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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

Product development is a highly complex process that has to be individually adapted depending on the companies involved, the product to be 
developed and the related designers. Within this process, the approach and the know-how of the designer are very individual and can often only 
be described with high effort in a rule-based manner. Nevertheless, numerous routine tasks can be identified that offer enormous automation 
potential. Machine Learning, especially Deep Learning, has proven an immense capability to identify patterns and extract knowledge out of 
complex data sets. Autoencoder networks are suitable for the conversion of different 3D input data, e.g. Point Clouds, into compact latent 
representations and vice versa. Point Clouds are a universal representation of 3D objects and can be derived from various 3D data formats. The 
goal of the approach presented is to use Deep Learning algorithms to identify design patterns specific to a product family out of their underlying 
latent representation and use the extracted knowledge to automatically generate new latent object representations fulfilling distinct product feature 
specifications. A deep Autoencoder network with state-of-the-art reconstruction quality is used to encode Point Clouds into latent representations. 
In this approach, a conditional Generative Adversarial Network operating in latent space for generation of class-, characteristic- and dimension-
conditioned objects is introduced. The model is quantitatively evaluated by a comparison of given specifications and the implemented features 
of generated objects. The presented findings can be used to support designers in the creation process by automatically proposing appropriate 
objects as well as in the adaption of future product variants to different requirements. This relieves the designer of time-consuming routine tasks 
and reduces the effort of knowledge-transfer between designers significantly.  
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1. Introduction 

Modern product development is shaped by shortening 
product life cycles, customer individualisation and is, due to 
the necessary efficiency, mostly based on reference products 
[1]. Different generations and variants are released throughout 
a product’s lifecycle. This is necessary to increase market 
attractiveness or comply with revised specifications or 
standards. Even though the process of designing new products 
is highly individual and depends on the experience and 
creativity of engineers and designers [2], a significant 

automation potential can be identified. For example, different 
requirements between product generations, revised 
specifications and standards require manual adaptation of the 
corresponding CAD model. Automatic creation and adaption 
of models can support designers by enhancing creativity 
through suggestions of appropriate object shapes and, 
moreover, by saving time-to-market through automation of 
time-consuming routine tasks. To achieve this, highly abstract 
design patterns have to be identified and applied in the object 
generation process. Deep Artificial Neural Networks are able 
to address such complex issues. In contrast to pattern 
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description with case-specific rules, they also allow for 
transferability to new data, other product families or different 
engineering domains by transfer learning or re-training. This 
can be seen as significant advantage in terms of generalization 
and scaling for efficient product design. In this paper, state-of-
the-art research of Conditional Generative Adversarial 
Networks (GANs) [3], Autoencoder (AE) networks and 
generative representations of Point Cloud models is applied in 
the context of product development to present methods capable 
of supporting engineers and designers in their daily work. The 
specific contributions are: 
 A scalable architecture of Conditional GANs operating in 

latent space, inspired by recent architectures of latent 
GANs [4] and Conditional GANs [5], that are able to 
generate latent representations of new 3D objects of (I) 
realistic appearance, (II) specified class, (III) specified 
characteristics and (IV) specified dimensions 

 An experimental evaluation of the proposed approach in 
terms of qualitative features like the realistic appearance 
of generated objects and quantitative features like 
deviations between specified and implemented dimensions 
of an object 
 

These aspects will be presented in the following chapters. 

2. State of the Art 

Deep Learning is one of the most promising fields of 
research of Artificial Intelligence (AI) in the past years [6]. 
Deep Learning algorithms can tackle various tasks, for example 
classification, clustering or regression and are used in many 
fields, for example Image Recognition, Natural Language 
Processing and Robotics [6], partly reaching superhuman 
performances [7]. Several approaches in manufacturing and 
design exist, which cover different areas of the engineering 
domain, e.g. visual part recognition for robot control [8], 
clustering for modular product architecture [9] and generating 
2D-car design sketches [10].With the accessibility of large 3D 
databases [11,12] the interest in Deep Learning applications on 
3D objects increased significantly. Current approaches to AI-
supported processing of CAD can be differentiated in two 
groups according to the degree of automation. On the one hand, 
certain manually defined features of the model are encoded and 
then processed by using machine learning methods [13]. On the 
other hand, features can be learned automatically from the input 
data. In this area, mainly four different approaches can be 
differentiated: multi-view images [13,14], voxel models [15], 
Point Clouds [16,17] or graphs [18].  

With the multi-view approach introduced by [13] 3D objects 
are represented by images generated from different 
perspectives. Those images can then be used for classification 
tasks with the help of Convolutional Neural Networks (CNNs). 
The voxel approach is based on approximating the objects 
through a cube-shaped grid, as in [15]. In analogy to pixels, the 
generated voxel structures can then be classified by CNNs with 
three-dimensional convolution kernels. In addition, there are 
also approaches that combine 2D projections and voxels 
representations for classification, as in [19]. To represent 3D 
models by point-clouds, points are distributed randomly in the 

volume or on the surface of the model. The coordinates of those 
points can then be used as input for Deep Learning algorithms. 
For example in [17], Point Clouds are used for classification 
and segmentation tasks.  

More recent approaches, as presented in [4,20–26], focus on 
generative and discriminative representations for geometry, 
mainly based on view-based image projections, voxel grids or 
Point Clouds. They make use of a combination of AEs and 
generative models, such as GANs [3], to create new 3D objects. 
An AE is a Deep Learning architecture consisting of an encoder 
and a decoder that is trained to first encode the input into a low 
dimensional representation, and then to reconstruct the original 
input from this compressed latent representation again. In 
contrast, a GAN is based on an adversarial game between a 
generator and a discriminator. The generator is trained to 
synthesize samples that look very similar to real data. The 
discriminator, on the other hand, is trained to distinguish 
between artificially generated and real data. For example [4] 
introduces an approach based on Point Clouds, where, in 
addition to pure classification tasks, generative models are also 
used to synthesize new 3D objects in form of Point Clouds. An 
AE is trained to learn a data representation, on the basis of 
which realistic examples from complex underlying 
distributions are generated with the help of GANs. However, 
the output of these approaches is created randomly and in no 
way specified. Conditional GANs enable feature specification 
to control the output of generative models. The idea of these 
Conditional GANs was first presented in [5], where images are 
conditioned on their class labels. In [27], an architecture is 
developed in which the image generation process is factorized 
firstly in structure and then in style generation. The style is 
ultimately conditioned by the underlying structure represented 
by surface normal maps. Not only does this cause the generator 
to produce real images, but also images that match the given 
surface normal map. In [28], an approach with a conditional 
GAN based on Point Clouds was already presented to output a 
given 3D object with a conditioned rotation angle. However, 
the application of conditional GANs to Point Clouds has not 
yet been sufficiently researched [22]. Hence, the contribution 
of this paper is an approach to condition the generation of new 
3D models in the form of Point Clouds, based on the 
methodology introduced by [4], via a specific 3D object 
specifications. A proof of concept is carried out on the basis of 
an exemplary dataset in an experimental evaluation. The long-
term goal is to transfer the developed approach to the area of 
product generation in order to relieve the designer of time-
consuming work when designing a product variant with new 
specifications by automatically generating the corresponding 
3D model. 

3. Methodology 

The approach developed is based on the generative model 
presented in [4] consisting of an AE and a GAN. The AE 
converts the 3D objects into a latent vector representation. 
Since training and use of the GAN is fully based on these latent 
vectors, the GAN is called l-GAN (latent GAN) and is 
independent of the input data format. In this paper, Point 
Clouds are used as 3D data representation. However, on 
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condition that a suitable AE can be trained, the approach can 
be applied to any 3D data format. In the following, the used 
Conditional latent space GAN as well as the 3D object 
specification for conditioning the generated output are 
described in more detail. 

3.1. Conditional latent space GAN 

To actively control the output of the l-GANs generator, the 
approach of [4] is extended to a Conditional l-GAN. Therefore, 
additional information is provided as an input to specify 
features of objects to be generated. In [4], the model input is a 
noise vector z of size k ×1, drawn by a spherical Gaussian. Here 
k is the size of the AE’s latent representation of the input, also 
called bottleneck. In contrast to [4], not only does the extended 
model feed the generator with a noise vector of size k×1, but 
also with feature specifications of size c×1 (see Fig. 1). This 
results in an total input vector with size (k+c)×1. Based on this 
input vector, the generator is trained to generate latent 
representations of objects of size k×1. The c specifications are 
appended to the generator output to get a discriminator input of 
size (k+c)×1. In the same way latent representations of real 
training objects and their specifications are merged. Real 
training samples and fake samples of the generator are 
alternately fed into the discriminator. Based on the given 
conditions the discriminator learns to consider a comparison of 
the provided specification parameters with the actual 
parameters of the object as authenticity criterion. Therefore, the 
generator is guided not only to generate realistic objects, but 
also to create objects that correspond to the given parameters 
in order to maintain its chance to deceive the discriminator. 

3.2. 3D object specification 

To specify different requirements of a 3D object, various 
features can be defined in the Conditional l-GAN. One-hot-
encoding is applied to integrate discrete features like object 
classes or characteristic specifications. That means that for c 

feature types, a vector of size c is appended to the model input 
(see also 3.1). If an object is to represent a certain characteristic, 
the vector entry is set to 1 at this position, otherwise to 0. 
Dimension characteristics such as height and width, on the 
other hand, are represented in the vector by their specific value. 
To one-hot-encode class and characteristic features, the 
training data is labeled with respect to the considered feature 
type.  

In addition to product-specific features, this paper also 
considers product dimension related features of 3D objects. For 
this purpose, the dimensions of an object have to be 
determined. Assuming that the 3D objects, represented by 
Point Clouds, are aligned in a standardized way, this can be 
achieved by measuring the difference between the maximum 
and minimum value of the points on the respective coordinate 
axis. The evaluation of the generated objects with regard to the 
required dimensioning is carried out using the amount of the 
difference between the dimensions D of the generated object 
and the required dimensions S. Consequently, the error is 
always greater than or equal to 0 and is determined relative to 
the given dimension specification: 

� � |���|
�                                                                       (1)

For instance, if the required dimension is 0.5 units and the 
observed error is 10 %, the measured dimension of the 
generated object will be either 0.45 or 0.55 units. To predefine 
specifications that do not result in objects outside of the 
solution space, e.g. objects with unrealistic dimensions, the 
values used should correspond to the considered data set. For 
this either a distribution for the characteristics of the 
specification values is estimated and the values are generated 
according to this distribution, or the values are drawn randomly 
from the existing specification values of the considered 
database. In the experiments represented in section 4, the latter 
is applied. 

4. Experimental Evaluation 

The approach presented is evaluated through different 
experiments on Point Cloud object representations derived 
from ShapeNet [11]. In the following experiments, the l-GAN 
is conditioned by three different types of specifications:  
 Classes: A labeled training data set of classes chair, table 

and sofa is collected.  
 Features: A labeled training data subset of the class table 

is created, distinguishing between rectangular and round 
tables with one, two, three or four table legs respectively. 

 Dimensions: Depth, width and height of all training data 
objects are determined and used for the specification of 
new objects. 

In the first experiment the l-GAN is only conditioned on 
given dimensions, e.g. height and width, for the considered 
object class (see 4.3). This is expanded to a further experiment 
by adding certain object feature specifications, which is done 
exemplarily for the class table, e.g. the number of table legs 
(see 4.4). The last experiment considers dimension as well as 
object class specifications (see 4.5). For the executed 
experiments, two different AEs have been trained: one based 

Fig. 1. Specifications are derived from training Point Clouds. Point Clouds 
are encoded by the encoder to a latent representation k and merged with 
their respective specifications c to a real discriminator input k+c. The 
generator receives random noise input z and random specifications c to 
generate a fake latent object representation k, which is merged with its 
specifications c to a fake discriminator input k+c. Fake and real inputs are 
classified by the discriminator alternately. The fake latent representations k 
can be decoded by the decoder to receive new object Point Clouds with 
considered specifications. 
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description with case-specific rules, they also allow for 
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achieved by measuring the difference between the maximum 
and minimum value of the points on the respective coordinate 
axis. The evaluation of the generated objects with regard to the 
required dimensioning is carried out using the amount of the 
difference between the dimensions D of the generated object 
and the required dimensions S. Consequently, the error is 
always greater than or equal to 0 and is determined relative to 
the given dimension specification: 

� � |���|
�                                                                       (1)

For instance, if the required dimension is 0.5 units and the 
observed error is 10 %, the measured dimension of the 
generated object will be either 0.45 or 0.55 units. To predefine 
specifications that do not result in objects outside of the 
solution space, e.g. objects with unrealistic dimensions, the 
values used should correspond to the considered data set. For 
this either a distribution for the characteristics of the 
specification values is estimated and the values are generated 
according to this distribution, or the values are drawn randomly 
from the existing specification values of the considered 
database. In the experiments represented in section 4, the latter 
is applied. 

4. Experimental Evaluation 

The approach presented is evaluated through different 
experiments on Point Cloud object representations derived 
from ShapeNet [11]. In the following experiments, the l-GAN 
is conditioned by three different types of specifications:  
 Classes: A labeled training data set of classes chair, table 

and sofa is collected.  
 Features: A labeled training data subset of the class table 

is created, distinguishing between rectangular and round 
tables with one, two, three or four table legs respectively. 

 Dimensions: Depth, width and height of all training data 
objects are determined and used for the specification of 
new objects. 

In the first experiment the l-GAN is only conditioned on 
given dimensions, e.g. height and width, for the considered 
object class (see 4.3). This is expanded to a further experiment 
by adding certain object feature specifications, which is done 
exemplarily for the class table, e.g. the number of table legs 
(see 4.4). The last experiment considers dimension as well as 
object class specifications (see 4.5). For the executed 
experiments, two different AEs have been trained: one based 

Fig. 1. Specifications are derived from training Point Clouds. Point Clouds 
are encoded by the encoder to a latent representation k and merged with 
their respective specifications c to a real discriminator input k+c. The 
generator receives random noise input z and random specifications c to 
generate a fake latent object representation k, which is merged with its 
specifications c to a fake discriminator input k+c. Fake and real inputs are 
classified by the discriminator alternately. The fake latent representations k 
can be decoded by the decoder to receive new object Point Clouds with 
considered specifications. 
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on objects of only the table class (single class AE) and one 
based on objects of the classes chair, table and sofa (multi class 
AE).  

The used AE is setup as proposed in [4], encoding Point 
Clouds of size 2048×3 to latent representations of size 128×1 
and back to the original format again. The original architecture 
of l-GAN in [4] was adapted according to section 3.1. With a 
latent vector z of size k×1, k=128, the generator input is 
increased by the number of conditions c to k+c. According to 
[4], the noise vector was sampled by a spherical Gaussian of 
128 dimensions with a mean of 0 and a standard deviation of 
0.2 units. The generator consists of the input layer, a fully 
connected hidden layer of size k with ReLu activation function, 
and the output layer (see also Fig. 1). The input layer of the 
discriminator is adapted in the same manner to increase its 
input size to k+c. It is built out of two fully connected hidden 
layers of size 256 and 512, respectively, and the output layer. 
All Conditional l-GANs used in the experiments are trained 
with a learning rate of 0.0001 and a batch size of 50 for 1500 
epochs. 

4.1. Training data 

A subset of the ShapeNet database [11] was used to validate 
the developed approach in various experiments. In [4] a large 
number of ShapeNet object classes have already been 
converted to Point Clouds, which are referred to in this paper. 
In particular, for the experimental evaluation, Point Cloud 
objects of the classes table, chair and sofa are used. For feature 
specification, table objects are partly divided up into labeled 
subclasses, distinguishing between frequently occurring 
standard classes: rectangular tables with four, two, or one leg, 
round tables with four, three or one leg. Additionally, to 
investigate the AE dimension error, a subclass with special, 
unique tables is introduced. Examples from all subclasses are 
shown in Fig. 2.  

4.2. Dimension error of the Autoencoder 

For the following experiments, it is of particular interest to 
observe the differences between the required specifications of 
depth, width and height and the actual dimensions of a 
generated object. The goal is to minimize these differences 
while producing new, realistic objects with the Conditional l-
GAN. When creating object Point Clouds, two sources of error 
for different dimensions can be identified. The architecture of 
the Conditional l-GAN is the first and most important factor to 
be investigated. However, if high-quality latent object 
representations with valid dimensions are generated by the 
Conditional l-GAN, there still remains the possibility of 

generating relevant dimension errors while decoding the latent 
vector to a Point Cloud. For a better interpretation of 
Conditional l-GAN results, the dimension error generated 
during the encoding-decoding process of the AE with real 
training data is determined. For this purpose, a data set 
consisting of 8000 training and 500 test data Point Clouds of 
tables is created. A single class AE is trained on the training 
data objects. By comparing the dimensions of 1000 randomly 
selected training objects and their encoded-decoded 
representations an average error of 3.31 % across all 
dimensions is observed. The encoding-decoding process for all 
500 test objects outputs an average total dimension error of 
3.63 %. Obviously, the AE achieves a solid generalization 
ability to process unseen data with an increase of the dimension 
error of only 0.32 %. To investigate the differences of the AE’s 
performance between various object types, the AE dimension 
error is determined for the table subclasses as depicted in Fig. 
2. The results are shown in table 1. Apparently, the AE’s 
performance varies dependent on the considered table subclass. 
In the case of special tables, high dimension errors of more than 
8 % can be observed, whereas the dimension error decreases 
significantly for more frequently occurring standard tables, 
mostly even below the average total error.  

Table 1. AE’s dimension errors of specific table subclasses. 

Table subclass AE dimension error 
Rectangular, 4 legs 1.96 % 
Rectangular, 2 legs 4.13 % 
Rectangular, 1 leg 3.27 % 
Round, 4 legs 2.26 % 
Round, 3 legs 2.78 % 
Round, 1 leg 2.04 % 
Special 8.17 % 

 
To investigate the dimension error for experiments in which 

objects of several classes are considered, a multi class AE has 
to be trained. For this purpose a training set of 9000 Point 
Clouds and a test set of 300 Point Clouds from the three classes 
tables, chairs, and sofas are used. Each class consists of 3000 
training and 100 test Point Clouds. After 500 training epochs, 
an average error of 3.45 % is achieved for training objects and 
an average error of 3.65 % for test objects. This illustrates the 
ability of the multi class AE to generalize across different 
classes, with only slightly worse performance than a single 
class AE. 

4.3. Conditional l-GAN: Fulfilling dimension specifications 

A Conditional l-GAN for dimension specification input is 
trained on all table objects using the pre-trained single class AE 
described in the previous section. The dimension specifications 
used as generator input are derived from randomly selected 
training Point Clouds. To benchmark the observed results an 
unconditioned l-GAN is instantiated in order to evaluate the 
corresponding dimension errors. The Conditional l-GAN 
reduces the dimension error from over 25 % at the beginning 
of training to 2.34 % after 1500 training epochs. In contrast, the 
unconditional l-GAN error converges to 27.50 %, which is 
close to the standard deviation of all dimensions of training data 
Point Clouds. Fig. 3 shows the course of the corresponding 

Fig. 2. Table subclasses each represented by two examples from left to 
right: rectangular 4 legs, rectangular 2 legs, rectangular 1 leg, round 4 legs, 
round 3 legs, round 1 leg, special. 
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dimension errors over the training process of both GANs. 
While the dimension error decreases during training, a 
significant qualitative improvement of the generated objects 
can also be observed. Especially during the first 100 epochs of 

training, the visual quality of the generated objects is constantly 
improving. However, since a certain quality of visual 
appearance is achieved after 100 epochs, only slight qualitative 
differences in the generator outputs can be observed between 
the 100th and 1500th epoch of training. Fig. 4 shows exemplary 
generator outputs from different training epochs. 

The significant reduction of the dimension error of the 
Conditional l-GAN compared to the unconditional l-GAN 
demonstrates the effectiveness of the investigated approach. It 
is noticeable that the minimum dimension error of the 
Conditional l-GAN is less than the average dimension error 
generated by the AE. Obviously, the Conditional l-GAN 
produces more standard tables for which the error of the AE is 
lower. Although it is not possible to determine the proportion 

of the dimension error caused by the Conditional l-GAN or the 
AE from the total dimension error, it implies a very low 
dimension error caused by Conditional l-GAN.  

4.4. Conditional l-GAN: Fulfilling dimension specifications 
and object feature specification 

In the next step, the Conditional l-GAN is not only 
conditioned with dimensions, but also with different table 
features. Thus, it is required to generate specific tables with 
given dimensions. For this, the specifications regarding 
features and dimensions are randomly derived from the 
respective subclasses of tables, which are shown in Fig 2. After 
1500 training epochs, the Conditional l-GAN achieves a 
minimum dimension error of 3.99 % and a manually 
determined feature error of 0 %. Thus, every feature 
specification is implemented according to the generated object. 
Since dimension features are randomly derived from original 
training objects of the respective subclass, the visual similarity 
between the corresponding original sample object and the 
generated object is investigated. As can be seen in Fig. 5, the 
Conditional l-GAN obviously creates new objects with 
different styles and shapes. 

4.5.  Conditional l-GAN: Fulfilling dimension specifications 
and class conditions 

Within the framework of this experiment, the Conditional l-
GAN is trained for generating class and dimension conditioned 
objects. For this, the pre-trained multi class AE with the 
categories table, chair and sofa is used. During 1500 epochs of 

 

Fig. 4. Conditional l-GAN generator output in different epochs. 

Fig. 3. Comparison of dimension error of Conditional l-GAN (a) and 
l-GAN(b) over 1500 training epochs. 

 

Fig. 6. Depiction of original training objects (upper row) and generated 
objects (lower row) with respect to the original dimension and class 
specification. 

Fig. 5. Depiction of original training objects (upper row) and generated 
objects (lower row) with respect to the original and generated dimension 
and feature specification. 
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on objects of only the table class (single class AE) and one 
based on objects of the classes chair, table and sofa (multi class 
AE).  

The used AE is setup as proposed in [4], encoding Point 
Clouds of size 2048×3 to latent representations of size 128×1 
and back to the original format again. The original architecture 
of l-GAN in [4] was adapted according to section 3.1. With a 
latent vector z of size k×1, k=128, the generator input is 
increased by the number of conditions c to k+c. According to 
[4], the noise vector was sampled by a spherical Gaussian of 
128 dimensions with a mean of 0 and a standard deviation of 
0.2 units. The generator consists of the input layer, a fully 
connected hidden layer of size k with ReLu activation function, 
and the output layer (see also Fig. 1). The input layer of the 
discriminator is adapted in the same manner to increase its 
input size to k+c. It is built out of two fully connected hidden 
layers of size 256 and 512, respectively, and the output layer. 
All Conditional l-GANs used in the experiments are trained 
with a learning rate of 0.0001 and a batch size of 50 for 1500 
epochs. 

4.1. Training data 

A subset of the ShapeNet database [11] was used to validate 
the developed approach in various experiments. In [4] a large 
number of ShapeNet object classes have already been 
converted to Point Clouds, which are referred to in this paper. 
In particular, for the experimental evaluation, Point Cloud 
objects of the classes table, chair and sofa are used. For feature 
specification, table objects are partly divided up into labeled 
subclasses, distinguishing between frequently occurring 
standard classes: rectangular tables with four, two, or one leg, 
round tables with four, three or one leg. Additionally, to 
investigate the AE dimension error, a subclass with special, 
unique tables is introduced. Examples from all subclasses are 
shown in Fig. 2.  

4.2. Dimension error of the Autoencoder 

For the following experiments, it is of particular interest to 
observe the differences between the required specifications of 
depth, width and height and the actual dimensions of a 
generated object. The goal is to minimize these differences 
while producing new, realistic objects with the Conditional l-
GAN. When creating object Point Clouds, two sources of error 
for different dimensions can be identified. The architecture of 
the Conditional l-GAN is the first and most important factor to 
be investigated. However, if high-quality latent object 
representations with valid dimensions are generated by the 
Conditional l-GAN, there still remains the possibility of 

generating relevant dimension errors while decoding the latent 
vector to a Point Cloud. For a better interpretation of 
Conditional l-GAN results, the dimension error generated 
during the encoding-decoding process of the AE with real 
training data is determined. For this purpose, a data set 
consisting of 8000 training and 500 test data Point Clouds of 
tables is created. A single class AE is trained on the training 
data objects. By comparing the dimensions of 1000 randomly 
selected training objects and their encoded-decoded 
representations an average error of 3.31 % across all 
dimensions is observed. The encoding-decoding process for all 
500 test objects outputs an average total dimension error of 
3.63 %. Obviously, the AE achieves a solid generalization 
ability to process unseen data with an increase of the dimension 
error of only 0.32 %. To investigate the differences of the AE’s 
performance between various object types, the AE dimension 
error is determined for the table subclasses as depicted in Fig. 
2. The results are shown in table 1. Apparently, the AE’s 
performance varies dependent on the considered table subclass. 
In the case of special tables, high dimension errors of more than 
8 % can be observed, whereas the dimension error decreases 
significantly for more frequently occurring standard tables, 
mostly even below the average total error.  

Table 1. AE’s dimension errors of specific table subclasses. 

Table subclass AE dimension error 
Rectangular, 4 legs 1.96 % 
Rectangular, 2 legs 4.13 % 
Rectangular, 1 leg 3.27 % 
Round, 4 legs 2.26 % 
Round, 3 legs 2.78 % 
Round, 1 leg 2.04 % 
Special 8.17 % 

 
To investigate the dimension error for experiments in which 

objects of several classes are considered, a multi class AE has 
to be trained. For this purpose a training set of 9000 Point 
Clouds and a test set of 300 Point Clouds from the three classes 
tables, chairs, and sofas are used. Each class consists of 3000 
training and 100 test Point Clouds. After 500 training epochs, 
an average error of 3.45 % is achieved for training objects and 
an average error of 3.65 % for test objects. This illustrates the 
ability of the multi class AE to generalize across different 
classes, with only slightly worse performance than a single 
class AE. 

4.3. Conditional l-GAN: Fulfilling dimension specifications 

A Conditional l-GAN for dimension specification input is 
trained on all table objects using the pre-trained single class AE 
described in the previous section. The dimension specifications 
used as generator input are derived from randomly selected 
training Point Clouds. To benchmark the observed results an 
unconditioned l-GAN is instantiated in order to evaluate the 
corresponding dimension errors. The Conditional l-GAN 
reduces the dimension error from over 25 % at the beginning 
of training to 2.34 % after 1500 training epochs. In contrast, the 
unconditional l-GAN error converges to 27.50 %, which is 
close to the standard deviation of all dimensions of training data 
Point Clouds. Fig. 3 shows the course of the corresponding 

Fig. 2. Table subclasses each represented by two examples from left to 
right: rectangular 4 legs, rectangular 2 legs, rectangular 1 leg, round 4 legs, 
round 3 legs, round 1 leg, special. 
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dimension errors over the training process of both GANs. 
While the dimension error decreases during training, a 
significant qualitative improvement of the generated objects 
can also be observed. Especially during the first 100 epochs of 

training, the visual quality of the generated objects is constantly 
improving. However, since a certain quality of visual 
appearance is achieved after 100 epochs, only slight qualitative 
differences in the generator outputs can be observed between 
the 100th and 1500th epoch of training. Fig. 4 shows exemplary 
generator outputs from different training epochs. 

The significant reduction of the dimension error of the 
Conditional l-GAN compared to the unconditional l-GAN 
demonstrates the effectiveness of the investigated approach. It 
is noticeable that the minimum dimension error of the 
Conditional l-GAN is less than the average dimension error 
generated by the AE. Obviously, the Conditional l-GAN 
produces more standard tables for which the error of the AE is 
lower. Although it is not possible to determine the proportion 

of the dimension error caused by the Conditional l-GAN or the 
AE from the total dimension error, it implies a very low 
dimension error caused by Conditional l-GAN.  

4.4. Conditional l-GAN: Fulfilling dimension specifications 
and object feature specification 

In the next step, the Conditional l-GAN is not only 
conditioned with dimensions, but also with different table 
features. Thus, it is required to generate specific tables with 
given dimensions. For this, the specifications regarding 
features and dimensions are randomly derived from the 
respective subclasses of tables, which are shown in Fig 2. After 
1500 training epochs, the Conditional l-GAN achieves a 
minimum dimension error of 3.99 % and a manually 
determined feature error of 0 %. Thus, every feature 
specification is implemented according to the generated object. 
Since dimension features are randomly derived from original 
training objects of the respective subclass, the visual similarity 
between the corresponding original sample object and the 
generated object is investigated. As can be seen in Fig. 5, the 
Conditional l-GAN obviously creates new objects with 
different styles and shapes. 

4.5.  Conditional l-GAN: Fulfilling dimension specifications 
and class conditions 

Within the framework of this experiment, the Conditional l-
GAN is trained for generating class and dimension conditioned 
objects. For this, the pre-trained multi class AE with the 
categories table, chair and sofa is used. During 1500 epochs of 

 

Fig. 4. Conditional l-GAN generator output in different epochs. 

Fig. 3. Comparison of dimension error of Conditional l-GAN (a) and 
l-GAN(b) over 1500 training epochs. 

 

Fig. 6. Depiction of original training objects (upper row) and generated 
objects (lower row) with respect to the original dimension and class 
specification. 

Fig. 5. Depiction of original training objects (upper row) and generated 
objects (lower row) with respect to the original and generated dimension 
and feature specification. 
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training, the Conditional l-GAN reduces the dimension error to 
a minimum value of 4.04 %. In 100 % of the test cases the 
objects are generated according to the required class. By a 
visual comparison it can be shown that actually new objects are 
generated by the Conditional l-GAN, as presented in Fig. 6. 

For all experiments a virtual machine with the following 
specifications is used: NVIDIA K80-GPU, four virtual CPU's 
and a memory of 61 GiB RAM. The training of the AEs takes 
about 6 to 7 hours, the training of the GANs about 0.5 hours. 

5. Conclusion and Outlook 

In this paper, an approach for the conditioned generation of 
3D objects in the form of Point Clouds was developed. For this 
purpose, the architecture introduced by [4], consisting of an 
AE, which first converts the 3D objects into a latent 
representation, and a GAN, which generates new objects in the 
form of latent vectors, was extended by the specification of 
certain object properties. The functionality of the approach is 
validated in a series of experiments. With regard to the area of 
product development, the presented approach offers enormous 
potential. On the one hand new products within a product 
family can be generated according to a given product 
specification. In this way, implicit knowledge in the form of 
requirements (e.g. with regard to materials, production 
technology) is transferred to new product generations. On the 
other hand, when designing new products, various suggestions 
can be generated for the designer as to how new products could 
be designed based on an existing product family. Further 
investigations of how to transform more complex 3D data 
formats (e.g. polygon meshes) into latent representations can 
enable the use of latest GAN technologies even within CAD 
environments. However, to enable industrial use it is necessary 
to improve the implementation accuracy of the dimension 
specifications which are considered in this paper. As shown in 
section 4, the main dimension error source is given by the AE. 
Thus, further research could build on introducing 3D AEs 
generating less dimension errors during the encoding and 
decoding process. Since the applied architectures of both the 
AE and the GAN are quite simple, it may be possible to obtain 
improved performance through more complex networks.  
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