and to avoid damaging
the electrical insulation. The current in transmission lines is also constrained
by thermal limits. This is often expressed (although not entirely correct)3 by
limits on the magnitude of the apparent power over lines

|𝑠𝑘𝑙 (𝑥) | :=
√︃
𝑝𝑘𝑙 (𝑥)2 + 𝑞𝑘𝑙 (𝑥)2, (B.7)

3 To be more precise, one would have to limit the magnitude of the current over the transmission
line |𝑖𝑘𝑙 |. As voltage magnitudes typically deviate only slightly from the nominal voltage, the
approximation by an apparent power limit is sufficiently tight in most cases.
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B Power System Fundamentals

where 𝑝𝑘𝑙 = Re(𝑠𝑘𝑙) and 𝑞𝑘𝑙 = Im(𝑠𝑘𝑙) with 𝑠𝑘𝑙 from (B.1). Stacking the
apparent powers for all transmission lines yields

|𝑆 |2 (𝑥) :=
(
|𝑠𝑘𝑙 (𝑥) |2

)
E
.

Combining the above yields a (single-stage) optimal power flow problem

min
𝑥

𝑓 (𝑥) (B.8a)

subject to 𝐹 (𝑥) = 0, (B.8b)
|𝑆 |2 (𝑥) ≤ 𝑠2 (B.8c)
𝑥 ≤ 𝑥 ≤ 𝑥, (B.8d)

where 𝑥 and 𝑥 collect lower/upper bounds on power injections and voltage
magnitudes; 𝑠2 collects the upper limits on the apparent power over branches.

Remark 22 (OPF variants). Note that there exist many variants of OPF, differ-
ing for example in the underlying grid model (DC model vs. AC model, polar
coordinates vs. rectangular coordinates, ...) [Zhu15; FR16; MH19], consid-
ering uncertain power injection and/or demands [FGM18; M+̈17; Müh+19;
BCH14] or extensions considering component failure, which is called security
constrained OPF [MPG87; Cap+11]. Trying to give an exhaustive overview
is beyond the scope of the present thesis and we refer for example to [FR16;
FSR12; Zhu15; Cap+11; Cap16] for details. However, the majority of these
problem formulations are extensions of the “standard OPF problem” pre-
sented here and we see the here presented formulation as a basis for further
studies.

B.4 Distributed reformulation

In order to apply distributed optimization algorithms, the above problems have
to be in affinely-coupled separable form (2.12). In this section we describe one
way of doing so.

In (2.12), any nonlinear equality constraint such as the AC power flow equa-
tions (B.5) have to be local constraints collected either in 𝑔𝑖 or ℎ𝑖 , such that the
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Figure B.3: Example grid with partitioning.

coupling between the subsystems is solely affine and in form of (2.12d). There
are multiple ways for achieving affine coupling: here we introduce auxiliary
nodes in the middle of transmission lines interconnecting two subsystems and
coupling active/reactive power and the voltage phasor at these nodes. Other
works such as [Ers15] use coupling in the voltage angles and magnitudes only.
Another option is, to introduce variable copies of the bus states connected to
border lines and to couple the original states again with their copies by means
of (2.12d) without introducing any additional buses [HA09]. Our formulation
has the advantage, that no “internal information” from the interior of the sub-
systems has to be exchanged and that two neighbored subsystems share the cost
for the line losses of the coupling line. However, other methods may benefit
from a reformulated problem with a smaller dimension due to the absence of
auxiliary buses.

Let us assume that a grid partitioning is given (for example by the control
the area of responsibility of the corresponding DSOs/TSOs or by borders
between different grid levels). This means that we have a set of subsystems
R = {1, . . . , 𝑅}, each equipped with a corresponding subset of buses N𝑖 ⊂ N
where these subsets are disjointN𝑖 ∩N𝑗 = ∅ for all 𝑖, 𝑗 ∈ R with 𝑖 ≠ 𝑗 . Let us
consider a concrete example: Figure B.3 shows a partitioning for the example
5-bus system from [LB10]. We decompose the node set N = {1, . . . , 5} into
three regions R = {1, 2, 3} with N1 = {1, 5}, N2 = {2, 3} and N3 = {4}
fulfilling the above assumptions.
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B Power System Fundamentals

Splitting lines between subsystems

Consider the 𝜋-branch model from Figure B.1 shown in Figure B.4, where
we assume that the line between node 𝑘 and node 𝑙 is a transmission line
connecting two subsystems. We introduce two auxiliary buses 𝑚 and 𝑛 which
are connected to the corresponding buses 𝑘 and 𝑙 in the subsystems—thus,
we replace the original 𝜋-branch model by two 𝜋-branch models in series.4
Regarding the line parameters, we double the series admittance of the original
connection 𝑦𝑘𝑙 and divide the shunt admittance 𝑦s

𝑘𝑙
by two. With that we get

an auxiliary buses 𝑚 and 𝑛, which we collect in an auxiliary node set N 𝐴 and
an auxiliary node pair (𝑚, 𝑛) which we collect in a set A ⊆ N 𝐴 × N 𝐴 and
new transmission lines E𝐴 ⊂ N × N 𝐴. To obtain equivalence to the original
problem, we require

𝑢𝑚 = 𝑢𝑛 and 𝑠𝑘,𝑚 = −𝑠𝑛,𝑙 for all (𝑚, 𝑛) ∈ A. (B.9)

Taking real part and imaginary part of (B.9) yields

𝑣𝑚 = 𝑣𝑛 𝑝𝑘,𝑚 = −𝑝𝑛,𝑙 (B.10a)
𝜃𝑚 = 𝜃𝑛, 𝑞𝑘,𝑚 = −𝑞𝑛,𝑙 . (B.10b)

for all (𝑚, 𝑛) ∈ A resulting in an affine coupling in form of (2.12d).

In order to simplify presentation, we will assume from now on that the auxiliary
buses are already included inN andN𝑖 respectively. More precisely, this means
that we introduce extended bus sets N𝐸 = N ∪ N 𝐴 and N𝐸

𝑖
= N𝑖 ∪ {𝑚 ∈

N 𝐴 | there exists (𝑘, 𝑚) ∈ E𝐴}. In the following we use the symbol N for
the extended bus set N𝐸 for simplicity.

4 Note that this reformulation is equivalent to the original model only if 𝑦s
𝑘,𝑙

= 0. However, from a
physical perspective, a series connection of multiple 𝜋-elements can in general more accurately
describe the physical behavior of the branch as it allows for a more accurate approximation of
the hyperbolic equations of transmission lines [Sch17, Ch. 10.3].
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Figure B.4: Decomposition of a 𝜋-line model.

The reformulated problem

With the above, we can construct the power flow equations for each region
𝑖 ∈ R as

𝐹𝑖 (𝑥𝑖) := (𝐹𝑘 (𝜒𝑘 ))𝑘∈N𝑖
,

where 𝑥𝑖 := (𝜒𝑘 )𝑘∈N𝑖
. Similarly, we have for the line limits and box constraints

|𝑆 |2𝑖 (𝑥) :=
(
|𝑠𝑘,𝑙 | (𝑥)2

)
N𝑖×N𝑖

and 𝑥
𝑖
≤ 𝑥𝑖 ≤ 𝑥𝑖

for all 𝑖 ∈ R. Furthermore, we define for all 𝑖 ∈ R

𝑓𝑖 (𝑥𝑖) :=
∑︁
𝑘∈N𝑖

𝑓
g
𝑘
(𝑝g

𝑘
).
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This yields an OPF problem in form of (2.12)

min
𝑥1 ,...,𝑥𝑅

∑︁
𝑖∈R

𝑓𝑖 (𝑥𝑖) (B.11a)

subject to 𝐹𝑖 (𝑥𝑖) = 0 for all 𝑖 ∈ R, (B.11b)
|𝑆 |2𝑖 (𝑥𝑖) ≤ 𝑠2

𝑖 for all 𝑖 ∈ R, (B.11c)
𝑥
𝑖
≤ 𝑥𝑖 ≤ 𝑥𝑖 for all 𝑖 ∈ R, (B.11d)∑︁

𝑖∈R
𝐴𝑖 𝑥𝑖 = 0, (B.11e)

where the matrices 𝐴𝑖 ∈ R4 |N𝐸 |×4 |N𝑖 | are constructed such that the coupling
constraints (B.10) are satisfied.
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C Insights on ADMM

C.1 Modulus switching in ADMM

As we have seen in Section 5.5, d-ADMM seems to be able to reach only a
limited accuracy. In this section we will investigate this behavior on a small-
scale example. It turns out that the accuracy is not limited, but the convergence
is so slow that is seems like ADMM is not making any progress. Moreover,
we show that by choosing a different 𝜌, one can achieve a higher accuracy but
then the overall convergence to that accuracy is slow. So there seems to be a
trade-off between the achievable accuracy and the convergence speed.

Consider an unconstrained strongly convex QP with objective function 𝑓 (𝑥) =
1
2𝑥
>𝐻𝑥 − ℎ>𝑥, where 𝐻 =

∑
𝑖∈R 𝐻𝑖 � 0 and ℎ =

∑
𝑖∈R ℎ𝑖 with ADMM similar

to the inner problems in bi-level ALADIN from Section 4.2.1. Let

𝐻1 =
©«
𝑎 𝑐 𝑐

𝑐 𝑑 0
𝑐 0 0

ª®®¬ , 𝐻2 =
©«

𝑎 𝑐 + 𝑑 𝑐

𝑐 + 𝑑 𝑏 𝑑

𝑐 𝑑 0

ª®®¬ , 𝐻3 =
©«
0 𝑑 0
𝑑 𝑏 𝑑

0 𝑑 0

ª®®¬ ,
and ℎ1 = (𝑎 0 0)>, ℎ2 = (𝑎 𝑏 0)>, ℎ3 = (0 𝑏 0)> with 𝑎 = 10−4,
𝑏 = 5, 𝑐 = 10−6 and 𝑑 = 10−2. Then we have a condition number cond(𝐻) =
6.25 · 104 which should not pose too severe difficulties.

Figure C.1 shows the resulting convergence plots for d-ADMM for different
values of 𝜌. One can clearly see that the accuracy in the primal and dual
variables seems limited for this problem to round about 10−5 for 𝜌 = 10−4. By
choosing a larger 𝜌 of 5 · 10−3 or 10−2, one can achieve higher accuracies, but
in this case one needs several thousand iterations to reach an accuracy of 10−5

in the primal variables. In practice, this is often not an option and especially
not in bi-level ALADIN as then the overall communication would be very
high. So in practice, tuning of 𝜌 is typically done in a way such that one
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Figure C.1: ADMM for solving a unconstrained convex QP.

gets fast convergence in the primal variables in the beginning of the ADMM
iterations. Hence, for the here-considered example one would probably choose
a 𝜌 around 10−3 since on can then reach an accuracy of around 10−4 after
several tens/hundreds of iterations. By doing so one also essentially limits
the accuracy of ADMM to that level. Note that for small 𝜌 = 10−5, ADMM
diverges as the individual 𝑓𝑖s are unbounded below since the matrices 𝐻𝑖 are
indefinite.

From our example one can observe another interesting effect: ADMM seems
to switch it’s linear convergence modulus while iterating. Especially in case
of 𝜌 = 10−2 illustrates one can observe this behavior. A similar behavior is
also observed in other works [NOB16; Gol+14]. To the best of our knowledge
this effect is not investigated in the literature so far. One can also draw
another conclusion from this example: although for strongly convex problems
(which our example is), linear convergence has been shown (e.g. [GB16]),
the present example (and the examples from the inner problems in bi-level
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C.2 Examples: ADMM getting stuck for 𝜌→∞

ALADIN (Section 5.5)) shows that the modulus of convergence for ADMM
can be arbitrarily bad. Thus, one has to be very careful with the interpretation
of such results—if there considered situation occurs one essentially needs a
very large number of iterations for convergence.

Conditions for which slow convergence occurs seems to the best of our knowl-
edge not to exist in the literature. In our particular case the matrices 𝐻𝑖 are
indefinite leading to non-convex 𝑓𝑖s, which might be one reason. However,
investigating this in more detail seems to be an important direction of future
work.

C.2 Examples: ADMM getting stuck for 𝜌 →∞

We give an analytic example where one can observe that ADMM gets stuck for
𝜌 → ∞ and a feasible initial point as predicted by Proposition 1. Moreover,
we show that ADMM converges to a feasible but not optimal point in case
of an infeasible initialization for the same example. In a second example,
we show that evaluating primal feasibility only is in general not sufficient for
convergence of ADMM, which is sometimes assumed in the power system
context [Ers15; GHT17].

Example 4 (ADMM getting stuck for 𝜌 → ∞). Consider the problem
min𝑥,𝑧

1
2𝑥

2 subject to 𝑥 = 𝑧 and 𝑥 ≥ −1. The partial augmented Lagrangian
with respect to the constraint 𝑥 = 𝑧 is L𝜌 (𝑥, 𝑧, 𝜆) = 1

2𝑥
2 +𝜆(𝑥 − 𝑧) + 𝜌

2 (𝑥 − 𝑧)
2.

Case 1: Consider a feasible 𝑧0, i.e. 𝑧0 ≥ −1. Applying ADMM (Algorithm 3),
minimizing L𝜌 with respect to 𝑥 yields 𝑥𝑘+1 + 𝜆𝑘 + 𝜌(𝑥𝑘+1 − 𝑧𝑘 ) = 0 and
thus 𝑥𝑘+1 =

𝜌𝑧𝑘−𝜆𝑘

1+𝜌 =
𝑧𝑘−𝜆𝑘/𝜌

1/𝜌+1
𝜌→∞
→ 𝑧𝑘 . Minimizing with respect to 𝑧 yields

−𝜆𝑘−𝜌(𝑥𝑘+1−𝑧𝑘+1) = 0 and thus 𝑧𝑘+1 = 𝑥𝑘+1+ 𝜆𝑘

𝜌
=

𝑧𝑘−𝜆𝑘/𝜌
1/𝜌+1 +

𝜆𝑘

𝜌

𝜌→∞
→ 𝑧𝑘 . The

𝜆 update in step 3) reads𝜆𝑘+1 = 𝜆𝑘+𝜌(𝑥𝑘+1−𝑧𝑘+1) = 𝜆𝑘+𝜌(𝑥𝑘+1−𝑥𝑘+1− 𝜆𝑘

𝜌
) =

0. This show that, as predicted by Proposition 1 ADMM gets stuck for this
example at 𝑧𝑘 . In case when the initial point is infeasible however, the situation
is different as we will see now.
Case 2: Consider an infeasible point 𝑧𝑘 < −1 and an arbitrary but fixed 𝜆𝑘 .
Then, the minimizer of L𝜌 with respect to 𝑥, 𝑥𝑘+1 will be −1 for 𝜌 → ∞ since
𝑥 ≥ −1 has to be satisfied. After that iteration, we have similar to the above
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𝑧𝑘+1 = 𝑥𝑘+1 = −1 for 𝜌 → ∞ and thus 𝜆𝑘+1 → 0. This show exemplarily,
that the behavior of ADMM for large 𝜌 heavily depends on whether or not
the initial point is feasible. Note that in case that in case there are also indi-
vidual constraints for 𝑧, the situation might be even more complicated as in
this case some kind of “alternating projections” between the constraint sets
might occur leading to an oscillatory behavior. Moreover, note that a similar
situation occurs if one increases 𝜌 to very large values as ADMM proceeds as
for example done in [Ers15; GHT17].

Example 5 (Primal feasibility is not sufficient for termination). Consider
example 4 again neglecting the constraint 𝑥 ≥ −1. Let us furthermore assume
that we use ADMM with primal feasibility (|𝑥 − 𝑧 | < 𝜖) as the only termination
criterion. From Example 4 we know that |𝑥𝑘+1 − 𝑧𝑘+1 | = |𝜆𝑘/𝜌 |. Thus shows
that if we choose a 𝜌 large enough such that |𝜆𝑘/𝜌 | < 𝜖 , ADMM will imediately
terminate although even though (𝑥𝑘+1, 𝑧𝑘+1) is not optimal.
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D Distributed Optimization and
Computer Science

Distributed optimization and computer science are strongly connected. One
reason for this is that distributed optimization has many promising applications
in computer science beyond a multi-agent setting. One can identify applications
in at least three branches:

• in supercomputing [CZ97; BT89; Don+03];

• in network optimization [BT89; San+19; Chi+07];

• in machine learning, specifically

– in image reconstruction [Yan+16; ZK14; XY13];

– and in support vector machines [FCG10; Boy+11].

In this thesis we present a particular SVM example in Chapter 2. An additional
logistic regression example from machine learning is included in the example
set of ALADIN-𝛼 available under [Eng20a].

Also from an historical perspective, many pioneers of distributed optimization
are closely connected to computer science. John von Neumann’s alternating
projection method [Neu49] for example is closely related to ADMM; or John
Tsitsiklis with his work on distributed and asynchronous algorithms [Tsi94;
BT89]. These roots can also be observed in terminology such as nonlinear/in-
teger/quadratic programming.

Moreover, interconnections from systems and control and optimization over
networks/theoretical informatics exist. The Bellmann-Ford algorithm for ex-
ample was invented by one of the most famous people working in systems
and control and pioneers of so-called dynamic programming: Richard Bell-
mann [Bel58]. Even Dĳkstra’s algorithm can be cast within the framework
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of dynamic programming which is often considered to be a “control method”
[Sni06]. Hence, distributed optimization can be seen as an interdisciplinary
field connecting computer science, applied mathematics and systems and con-
trol.

Distributed optimization vs. parallel computing

In computer science, a distinction between parallel computing and distributed
computing is often made. Parallel computing usually means that computation is
done on multiple processors with one shared memory. Distributed computing
typically refers to the case, where computers are connected via a network
with a distributed memory and operate via message-passing [BT89; Don+03].
This work focuses mainly on distributed computing altough the developed
algorithms can also be used for parallel computing.

Although distributed optimization techniques are interesting for parallel com-
putation, the requirements are typically slightly different. Whereas in parallel
computing partitioning is usually done for load balancing—i.e. the problem
size handled by each processor is approximately the same for all processors—in
our setting the partitioning is usually given a priori by the subsystem bound-
aries. Furthermore, in parallel computing, communication is usually not of
such a big concern because of the fast and high-throughput shared memory.

Distributed optimization vs. optimization over networks

The problems considered in this thesis are different from classical optimization
problems in theoretical informatics defined over graphs such as shortest-path
problems:1 here we consider continuous optimization problems without inte-
gers and with graphs only as a side-topic.

In contrast to network optimization, in our setting complexity is mostly “in the
nodes” rather than “in the network” in the sense that in network flow the nodes
have typically only one decision variable and the edges are more important. In

1 Although certain interconnections may exist. The duality theory from Chapter 2 can for example
be fruitfully used in context of network flow problems [Roc98; Ber98].
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this thesis, we consider problems, where each node is a (complex) optimization
problem on its own, for example itself being a dynamical system or an area
of a power grid. Methods from network optimization are not straight-forward
to use in this setting. An additional difference to classical optimization over
networks is that here the edges in general come with underlying physical laws.
Although electrical grids can be seen as a graph with complex-valued weights
[Lei+15], for the AC grid model the nodes are coupled via nonlinear equations
making classical algorithms from theoretical informatics hard to use.
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