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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Laser cutting of metals is a complex process with many influencing factors. As some of them are subject to change, the cut quality needs to be 
checked regularly. This paper aims to estimate the roughness of cut edges based on RGB images instead of surface topography measurements. 
 
We trained a convolutional neural network (CNN) on a broad database of images and corresponding roughness values. The CNN estimates the 
roughness well with a mean error of 3.6 µm. Sometimes it is more reliable than the surface measuring device because the RGB images are less 
prone to reflectivity problems than the measurements. 
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1. Introduction 

Laser cutting is a complex process that depends on 
numerous parameters: properties of the laser beam (e.g. focus 
position), transport properties (e.g. feed rate), properties of the 
assist gas (e.g. gas pressure) and material properties (e.g. 
quality of the sheet) [1]. Even the change of a single parameter 
can cause a deterioration of the process quality, which therefore 
needs to be closely monitored. Despite decades of industrial 
application laser cutting is still the subject of current research. 
Arntz‐Schroeder and Petring [2] and Pocorni et al. [3] recently 
presented analyses of the melt flow dynamics at the cut front. 
These dynamics influence the roughness of the resulting cut 
edge. 

According to the ISO standard 9013 [4] roughness (Rz) and 
perpendicularity tolerance (u) define the quality of a thermal 
cut. Both are derived from the height profile of the cut edge. 
Consequently, a surface measuring device is required to 
determine them. This is usually not available in production. 

Instead, the machine operator carries out the quality inspection 
manually by simply looking at the edge. This method is 
subjective and difficult to automate. It would be better to 
complement or replace this procedure with an objective quality 
assessment. 

This paper presents a contact-less approach to deduce the 
roughness of a cut edge from an RGB image (image with three 
additive colour channels, R: red, G: green, B: blue) without a 
measuring device. For this purpose, we generated a broad 
database containing cut edges of very different qualities: for 
each edge an RGB image was taken and Rz was determined. 
This data was used to train a convolutional neural network 
(CNN). In section 4 we evaluate the performance of the model 
in detail. The CNN sometimes estimates the roughness better 
than the actual measurement because the RGB images are less 
prone to reflectivity problems than the surface topographies.  

Sun et al. [5] describe a CNN-based approach to evaluate 
the surface of milled metals. On milled surfaces grooves are 
clearly visible and can be easily identified. This is not the case 
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Instead, the machine operator carries out the quality inspection 
manually by simply looking at the edge. This method is 
subjective and difficult to automate. It would be better to 
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This paper presents a contact-less approach to deduce the 
roughness of a cut edge from an RGB image (image with three 
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in detail. The CNN sometimes estimates the roughness better 
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for parts produced with a laser. Stahl and Jauch [6] present a 
CNN to estimate the roughness of a cut edge. They used Ra 
instead of Rz to describe the roughness and they labelled each 
edge with the mean value of all measuring lines. The average 
roughness, however, says little about the maximum roughness, 
which can occur very locally. Since they did not ensure that the 
images of one edge (that look very similar and have the same 
label) are either in the training or in the test split, they might 
overestimate the performance of the model. 

2. Database 

2.1. Generating edges of very different qualities 

The database consists of 3336 stainless steel (1.4301) cut 
edges. All of them are 3 mm thick and were cut on a state-of-
the-art laser cutting machine (TruLaser 5030 fiber with 
TruDisk 12001). To generate different cut edges four dominant 
process parameters were varied: the distance between the 
nozzle and the focus of the laser beam (−3.5 to −0.5 mm), the 
distance between the nozzle and the sheet metal (0.5 to 3 mm), 
the feed rate (13 to 29 m/min) and the pressure of the assist gas 
(9 to 21 bar). The fully factorial combination resulted in 1050 
different parameter combinations and (less the miscuts) in 834 
unique samples. Each sample is a square with a side length of 
10 cm. In the following only the middle 5 cm of each edge were 
considered as the process parameters are constant only there.  

2.2. Roughness measurement 

The roughness was determined with an optical measurement 
system (3D profilometer VR-3200, Keyence Corporation) 
using light section. Light section is based on triangulation [7]. 
A thin line is projected onto the object to be measured and the 
projection is observed by a camera. Displacements of the line 
can be converted into 3D point clouds. The accuracy of the 
height measurement is ±3 µm. 
The mean height of the profile Rz (here: roughness) indicates 
the absolute vertical distance between the highest profile peak 
and the deepest profile valley along the sampling length. Due 
to the dependency on the extreme values of the profile Rz is 
strongly influenced by local outliers. 
The roughness values were calculated as follows: the 5 cm of 
the edge were divided into five areas of 10 mm length. In each 
area nine measurement lines were placed at different depths of 
the sheet with 0.3 mm spacing. This is shown in Fig. 1. 
The lines are named after their distance (in mm) from the upper 
edge. For each of the measurement lines, the roughness was 
determined following the ISO standard [4] (with one minor 
change: we applied a fixed cut-off wavelength of 2.5 mm). 

Fig. 1. RGB image of 10 mm (one area) of a laser cut edge with roughness 
measurement lines at different depths of the sheet. 

Fig. 2. Distribution of the roughness values for the lines 0.3, 1.5 and 2.7. The 
x-axis was limited to 50 μm. Less than 2 % of the edges have higher 

roughness values. 

The Rz values of the five areas were then averaged. This 
resulted in nine regression targets (labels) for each edge: one 
value for line 0.3, one value for line 0.6, etc. 

In Fig. 2 the roughness histograms of line 0.3, 1.5 and 2.7 
are shown. The corresponding expected values are 15.8, 17.0 
and 22.6 μm and the standard deviations are 10.4, 9.1 and 
7.3 μm respectively. 

According to the ISO standard [4] roughness and 
perpendicularity tolerance define the quality of a laser cut edge. 
The perpendicularity could probably be estimated analogously 
to the presented approach, though images taken from a different 
perspective would be needed. 

2.3. RGB images of the cut edges 

The measurement device was also used to take the RGB 
images. It is equipped with a double telecentric lens, a 
monochromatic CMOS Sensor and red, green and blue LEDs. 
The raw images have a size of about 3400 x 530 pixels and a 
resolution of 15 µm x 15 µm per pixel. 

3. Model and methods 

3.1. Convolutional neural networks 

Convolutional neural networks (CNNs) are artificial neural 
networks that are mainly used in the field of computer vision. 
They are designed to extract local (image) features invariant to 
their location by using shared parameters and local receptive 
fields. Shared parameters lead to a reduced total number of 
parameters, which allows to increase the number of layers 
compared to a neural network with full connectivity [8]. 

The core building block of a CNN is the convolutional layer. 
Each of these layers applies K ∈ ℕ different filter kernels 
resulting in K feature maps. Most modern CNNs (e.g. ResNet 
[9]) reduce the spatial size of the layers and increase the depth 
dimension (number of kernels) of the feature maps. 

The architecture of the CNN used in this paper is shown in 
Fig. 3 and explained in more detail in Table 1. It was inspired 
by the VGG16 network [10], but with only 1,974,441 trainable 
parameters it is significantly smaller. 
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Fig. 3. CNN architecture: one input layer and four blocks (B 1, B 2, B 3 and 
B 4) each containing three convolutional layers. Input: square image of the 

cut edge. Output: nine Rz values, one for each measurement line. 

The CNN consists of 13 convolutional layers, which are 
organized in blocks. The input block contains one 
convolutional layer, the subsequent four blocks contain three 
convolutional layers each, where the last layer of the block 
serves as spatial downsampling operation (convolution with 
stride 2, [11]). The number of filters increases from 32 to 256 
while the dimension decreases from 112 x 112 to 7 x 7 pixels. 
Each convolutional layer uses a kernel size of 3 x 3 pixels 
(except for the input block which applies 7 x 7 kernels). After 
each convolutional layer batch normalization is performed [12] 
and the ReLu activation function [13] is applied. To connect 
the last block with the nine regression targets, we use global 
average pooling (GAP) [14] in combination with one dense 
layer. 

Table 1. CNN architecture: The model consists of an input block and four 
subsequent blocks each containing three convolutional layers; the regression 
targets are connected with global average pooling and one dense layer. 

layer number of kernels output spatial resolution 

input block, conv 1 32 112 x 112 

block 1, conv 1 32 112 x 112 

block 1, conv 2 32 112 x 112 

block 1, conv 3 32 56 x 56 

block 2, conv 1 64 56 x 56 

block 2, conv 2 64 56 x 56 

block 2, conv 3 64 28 x 28 

block 3, conv 1 128 28 x 28 

block 3, conv 2 128 28 x 28 

block 3, conv 3 128 14 x 14 

block 4, conv 1 256 14 x 14 

block 4, conv 2 256 14 x 14 

block 4, conv 3 256 7 x 7 

GAP - 256 x 1 

dropout - 256 x 1 

dense - 9 x 1 

3.2. Image preprocessing 

The preprocessing of the raw images is displayed in Fig. 4. 
Since they contain a lot of black background, they were first 
cropped. This resulted in an image of approximately 215 pixels 
height (~3 mm) and 3,400 pixels length (~50 mm), which was 

then cut into 15 square images. Each of them was slightly 
rescaled to 224 x 224 pixels. The 15 images of one edge were 
labeled with the same roughness values. 

Fig. 4. The raw image was cropped and cut into 15 square images. 

3.3. Train, validation and test split 

The database consists of 834 samples, which correspond to 
3,336 edges and 50,040 images. It was split into three parts: 
training set (72 %), validation set (13 %) and test set (15 %). 
The training set was used to learn the model parameters, the 
validation set was necessary for the hyperparameter 
optimization and with the test set the performance of the model 
is evaluated on unseen data. 

When splitting the data, it must be guaranteed that a 
particular parameter combination (all images of one sample) is 
only contained in one of the three sets instead of splitting the 
images randomly. Otherwise we might overestimate the 
performance of the CNN: instead of generalizing well, it might 
only memorize the images. 

3.4. Training 

Since pre-trained architectures (e.g. ResNet [9] and VGG16 
[10], pretrained on the ImageNet database) did not extract 
relevant features, we trained the CNN from scratch. The 
weights of the network were initialized with the Xavier uniform 
initializer [15] and updated with the Adam algorithm (β1=0.9, 
β2=0.999) [16]. The learning rate was set to 0.001. The batch 
size was 60. 

To prevent overfitting during training we used 50 % 
dropout, data augmentation (vertically and horizontally 
flipping and rotating the images) and validation-based early 
stopping: when the validation loss does not improve for 20 
epochs the training is aborted. 

3.5. Evaluation 

The mean absolute error (MAE) was used as loss function 
during training and to evaluate the quality of the regression on 
the test set. It was calculated for each of the nine targets 
separately: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  
1
𝑁𝑁𝑁𝑁
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with 𝑁𝑁𝑁𝑁: number of test images, 𝑌𝑌𝑌𝑌�𝑖𝑖𝑖𝑖: predicted value, 𝑌𝑌𝑌𝑌𝑖𝑖𝑖𝑖: true 

value (label) for the image 𝑖𝑖𝑖𝑖. 
In order to obtain a more stable statement about the model 

performance, the data was divided into training, validation and 
test set three times with a random permutation cross-validator 
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for parts produced with a laser. Stahl and Jauch [6] present a 
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instead of Rz to describe the roughness and they labelled each 
edge with the mean value of all measuring lines. The average 
roughness, however, says little about the maximum roughness, 
which can occur very locally. Since they did not ensure that the 
images of one edge (that look very similar and have the same 
label) are either in the training or in the test split, they might 
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the feed rate (13 to 29 m/min) and the pressure of the assist gas 
(9 to 21 bar). The fully factorial combination resulted in 1050 
different parameter combinations and (less the miscuts) in 834 
unique samples. Each sample is a square with a side length of 
10 cm. In the following only the middle 5 cm of each edge were 
considered as the process parameters are constant only there.  

2.2. Roughness measurement 

The roughness was determined with an optical measurement 
system (3D profilometer VR-3200, Keyence Corporation) 
using light section. Light section is based on triangulation [7]. 
A thin line is projected onto the object to be measured and the 
projection is observed by a camera. Displacements of the line 
can be converted into 3D point clouds. The accuracy of the 
height measurement is ±3 µm. 
The mean height of the profile Rz (here: roughness) indicates 
the absolute vertical distance between the highest profile peak 
and the deepest profile valley along the sampling length. Due 
to the dependency on the extreme values of the profile Rz is 
strongly influenced by local outliers. 
The roughness values were calculated as follows: the 5 cm of 
the edge were divided into five areas of 10 mm length. In each 
area nine measurement lines were placed at different depths of 
the sheet with 0.3 mm spacing. This is shown in Fig. 1. 
The lines are named after their distance (in mm) from the upper 
edge. For each of the measurement lines, the roughness was 
determined following the ISO standard [4] (with one minor 
change: we applied a fixed cut-off wavelength of 2.5 mm). 

Fig. 1. RGB image of 10 mm (one area) of a laser cut edge with roughness 
measurement lines at different depths of the sheet. 

Fig. 2. Distribution of the roughness values for the lines 0.3, 1.5 and 2.7. The 
x-axis was limited to 50 μm. Less than 2 % of the edges have higher 
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The Rz values of the five areas were then averaged. This 
resulted in nine regression targets (labels) for each edge: one 
value for line 0.3, one value for line 0.6, etc. 

In Fig. 2 the roughness histograms of line 0.3, 1.5 and 2.7 
are shown. The corresponding expected values are 15.8, 17.0 
and 22.6 μm and the standard deviations are 10.4, 9.1 and 
7.3 μm respectively. 

According to the ISO standard [4] roughness and 
perpendicularity tolerance define the quality of a laser cut edge. 
The perpendicularity could probably be estimated analogously 
to the presented approach, though images taken from a different 
perspective would be needed. 

2.3. RGB images of the cut edges 

The measurement device was also used to take the RGB 
images. It is equipped with a double telecentric lens, a 
monochromatic CMOS Sensor and red, green and blue LEDs. 
The raw images have a size of about 3400 x 530 pixels and a 
resolution of 15 µm x 15 µm per pixel. 

3. Model and methods 

3.1. Convolutional neural networks 

Convolutional neural networks (CNNs) are artificial neural 
networks that are mainly used in the field of computer vision. 
They are designed to extract local (image) features invariant to 
their location by using shared parameters and local receptive 
fields. Shared parameters lead to a reduced total number of 
parameters, which allows to increase the number of layers 
compared to a neural network with full connectivity [8]. 

The core building block of a CNN is the convolutional layer. 
Each of these layers applies K ∈ ℕ different filter kernels 
resulting in K feature maps. Most modern CNNs (e.g. ResNet 
[9]) reduce the spatial size of the layers and increase the depth 
dimension (number of kernels) of the feature maps. 

The architecture of the CNN used in this paper is shown in 
Fig. 3 and explained in more detail in Table 1. It was inspired 
by the VGG16 network [10], but with only 1,974,441 trainable 
parameters it is significantly smaller. 
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Fig. 3. CNN architecture: one input layer and four blocks (B 1, B 2, B 3 and 
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cut edge. Output: nine Rz values, one for each measurement line. 
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the last block with the nine regression targets, we use global 
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Since they contain a lot of black background, they were first 
cropped. This resulted in an image of approximately 215 pixels 
height (~3 mm) and 3,400 pixels length (~50 mm), which was 
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validation set was necessary for the hyperparameter 
optimization and with the test set the performance of the model 
is evaluated on unseen data. 

When splitting the data, it must be guaranteed that a 
particular parameter combination (all images of one sample) is 
only contained in one of the three sets instead of splitting the 
images randomly. Otherwise we might overestimate the 
performance of the CNN: instead of generalizing well, it might 
only memorize the images. 

3.4. Training 

Since pre-trained architectures (e.g. ResNet [9] and VGG16 
[10], pretrained on the ImageNet database) did not extract 
relevant features, we trained the CNN from scratch. The 
weights of the network were initialized with the Xavier uniform 
initializer [15] and updated with the Adam algorithm (β1=0.9, 
β2=0.999) [16]. The learning rate was set to 0.001. The batch 
size was 60. 

To prevent overfitting during training we used 50 % 
dropout, data augmentation (vertically and horizontally 
flipping and rotating the images) and validation-based early 
stopping: when the validation loss does not improve for 20 
epochs the training is aborted. 

3.5. Evaluation 

The mean absolute error (MAE) was used as loss function 
during training and to evaluate the quality of the regression on 
the test set. It was calculated for each of the nine targets 
separately: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  
1
𝑁𝑁𝑁𝑁
��𝑌𝑌𝑌𝑌�𝑖𝑖𝑖𝑖 − 𝑌𝑌𝑌𝑌𝑖𝑖𝑖𝑖�
𝑁𝑁𝑁𝑁

𝑖𝑖𝑖𝑖=1

 

 
with 𝑁𝑁𝑁𝑁: number of test images, 𝑌𝑌𝑌𝑌�𝑖𝑖𝑖𝑖: predicted value, 𝑌𝑌𝑌𝑌𝑖𝑖𝑖𝑖: true 

value (label) for the image 𝑖𝑖𝑖𝑖. 
In order to obtain a more stable statement about the model 

performance, the data was divided into training, validation and 
test set three times with a random permutation cross-validator 
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(in compliance with the boundary conditions described in 3.3). 
These splits are referred to as run 1, 2 and 3. 

To the best of our knowledge there is no analytical method 
(for the calculation of Rz based on RGB images) to which the 
CNN could be compared. 

3.5.1. Python libraries and hardware 
 
The CNN was implemented in Python using the libraries 

TensorFlow 1.13.1 [17] and Keras 2.2.4 [18]. It was trained on 
the GPU GeForce RTX 2080 Ti graphical processing unit 
(NVIDIA corporation). The training time was below eight 
hours and is not considered further. 

4. Results and discussion 

In Table 2 the MAEs for the different measurement lines are 
shown. They range between 2.7 µm and 5.7 µm. For the same 
line they vary by up to 1.4 µm for different runs. The fact that 
the performance depends on the partitioning of the data is 
probably caused by the small database. The MAEs vary for 
different measurement lines. The prediction is generally better 
for lines in the lower region of the cut edge. The MAEs of line 
0.3 are by far the worst for all three runs. 

Table 2. Mean absolute errors (rounded) of the nine regression targets (line 
0.3 to line 2.7) on the respective test set for three random splits of the data. 

line  0.3 0.6 0.9 1.2 1.5 

MAE in 
µm 

run 1 5.7 3.7 3.8 2.9 2.9 

run 2 4.5 4.2 4.3 4.0 3.2 

run 3 4.3 3.6 4.2 3.5 3.4 

Ø 4.8 3.9 4.1 3.4 3.2 

line  1.8 2.1 2.4 2.7 Ø 

MAE in 
µm 

run 1 3.4 3.0 2.9 2.9 3.5 

run 2 2.7 2.8 2.8 3.4 3.5 

run 3 3.5 3.4 3.6 3.6 3.7 

Ø 3.2 3.1 3.1 3.3 3.6 

 
In Fig. 5 the roughness values predicted by the CNN on the 

test set of run 1 are compared with the labels (measurement 
results) for the lines 0.3, 1.5 and 2.7. Prediction and label are 
mostly similar at the middle and bottom line. The model is 
slightly biased: for low roughness values the predicted value is 
generally a little too high, for high roughness values it is too 
low. This is probably caused by the distribution of the data (see 
Fig. 2).  

Line 0.3 stands out negatively again in Fig. 5. For some 
samples the prediction of the CNN seems to be completely 
wrong. It estimates roughness values of less than 25 µm for 
samples with labels of more than 50 µm. In truth, the higher 
MAEs in Table 2 and the huge differences between prediction 
and label are due to the quality of the data. In rare cases, the 
optical measurement device cannot cope with the high 
reflectivity of the stainless steel surfaces. This results in faulty 
surface topography measurements with outliers (deep holes) 
and causes very large roughness values. The uppermost part of 

the cut edge (line 0.3 to 0.9) is most affected because the 
reflectivity is particularly high there.  

Fig. 5. Comparison of predicted value and label for the lines 0.3, 1.5 and 2.7, 
exemplarily for run 1. 

Fig. 6. RGB image and height topography of two measurements of edge 
0700-4, a: with measurement errors (deep holes) caused by reflections, b: 

without errors. 

For example, edge 0700-4 (see Fig. 5, rightmost red dot) is 
labelled with a value of 97 µm. The high Rz value is mainly 
caused by small, but very deep holes (see Fig. 6, a). The 
repetition of the measurement with a slightly deviating 
positioning of the edge in the sample holder, produces a surface 
topography without any holes (see Fig. 6, b). In this case Rz is 
12 µm instead of 97 µm. The CNN estimates a value of 13 µm. 
It follows that the label is wrong. The CNN estimates the 
roughness better than the measurement system. The same 
applies to the other outliers in Fig. 5. 

The neural network correctly maps the relationship between 
RGB image and roughness. Prediction and label only differ 
greatly, if the label is wrong. Although the outliers only affect 
few edges, they are not negligible due to their magnitude. They 
do not only increase the test error, but also the training error 
and influence the training process negatively. As the loss is 
averaged over the nine regression targets during training, the 
outliers affect the quality of the overall regression. A reliable 
detection and elimination of the outliers would surely improve 
the model, but not all outliers are as easy to detect as the one in 
the example above and repeating the measurement of each edge 
several times is too time-consuming. 

5. Conclusion and outlook 

We have shown that it is possible to estimate the roughness 
Rz of a laser cut edge with a CNN based on an RGB image. The 
roughness at different depths of the sheet could be determined 
with a mean error between 4.8 (for line 0.3) and 3.2 µm (for 
line 1.5). Consequently, a 3D measurement device is only 

99 µm 
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needed to generate training data for the model and obsolete in 
practice. Systems that automatically sort laser cut parts could 
for example be supplemented with cameras that take images of 
the cut edges or separate photo stations could be used by the 
machine operators when necessary. 

The CNN performs only apparently worse for the uppermost 
measurement line. In truth, some labels are wrong due to 
measurement errors and in these cases the prediction of the 
CNN is better than the actual measurement. By comparing the 
errors of the different runs, it becomes clear that improvements 
could be made, if more or better data was available. Then the 
performance would be less dependent on the split of the data 
and the outliers would have less impact on the overall 
performance. The data quality could be improved by using a 
mechanical instead of an optical measuring method (e.g. stylus 
tip measuring device). However, this would make data 
collection even more time consuming. 

Further interesting steps include the application of the 
network to other sheet thicknesses and materials. In addition, it 
would be desirable to estimate the roughness based on RGB 
images with a poorer resolution that are taken by simpler 
cameras without double telecentric lenses.  
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(in compliance with the boundary conditions described in 3.3). 
These splits are referred to as run 1, 2 and 3. 

To the best of our knowledge there is no analytical method 
(for the calculation of Rz based on RGB images) to which the 
CNN could be compared. 

3.5.1. Python libraries and hardware 
 
The CNN was implemented in Python using the libraries 

TensorFlow 1.13.1 [17] and Keras 2.2.4 [18]. It was trained on 
the GPU GeForce RTX 2080 Ti graphical processing unit 
(NVIDIA corporation). The training time was below eight 
hours and is not considered further. 

4. Results and discussion 

In Table 2 the MAEs for the different measurement lines are 
shown. They range between 2.7 µm and 5.7 µm. For the same 
line they vary by up to 1.4 µm for different runs. The fact that 
the performance depends on the partitioning of the data is 
probably caused by the small database. The MAEs vary for 
different measurement lines. The prediction is generally better 
for lines in the lower region of the cut edge. The MAEs of line 
0.3 are by far the worst for all three runs. 

Table 2. Mean absolute errors (rounded) of the nine regression targets (line 
0.3 to line 2.7) on the respective test set for three random splits of the data. 

line  0.3 0.6 0.9 1.2 1.5 

MAE in 
µm 

run 1 5.7 3.7 3.8 2.9 2.9 

run 2 4.5 4.2 4.3 4.0 3.2 

run 3 4.3 3.6 4.2 3.5 3.4 

Ø 4.8 3.9 4.1 3.4 3.2 

line  1.8 2.1 2.4 2.7 Ø 

MAE in 
µm 

run 1 3.4 3.0 2.9 2.9 3.5 

run 2 2.7 2.8 2.8 3.4 3.5 

run 3 3.5 3.4 3.6 3.6 3.7 

Ø 3.2 3.1 3.1 3.3 3.6 

 
In Fig. 5 the roughness values predicted by the CNN on the 

test set of run 1 are compared with the labels (measurement 
results) for the lines 0.3, 1.5 and 2.7. Prediction and label are 
mostly similar at the middle and bottom line. The model is 
slightly biased: for low roughness values the predicted value is 
generally a little too high, for high roughness values it is too 
low. This is probably caused by the distribution of the data (see 
Fig. 2).  

Line 0.3 stands out negatively again in Fig. 5. For some 
samples the prediction of the CNN seems to be completely 
wrong. It estimates roughness values of less than 25 µm for 
samples with labels of more than 50 µm. In truth, the higher 
MAEs in Table 2 and the huge differences between prediction 
and label are due to the quality of the data. In rare cases, the 
optical measurement device cannot cope with the high 
reflectivity of the stainless steel surfaces. This results in faulty 
surface topography measurements with outliers (deep holes) 
and causes very large roughness values. The uppermost part of 

the cut edge (line 0.3 to 0.9) is most affected because the 
reflectivity is particularly high there.  

Fig. 5. Comparison of predicted value and label for the lines 0.3, 1.5 and 2.7, 
exemplarily for run 1. 

Fig. 6. RGB image and height topography of two measurements of edge 
0700-4, a: with measurement errors (deep holes) caused by reflections, b: 

without errors. 

For example, edge 0700-4 (see Fig. 5, rightmost red dot) is 
labelled with a value of 97 µm. The high Rz value is mainly 
caused by small, but very deep holes (see Fig. 6, a). The 
repetition of the measurement with a slightly deviating 
positioning of the edge in the sample holder, produces a surface 
topography without any holes (see Fig. 6, b). In this case Rz is 
12 µm instead of 97 µm. The CNN estimates a value of 13 µm. 
It follows that the label is wrong. The CNN estimates the 
roughness better than the measurement system. The same 
applies to the other outliers in Fig. 5. 

The neural network correctly maps the relationship between 
RGB image and roughness. Prediction and label only differ 
greatly, if the label is wrong. Although the outliers only affect 
few edges, they are not negligible due to their magnitude. They 
do not only increase the test error, but also the training error 
and influence the training process negatively. As the loss is 
averaged over the nine regression targets during training, the 
outliers affect the quality of the overall regression. A reliable 
detection and elimination of the outliers would surely improve 
the model, but not all outliers are as easy to detect as the one in 
the example above and repeating the measurement of each edge 
several times is too time-consuming. 

5. Conclusion and outlook 

We have shown that it is possible to estimate the roughness 
Rz of a laser cut edge with a CNN based on an RGB image. The 
roughness at different depths of the sheet could be determined 
with a mean error between 4.8 (for line 0.3) and 3.2 µm (for 
line 1.5). Consequently, a 3D measurement device is only 
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needed to generate training data for the model and obsolete in 
practice. Systems that automatically sort laser cut parts could 
for example be supplemented with cameras that take images of 
the cut edges or separate photo stations could be used by the 
machine operators when necessary. 

The CNN performs only apparently worse for the uppermost 
measurement line. In truth, some labels are wrong due to 
measurement errors and in these cases the prediction of the 
CNN is better than the actual measurement. By comparing the 
errors of the different runs, it becomes clear that improvements 
could be made, if more or better data was available. Then the 
performance would be less dependent on the split of the data 
and the outliers would have less impact on the overall 
performance. The data quality could be improved by using a 
mechanical instead of an optical measuring method (e.g. stylus 
tip measuring device). However, this would make data 
collection even more time consuming. 

Further interesting steps include the application of the 
network to other sheet thicknesses and materials. In addition, it 
would be desirable to estimate the roughness based on RGB 
images with a poorer resolution that are taken by simpler 
cameras without double telecentric lenses.  
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