
ScienceDirect

Available online at www.sciencedirect.comAvailable online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2017) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018.

28th CIRP Design Conference, May 2018, Nantes, France

A new methodology to analyze the functional and physical architecture of
existing products for an assembly oriented product family identification

Paul Stief *, Jean-Yves Dantan, Alain Etienne, Ali Siadat
École Nationale Supérieure d’Arts et Métiers, Arts et Métiers ParisTech, LCFC EA 4495, 4 Rue Augustin Fresnel, Metz 57078, France

* Corresponding author. Tel.: +33 3 87 37 54 30; E-mail address: paul.stief@ensam.eu

Abstract

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach.
© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018.

Keywords: Assembly; Design method; Family identification

1. Introduction

Due to the fast development in the domain of
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global
competition with competitors all over the world. This trend,
which is inducing the development from macro to micro
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1].
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find.

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical).

Classical methodologies considering mainly single products
or solitary, already existing product families analyze the
product structure on a physical level (components level) which
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this

Procedia CIRP 91 (2020) 3–8

2212-8271 © 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the CIRP Design Conference 2020
10.1016/j.procir.2020.01.135

© 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the CIRP Design Conference 2020

Available online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2020) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2020 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the CIRP Design Conference 2020.

30th CIRP Design 2020 (CIRP Design 2020)

Deep Learning for Automated Product Design
Carmen Krahea *, Antonio Bräunchea, Alexander Jacoba,

Nicole Strickera, Gisela Lanzaa

aKarlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany

* Corresponding author. Tel.: +49-721-608-44011 ; fax: +49-721-608-45005. E-mail address: carmen.krahe@kit.edu

Abstract

Product development is a highly complex process that has to be individually adapted depending on the companies involved, the product to be
developed and the related designers. Within this process, the approach and the know-how of the designer are very individual and can often only
be described with high effort in a rule-based manner. Nevertheless, numerous routine tasks can be identified that offer enormous automation
potential. Machine Learning, especially Deep Learning, has proven an immense capability to identify patterns and extract knowledge out of
complex data sets. Autoencoder networks are suitable for the conversion of different 3D input data, e.g. Point Clouds, into compact latent
representations and vice versa. Point Clouds are a universal representation of 3D objects and can be derived from various 3D data formats. The
goal of the approach presented is to use Deep Learning algorithms to identify design patterns specific to a product family out of their underlying
latent representation and use the extracted knowledge to automatically generate new latent object representations fulfilling distinct product feature
specifications. A deep Autoencoder network with state-of-the-art reconstruction quality is used to encode Point Clouds into latent representations.
In this approach, a conditional Generative Adversarial Network operating in latent space for generation of class-, characteristic- and dimension-
conditioned objects is introduced. The model is quantitatively evaluated by a comparison of given specifications and the implemented features
of generated objects. The presented findings can be used to support designers in the creation process by automatically proposing appropriate
objects as well as in the adaption of future product variants to different requirements. This relieves the designer of time-consuming routine tasks
and reduces the effort of knowledge-transfer between designers significantly.

© 2020 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the CIRP Design Conference.

 Keywords: Artificial Intelligence; Machine Learning; Computer Aided Design; Automation

1. Introduction

Modern product development is shaped by shortening
product life cycles, customer individualisation and is, due to
the necessary efficiency, mostly based on reference products
[1]. Different generations and variants are released throughout
a product’s lifecycle. This is necessary to increase market
attractiveness or comply with revised specifications or
standards. Even though the process of designing new products
is highly individual and depends on the experience and
creativity of engineers and designers [2], a significant

automation potential can be identified. For example, different
requirements between product generations, revised
specifications and standards require manual adaptation of the
corresponding CAD model. Automatic creation and adaption
of models can support designers by enhancing creativity
through suggestions of appropriate object shapes and,
moreover, by saving time-to-market through automation of
time-consuming routine tasks. To achieve this, highly abstract
design patterns have to be identified and applied in the object
generation process. Deep Artificial Neural Networks are able
to address such complex issues. In contrast to pattern

Available online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2020) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2020 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the CIRP Design Conference 2020.

30th CIRP Design 2020 (CIRP Design 2020)

Deep Learning for Automated Product Design
Carmen Krahea *, Antonio Bräunchea, Alexander Jacoba,

Nicole Strickera, Gisela Lanzaa

aKarlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany

* Corresponding author. Tel.: +49-721-608-44011 ; fax: +49-721-608-45005. E-mail address: carmen.krahe@kit.edu

Abstract

Product development is a highly complex process that has to be individually adapted depending on the companies involved, the product to be
developed and the related designers. Within this process, the approach and the know-how of the designer are very individual and can often only
be described with high effort in a rule-based manner. Nevertheless, numerous routine tasks can be identified that offer enormous automation
potential. Machine Learning, especially Deep Learning, has proven an immense capability to identify patterns and extract knowledge out of
complex data sets. Autoencoder networks are suitable for the conversion of different 3D input data, e.g. Point Clouds, into compact latent
representations and vice versa. Point Clouds are a universal representation of 3D objects and can be derived from various 3D data formats. The
goal of the approach presented is to use Deep Learning algorithms to identify design patterns specific to a product family out of their underlying
latent representation and use the extracted knowledge to automatically generate new latent object representations fulfilling distinct product feature
specifications. A deep Autoencoder network with state-of-the-art reconstruction quality is used to encode Point Clouds into latent representations.
In this approach, a conditional Generative Adversarial Network operating in latent space for generation of class-, characteristic- and dimension-
conditioned objects is introduced. The model is quantitatively evaluated by a comparison of given specifications and the implemented features
of generated objects. The presented findings can be used to support designers in the creation process by automatically proposing appropriate
objects as well as in the adaption of future product variants to different requirements. This relieves the designer of time-consuming routine tasks
and reduces the effort of knowledge-transfer between designers significantly.

© 2020 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the CIRP Design Conference.

 Keywords: Artificial Intelligence; Machine Learning; Computer Aided Design; Automation

1. Introduction

Modern product development is shaped by shortening
product life cycles, customer individualisation and is, due to
the necessary efficiency, mostly based on reference products
[1]. Different generations and variants are released throughout
a product’s lifecycle. This is necessary to increase market
attractiveness or comply with revised specifications or
standards. Even though the process of designing new products
is highly individual and depends on the experience and
creativity of engineers and designers [2], a significant

automation potential can be identified. For example, different
requirements between product generations, revised
specifications and standards require manual adaptation of the
corresponding CAD model. Automatic creation and adaption
of models can support designers by enhancing creativity
through suggestions of appropriate object shapes and,
moreover, by saving time-to-market through automation of
time-consuming routine tasks. To achieve this, highly abstract
design patterns have to be identified and applied in the object
generation process. Deep Artificial Neural Networks are able
to address such complex issues. In contrast to pattern

4 Carmen Krahe et al. / Procedia CIRP 91 (2020) 3–8
2 Author name / Procedia CIRP 00 (2020) 000–000

description with case-specific rules, they also allow for
transferability to new data, other product families or different
engineering domains by transfer learning or re-training. This
can be seen as significant advantage in terms of generalization
and scaling for efficient product design. In this paper, state-of-
the-art research of Conditional Generative Adversarial
Networks (GANs) [3], Autoencoder (AE) networks and
generative representations of Point Cloud models is applied in
the context of product development to present methods capable
of supporting engineers and designers in their daily work. The
specific contributions are:
 A scalable architecture of Conditional GANs operating in

latent space, inspired by recent architectures of latent
GANs [4] and Conditional GANs [5], that are able to
generate latent representations of new 3D objects of (I)
realistic appearance, (II) specified class, (III) specified
characteristics and (IV) specified dimensions

 An experimental evaluation of the proposed approach in
terms of qualitative features like the realistic appearance
of generated objects and quantitative features like
deviations between specified and implemented dimensions
of an object

These aspects will be presented in the following chapters.

2. State of the Art

Deep Learning is one of the most promising fields of
research of Artificial Intelligence (AI) in the past years [6].
Deep Learning algorithms can tackle various tasks, for example
classification, clustering or regression and are used in many
fields, for example Image Recognition, Natural Language
Processing and Robotics [6], partly reaching superhuman
performances [7]. Several approaches in manufacturing and
design exist, which cover different areas of the engineering
domain, e.g. visual part recognition for robot control [8],
clustering for modular product architecture [9] and generating
2D-car design sketches [10].With the accessibility of large 3D
databases [11,12] the interest in Deep Learning applications on
3D objects increased significantly. Current approaches to AI-
supported processing of CAD can be differentiated in two
groups according to the degree of automation. On the one hand,
certain manually defined features of the model are encoded and
then processed by using machine learning methods [13]. On the
other hand, features can be learned automatically from the input
data. In this area, mainly four different approaches can be
differentiated: multi-view images [13,14], voxel models [15],
Point Clouds [16,17] or graphs [18].

With the multi-view approach introduced by [13] 3D objects
are represented by images generated from different
perspectives. Those images can then be used for classification
tasks with the help of Convolutional Neural Networks (CNNs).
The voxel approach is based on approximating the objects
through a cube-shaped grid, as in [15]. In analogy to pixels, the
generated voxel structures can then be classified by CNNs with
three-dimensional convolution kernels. In addition, there are
also approaches that combine 2D projections and voxels
representations for classification, as in [19]. To represent 3D
models by point-clouds, points are distributed randomly in the

volume or on the surface of the model. The coordinates of those
points can then be used as input for Deep Learning algorithms.
For example in [17], Point Clouds are used for classification
and segmentation tasks.

More recent approaches, as presented in [4,20–26], focus on
generative and discriminative representations for geometry,
mainly based on view-based image projections, voxel grids or
Point Clouds. They make use of a combination of AEs and
generative models, such as GANs [3], to create new 3D objects.
An AE is a Deep Learning architecture consisting of an encoder
and a decoder that is trained to first encode the input into a low
dimensional representation, and then to reconstruct the original
input from this compressed latent representation again. In
contrast, a GAN is based on an adversarial game between a
generator and a discriminator. The generator is trained to
synthesize samples that look very similar to real data. The
discriminator, on the other hand, is trained to distinguish
between artificially generated and real data. For example [4]
introduces an approach based on Point Clouds, where, in
addition to pure classification tasks, generative models are also
used to synthesize new 3D objects in form of Point Clouds. An
AE is trained to learn a data representation, on the basis of
which realistic examples from complex underlying
distributions are generated with the help of GANs. However,
the output of these approaches is created randomly and in no
way specified. Conditional GANs enable feature specification
to control the output of generative models. The idea of these
Conditional GANs was first presented in [5], where images are
conditioned on their class labels. In [27], an architecture is
developed in which the image generation process is factorized
firstly in structure and then in style generation. The style is
ultimately conditioned by the underlying structure represented
by surface normal maps. Not only does this cause the generator
to produce real images, but also images that match the given
surface normal map. In [28], an approach with a conditional
GAN based on Point Clouds was already presented to output a
given 3D object with a conditioned rotation angle. However,
the application of conditional GANs to Point Clouds has not
yet been sufficiently researched [22]. Hence, the contribution
of this paper is an approach to condition the generation of new
3D models in the form of Point Clouds, based on the
methodology introduced by [4], via a specific 3D object
specifications. A proof of concept is carried out on the basis of
an exemplary dataset in an experimental evaluation. The long-
term goal is to transfer the developed approach to the area of
product generation in order to relieve the designer of time-
consuming work when designing a product variant with new
specifications by automatically generating the corresponding
3D model.

3. Methodology

The approach developed is based on the generative model
presented in [4] consisting of an AE and a GAN. The AE
converts the 3D objects into a latent vector representation.
Since training and use of the GAN is fully based on these latent
vectors, the GAN is called l-GAN (latent GAN) and is
independent of the input data format. In this paper, Point
Clouds are used as 3D data representation. However, on

 Author name / Procedia CIRP 00 (2020) 000–000 3

condition that a suitable AE can be trained, the approach can
be applied to any 3D data format. In the following, the used
Conditional latent space GAN as well as the 3D object
specification for conditioning the generated output are
described in more detail.

3.1. Conditional latent space GAN

To actively control the output of the l-GANs generator, the
approach of [4] is extended to a Conditional l-GAN. Therefore,
additional information is provided as an input to specify
features of objects to be generated. In [4], the model input is a
noise vector z of size k ×1, drawn by a spherical Gaussian. Here
k is the size of the AE’s latent representation of the input, also
called bottleneck. In contrast to [4], not only does the extended
model feed the generator with a noise vector of size k×1, but
also with feature specifications of size c×1 (see Fig. 1). This
results in an total input vector with size (k+c)×1. Based on this
input vector, the generator is trained to generate latent
representations of objects of size k×1. The c specifications are
appended to the generator output to get a discriminator input of
size (k+c)×1. In the same way latent representations of real
training objects and their specifications are merged. Real
training samples and fake samples of the generator are
alternately fed into the discriminator. Based on the given
conditions the discriminator learns to consider a comparison of
the provided specification parameters with the actual
parameters of the object as authenticity criterion. Therefore, the
generator is guided not only to generate realistic objects, but
also to create objects that correspond to the given parameters
in order to maintain its chance to deceive the discriminator.

3.2. 3D object specification

To specify different requirements of a 3D object, various
features can be defined in the Conditional l-GAN. One-hot-
encoding is applied to integrate discrete features like object
classes or characteristic specifications. That means that for c

feature types, a vector of size c is appended to the model input
(see also 3.1). If an object is to represent a certain characteristic,
the vector entry is set to 1 at this position, otherwise to 0.
Dimension characteristics such as height and width, on the
other hand, are represented in the vector by their specific value.
To one-hot-encode class and characteristic features, the
training data is labeled with respect to the considered feature
type.

In addition to product-specific features, this paper also
considers product dimension related features of 3D objects. For
this purpose, the dimensions of an object have to be
determined. Assuming that the 3D objects, represented by
Point Clouds, are aligned in a standardized way, this can be
achieved by measuring the difference between the maximum
and minimum value of the points on the respective coordinate
axis. The evaluation of the generated objects with regard to the
required dimensioning is carried out using the amount of the
difference between the dimensions D of the generated object
and the required dimensions S. Consequently, the error is
always greater than or equal to 0 and is determined relative to
the given dimension specification:

� � |���|
� (1)

For instance, if the required dimension is 0.5 units and the
observed error is 10 %, the measured dimension of the
generated object will be either 0.45 or 0.55 units. To predefine
specifications that do not result in objects outside of the
solution space, e.g. objects with unrealistic dimensions, the
values used should correspond to the considered data set. For
this either a distribution for the characteristics of the
specification values is estimated and the values are generated
according to this distribution, or the values are drawn randomly
from the existing specification values of the considered
database. In the experiments represented in section 4, the latter
is applied.

4. Experimental Evaluation

The approach presented is evaluated through different
experiments on Point Cloud object representations derived
from ShapeNet [11]. In the following experiments, the l-GAN
is conditioned by three different types of specifications:
 Classes: A labeled training data set of classes chair, table

and sofa is collected.
 Features: A labeled training data subset of the class table

is created, distinguishing between rectangular and round
tables with one, two, three or four table legs respectively.

 Dimensions: Depth, width and height of all training data
objects are determined and used for the specification of
new objects.

In the first experiment the l-GAN is only conditioned on
given dimensions, e.g. height and width, for the considered
object class (see 4.3). This is expanded to a further experiment
by adding certain object feature specifications, which is done
exemplarily for the class table, e.g. the number of table legs
(see 4.4). The last experiment considers dimension as well as
object class specifications (see 4.5). For the executed
experiments, two different AEs have been trained: one based

Fig. 1. Specifications are derived from training Point Clouds. Point Clouds
are encoded by the encoder to a latent representation k and merged with
their respective specifications c to a real discriminator input k+c. The
generator receives random noise input z and random specifications c to
generate a fake latent object representation k, which is merged with its
specifications c to a fake discriminator input k+c. Fake and real inputs are
classified by the discriminator alternately. The fake latent representations k
can be decoded by the decoder to receive new object Point Clouds with
considered specifications.

 Carmen Krahe et al. / Procedia CIRP 91 (2020) 3–8 5
2 Author name / Procedia CIRP 00 (2020) 000–000

description with case-specific rules, they also allow for
transferability to new data, other product families or different
engineering domains by transfer learning or re-training. This
can be seen as significant advantage in terms of generalization
and scaling for efficient product design. In this paper, state-of-
the-art research of Conditional Generative Adversarial
Networks (GANs) [3], Autoencoder (AE) networks and
generative representations of Point Cloud models is applied in
the context of product development to present methods capable
of supporting engineers and designers in their daily work. The
specific contributions are:
 A scalable architecture of Conditional GANs operating in

latent space, inspired by recent architectures of latent
GANs [4] and Conditional GANs [5], that are able to
generate latent representations of new 3D objects of (I)
realistic appearance, (II) specified class, (III) specified
characteristics and (IV) specified dimensions

 An experimental evaluation of the proposed approach in
terms of qualitative features like the realistic appearance
of generated objects and quantitative features like
deviations between specified and implemented dimensions
of an object

These aspects will be presented in the following chapters.

2. State of the Art

Deep Learning is one of the most promising fields of
research of Artificial Intelligence (AI) in the past years [6].
Deep Learning algorithms can tackle various tasks, for example
classification, clustering or regression and are used in many
fields, for example Image Recognition, Natural Language
Processing and Robotics [6], partly reaching superhuman
performances [7]. Several approaches in manufacturing and
design exist, which cover different areas of the engineering
domain, e.g. visual part recognition for robot control [8],
clustering for modular product architecture [9] and generating
2D-car design sketches [10].With the accessibility of large 3D
databases [11,12] the interest in Deep Learning applications on
3D objects increased significantly. Current approaches to AI-
supported processing of CAD can be differentiated in two
groups according to the degree of automation. On the one hand,
certain manually defined features of the model are encoded and
then processed by using machine learning methods [13]. On the
other hand, features can be learned automatically from the input
data. In this area, mainly four different approaches can be
differentiated: multi-view images [13,14], voxel models [15],
Point Clouds [16,17] or graphs [18].

With the multi-view approach introduced by [13] 3D objects
are represented by images generated from different
perspectives. Those images can then be used for classification
tasks with the help of Convolutional Neural Networks (CNNs).
The voxel approach is based on approximating the objects
through a cube-shaped grid, as in [15]. In analogy to pixels, the
generated voxel structures can then be classified by CNNs with
three-dimensional convolution kernels. In addition, there are
also approaches that combine 2D projections and voxels
representations for classification, as in [19]. To represent 3D
models by point-clouds, points are distributed randomly in the

volume or on the surface of the model. The coordinates of those
points can then be used as input for Deep Learning algorithms.
For example in [17], Point Clouds are used for classification
and segmentation tasks.

More recent approaches, as presented in [4,20–26], focus on
generative and discriminative representations for geometry,
mainly based on view-based image projections, voxel grids or
Point Clouds. They make use of a combination of AEs and
generative models, such as GANs [3], to create new 3D objects.
An AE is a Deep Learning architecture consisting of an encoder
and a decoder that is trained to first encode the input into a low
dimensional representation, and then to reconstruct the original
input from this compressed latent representation again. In
contrast, a GAN is based on an adversarial game between a
generator and a discriminator. The generator is trained to
synthesize samples that look very similar to real data. The
discriminator, on the other hand, is trained to distinguish
between artificially generated and real data. For example [4]
introduces an approach based on Point Clouds, where, in
addition to pure classification tasks, generative models are also
used to synthesize new 3D objects in form of Point Clouds. An
AE is trained to learn a data representation, on the basis of
which realistic examples from complex underlying
distributions are generated with the help of GANs. However,
the output of these approaches is created randomly and in no
way specified. Conditional GANs enable feature specification
to control the output of generative models. The idea of these
Conditional GANs was first presented in [5], where images are
conditioned on their class labels. In [27], an architecture is
developed in which the image generation process is factorized
firstly in structure and then in style generation. The style is
ultimately conditioned by the underlying structure represented
by surface normal maps. Not only does this cause the generator
to produce real images, but also images that match the given
surface normal map. In [28], an approach with a conditional
GAN based on Point Clouds was already presented to output a
given 3D object with a conditioned rotation angle. However,
the application of conditional GANs to Point Clouds has not
yet been sufficiently researched [22]. Hence, the contribution
of this paper is an approach to condition the generation of new
3D models in the form of Point Clouds, based on the
methodology introduced by [4], via a specific 3D object
specifications. A proof of concept is carried out on the basis of
an exemplary dataset in an experimental evaluation. The long-
term goal is to transfer the developed approach to the area of
product generation in order to relieve the designer of time-
consuming work when designing a product variant with new
specifications by automatically generating the corresponding
3D model.

3. Methodology

The approach developed is based on the generative model
presented in [4] consisting of an AE and a GAN. The AE
converts the 3D objects into a latent vector representation.
Since training and use of the GAN is fully based on these latent
vectors, the GAN is called l-GAN (latent GAN) and is
independent of the input data format. In this paper, Point
Clouds are used as 3D data representation. However, on

 Author name / Procedia CIRP 00 (2020) 000–000 3

condition that a suitable AE can be trained, the approach can
be applied to any 3D data format. In the following, the used
Conditional latent space GAN as well as the 3D object
specification for conditioning the generated output are
described in more detail.

3.1. Conditional latent space GAN

To actively control the output of the l-GANs generator, the
approach of [4] is extended to a Conditional l-GAN. Therefore,
additional information is provided as an input to specify
features of objects to be generated. In [4], the model input is a
noise vector z of size k ×1, drawn by a spherical Gaussian. Here
k is the size of the AE’s latent representation of the input, also
called bottleneck. In contrast to [4], not only does the extended
model feed the generator with a noise vector of size k×1, but
also with feature specifications of size c×1 (see Fig. 1). This
results in an total input vector with size (k+c)×1. Based on this
input vector, the generator is trained to generate latent
representations of objects of size k×1. The c specifications are
appended to the generator output to get a discriminator input of
size (k+c)×1. In the same way latent representations of real
training objects and their specifications are merged. Real
training samples and fake samples of the generator are
alternately fed into the discriminator. Based on the given
conditions the discriminator learns to consider a comparison of
the provided specification parameters with the actual
parameters of the object as authenticity criterion. Therefore, the
generator is guided not only to generate realistic objects, but
also to create objects that correspond to the given parameters
in order to maintain its chance to deceive the discriminator.

3.2. 3D object specification

To specify different requirements of a 3D object, various
features can be defined in the Conditional l-GAN. One-hot-
encoding is applied to integrate discrete features like object
classes or characteristic specifications. That means that for c

feature types, a vector of size c is appended to the model input
(see also 3.1). If an object is to represent a certain characteristic,
the vector entry is set to 1 at this position, otherwise to 0.
Dimension characteristics such as height and width, on the
other hand, are represented in the vector by their specific value.
To one-hot-encode class and characteristic features, the
training data is labeled with respect to the considered feature
type.

In addition to product-specific features, this paper also
considers product dimension related features of 3D objects. For
this purpose, the dimensions of an object have to be
determined. Assuming that the 3D objects, represented by
Point Clouds, are aligned in a standardized way, this can be
achieved by measuring the difference between the maximum
and minimum value of the points on the respective coordinate
axis. The evaluation of the generated objects with regard to the
required dimensioning is carried out using the amount of the
difference between the dimensions D of the generated object
and the required dimensions S. Consequently, the error is
always greater than or equal to 0 and is determined relative to
the given dimension specification:

� � |���|
� (1)

For instance, if the required dimension is 0.5 units and the
observed error is 10 %, the measured dimension of the
generated object will be either 0.45 or 0.55 units. To predefine
specifications that do not result in objects outside of the
solution space, e.g. objects with unrealistic dimensions, the
values used should correspond to the considered data set. For
this either a distribution for the characteristics of the
specification values is estimated and the values are generated
according to this distribution, or the values are drawn randomly
from the existing specification values of the considered
database. In the experiments represented in section 4, the latter
is applied.

4. Experimental Evaluation

The approach presented is evaluated through different
experiments on Point Cloud object representations derived
from ShapeNet [11]. In the following experiments, the l-GAN
is conditioned by three different types of specifications:
 Classes: A labeled training data set of classes chair, table

and sofa is collected.
 Features: A labeled training data subset of the class table

is created, distinguishing between rectangular and round
tables with one, two, three or four table legs respectively.

 Dimensions: Depth, width and height of all training data
objects are determined and used for the specification of
new objects.

In the first experiment the l-GAN is only conditioned on
given dimensions, e.g. height and width, for the considered
object class (see 4.3). This is expanded to a further experiment
by adding certain object feature specifications, which is done
exemplarily for the class table, e.g. the number of table legs
(see 4.4). The last experiment considers dimension as well as
object class specifications (see 4.5). For the executed
experiments, two different AEs have been trained: one based

Fig. 1. Specifications are derived from training Point Clouds. Point Clouds
are encoded by the encoder to a latent representation k and merged with
their respective specifications c to a real discriminator input k+c. The
generator receives random noise input z and random specifications c to
generate a fake latent object representation k, which is merged with its
specifications c to a fake discriminator input k+c. Fake and real inputs are
classified by the discriminator alternately. The fake latent representations k
can be decoded by the decoder to receive new object Point Clouds with
considered specifications.

6 Carmen Krahe et al. / Procedia CIRP 91 (2020) 3–8
4 Author name / Procedia CIRP 00 (2020) 000–000

on objects of only the table class (single class AE) and one
based on objects of the classes chair, table and sofa (multi class
AE).

The used AE is setup as proposed in [4], encoding Point
Clouds of size 2048×3 to latent representations of size 128×1
and back to the original format again. The original architecture
of l-GAN in [4] was adapted according to section 3.1. With a
latent vector z of size k×1, k=128, the generator input is
increased by the number of conditions c to k+c. According to
[4], the noise vector was sampled by a spherical Gaussian of
128 dimensions with a mean of 0 and a standard deviation of
0.2 units. The generator consists of the input layer, a fully
connected hidden layer of size k with ReLu activation function,
and the output layer (see also Fig. 1). The input layer of the
discriminator is adapted in the same manner to increase its
input size to k+c. It is built out of two fully connected hidden
layers of size 256 and 512, respectively, and the output layer.
All Conditional l-GANs used in the experiments are trained
with a learning rate of 0.0001 and a batch size of 50 for 1500
epochs.

4.1. Training data

A subset of the ShapeNet database [11] was used to validate
the developed approach in various experiments. In [4] a large
number of ShapeNet object classes have already been
converted to Point Clouds, which are referred to in this paper.
In particular, for the experimental evaluation, Point Cloud
objects of the classes table, chair and sofa are used. For feature
specification, table objects are partly divided up into labeled
subclasses, distinguishing between frequently occurring
standard classes: rectangular tables with four, two, or one leg,
round tables with four, three or one leg. Additionally, to
investigate the AE dimension error, a subclass with special,
unique tables is introduced. Examples from all subclasses are
shown in Fig. 2.

4.2. Dimension error of the Autoencoder

For the following experiments, it is of particular interest to
observe the differences between the required specifications of
depth, width and height and the actual dimensions of a
generated object. The goal is to minimize these differences
while producing new, realistic objects with the Conditional l-
GAN. When creating object Point Clouds, two sources of error
for different dimensions can be identified. The architecture of
the Conditional l-GAN is the first and most important factor to
be investigated. However, if high-quality latent object
representations with valid dimensions are generated by the
Conditional l-GAN, there still remains the possibility of

generating relevant dimension errors while decoding the latent
vector to a Point Cloud. For a better interpretation of
Conditional l-GAN results, the dimension error generated
during the encoding-decoding process of the AE with real
training data is determined. For this purpose, a data set
consisting of 8000 training and 500 test data Point Clouds of
tables is created. A single class AE is trained on the training
data objects. By comparing the dimensions of 1000 randomly
selected training objects and their encoded-decoded
representations an average error of 3.31 % across all
dimensions is observed. The encoding-decoding process for all
500 test objects outputs an average total dimension error of
3.63 %. Obviously, the AE achieves a solid generalization
ability to process unseen data with an increase of the dimension
error of only 0.32 %. To investigate the differences of the AE’s
performance between various object types, the AE dimension
error is determined for the table subclasses as depicted in Fig.
2. The results are shown in table 1. Apparently, the AE’s
performance varies dependent on the considered table subclass.
In the case of special tables, high dimension errors of more than
8 % can be observed, whereas the dimension error decreases
significantly for more frequently occurring standard tables,
mostly even below the average total error.

Table 1. AE’s dimension errors of specific table subclasses.

Table subclass AE dimension error
Rectangular, 4 legs 1.96 %
Rectangular, 2 legs 4.13 %
Rectangular, 1 leg 3.27 %
Round, 4 legs 2.26 %
Round, 3 legs 2.78 %
Round, 1 leg 2.04 %
Special 8.17 %

To investigate the dimension error for experiments in which

objects of several classes are considered, a multi class AE has
to be trained. For this purpose a training set of 9000 Point
Clouds and a test set of 300 Point Clouds from the three classes
tables, chairs, and sofas are used. Each class consists of 3000
training and 100 test Point Clouds. After 500 training epochs,
an average error of 3.45 % is achieved for training objects and
an average error of 3.65 % for test objects. This illustrates the
ability of the multi class AE to generalize across different
classes, with only slightly worse performance than a single
class AE.

4.3. Conditional l-GAN: Fulfilling dimension specifications

A Conditional l-GAN for dimension specification input is
trained on all table objects using the pre-trained single class AE
described in the previous section. The dimension specifications
used as generator input are derived from randomly selected
training Point Clouds. To benchmark the observed results an
unconditioned l-GAN is instantiated in order to evaluate the
corresponding dimension errors. The Conditional l-GAN
reduces the dimension error from over 25 % at the beginning
of training to 2.34 % after 1500 training epochs. In contrast, the
unconditional l-GAN error converges to 27.50 %, which is
close to the standard deviation of all dimensions of training data
Point Clouds. Fig. 3 shows the course of the corresponding

Fig. 2. Table subclasses each represented by two examples from left to
right: rectangular 4 legs, rectangular 2 legs, rectangular 1 leg, round 4 legs,
round 3 legs, round 1 leg, special.

 Author name / Procedia CIRP 00 (2020) 000–000 5

dimension errors over the training process of both GANs.
While the dimension error decreases during training, a
significant qualitative improvement of the generated objects
can also be observed. Especially during the first 100 epochs of

training, the visual quality of the generated objects is constantly
improving. However, since a certain quality of visual
appearance is achieved after 100 epochs, only slight qualitative
differences in the generator outputs can be observed between
the 100th and 1500th epoch of training. Fig. 4 shows exemplary
generator outputs from different training epochs.

The significant reduction of the dimension error of the
Conditional l-GAN compared to the unconditional l-GAN
demonstrates the effectiveness of the investigated approach. It
is noticeable that the minimum dimension error of the
Conditional l-GAN is less than the average dimension error
generated by the AE. Obviously, the Conditional l-GAN
produces more standard tables for which the error of the AE is
lower. Although it is not possible to determine the proportion

of the dimension error caused by the Conditional l-GAN or the
AE from the total dimension error, it implies a very low
dimension error caused by Conditional l-GAN.

4.4. Conditional l-GAN: Fulfilling dimension specifications
and object feature specification

In the next step, the Conditional l-GAN is not only
conditioned with dimensions, but also with different table
features. Thus, it is required to generate specific tables with
given dimensions. For this, the specifications regarding
features and dimensions are randomly derived from the
respective subclasses of tables, which are shown in Fig 2. After
1500 training epochs, the Conditional l-GAN achieves a
minimum dimension error of 3.99 % and a manually
determined feature error of 0 %. Thus, every feature
specification is implemented according to the generated object.
Since dimension features are randomly derived from original
training objects of the respective subclass, the visual similarity
between the corresponding original sample object and the
generated object is investigated. As can be seen in Fig. 5, the
Conditional l-GAN obviously creates new objects with
different styles and shapes.

4.5. Conditional l-GAN: Fulfilling dimension specifications
and class conditions

Within the framework of this experiment, the Conditional l-
GAN is trained for generating class and dimension conditioned
objects. For this, the pre-trained multi class AE with the
categories table, chair and sofa is used. During 1500 epochs of

Fig. 4. Conditional l-GAN generator output in different epochs.

Fig. 3. Comparison of dimension error of Conditional l-GAN (a) and
l-GAN(b) over 1500 training epochs.

Fig. 6. Depiction of original training objects (upper row) and generated
objects (lower row) with respect to the original dimension and class
specification.

Fig. 5. Depiction of original training objects (upper row) and generated
objects (lower row) with respect to the original and generated dimension
and feature specification.

 Carmen Krahe et al. / Procedia CIRP 91 (2020) 3–8 7
4 Author name / Procedia CIRP 00 (2020) 000–000

on objects of only the table class (single class AE) and one
based on objects of the classes chair, table and sofa (multi class
AE).

The used AE is setup as proposed in [4], encoding Point
Clouds of size 2048×3 to latent representations of size 128×1
and back to the original format again. The original architecture
of l-GAN in [4] was adapted according to section 3.1. With a
latent vector z of size k×1, k=128, the generator input is
increased by the number of conditions c to k+c. According to
[4], the noise vector was sampled by a spherical Gaussian of
128 dimensions with a mean of 0 and a standard deviation of
0.2 units. The generator consists of the input layer, a fully
connected hidden layer of size k with ReLu activation function,
and the output layer (see also Fig. 1). The input layer of the
discriminator is adapted in the same manner to increase its
input size to k+c. It is built out of two fully connected hidden
layers of size 256 and 512, respectively, and the output layer.
All Conditional l-GANs used in the experiments are trained
with a learning rate of 0.0001 and a batch size of 50 for 1500
epochs.

4.1. Training data

A subset of the ShapeNet database [11] was used to validate
the developed approach in various experiments. In [4] a large
number of ShapeNet object classes have already been
converted to Point Clouds, which are referred to in this paper.
In particular, for the experimental evaluation, Point Cloud
objects of the classes table, chair and sofa are used. For feature
specification, table objects are partly divided up into labeled
subclasses, distinguishing between frequently occurring
standard classes: rectangular tables with four, two, or one leg,
round tables with four, three or one leg. Additionally, to
investigate the AE dimension error, a subclass with special,
unique tables is introduced. Examples from all subclasses are
shown in Fig. 2.

4.2. Dimension error of the Autoencoder

For the following experiments, it is of particular interest to
observe the differences between the required specifications of
depth, width and height and the actual dimensions of a
generated object. The goal is to minimize these differences
while producing new, realistic objects with the Conditional l-
GAN. When creating object Point Clouds, two sources of error
for different dimensions can be identified. The architecture of
the Conditional l-GAN is the first and most important factor to
be investigated. However, if high-quality latent object
representations with valid dimensions are generated by the
Conditional l-GAN, there still remains the possibility of

generating relevant dimension errors while decoding the latent
vector to a Point Cloud. For a better interpretation of
Conditional l-GAN results, the dimension error generated
during the encoding-decoding process of the AE with real
training data is determined. For this purpose, a data set
consisting of 8000 training and 500 test data Point Clouds of
tables is created. A single class AE is trained on the training
data objects. By comparing the dimensions of 1000 randomly
selected training objects and their encoded-decoded
representations an average error of 3.31 % across all
dimensions is observed. The encoding-decoding process for all
500 test objects outputs an average total dimension error of
3.63 %. Obviously, the AE achieves a solid generalization
ability to process unseen data with an increase of the dimension
error of only 0.32 %. To investigate the differences of the AE’s
performance between various object types, the AE dimension
error is determined for the table subclasses as depicted in Fig.
2. The results are shown in table 1. Apparently, the AE’s
performance varies dependent on the considered table subclass.
In the case of special tables, high dimension errors of more than
8 % can be observed, whereas the dimension error decreases
significantly for more frequently occurring standard tables,
mostly even below the average total error.

Table 1. AE’s dimension errors of specific table subclasses.

Table subclass AE dimension error
Rectangular, 4 legs 1.96 %
Rectangular, 2 legs 4.13 %
Rectangular, 1 leg 3.27 %
Round, 4 legs 2.26 %
Round, 3 legs 2.78 %
Round, 1 leg 2.04 %
Special 8.17 %

To investigate the dimension error for experiments in which

objects of several classes are considered, a multi class AE has
to be trained. For this purpose a training set of 9000 Point
Clouds and a test set of 300 Point Clouds from the three classes
tables, chairs, and sofas are used. Each class consists of 3000
training and 100 test Point Clouds. After 500 training epochs,
an average error of 3.45 % is achieved for training objects and
an average error of 3.65 % for test objects. This illustrates the
ability of the multi class AE to generalize across different
classes, with only slightly worse performance than a single
class AE.

4.3. Conditional l-GAN: Fulfilling dimension specifications

A Conditional l-GAN for dimension specification input is
trained on all table objects using the pre-trained single class AE
described in the previous section. The dimension specifications
used as generator input are derived from randomly selected
training Point Clouds. To benchmark the observed results an
unconditioned l-GAN is instantiated in order to evaluate the
corresponding dimension errors. The Conditional l-GAN
reduces the dimension error from over 25 % at the beginning
of training to 2.34 % after 1500 training epochs. In contrast, the
unconditional l-GAN error converges to 27.50 %, which is
close to the standard deviation of all dimensions of training data
Point Clouds. Fig. 3 shows the course of the corresponding

Fig. 2. Table subclasses each represented by two examples from left to
right: rectangular 4 legs, rectangular 2 legs, rectangular 1 leg, round 4 legs,
round 3 legs, round 1 leg, special.

 Author name / Procedia CIRP 00 (2020) 000–000 5

dimension errors over the training process of both GANs.
While the dimension error decreases during training, a
significant qualitative improvement of the generated objects
can also be observed. Especially during the first 100 epochs of

training, the visual quality of the generated objects is constantly
improving. However, since a certain quality of visual
appearance is achieved after 100 epochs, only slight qualitative
differences in the generator outputs can be observed between
the 100th and 1500th epoch of training. Fig. 4 shows exemplary
generator outputs from different training epochs.

The significant reduction of the dimension error of the
Conditional l-GAN compared to the unconditional l-GAN
demonstrates the effectiveness of the investigated approach. It
is noticeable that the minimum dimension error of the
Conditional l-GAN is less than the average dimension error
generated by the AE. Obviously, the Conditional l-GAN
produces more standard tables for which the error of the AE is
lower. Although it is not possible to determine the proportion

of the dimension error caused by the Conditional l-GAN or the
AE from the total dimension error, it implies a very low
dimension error caused by Conditional l-GAN.

4.4. Conditional l-GAN: Fulfilling dimension specifications
and object feature specification

In the next step, the Conditional l-GAN is not only
conditioned with dimensions, but also with different table
features. Thus, it is required to generate specific tables with
given dimensions. For this, the specifications regarding
features and dimensions are randomly derived from the
respective subclasses of tables, which are shown in Fig 2. After
1500 training epochs, the Conditional l-GAN achieves a
minimum dimension error of 3.99 % and a manually
determined feature error of 0 %. Thus, every feature
specification is implemented according to the generated object.
Since dimension features are randomly derived from original
training objects of the respective subclass, the visual similarity
between the corresponding original sample object and the
generated object is investigated. As can be seen in Fig. 5, the
Conditional l-GAN obviously creates new objects with
different styles and shapes.

4.5. Conditional l-GAN: Fulfilling dimension specifications
and class conditions

Within the framework of this experiment, the Conditional l-
GAN is trained for generating class and dimension conditioned
objects. For this, the pre-trained multi class AE with the
categories table, chair and sofa is used. During 1500 epochs of

Fig. 4. Conditional l-GAN generator output in different epochs.

Fig. 3. Comparison of dimension error of Conditional l-GAN (a) and
l-GAN(b) over 1500 training epochs.

Fig. 6. Depiction of original training objects (upper row) and generated
objects (lower row) with respect to the original dimension and class
specification.

Fig. 5. Depiction of original training objects (upper row) and generated
objects (lower row) with respect to the original and generated dimension
and feature specification.

8 Carmen Krahe et al. / Procedia CIRP 91 (2020) 3–8
6 Author name / Procedia CIRP 00 (2020) 000–000

training, the Conditional l-GAN reduces the dimension error to
a minimum value of 4.04 %. In 100 % of the test cases the
objects are generated according to the required class. By a
visual comparison it can be shown that actually new objects are
generated by the Conditional l-GAN, as presented in Fig. 6.

For all experiments a virtual machine with the following
specifications is used: NVIDIA K80-GPU, four virtual CPU's
and a memory of 61 GiB RAM. The training of the AEs takes
about 6 to 7 hours, the training of the GANs about 0.5 hours.

5. Conclusion and Outlook

In this paper, an approach for the conditioned generation of
3D objects in the form of Point Clouds was developed. For this
purpose, the architecture introduced by [4], consisting of an
AE, which first converts the 3D objects into a latent
representation, and a GAN, which generates new objects in the
form of latent vectors, was extended by the specification of
certain object properties. The functionality of the approach is
validated in a series of experiments. With regard to the area of
product development, the presented approach offers enormous
potential. On the one hand new products within a product
family can be generated according to a given product
specification. In this way, implicit knowledge in the form of
requirements (e.g. with regard to materials, production
technology) is transferred to new product generations. On the
other hand, when designing new products, various suggestions
can be generated for the designer as to how new products could
be designed based on an existing product family. Further
investigations of how to transform more complex 3D data
formats (e.g. polygon meshes) into latent representations can
enable the use of latest GAN technologies even within CAD
environments. However, to enable industrial use it is necessary
to improve the implementation accuracy of the dimension
specifications which are considered in this paper. As shown in
section 4, the main dimension error source is given by the AE.
Thus, further research could build on introducing 3D AEs
generating less dimension errors during the encoding and
decoding process. Since the applied architectures of both the
AE and the GAN are quite simple, it may be possible to obtain
improved performance through more complex networks.

Acknowledgements

This paper was also funded by the Federal Ministry of
Education and Research (BMBF) project AIAx, Machine
Learning-driven Engineering – CAx goes AIAx (01IS18048B).

References

References
[1] Albers, A., Behrendt, M., Klingler, S., Reiß, N., Bursac, N., 2017. Agile

product engineering through continuous validation in PGE – Product
Generation Engineering. Des. Sci. 3, 8.

[2] Albers, A., Haug, F., Fahl, J., Hirschter, T., Reinemann, J., Rapp, S.,
2018 - 2018. Customer-Oriented Product Development: Supporting the
Development of the Complete Vehicle through the Systematic Use of
Engineering Generations, in: 2018 IEEE ISSE, pp. 1–8.

[3] Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley,
D., Ozair, S., Courville, A., Bengio, Y., 2014. Generative Adversarial
Networks.

[4] Achlioptas, P., Diamanti, O., Mitliagkas, I., Guibas, L., 2018. Learning
Representations and Generative Models for 3D Point Clouds. 35th
International Conference on Machine Learning (ICML).

[5] Mirza, M., Osindero, S., 2014. Conditional Generative Adversarial Nets.
[6] Goodfellow, I., Bengio, Y., Courville, A., 2016. Deep Learning. MIT

Press.
[7] Schmidhuber, J., 2015. Deep Learning in Neural Networks: An

Overview. Neural Networks 61, 85–117.
[8] Aivaliotis, P., Zampetis, A., Michalos, G., Makris, S., 2017. A Machine

Learning Approach for Visual Recognition of Complex Parts in Robotic
Manipulation. Procedia Manufacturing 11, 423–430.

[9] Pandremenos, J., Chryssolouris, G., 2011. A neural network approach
for the development of modular product architectures. International
Journal of Computer Integrated Manufacturing 24 (10), 879–887.

[10] Radhakrishnan, S., Bharadwaj, V., Manjunath, V., Srinath, R., 2018.
Creative Intelligence – Automating Car Design Studio with Generative
Adversarial Networks (GAN), in: Holzinger, A., Kieseberg, P., Tjoa,
A.M., Weippl, E. (Eds.), Machine Learning and Knowledge Extraction,
vol. 11015. Springer International Publishing, Cham, pp. 160–175.

[11] Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li,
Z., Savarese, S., Savva, M., Song, S., Su, H., Xiao, J., Yi, L., Yu, F.,
2015. ShapeNet: An Information-Rich 3D Model Repository.

[12] Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J., 2015.
3D ShapeNets: A deep representation for volumetric shapes, in: 2015
IEEE CVPR, pp. 1912–1920.

[13] Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E., 2015 - 2015. Multi-
view Convolutional Neural Networks for 3D Shape Recognition, in:
2015 IEEE ICCV, pp. 945–953.

[14] Kanezaki, A., Matsushita, Y., Nishida, Y., 2016. RotationNet: Joint
Object Categorization and Pose Estimation Using Multiviews from
Unsupervised Viewpoints, 24 pp.

[15] Sedaghat, N., Zolfaghari, M., Amiri, E., Brox, T. Orientation-boosted
Voxel Nets for 3D Object Recognition, in: Procedings of the British
Machine Vision Conference 2017.

[16] Charles, R.Q., Su, H., Kaichun, M., Guibas, L.J., 2017 - 2017. PointNet:
Deep Learning on Point Sets for 3D Classification and Segmentation, in:
2017 CVPR., pp. 77–85.

[17] Qi, C.R., Yi, L., Su, H., Guibas, L.J., 2017. PointNet++: Deep
Hierarchical Feature Learning on Point Sets in a Metric Space.

[18] Simonovsky, M., Komodakis, N., 2017. Dynamic Edge-Conditioned
Filters in Convolutional Neural Networks on Graphs.

[19] Hegde, V., Zadeh, R., 2016. FusionNet: 3D Object Classification Using
Multiple Data Representations.

[20] Chen, Y.-C., Tan, D.S., Cheng, W.-H., Hua, K.-L., 2019. 3D Object
Completion via Class-Conditional Generative Adversarial Network, in:
Kompatsiaris, I., Huet, B., Mezaris, V., Gurrin, C., Cheng, W.-H.,
Vrochidis, S. (Eds.), MultiMedia Modeling, vol. 11296. Springer
International Publishing, Cham, pp. 54–66.

[21] Girdhar, R., Fouhey, D.F., Rodriguez, M., Gupta, A., 2016. Learning a
Predictable and Generative Vector Representation for Objects.

[22] Li, C.-L., Zaheer, M., Zhang, Y., Poczos, B., Salakhutdinov, R., 2018.
Point Cloud GAN.

[23] Simonovsky, M., 2019. Deep Learning on Attributed Graphs: A Journey
from Graphs to Their Embeddings and Back.

[24] Wang, Y., Xie, Z., Xu, K., Dou, Y., Lei, Y., 2016. An efficient and
effective convolutional auto-encoder extreme learning machine network
for 3d feature learning. Neurocomputing 174, 988–998.

[25] Wu, J., Zhang, C., Xue, T., Freeman, B., Tenenbaum, J., 2016. Learning
a Probabilistic Latent Space of Object Shapes via 3D Generative-
Adversarial Modeling, in: D. D. Lee, M. Sugiyama, U. V. Luxburg, I.
Guyon, R. Garnett (Eds.), Advances in Neural Information Processing
Systems 29. Curran Associates, Inc, pp. 82–90.

[26] Yang, Y., Feng, C., Shen, Y., Tian, D., 2017. FoldingNet: Point Cloud
Auto-encoder via Deep Grid Deformation.

[27] Wang, X., Gupta, A., 2016. Generative Image Modeling using Style and
Structure Adversarial Networks.

[28] Öngün, C., Temizel, A., 2018. Paired 3D Model Generation with
Conditional Generative Adversarial Networks.

