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Abstract There exists a large number of supervised music classification tasks:
Recognition of music genres and emotions, playing instruments, harmonic and
melodic properties, temporal and rhythmic characteristics, etc. In recent years,
many studies were published in that field, which are either focused on complex
feature engineering or application and tuning of classification algorithms. How-
ever, less work is done on the evaluation of model robustness, and music data
sets are often limited to music with some common characteristics, so that the
question about the generalisation ability of proposed models usually remains
unanswered. In this study, we examine and compare the classification perfor-
mance of audio features and classification models when applied for recognition
of genres and instruments on music data sets which were degraded by means of
techniques available in the Audio Degradation Toolbox including attenuation,
compression, live and vinyl recording degradations, and addition of noise.
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1 Introduction and Related Work

The goal of supervised music classification is to assign music pieces or their
parts to semantic categories like genres, styles, personal preferences, emotions,
playing instruments, chords, etc. As for any other supervised classification task,
the choice of the training set is crucial: Data sets which are small and limited,
e.g., to a few genres or a particular recording practice, lead to less robust models
with poor generalisation performance. The effect of limited training sets was
addressed in some studies on image recognition. For instance, the addition of
perturbations (Papernot et al, 2017) or the change of brightness (Hosseini
et al, 2017) lead to a significant decrease of classification performance.

The process of data augmentation generally modifies training data retaining
the same annotations. Examples of data augmentation methods in computer
vision are inversion, rotation, or stretching. For music signals, one may apply,
for instance, transposition, change of loudness, or addition of noise, see also
Mauch and Ewert (2013) and McFee et al (2015). The first benefit is that training
sets become more robust. Another advantage is that the amount of training data
can be largely extended without further manual efforts for labelling.
Not so much work has been done to measure the impact of augmented sets

in music. Beyond the presentation of the Audio Degradation Toolbox, Mauch
and Ewert (2013) showed how degradations can affect the performance of
several applications including audio identification, score-to-audio alignment,
beat-tracking, and chord detection. The Audio Degradation Toolbox was also
applied for the measurement of degradations’ impact on the classification
of music genres using several classification methods in Clar (2014), for the
measurement of robustness of several feature groups for the estimation of music
similarity in Panteli and Dixon (2016), and for the recognition of artists in
Eghbal-zadeh and Widmer (2016). The performance of the system on latin
music genre recognition significantly dropped when the test set was moderately
time-stretched by 32 scales in [0.85,1.15] (Sturm, 2016). Schlüter and Lehner
(2018) report a significant decrease of performance of vocal recognition with
Convolutional Neural Networks (CNN) for pieces with a changed loudness. In
the earlier work Schlüter and Grill (2015), the impact of CNN performance
was examined with regard to different augmentation methods including filters
and the change of pitch and tempo, with a conclusion that not all augmentation
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methods were helpful. The transposition was applied to chord prediction in
Korzeniowski et al (2018) showing an increase of test performance with an
augmented training data set.
In summary, many studies which measure the effect of data augmentation

are either limited to individual classification methods like neural networks
or individual tasks like genre recognition–and in most cases do not explicitly
compare several feature sets and classifiers with regard to their sensitivity
to data augmentation for different music classification tasks by the means
of statistical tests.

In this work, we measure the reduction of classification performance after the
application of 12-14 degradation methods for 4 classification methods and 3-4
feature sets applied to 6 genre recognition and 20 instrument recognition tasks.
Section 2 lists data augmentation methods used in our experiments. Section
3 describes the experiments. The results are discussed in Section 4, including
statistical comparison of degradation methods to the baseline and the evaluation
of differences in performance reduction for individual classifiers and feature
sets. Section 5 provides conclusions and ideas for future work.

2 Degradations

The following audio degradationmethods availablewithin theAudioDegradation
Toolbox Mauch and Ewert (2013) are used for data augmentation and test of
the robustness of classification models: the reduction of loudness to 20%,
40%, 60%, and 80%, live recording, strong compression, vinyl recording, four
different noises with 20 dB signal-to-noise ratio (white, pink, blue, violet), radio
broadcast, smartphone recording, and “old dusty” recording.
Although the changes in sound can easily be perceived by human listeners

after the degradation, the spectrum is not changed to a very strong extent.
Figure 1 illustrates the impact of three degradations applied on a chord for
frequencies below 1500 Hz.
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Figure 1: Impact of three degradations on the spectrum (0 - 1500 Hz) of the artificially mixed chord
A5 (acoustic guitar) - F5 (bouzuki) - A5 (piano).

3 Experimental Setup

In the following, we describe the setup of experiments on measuring the
robustness of classification models for classification of genres and instruments.

3.1 Classification Tasks and Data Sets

The first group of binary classification tasks is to recognise genres for classical
and popular music pieces. The corresponding data set is based on 240 music
pieces from sets OS120 and TAS120 of our internal database1 with 90 Pop/Rock,
30 Classical, 30 Electronic, 30 Jazz, 30 Rap, and 30 R’n’B tracks. For the
training of classification models, balanced data sets of 30 tracks from TAS120

1 https://ls11-www.cs.tu-dortmund.de/rudolph/mi#music_test_database, accessed 31.01.2020.
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were selected: The first half with “positive” tracks (belonging to the genre
to recognise), and the second half with “negative” tracks equally distributed
across the remaining five genres (3 tracks per genre). As in our previous
studies like Vatolkin et al (2016), we use small training sets with respect to
a real-world situation of a listener who prefers to define a personal category or
genre with a limited number of tracks, and has less manual annotation efforts.
After the training of models with different features and classifiers (see Section
3.2), we measure the classification performance on the validation set compiled
with 120 tracks from the OS120 set. Then, the models are validated on 14
degraded OS120 variations.
The second group of binary classification tasks is to classify instruments in

polyphonic mixtures of three or four instrument samples. Here, we use two data
sets from Vatolkin and Rudolph (2018) which together contain 6000 mixtures.
Each mixture contains at least one Western instrument sample taken from
MUMS (Eerola and Ferrer, 2008), RWC (Goto et al, 2003), and the University
of Iowa2 databases and at least one ethnic instrument sample from EthnoWorld 5
Professional & Voices3. 3000 tracks are used to train classification models, 3000
for validation. Again, we apply degradations on the validation set. However,
we use only 12 of the 14 mentioned in Section 2, because radio broadcast
and smartphone recording could not be applied for short audio mixtures of
several seconds. The Western instruments to recognise are acoustic guitar, cello,
electric guitar, flute, piano, trumpet, viola, and violin. The ethnic instruments to
recognise are balalaika, bandura, banjo framus, banjolin, bawu, dilruba, dung
dkar, egyptian fiddle, erhu, fujara, melodica, and scale changer harmonium.

3.2 Features and Classification Methods

Table 1 provides an overview of audio features used in the study. All features
were extracted with open source Java framework AMUSE (Vatolkin et al, 2010)
with further integrated toolboxes (Chroma Toolbox (Müller and Ewert, 2011),
jAudio (McKay, 2010), MIR Toolbox (Lartillot and Toiviainen, 2007), NNLS
Chroma (Mauch and Dixon, 2010), and Yale (Mierswa et al, 2006)). For the

2 http://theremin.music.uiowa.edu/MIS.html, accessed 31.01.2020.
3 http://www.bestservice.de, accessed 31.01.2020.
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genre classification task, feature values are stored only from the frames between
onset events, which are assumed to have a more stable sound. The onset events
were previously estimated with MIR Toolbox (Lartillot and Toiviainen, 2007).
Then, the mean and the standard deviation for larger classification frames of 4 s
with 2 s overlap are estimated and processed as individual features for model
training. For instrument recognition from audio mixtures (chords), feature values
are stored from the middle of the attack phase, onset frame, and the middle of
the release phase, respectively. For instance, 13 original MFCC (Mel Frequency
Cepstral Coefficient) dimensions lead to 26 dimensions for genre recognition
and 39 dimensions for instrument recognition.

Table 1:Audio feature sets. Column “Size” indicates the number of dimensions after feature processing
(see the text).

Genres Instruments
Group Examples Size Examples Size

MFCCs MFCCs 26 MFCCs 39
Timbre MFCCs + spectral characteristics

(centroid, bandwidth, etc.), low
energy, tristimulus, phase domain
features, etc.

256 Same as for genres + equivalent
rectangular bandwidth (ERB)
characteristics

474

Harmony Fundamental frequency, chroma,
bass chroma, major/minor
alignment, key strengths, etc.

304 - -

All Timbre + harmony + fluctuation
patterns, rhythmic clarity, etc.

736 Timbre, chroma, spectral peak
characteristics, fluctuation patterns,
etc.

615

Classification models are built with four classification methods available in
RapidMiner (Hofmann and Klinkenberg, 2013): naive Bayes (NB), decision
tree C4.5, random forest (RF), and linear support vector machine (SVM). For
genre recognition, the tracks are assigned to labels by majority voting based on
predictions of models for classification frames of 4 s. Because of unbalanced
validation sets, evaluation is done with regard to balanced relative error mBRE :

mBRE =
1
2

(
FN

T P + FN
+

FP
T N + FP

)
, (1)
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where T P denotes the number of true positives (tracks belonging to a category
and predicted as belonging to it), T N true negatives (tracks not belonging to a
category and predicted as not belonging to it), FP false positives (tracks not
belonging to a category and predicted as belonging to it), and FN false negatives
(tracks belonging to a category and predicted as not belonging to it).

This measure guarantees that wrong predictions of positive and negative
observations have the same impact independently of their distribution in the test
set. Music tracks are assigned to genres by majority voting based on predictions
of models for W classification frames of 4 s with 2 s overlap:

ŷ(~x1, ..., ~xW ) =


∑W
w=1 ŷw

W
−

1
2


, (2)

where ~xw denotes feature vector for the w-th classification frame, ŷw the label
predicted for this frame, and ŷ the label predicted for the complete track. In case
some less typical segments appear in a music piece (e.g., a short bridge with
strings in a Rock song), the wrong classification of corresponding time frames
would not contribute to the overall error measured for a common scenario when
complete tracks and not their parts are assigned to genres.

4 Analysis of Results

Figure 2 shows the balanced relative errormBRE for two example categories using
all features for all combinations of classifiers and degradations. The baseline
performances on the original validation set (“Orig”) are additionally marked
with lines. Although the reduction of loudness (“Qu1”–“Qu4”) produces a lower
impact on the error compared to other degradations, even then the effect may be
rather strong: e.g., mBRE changes from 0.0591 to 0.1824 (smaller values are
better) for category Classical, RF, and loudness reduced to 20%. For several other
combinations of a classifier and a category, the performance may even slightly
increase after loudness reduction, as for loudness reduction/SVM/Classical.
Other degradations may lead to completely unexpected results and drastically
reduce the performance leading to errors close to or even exactly equal to 0.5
which corresponds to the error of the random classifier. From the first glance at
these two classification tasks, the robustness of classifiers differs: SVM has a
higher increase of the error than RF for Classical, but a lower increase of the
error than RF for Piano.
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Figure 2: Balanced classification errors for two classification tasks using all features (for the genre
Classical estimated after the majority voting, cf. Equ. 2). Classifiers: circles: C4.5; rectangles: RF;
diamonds: NB; triangles: SVM. Orig: baseline validation error without degradations. Degradations:
Qu1-Qu4: reduction of loudness to 20%, 40%, 60%, 80%; Liv: live recording; Com: strong com-
pression; Vin: vinyl recording; No1-No4: noise (white, pink, blue, violet); Bro: radio broadcast; Sma:
smartphone recording; Dus: “old dusty” recording.

For the evaluation of robustness independently of the individual category
complexity, we may estimate the relative increase of mBRE for degraded
validation data sets in relation to mBRE for the original validation set. Numbers
higher than 1 would indicate the decrease of classification performance, i.e.,
a poor generalisation ability of the classification models. Tables 3-6 in the
Appendix list this statistic averaged for 6 genre and 20 instrument categories in
each case, stored separately for all combinations of a degradation, a feature set,
a classifier, and a category group. As can be expected, the numbers are almost
always above 1. Several cases with values below 1 correspond either to

(1) loudness reduction and compression, or
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(2) vinyl recording/MFCCs/NB (genres and instruments) and smartphone
recording/MFCCs/NB (genres).

For (1), we suppose that the inclusion of degradations other than loudness
reduction and compression into training data may be particularly valuable to
train more robust models. For (2), it is worth to mention that models built with
only MFCCs usually do not achieve the best classification results, and NB has
often larger errors than RF and SVM, so that the robustness in those cases does
not correlate with a high classification performance.

Table 2: p-values after the application of Wilcoxon right-sided signed rank test for the following
null hypothesis: The classification error achieved after the application of a given combination of a
degratation, a feature set, and a classifier is not higher than for the original validation data set. The
balanced classification error values are stored for all 26 categorisation tasks. Note that the values
provided in the table are rounded to 3 digits after the fix point.

Degra- C4.5 RF NB SVM
dations MFCC Timb All MFCC Timb All MFCC Timb All MFCC Timb All

Quiet1 0.063 0.000 0.000 0.173 0.000 0.000 0.251 0.006 0.003 0.289 0.000 0.001
Quiet2 0.218 0.000 0.000 0.479 0.000 0.000 0.259 0.012 0.020 0.078 0.000 0.009
Quiet3 0.216 0.000 0.000 0.721 0.000 0.000 0.554 0.007 0.003 0.656 0.001 0.015
Quiet4 0.329 0.000 0.009 0.319 0.000 0.001 0.470 0.015 0.007 0.188 0.003 0.017
Live 0.000 0.000 0.000 0.000 0.000 0.000 0.028 0.000 0.000 0.008 0.042 0.010
Compr 0.118 0.000 0.000 0.295 0.004 0.004 0.648 0.000 0.000 0.656 0.723 0.571
Vinyl 0.001 0.000 0.000 0.001 0.000 0.000 0.936 0.000 0.000 0.016 0.324 0.081
Noise1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.016 0.020 0.028
Noise2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.036 0.027
Noise3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.039 0.025 0.030
Noise4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.055 0.044 0.036
Dusty 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.047 0.002 0.001

For a more reliable statistical evaluation of the degradations’ impact on music
classification, we compare the mean increase of mBRE to the baseline (no
increase) by means of Wilcoxon right-sided signed rank test. Thus, the null
hypothesis is that the performance on degraded data sets is not significantly
lower (and the error higher) than the performance on the original validation
data set. Table 2 contains the corresponding p-values. Please note that the
numbers in Table 2 are rounded to 3 decimal places, such that values of 0.000
mean very small positive numbers above zero. Because we average for all 26
music categories (aiming to provide some general recommendations for music
classification at all), 12 of 14 degradations and 3 of 4 feature sets used for both
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genre and instrument recognition are taken into account. The analysis of the
table leads to the following observations:

1. Which degradations lead to a more significant decrease of
performance?

As a simple statistic from the table, we may sum all 12 p-values (4
classifiers × 3 feature sets) for each row (degradation type): A larger
number of rejected null hypotheses would lead to a smaller sum. The
degradations which lead to a more significant decrease of performance for
all combinations of feature sets, classifiers, and classification tasks, are
“old dusty” recording (sum of the original p-values of the rows of Table 2
is equal to 0.0502), following with white noise (“Noise1”, 0.0646), pink
noise (“Noise2”, 0.0705), and live recording (0.0886). The degradations
which have the smallest impact on the decrease of performance are
compression (3.0203), reduction of loudness to 60% (“Quiet3”,2.1726),
vinyl recording (1.3583), and reduction of loudness to 80% (“Quiet4”,
1.3580). However, it is important to mention that these results are
estimated only for genre and instrument recognition and a limited set of
features and classificationmethods. For instance, reduction of loudness led
to a significant decrease of performance for convolutional neural networks
trained for recognition of vocals in Schlüter and Lehner (2018).

2. Which classifiers are particularly sensitive to degradations?

Models trained with C4.5 are the most sensitive to degradations (sum
of p-values in columns 2-4 of Table 2 is equal to 0.9557), followed by
the random forest (1.9971), naive Bayes (3.2205), and linear support
vector machine (4.0998). When we distinguish between feature groups,
the order slightly varies. For MFCCs, the most sensitive classifier is again
C4.5 (sum of p-values in column 2 is equal to 0.9449), followed by the
RF (1.9871), SVM (2.0547), and NB (3.1466). For timbre features, the
most sensitive classifier is C4.5 (sum of p-values in column 3 is equal to
0.0005), followed by the RF (0.0048), NB (0.0403), and SVM (1.2204).
For all features (and hence the most powerful feature set), the order is RF
(0.0052), C4.5 (0.0103), NB (0.0336), SVM (0.8247). As a conclusion,
it seems to be that C4.5 and RF are more sensitive and NB and SVM are
less sensitive to degradations.
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3. Which features are particularly sensitive to degradations?

The sensitivity to degradations increases with a growing size of the
feature set: MFCCs are least sensitive to degradations (sum of p-values
in columns 2, 5, 8, 11 is equal to 8.1333), followed by the timbre features
(1.2660) and all features (0.8739). Although MFCCs are very often used
in music classification tasks, the best classification results are usually
achieved with more features, as, for example, proven in our previous
experiments (Vatolkin et al, 2016), for which the MFCC set was the
best only for the recognition of the music genre Rap. This means, that
an extension of the feature set with more powerful and distinctive audio
characteristics does not bring only advantages without side effects. For
instance, the danger of reduced classification performance for degraded
data sets may increase.

5 Conclusions and Future Work

In our study, we have applied various audio degradation types to the data set used
for the validation of classification performance for 6 genre and 20 instrument
recognition tasks. The results show that in most cases the degraded data could
not be classified as well as the original data. Compression, reduction of loudness,
and vinyl recording degradation led to a smaller decrease of performance (and
even to an increase of performance in several cases). “Old dusty” recording,
addition of noise, and live recording led to a larger decrease of performance.
The increase of errors was not significantly different for genres compared
to instruments in general, depending rather on a concrete classification task,
degradation technique, feature set, and a classification algorithm.

Other observations are that classification models trained with linear support
vector machine and naive Bayes were less sensitive to degraded data sets than
models trained with decision tree C4.5 and random forest, and models trained
with larger feature sets had a larger decrease of classification performance for
degraded data sets.

More experiments are needed for more general and reliable recommendations,
e.g., for the recognition of emotions and music styles, the classification with
other methods like neural networks or ensembles, but also the validation with
other performance measures like precision and recall. For a better comparison
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of algorithms, we plan to extend the experiments to larger and publicly available
datasets. Future work should further include degraded samples into training sets
to measure a (hopeful) increase of classification performance.
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Appendix

Table 3: Mean increase and standard deviation of mBRE for various degradations and feature sets
related to baseline mBRE for the original validation set, averaged for 6 genre and 20 instrument
categories, for classification models created with C4.5.

Degra- Genres Instruments
dations MFCCs Timbre Harmony All MFCCs Timbre All

Quiet1 1.02 ± 0.04 1.31 ± 0.44 1.19 ± 0.22 1.01 ± 0.18 1.02 ± 0.06 1.58 ± 0.68 1.57 ± 0.70
Quiet2 1.01 ± 0.03 1.16 ± 0.29 1.14 ± 0.14 0.96 ± 0.15 1.01 ± 0.03 1.47 ± 0.64 1.47 ± 0.65
Quiet3 1.03 ± 0.08 1.11 ± 0.20 1.10 ± 0.09 0.97 ± 0.12 1.00 ± 0.02 1.33 ± 0.56 1.32 ± 0.54
Quiet4 1.05 ± 0.10 1.01 ± 0.05 1.03 ± 0.04 0.96 ± 0.05 1.00 ± 0.02 1.14 ± 0.25 1.13 ± 0.22
Live 1.11 ± 0.24 1.24 ± 0.44 1.22 ± 0.15 1.28 ± 0.40 1.08 ± 0.11 1.42 ± 0.47 1.38 ± 0.30
Compr 1.02 ± 0.07 1.07 ± 0.17 1.07 ± 0.10 1.09 ± 0.28 1.00 ± 0.03 1.24 ± 0.36 1.18 ± 0.20
Vinyl 1.11 ± 0.15 1.55 ± 0.99 1.19 ± 0.26 1.12 ± 0.25 1.06 ± 0.10 1.32 ± 0.41 1.31 ± 0.36
Noise1 1.33 ± 0.59 1.75 ± 1.57 1.12 ± 0.18 1.15 ± 0.29 1.13 ± 0.17 1.56 ± 0.74 1.53 ± 0.68
Noise2 1.18 ± 0.25 1.59 ± 1.27 1.06 ± 0.12 1.17 ± 0.33 1.11 ± 0.15 1.51 ± 0.66 1.54 ± 0.70
Noise3 1.33 ± 0.60 1.73 ± 1.52 1.11 ± 0.16 1.14 ± 0.33 1.12 ± 0.14 1.54 ± 0.76 1.46 ± 0.62
Noise4 1.31 ± 0.64 1.73 ± 1.56 1.11 ± 0.16 1.18 ± 0.38 1.11 ± 0.14 1.54 ± 0.75 1.47 ± 0.62
Broadc 1.09 ± 0.12 1.17 ± 0.20 1.20 ± 0.43 1.31 ± 0.60
Smart 1.29 ± 0.55 1.83 ± 1.50 1.34 ± 0.36 1.24 ± 0.36
Dusty 1.24 ± 0.24 1.25 ± 0.31 1.20 ± 0.24 1.09 ± 0.14 1.18 ± 0.18 1.42 ± 0.47 1.48 ± 0.51

Table 4: Mean increase and standard deviation of mBRE for various degradations and feature sets
related to baseline mBRE for the original validation set, averaged for 6 genre and 20 instrument
categories, for classification models created with random forest.

Degra- Genres Instruments
dations MFCCs Timbre Harmony All MFCCs Timbre All

Quiet1 1.03 ± 0.07 1.56 ± 0.77 1.50 ± 0.73 1.54 ± 0.78 1.01 ± 0.05 1.35 ± 0.52 1.38 ± 0.60
Quiet2 1.02 ± 0.06 1.31 ± 0.29 1.33 ± 0.45 1.22 ± 0.32 1.00 ± 0.03 1.28 ± 0.38 1.31 ± 0.45
Quiet3 1.01 ± 0.05 1.17 ± 0.10 1.17 ± 0.27 1.14 ± 0.20 1.00 ± 0.01 1.19 ± 0.25 1.21 ± 0.31
Quiet4 1.01 ± 0.03 1.06 ± 0.05 1.07 ± 0.12 1.03 ± 0.08 1.00 ± 0.01 1.07 ± 0.12 1.08 ± 0.12
Live 1.30 ± 0.42 1.48 ± 0.67 1.23 ± 0.21 1.55 ± 0.74 1.08 ± 0.13 1.32 ± 0.49 1.31 ± 0.43
Compr 1.03 ± 0.07 1.13 ± 0.30 0.98 ± 0.07 1.28 ± 0.66 1.00 ± 0.02 1.11 ± 0.24 1.09 ± 0.22
Vinyl 1.21 ± 0.33 1.32 ± 0.40 1.21 ± 0.26 1.30 ± 0.34 1.06 ± 0.12 1.25 ± 0.45 1.23 ± 0.30
Noise1 1.60 ± 1.13 1.99 ± 1.95 1.06 ± 0.07 2.14 ± 2.36 1.12 ± 0.16 1.34 ± 0.50 1.33 ± 0.40
Noise2 1.31 ± 0.45 1.58 ± 1.10 1.00 ± 0.10 1.65 ± 1.40 1.11 ± 0.16 1.32 ± 0.50 1.30 ± 0.37
Noise3 1.62 ± 1.19 2.01 ± 2.05 1.08 ± 0.07 2.16 ± 2.51 1.10 ± 0.13 1.34 ± 0.51 1.31 ± 0.37
Noise4 1.61 ± 1.22 1.97 ± 1.99 1.06 ± 0.05 2.11 ± 2.42 1.09 ± 0.12 1.34 ± 0.50 1.30 ± 0.36
Broadc 1.04 ± 0.08 1.24 ± 0.38 1.09 ± 0.18 1.47 ± 1.01
Smart 1.53 ± 0.98 2.21 ± 2.37 1.34 ± 0.83 2.42 ± 2.90
Dusty 1.27 ± 0.29 1.37 ± 0.26 1.32 ± 0.50 1.30 ± 0.23 1.12 ± 0.17 1.30 ± 0.47 1.32 ± 0.43
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Table 5: Mean increase and standard deviation of mBRE for various degradations and feature sets
related to baseline mBRE for the original validation set, averaged for 6 genre and 20 instrument
categories, for classification models created with naive Bayes.

Degra- Genres Instruments
dations MFCCs Timbre Harmony All MFCCs Timbre All

Quiet1 1.01 ± 0.03 1.19 ± 0.28 1.20 ± 0.27 1.26 ± 0.35 1.00 ± 0.03 1.05 ± 0.10 1.06 ± 0.13
Quiet2 1.01 ± 0.04 1.15 ± 0.20 1.17 ± 0.22 1.19 ± 0.24 1.00 ± 0.02 1.03 ± 0.08 1.03 ± 0.11
Quiet3 1.00 ± 0.03 1.10 ± 0.15 1.11 ± 0.17 1.13 ± 0.16 1.00 ± 0.02 1.02 ± 0.05 1.03 ± 0.06
Quiet4 1.00 ± 0.02 1.05 ± 0.06 1.06 ± 0.07 1.07 ± 0.08 1.00 ± 0.02 1.01 ± 0.02 1.01 ± 0.03
Live 1.07 ± 0.23 1.44 ± 0.49 1.19 ± 0.20 1.49 ± 0.46 1.03 ± 0.08 1.50 ± 0.38 1.61 ± 0.48
Compr 0.98 ± 0.02 1.06 ± 0.14 1.07 ± 0.14 1.05 ± 0.11 1.00 ± 0.02 1.32 ± 0.28 1.41 ± 0.34
Vinyl 0.97 ± 0.06 1.10 ± 0.14 1.19 ± 0.38 1.14 ± 0.19 0.99 ± 0.05 1.40 ± 0.32 1.49 ± 0.39
Noise1 1.12 ± 0.17 1.59 ± 1.07 1.17 ± 0.34 1.40 ± 0.68 1.07 ± 0.07 1.51 ± 0.44 1.59 ± 0.53
Noise2 1.08 ± 0.12 1.26 ± 0.33 1.07 ± 0.14 1.17 ± 0.19 1.05 ± 0.06 1.39 ± 0.36 1.48 ± 0.44
Noise3 1.11 ± 0.15 1.58 ± 1.15 1.17 ± 0.32 1.40 ± 0.72 1.07 ± 0.09 1.51 ± 0.45 1.59 ± 0.53
Noise4 1.11 ± 0.16 1.48 ± 0.94 1.14 ± 0.31 1.32 ± 0.60 1.09 ± 0.10 1.49 ± 0.42 1.57 ± 0.51
Broadc 1.08 ± 0.17 1.70 ± 1.27 1.26 ± 0.41 2.09 ± 1.24
Smart 0.99 ± 0.07 1.84 ± 1.18 1.58 ± 0.77 1.89 ± 1.18
Dusty 1.14 ± 0.16 1.32 ± 0.30 1.21 ± 0.25 1.28 ± 0.22 1.14 ± 0.13 1.26 ± 0.30 1.29 ± 0.38

Table 6: Mean increase and standard deviation of mBRE for various degradations and feature sets
related to baseline mBRE for the original validation set, averaged for 6 genre and 20 instrument
categories, for classification models created with linear support vector machine.

Degra- Genres Instruments
dations MFCCs Timbre Harmony All MFCCs Timbre All

Quiet1 1.02 ± 0.05 1.19 ± 0.33 1.18 ± 0.29 1.01 ± 0.25 1.02 ± 0.09 1.31 ± 0.46 1.36 ± 0.62
Quiet2 1.01 ± 0.03 1.10 ± 0.18 1.12 ± 0.19 0.92 ± 0.19 1.01 ± 0.03 1.22 ± 0.33 1.25 ± 0.42
Quiet3 0.99 ± 0.02 1.07 ± 0.13 1.08 ± 0.11 0.93 ± 0.12 1.00 ± 0.02 1.14 ± 0.21 1.17 ± 0.29
Quiet4 1.01 ± 0.03 1.01 ± 0.07 1.02 ± 0.04 0.97 ± 0.08 1.00 ± 0.01 1.07 ± 0.10 1.07 ± 0.12
Live 1.27 ± 0.38 1.47 ± 0.39 1.16 ± 0.11 1.51 ± 0.86 1.04 ± 0.16 1.07 ± 0.31 1.13 ± 0.32
Compr 0.99 ± 0.04 1.05 ± 0.07 1.02 ± 0.05 1.42 ± 0.92 1.00 ± 0.00 0.95 ± 0.23 1.00 ± 0.29
Vinyl 1.09 ± 0.10 1.66 ± 1.17 1.25 ± 0.40 1.49 ± 0.74 1.03 ± 0.14 1.02 ± 0.37 1.08 ± 0.37
Noise1 1.53 ± 1.11 1.72 ± 1.33 1.07 ± 0.12 1.46 ± 1.02 1.04 ± 0.18 1.18 ± 0.47 1.27 ± 0.48
Noise2 1.24 ± 0.40 1.27 ± 0.39 1.03 ± 0.04 1.44 ± 0.94 1.04 ± 0.20 1.12 ± 0.36 1.19 ± 0.40
Noise3 1.55 ± 1.17 1.72 ± 1.41 1.08 ± 0.12 1.47 ± 1.02 1.03 ± 0.13 1.18 ± 0.46 1.24 ± 0.46
Noise4 1.56 ± 1.25 1.68 ± 1.30 1.05 ± 0.07 1.47 ± 1.03 1.01 ± 0.05 1.16 ± 0.43 1.23 ± 0.44
Broadc 1.04 ± 0.05 1.22 ± 0.38 1.21 ± 0.46 1.56 ± 1.05
Smart 1.45 ± 0.70 1.93 ± 1.15 1.26 ± 0.49 1.74 ± 0.96
Dusty 1.13 ± 0.18 1.31 ± 0.38 1.21 ± 0.24 1.29 ± 0.40 1.04 ± 0.19 1.21 ± 0.40 1.30 ± 0.40
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