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Abstract: Explicit port-Hamiltonian systems (PHSs) are the starting point for many
powerful controller and observer design methods. It is well-known that explicit PHSs can be
formulated on the basis of bond graphs. Indeed, the port-Hamiltonian formulation of bond
graphs without dependent storages has been well investigated. However, little effort has been
made towards bond graphs with dependent storages. This is a problem as dependent storages
frequently occur in models from many engineering fields. In this paper, we address the explicit
port-Hamiltonian formulation of bond graphs with dependent storages. Our idea is to express the
port-Hamiltonian dynamics and output as functions of only the system inputs and independent
storages. The main result is a rigorous and constructive method to formulate bond graphs
containing dependent storages as explicit PHSs. An acadamic example illustrates and verifies
our method.
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1. INTRODUCTION

The theory of port-Hamiltonian systems (PHSs) provides
powerful controller and observer design methods for non-
linear systems. Most of these methods base on a system
model in form of an explicit input-state-output PHS 1 , see
e.g., Ortega et al. (2008); Dörfler et al. (2009); Venka-
traman and van der Schaft (2010); Vincent et al. (2016);
van der Schaft (2016). Bond graphs are a reasonable start-
ing point for the structured and automated derivation of
such a model (Duindam et al., 2009; Donaire and Junco,
2009; Lopes, 2016; Pfeifer et al., 2019). Recently, it has
been shown that a bond graph with independent sources
and independent storages can always be formulated as
an explicit PHS (Pfeifer et al., 2019). The independence
of sources is necessary for the existence of such a PHS;
however, the independence of storages is part of a sufficient
condition. It would be desirable to relax this sufficient
condition to the case of dependent storages.

Bond graphs with dependent storages can be found in
many engineering fields as multibody systems (Breedveld,
2018), mechatronic systems (Karnopp et al., 2012, p. 190),
and electric circuits (Najnudel et al., 2018) to name a few.
There exist various strategies to resolve the dependence
of storages by modifying the bond graph (Karnopp et al.,
2012, p. 609). These strategies base on the addition or

1 In this paper, we focus on continuous-time, real-valued, finite-
dimensional PHS.

elimination of certain bond graph elements. However, such
measures alter the physics of the model which is why they
are often undesirable. In the literature, there has been
made little effort to the port-Hamiltonian formulation
of bond graphs with dependent storages. Golo et al.
(2003) have shown that a bond graph (that possibly
contains dependent storages) can be formulated as an
implicit PHS. However, the transfer from an implicit to
an explicit formulation is not trivial. In particular, the
existence of an explicit formulation of an implicit PHS is
not guaranteed (Pfeifer et al., 2019). Donaire and Junco
(2009) addressed the derivation of an explicit PHS from a
bond graph possibly containing dependent storages. The
work of Donaire and Junco (2009) is inspiring but has
several shortcomings: (i) no output equation for the PHS is
derived; (ii) the existence of some inverse matrices is
not discussed (e.g., Equation (14) in Donaire and Junco
(2009)); (iii) the approach is restricted to non-feedthrough
systems. Apart from bond graphs, Najnudel et al. (2018)
addressed the derivation of PHSs from electric circuits
containing dependent storages in terms of two capacitors
in parallel or two inductances in series. Of course, these
two scenarios are special cases with respect to all possible
structures of dependent storages that can occur in a
system.

As can be seen from above, the literature lacks a rigorous
method for the systematic derivation of explicit PHSs from
bond graphs with dependent storages. In this paper, we
bridge this gap by a rigorous and constructive explicit



port-Hamiltonian formulation for such systems. The re-
mainder of this paper is organized as follows: The problem
under consideration is defined in Section 2. In Section 3,
we present, discuss, and prove the main result of this
paper. The result from Section 3 is illustrated through
an academic example in Section 4. Section 5 provides the
conclusion of this paper.

Notation: Let A ∈ Rn×n be a square matrix. We write
A � 0 and A � 0 if A is positive definite or positive semi-
definite, respectively. Spec(A) is the spectrum of A, i.e.,
the set of its eigenvalues. Identity matrices are denoted as
I; zero matrices are written as 0. Throughout this paper,
we omit the time-dependence “(t)” of variables and vectors
in the notation.

2. PROBLEM DESCRIPTION

In this paper, we consider bond graphs in the generalized
bond graph framework (Duindam et al., 2009, p. 24) with
the following types of elements: storages (C), modulated
resistors (R), sources of flow (Sf), sources of effort (Se),
0-junctions (0), 1-junctions (1), modulated transform-
ers (TF) and modulated gyrators (GY). Concerning the
storages, we differ between independent storages (Ci) and
dependent storages (Cd).

Definition 1. An independent storage is a C-type element
which can be described by an energy variable independent
of the energy variables of the other storage elements.

Definition 2. A dependent storage is a C-type element
whose energy variable is dependent on the energy variable
of an independent storage (Borutzky, 2010, p. 108).

Suppose a bond graph which consists of n elements that
are connected by m bonds. Each bond j ∈ {1, . . . ,m}
carries a flow f j ∈ R and an effort ej ∈ R. We as-
sume the following properties to ensure that the bond
graph is non-degenerate: (i) the bond graph is weakly
connected; (ii) each element of type C, R, Sf, and Se is
connected by exactly one bond to an element of type 0,
1, TF, or GY; (iii) all sources are independent, i.e., the
junction structure does not imply a dependency between
flows of Sf and/or efforts of Se elements. Moreover, we
assume the bond graph to have the following property:
(iv) modulation of elements of type R, TF, and GY can be
expressed only in dependence on states of C-type elements
and constant parameters. Bond graphs that do not have
this property lead in general to mathematical models in
form of differential-algebraic equations (DAEs) (Borutzky,
2010, p. 159). Thus, bond graphs without property (iv) in
general cannot be formulated in a purely explicit repre-
sentation. Next, we define an important part of the bond
graph, viz. the junction structure.

Definition 3. The junction structure of a bond graph is
the sub-graph which contains all elements of type 0, 1, TF,
and GY as well as the bond connecting these elements.

Consider a bond graph that has the properties (i) to (iv)
from above. Define the set E := {Ci,Cd,R,Sf,Se}. For
each α ∈ E, the number of elements of type α in the bond
graph is given by nα. Moreover, define nE :=

∑
α∈E nα.

For each α ∈ E we collect the flows of all bonds that are
connected to an element of type α in the vector fα ∈ Rnα .
Correspondingly, for each α ∈ E the vector eα ∈ Rnα

collects the efforts of all bonds that are connected to an
element of type α. Recently, it was shown that the junction
structure of such a bond graph can be described by a Dirac
structure in input-output form (Pfeifer et al., 2019):

D = {(

fC
fR
fSf
fSe

 ,

eC
eR
eSf
eSe

) ∈ RnE × RnE |

yCi

yCd

yR
yP

 =


ZCiCi(x)−ZCiCd

(x)−ZCiR(x) −ZCiP(x)
Z>CiCd

(x) 0 0−ZCdP(x)
Z>CiR

(x) 0 ZRR(x) −ZRP(x)
Z>CiP

(x) Z>CdP
(x) Z>RP(x) ZPP(x)


︸ ︷︷ ︸

Z(x)

uCi

uCd

uR

uP

}
(1)

where Z (x) = −Z> (x) for all x ∈ X and

uCi = eCi ,uCd
= −fCd

,uR =

(
eR,1
−fR,2

)
,uP =

(
fSf
eSe

)
,

yCi
= −fCi

,yCd
= eCd

,yR =

(
−fR,1

eR,2

)
,yP =

(
eSf
fSe

)
.

(2)

In (2),
(
f>R,1 f>R,2

)>
is a splitting of fR and

(
e>R,1 e>R,2

)>
is a corresponding splitting of eR.

Remark 4. In (1), the zero blocks in the matrix Z (x) are
due to the fact that energy variables of dependent storages
are (by definition) functions only of energy variables of
independent storages and inputs from sources (Wellstead,
1979, p. 226).

Remark 5. The minus signs in (2) stem from the standard
bond orientation rules (Borutzky, 2010, p. 59) in which
bonds are incoming to storages and resistors and outgoing
from sources of flow and effort.

Remark 6. The Dirac structure in (1) can be obtained by
following causal paths in the causalized bond graph (Don-
aire and Junco, 2009). Alternatively, Pfeifer et al. (2019)
provide a fully automatable method for the determination
of (1) from given bond graphs.

Before we state the problem studied in this paper, let
us specify the constitutive relations of the C-type and
R-type elements. For the C-type elements, we consider
constitutive relations of the form (Borutzky, 2010, p. 357):(

fCi

fCd

)
(2)
=

(
−yCi

−uCd

)
=

(
ẋi

ẋd

)
, (3a)(

eCi

eCd

)
(2)
=

(
uCi

yCd

)
=

(
∂Vi

∂xi
(xi)

∂Vd

∂xd
(xd)

)
. (3b)

In (3), xi ∈ RnCi , xd ∈ RnCd are the energy states and
Vi : RnCi → R≥0, Vd : RnCd → R≥0 are (nonlinear) stor-
age functions of the independent and dependent storage
elements, respectively. The overall energy in the system
is given by the composite storage function V (xi,xd) =
Vi(xi) + Vd(xd).
For the R-type elements, we assume constitutive relations
of the form (Duindam et al., 2009, p. 64):

fR = D (x) eR. (4)



The matrix D (x) is a positive definite diagonal matrix
which collects the (possibly state-dependent) dissipation
terms of the individual R-type elements. Note that we can
write (4) equivalently in input-output form2 :

uR = −R̃ (x)yR, (5)

where R̃ (x) is again diagonal and positive definite and
uR, yR as in (2).

Problem 7. The problem considered in this paper is to
formulate a bond graph described by (1), (3), and (4) as ex-
plicit input-state-output PHS of the following form (Duin-
dam et al., 2009, p. 71):

ẋ = [J (x)−R (x)] ∂H∂x (x) + [G (x)− P (x)]u, (6a)

y = [G (x) + P (x)]
> ∂H
∂x (x) + [M (x) + S (x)]u. (6b)

In (6), x ∈ X , u ∈ Rp, and y ∈ Rp are the state vector,
the input vector, and the output vector, respectively. The
state-space X is a real vector space of dimension q. The
Hamiltonian is a non-negative function H : X → R≥0.
The matrices J (x), R (x) ∈ Rq×q, G (x), P (x) ∈ Rq×p,
M (x), S (x) ∈ Rp×p have to satisfy J (x) = −J>(x),
M (x) = −M>(x), and

Qs (x) :=

(
R (x) P (x)
P>(x) S (x)

)
= Q>s (x) � 0, ∀x ∈ X . (7)

3. MAIN RESULT

In Section 3.1 and 3.2, we present and discuss the main
result of this paper, respectively. Section 3.3 then provides
the proof of this main result.

3.1 Presentation of the Main Result

We first make two assumptions and then state the main
result in Theorem 10.

Assumption 8. In (1), we have ZCdP (x) = 0 for all x ∈ X
and ZCiCd

(x) = ZCiCd
= const.

Assumption 9. The storage functions in (3) are of the
form Vi(xi) = 1

2x
>
i Dixi and Vd(xd) = 1

2x
>
d Ddxd where

Di = D>i � 0 and Dd = D>d � 0.

Assumptions 8 and 9 will be discussed in Section 3.2.
Theorem 10 now presents the main result of this paper.

Theorem 10. Given a bond graph described by (1), (3),
and (4). Let Assumptions 8 and 9 hold. Then, the bond
graph can be formulated as an explicit PHS of the form (6).
The input, state, and output of the PHS are given as
u = uP, x = xi, and y = yP, respectively, with the
Hamiltonian being H (x) = Vi(xi). The matrices of the
PHS are calculated as given in (8) on the next page with

K̃ (x) =
(
I + R̃ (x)ZRR (x)

)−1
, (9a)

L̃ =
(
I + ZCiCd

D−1d Z>CiCd
Di

)−1
. (9b)

3.2 Discussion of the Main Result

Theorem 10 states that under Assumptions 8 and 9 an
explicit PHS can be obtained from a bond graph that

2 The negative sign in (5) stems from the opposite signs of the flows
in the vectors (fR, eR) and (uR,yR) (see (2)).

may or may not contain dependent storages. This is re-
markable as (in bond graph theory) dependent storages
are known to lead to mathematical models in the form
of DAEs (Borutzky, 2010, pp. 142-143). Moreover, The-
orem 10 is independent of the specific form of the skew-
symmetric matrix ZRR (x) in (1). This is also noteworthy
as the case ZRR (x) 6= 0 (i.e., the case of dependent
resistors) is also known to lead to DAE models (Borutzky,
2010, p. 134). In the port-Hamiltonian formulation of
Theorem 10, the state vector consists of the states of
the independent energy storages. This is in line with the
literature, where the order of an ODE description of a bond
graph is known to be equal to the number of independent
storages (Borutzky, 2010, p. 119). The dependent storages
do not contribute to the system state as they are no
“free” storages. Later, we will derive an explicit expression
which relates the states of the dependent storages with the
states of the independent storages, viz. equation (14). It is
important to note that our approach retains the dependent
storages in the bond graph. This is in contrast to some
approaches from the literature in which the dependent
storages are dissolved into the independent storages, e.g.,
Najnudel et al. (2018). The choice of inputs and outputs in
Theorem 10 is plausible (Pfeifer et al., 2019, Property 2.5):
the inputs of the PHS are the flows of Sf-type elements
and the efforts of Se-type elements; the outputs are the
respective conjugated variables.

Besides its theoretical contribution, the result of Theo-
rem 10 is also of practical interest. The calculation rules
for the matrices of the PHS in (8a)-(8f) can be easily imple-
mented in a computer algebra system. By this, the result
of this paper can be directly integrated into tools aiming
at an automated generation of port-Hamiltonian models
from bond graphs, e.g., Falaize and Hélie (2019); Pfeifer
et al. (2019). Equations (8a)-(8f) require the existence of

the matrices K̃ (x) and L̃ in (9a) and (9b), respectively.
In Section 3.3, we will show that these matrices indeed
always exist.

Next, we argue that Assumptions 8 and 9 are not very
restrictive. Assumption 8 requires that the dependent stor-
ages are static functions of only the independent storages.
Indeed, this is the most common kind of dependent stor-
ages (Borutzky, 2010, pp. 142ff.). Assumption 9 demands
the storage functions of the C-type elements to be positive
definite and quadratic. Positive definiteness implies non-
negativity which is a natural property of an energy stor-
age function. Moreover, quadratic functions are the most
common form of storage functions as they imply a linear
relation between the states and the efforts of a storage
element (Borutzky, 2010, p. 45). Nonlinear relations of
states and efforts can be found for example in relativistic
mechanics.

In conclusion, Theorem 10 provides a constructive and
rigorous method to formulate a wide class of bond graphs
with or without dependent storages as explicit PHSs.

3.3 Proof of the Main Result

In this section, we give the proof of Theorem 10. In the
first part of the proof, we show that the matrices K̃ (x)

in (9a) and L̃ in (9b) always exist. In the second part, we



J(x) =
1

2

(
ZCiR(x) R̃(x) K̃>(x)Z>CiR(x) L̃> − L̃ZCiR(x) K̃(x) R̃(x)Z>CiR(x)−ZCiCi(x) L̃> − L̃ZCiCi(x)

)
(8a)

R(x) =
1

2

(
ZCiR(x) R̃(x) K̃>(x)Z>CiR(x) L̃> + L̃ZCiR(x) K̃(x) R̃(x)Z>CiR(x)−ZCiCi

(x) L̃> + L̃ZCiCi
(x)
)

(8b)

G(x) =
1

2

(
I + L̃

)
ZCiP(x)− 1

2

(
ZCiR(x) R̃(x) K̃>(x)− L̃ZCiR(x) K̃(x) R̃(x)

)
ZRP(x) (8c)

P (x) =
1

2

(
I − L̃

)
ZCiP(x)− 1

2

(
ZCiR(x) R̃(x) K̃>(x) + L̃ZCiR(x) K̃(x) R̃(x)

)
ZRP(x) (8d)

M(x) = ZPP(x) +
1

2
Z>RP(x)

(
K̃(x) R̃(x)− R̃(x) K̃>(x)

)
ZRP(x) (8e)

S(x) =
1

2
Z>RP(x)

(
K̃(x) R̃(x) + R̃(x) K̃>(x)

)
ZRP(x) (8f)

prove the main statement of Theorem 10. For the proofs
of the existence of the matrices K̃ (x) and L̃ we use the
Rayleigh quotient.

Definition 11. Given a quadratic matrix A ∈ Rn×n and a
non-zero vector x ∈ Rn. The Rayleigh quotient ρ(A,x) is

defined as x>Ax
x>x

(Deuflhard and Hohmann, 1995, p. 273).
The set of all Rayleigh quotients over non-zero vectors

W (A) := {ρ(A,x) |x ∈ Rn \ {0}} (10)

is called numerical range of A.

We have Spec (A) ⊆W (A) and for a symmetric matrix A
we have W (A) = [λmin, λmax] by the min-max Theorem
(also known as Courant-Fischer Theorem) (Deuflhard and
Hohmann, 1995, Lemma 8.29, p. 273), where λmin and
λmax are the smallest and the largest eigenvalues of A.
Now, we have all prerequisites to show that K̃ (x) in (9a)
always exists.

Lemma 12. Let X ∈ Rp×p be a symmetric positive defi-
nite matrix and Y ∈ Rp×p be any matrix whose numerical
range W (Y ) is contained in [0,∞), i.e., Y has only non-
negative eigenvalues. Then the matrices I +Y X and I +
XY are regular.

Proof. We only give the proof for I + XY as the proof
for I+Y X is the same except for X and Y interchanged.
Without loss of generality we may assume X to be
diagonal. Indeed, since X is a symmetric and real matrix,
there exists (by the Spectral Theorem) an orthogonal
matrix T such that TXT> is diagonal. Moreover, I +
XY is invertible if and only if T (I + XY )T> = I +

(TXT>)(TY T>) = I + X̃Ỹ is invertible, where X̃ =
TXT> is diagonal and positive definite and the numerical
range of Ỹ = TY T> is contained in [0,∞). Thus, we can
assume X to be diagonal in the remainder of the proof.
The matrix I + XY is regular if and only if 0 is not
an eigenvalue, that is if −1 is not an eigenvalue of XY .
We will show that XY has only eigenvalues in [0,∞).

Let
√
X be the diagonal matrix which is a square root

of X, i.e.
√
X
√
X =

√
X
√
X
>

= X. Such a matrix
exists and is invertible since X is diagonal and positive
definite. Because the spectrum of a matrix is invariant
under conjugation, we have

Spec (XY ) = Spec
(√

X
−1

XY
√
X
)

= Spec
(√

XY
√
X
)

= Spec
(√

XY
√
X
>)

⊆W
(√

XY
√
X
>)
⊆W (Y ) · (0,∞) ⊆ [0,∞).

(11)

In (11), the second to last inclusion holds since

x>
√
XY
√
X
>
x

x>x
=

x>
√
XY
√
X
>
x

x>
√
X
√
X
>
x︸ ︷︷ ︸

∈W (Y )

· x
>
√
X
√
X
>
x

x>x︸ ︷︷ ︸
∈W (X)

(12)
and W (X) ⊆ (0,∞) by the min-max Theorem. Thus, −1
is not an eigenvalue of XY and I + XY is invertible.

Corollary 13. The matrix K̃ (x) in (9a) always exists for
all x ∈ X .

Proof. Recall that in (9a) we have R̃ (x) = R̃> (x) � 0
and ZRR (x) = −Z>RR (x) for all x ∈ X . The Rayleight
quotient of a skew-symmetric matrix is always 0. Then,
the statement from Corollary 13 follows directly from
Lemma 12.

Corollary 14. The matrix L̃ (x) in (9b) always exists.

Proof. Recall that Dd � 0 and thus D−1d � 0 which also

implies D−1d � 0. Hence, ZCiCd
D−1d Z>CiCd

is positive semi-
definite. The Rayleight quotient of a positive semi-definite
matrix is always ≥ 0, i.e., W (ZCiCd

D−1d Z>CiCd
) ⊆ [0,∞).

As Di is symmetric and positive definite, the claim follows
from Lemma 12.

Corollaries 13 and 14 show that the matrices in (9a) and
(9b) always exist, respectively. Next, we give the proof of
the main part of Theorem 10.

Proof. The proof follows three steps: (i) In (1), we elim-
inate variables that belong to resistive elements and de-
pendent storages; (ii) we decompose the equation system
obtained from (i) into a symmetric and a skew-symmetric
part and insert the constitutive relations of the indepen-
dent storages from (3); (iii) we prove (7). For the sake of
releasing notational burden, we will suppress the argument
x to the matrices during the proof.

(i) Let assumption 8 hold. Substituting the third line from
the equation system of (1) into (5) gives

uR = −R̃
(
Z>CiR uCi + ZRR uR −ZRP uP

)
⇔ uR = −K̃ R̃Z>CiR uCi + K̃ R̃ZRP uP (13)



with K̃ as in (9a). According to Corollary 13, K̃ always
exists. Now, we use an idea of Wellstead (1979) (pp. 226-
227) to eliminate the variables that belong to dependent
storages. In addition to assumption 8, let assumption 9
hold. With (3b), the second line of the equation system of
(1) reads:

yCd
= Z>CiCd

uCi

⇔ ∂Vd
∂xd

(xd) = Z>CiCd

(
∂Vi
∂xi

(xi)

)
⇔ Dd xd = Z>CiCd

Di xi

⇔ xd = D−1d Z>CiCd
Di xi. (14)

By differentiating (14) with respect to time and using (3a),
we obtain

⇔ ẋd = D−1d Z>CiCd
Di ẋi

⇔ 0 = −uCd
+ D−1d Z>CiCd

Di yCi
. (15)

Insertion of (13) into the first line of the equation system
in (1) gives

yCi
=
(
ZCiCi

+ ZCiRK̃R̃Z>CiR

)
uCi
−ZCiCd

uCd

+
(
−ZCiP−ZCiRK̃R̃ZRP

)
uP.

(16)

Equations (15) and (16) can be written in matrix-vector
form: (

I ZCiCd

−D−1d Z>CiCd
Di I

)(
yCi

uCd

)
=(

ZCiCi
+ZCiRK̃R̃Z>CiR

−ZCiP−ZCiRK̃R̃ZRP

0 0

)(
uCi

uP

)
.

(17)

Next, we use Corollary 19 from Appendix A to invert the
2× 2 block matrix on the left-hand side of equation (17).
The Schur complement of this matrix is given by (Lu and
Shiou, 2002):

L := I + ZCiCd
D−1d Z>CiCd

Di. (18)

From Corollary 14 it follows that L is always regular. Thus,
the inverse matrix of L exists and is given by L̃ := L−1 as
in (9b). By applying Corollary 19, we can then write (17)
equivalently as(

yCi

uCd

)
=

(
Z1 Z2

Z3 Z4

)(
uCi

uP

)
(19)

with Z1 = L̃
(
ZCiCi

+ ZCiR K̃ R̃Z>CiR

)
,

Z2 = L̃
(
−ZCiP −ZCiR K̃ R̃ZRP

)
,

Z3 = D−1d Z>CiCd
Di L̃

(
ZCiCi

−ZCiR K̃ R̃Z>CiR

)
,

Z4 = D−1d Z>CiCd
Di L̃

(
−ZCiP −ZCiR K̃ R̃ZRP

)
.

Equation (19) will pave the way to the state differential
equation (6a) of the PHS. However, we also require an
expression for the output equation (6b). To this end, we
insert (13) into the fourth line of the equation system of
(1) and obtain

yP =
(
Z>CiP −Z>RPK̃R̃Z>CiR

)
uCi

+
(
ZPP + Z>RPK̃R̃ZRP

)
uP.

(20)

The first line of the equation system in (19) and equa-
tion (20) can be written together in matrix-vector form
as(

yCi

yP

)
=

(
L̃
(
ZCiCi + ZCiR K̃ R̃Z>CiR

)
Z>CiP

−Z>RP K̃ R̃Z>CiR

−L̃
(
ZCiP + ZCiR K̃ R̃ZRP

)
ZPP + Z>RP K̃ R̃ZRP

)(
uCi

uP

)
.

(21)

Note that (21) is independent of variables that belong to
resistive elements and dependent storages.

(ii) The matrix in (21) can be decomposed into a skew-
symmetric and a symmetric part. Using this decomposi-
tion, (21) can be equivalently written as(

yCi

yP

)
=

[(
−J −G
G> M

)
︸ ︷︷ ︸

=:Qss

+

(
R P
P> S

)]
︸ ︷︷ ︸

=:Qs

(
uCi

uP

)
(22)

with J , R , G , P , M , S as in (8) and Qss = −Q>ss,
Qs = Q>s . By inserting the identities of the independent
variables from (3) into (22), we finally obtain the explicit
PHS (6) with u = uP, x = xi, y = yP and Hamiltonian
H (x) = Vi(xi).

(iii) In the last step, we show that (7) holds. Let us merge
(22) with the second line of the equation system in (1):yCi

yP
yCd

 =

−J −G 0
G> M 0
0 0 0


︸ ︷︷ ︸

=:Q̃ss

+

 R P 0
P> S 0

Z>CiCd
0 0


︸ ︷︷ ︸

=:Q̃s

(
uCi

uP

uCd

)
.

(23)

Note that Q̃ss is skew-symmetric but Q̃s is not symmetric.
Nevertheless, Q̃s � 0 implies Qs � 0. In the following, we
show that Q̃s � 0:

(
u>Ci

u>P u>Cd

)
Q̃s

(
uCi

uP

uCd

)

=
(
u>Ci

u>P u>Cd

) (
Q̃ss + Q̃s

)(uCi

uP

uCd

)

(23)
=
(
u>Ci

u>P u>Cd

)yCi

yP
yCd


(1)
= −y>RuR

(5)
= y>RR̃yR ≥ 0. (24)

Hence, we have Q̃s � 0 which implies Qs � 0. This
concludes the proof of Theorem 10.

Remark 15. By inserting (3) into the second line of (19),
we yield an explicit expression for the dynamics of the
dependent states:

ẋd = D−1d Z>CiCd
DiL̃

(
ZCiCi −ZCiRK̃R̃Z>CiR

) ∂Vi
∂xi

(xi)

−D−1d Z>CiCd
DiL̃

(
ZCiP + ZCiRK̃R̃ZRP

)
uP.

(25)

Remark 16. With (14), the total energy in the system can
be given as a function only of the independent states xi:



V (xi,xd) = Vi(xi) + Vd(xd)

= 1
2x
>
i Dixi + 1

2x
>
d Ddxd

= 1
2x
>
i Di

(
I + ZCiCd

D−1d Z>CiCd
Di

)
xi

(18)
= 1

2x
>
i DiLxi = V (xi). (26)

4. EXAMPLE

In this section, the result from Section 3 is illustrated
through an academic example. Consider the bond graph
in Figure 1.

Fig. 1. Exemplary bond graph with dependent storage

The C-type element with storage function Vi(xi) is con-
sidered as independent storage element; the C-type ele-
ment with storage function Vd(xd) is a dependent storage
element. The respective storage functions are given by
Vi(xi) = x2i /(2ci) and Vd(xd) = x2d/(2cd) where ci > 0,
cd > 0. The constitutive relation of the R-type element
is specified by fR = d eR where d > 0. The transformer
TF has a constant transformation ratio v > 0 and the
gyrator GY is state-modulated with an arbitrary gyration
ratio w(xi, xd) > 0 for all xi, xd ∈ R.

The junction structure of the bond graph can be described
by a Dirac structure of the form (1):

D = {(

fCi

fCd

fR
fSe

 ,

eCi

eCd

eR
eSe

) ∈ R4 × R4 |

−fCi

eCd

eR
fSe

 =


0 −v −1 − v

w(xi,xd)

v 0 0 0
1 0 0 0
v

w(xi,xd)
0 0 0


 eCi

−fCd

−fR
eSe

}.
(27)

Obviously, Assumptions 8 and 9 are satisfied. Hence, from
Theorem 10 we known that the bond graph from Figure 1
permits an explicit port-Hamiltonian formulation of the
form (6) with u = eSe, x = xi, y = fSe, and H(x) = Vi(xi).
By using the calculation rules (8), we obtain the following
explicit PHS:

ẋ =−
(

d ci
ci+v2 cd

)
︸ ︷︷ ︸
=R(x)=R

∂H

∂x
(x) +

( v ci
w(x)(ci+v2 cd)

)︸ ︷︷ ︸
=G(x)−P (x)

u, (28a)

y =
( v
w(x)

)︸ ︷︷ ︸
=(G(x)+P (x))>

∂H

∂x
(x), (28b)

with J (x), M (x), and S (x) being zero. Note that (28)
indeed fulfills (7).

Remark 17. The function w(x) = w(xi) in (28) can be
obtained from the gyration ratio w(xi, xd) by substituting
xd with (14).

5. CONCLUSION

In this paper, we presented a method which transfers a
large class of bond graphs with dependent storages into
explicit PHSs. The idea is to express the port-Hamiltonian
dynamics and output as functions of only system inputs
and independent storages. The method gives calculation
rules for the matrices of the explicit PHS and can thus
be easily implemented in a computer algebra system. The
existence of all involved matrices is rigorously proven.
Future work will focus on the extension of our method
to non-quadratic storage functions, i.e., a relaxation of
Assumption 9.
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Appendix A. INVERSES OF 2× 2 BLOCK MATRICES

Lemma 18. (Lu and Shiou (2002)). Consider a non-singular
2× 2 square block matrix(

A B
C D

)
, (A.1)

where A and D are square matrices. Assume D is non-
singular. Then the matrix (A.1) is invertible if and only if
the Schur complement L = A−BD−1C of D is invertible,
and the inverse is given by(

L−1 −L−1BD−1

−D−1CL−1 D−1 + D−1CL−1BD−1

)
. (A.2)

Corollary 19. Consider the situation of Lemma 18 with A
and D being identity matrices. Then, the matrix (A.1) is
invertible if and only if L := I−BC is invertible, and the
inverse is given by(

L−1 −L−1B
−CL−1 I + CL−1B

)
. (A.3)

Proof. Follows directly from Lemma 18 under A = I and
D = I.


