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Abstract This paper is concerned with the rigorous error analysis of a fully discrete
scheme obtained by using a central fluxes discontinuous Galerkin (dG) method in
space and the Peaceman–Rachford splitting scheme in time. We apply the scheme to
a general class of wave-type problems and show that the resulting approximations as
well as discrete derivatives thereof satisfy error bounds of the order of the polynomial
degree used in the dG discretization and order two in time. In particular, the class
of problems considered includes, e.g., the advection equation, the acoustic wave
equation, and the Maxwell equations for which a very efficient implementation is
possible via an alternating direction implicit (ADI) splitting.

1 Introduction

In this paper we consider the rigorous error analysis of a fully discrete alternating
direction implicit (ADI) scheme for a general class of wave-type problems. In partic-
ular, we analyze the full discretization obtained by using a method-of-lines approach
comprised of the Peaceman–Rachford scheme in time [26] and a central fluxes dis-
continuous Galerkin (dG) discretization in space [4,13] in a rather general framework.

Given an initial state u0 we seek the solution u of the wave-type problem




M∂tu = L̃u + g, R+ ×Ω ,

u(0) = u0, Ω ,

(1a)

(1b)

on an open, bounded and connected Lipschitz domain in Ω ⊂ Rd supplemented
with suitable boundary conditions. The latter will be incorporated into the domain
of the spatial differential operator L̃. In (1), M ∈ L∞(Ω)m×m is a symmetric and
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uniformly positive definite material tensor and g ∈ C(R+; L2(Ω)m) is a source term.
The operator L̃ is a Friedrichs’ operator [10] given by

L̃u =
d∑
i=1

Li∂iu + L0u, Li ∈ R
m×m, i = 0, . . . , d,

where the partial derivatives are to be understood in a distributional sense. The
assumption that the coefficients L0, . . . , Ld are constant is posed for the sake of pre-
sentation. However, we point out that all results hold true for more general coefficients
fulfilling suitable regularity assumption, cf., [21] for details. To obtain a wellposed
(and energy-dissipating) problem in this constant coefficient case, it is sufficient to
assume that the symmetric part of L0 is negative semi-definite, i.e., xT (L0+LT

0 )x ≤ 0
for all x ∈ Rm, and that the remaining coefficients L1, . . . , Ld are symmetric [4,16].
Note that it is possible to drop the condition on L0 and still get a wellposed, albeit
only shift-dissipative, problem. The class of problems described by (1) comprises,
among others, the advection equation, the acoustic or elastic wave equations, and the
Maxwell equations, cf., [2,3,4,21].

In this paper, we employ the framework of (abstract) evolution equations. This
allows us to study the wellposedness of (1) within the well-understood and extensive
theory of linear semigroups [25]. Moreover, one can then formally apply time inte-
gration schemes designed for ordinary differential equations, such as Runge-Kutta
schemes or the Peaceman–Rachford scheme used here, in a straightforward way. We
thus eliminate the material tensor M in front of the time derivative to obtain{

∂tu = Lu + f , R+ ×Ω,

u(0) = u0, Ω,

(2a)

(2b)

with f = M−1g andLu = M−1L̃u. By this reformulation,L inherits the structure of
L̃ and we thus refer to this operator as a Friedrichs’ operator as well.

We analyze a fully discrete Peaceman–Rachford ADI scheme for the numerical
solution of (2). ADI schemes are a class of splitting schemes first proposed for the heat
equation discretized by finite differences in [26]. The main idea is to split the spatial
differential operatorL in terms of the spatial directions. Combining this splitting with
a suitable time integration method, such as the Peaceman–Rachford scheme, results
in an unconditionally stable integrator. The main feat of the resulting scheme is that
each timestep can be performed at about the cost of an explicit integrator, which
makes it extremely efficient. Roughly speaking, this efficiency is achieved by splitting
in such a way that only partial derivatives in one spatial direction occur in each of
the split operators, essentially decoupling the one-dimensional flows. Of course, this
severely restricts the class of problems to which the method can be applied efficiently.
One main restriction is that the problem has to be considered on cuboidal domains
(or unions thereof). Further, up until recently, the method was basically restricted to
finite difference discretizations of the heat equation or the acoustic wave equation,
both in two dimensions, where the appropriate splitting can easily be deduced [26].
There are varieties, where more than two split operators are considered to tackle
higher dimensions, see e.g., [11,19]. However, this results in a scheme that is only
conditionally stable, hence losing a very favorable property of ADI schemes.
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Rather surprisingly, in [22,34], a novel splitting for the full 3DMaxwell equations
was proposed for finite differences time domain (FDTD) discretizations on the Yee
grid [32]. Motivated by this, in [15], the authors of this paper identified a general class
of problems of the form (2) and their space discretizations which admit a splitting
that leads to an efficient ADI method with only two split operators, while preserving
unconditional stability. Since this class only comprised diagonal material tensors, it
was extended to more general tensors in [21].

Further, in [30] and the recent review [31], the Peaceman–Rachford and other,
related splitting schemes were rewritten into a formulation referred to as fundamental
implicit scheme. This reformulation avoids applications of the discrete operators on
the right-hand side leading to an even more efficient scheme. One can directly apply
these ideas to the scheme considered here and in [15], since it exhibits the exact same
structures exploited in [30,31].

Unfortunately, finite differences in space prevent a rigorous error analysis under
realistic regularity assumptions on the approximated solution. Hence, in [15], we
combined the Peaceman–Rachford scheme with a dG discretization in space, cf., [4,
13]. We showed that if a tensor-structured grid is used, the fully discrete method
exhibits runtime behavior similar to the finite difference version. In particular, one
step can be performed in linear complexity w.r.t. the number of elements used in the
mesh. Here, we supplement these computational investigations by a rigorous error
analysis of the scheme used in [15].

There are already some results on the convergence of the Peaceman–Rachford
scheme applied to finite difference space discretizations, cf., e.g., [18,27], assuming
strong regularity of the exact solution. So far, we are only aware of one publication
that provides rigorous error bounds under realistic regularity assumptions, namely
[12]. However, these results seem not to be applicable to the setting we consider
here, because they rely on the assumption that norms of some concatenations of the
discrete operators are bounded independently of the discretization parameters. To our
knowledge, this is not the case here.

Besides full discretization results, there exist several rigorous semidiscrete analy-
ses for the Peaceman–Rachford scheme applied to the Maxwell equations interpreted
as an abstract Cauchy problem. In [14], the homogeneous and in [5,6,7], the inhomo-
geneous and damped equations were considered. Further, in [33], a detailed analysis
of the abstract Maxwell problem with jumping material parameters was performed,
providing error bounds of order 3/2 for suitable data.We point out that all these results
pose assumptions only on the data, as opposed to the analysis carried out here, which
assumes regularity of the exact solution. However, the regularity analysis carried out
in [5,6,7,14] can be used to defer these assumptions to the data in the particular case
of Maxwell equations.

The analysis we present here is based on the fact that the Peaceman–Rachford
scheme can be interpreted as a perturbation of the Crank–Nicolson scheme. Hence,
we were able to extend techniques established in [17,29]. These techniques were
originally developed for a locally implicit time integration scheme but also apply
to the full discretization obtained by the Crank–Nicolson and the leapfrog scheme,
respectively. In fact, our extension of these techniques can also be applied to other
perturbations of the Crank–Nicolson scheme in a straightforward manner.
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Further, based on a stronger stability result for abstract evolution equations given
in [20], we identify suitable approximations to the first-order derivatives in space and
time of the solution of (2). We show that, if the solution is sufficiently regular, these
approximations fulfill error bounds of the same order as the approximations to the
solution given directly by the scheme. As far as we are aware of, such results were not
given before in the literature. Moreover, they can be generalized in a straightforward
way to other schemes that can be analyzed by the techniques from [17,29].

In [16], as a preliminary work to the analysis of the full discretization of (2), we
analyzed the error of the spatial semi-discretization by a central fluxes dG method [4,
13]. However, in contrast to [16], in this paper, we directly define and formulate all our
results in a weighted L2-inner product incorporating the material tensor M instead of
the standard one. This approach appears to bemore natural for our analysis. Further, by
stating the required polynomial approximation results in this weighted inner product,
we could eliminate Assumption 3.2 in [16]. As a consequence, all results now apply
to more general material parameters, e.g., piecewise Lipschitz or piecewise smooth
instead of piecewise constant ones. Since most proofs in [16] directly generalize to
this weighted setting, we do not present them in detail here again.

Lastly, note that our analysis is not restricted to the class of problems which
allow for an efficient ADI splitting cf., [15] for details. In fact, these restrictions are
only necessary for the efficiency of the method, not for the numerical analysis of the
discretization scheme. Hence, our results also hold for more general problems and
geometries of the domain, cf., Section 4.1.

The paper is organized as follows. After providing some notation, in Section 2,
we present the analytical framework used for our analysis and show wellposedness of
(2). Subsequently, in Section 3, we briefly present the spatial discretization employed
in our method-of-lines approach. Section 4 starts by providing suitable splittings,
which are then used to fully discretize (2) by using the Peaceman–Rachford method in
time. In this section we also show unconditional stability of the scheme and identify
approximations to the first-order derivatives in space and time of the solution of (2).
Then, in Section 5, we present our main results, which show rigorous error bounds for
both the approximations directly provided by the scheme aswell as the aforementioned
approximations to the derivatives. We conclude with numerical experiments verifying
our theoretical results in Section 6.

Notation

In this section, we introduce the basic notation used throughout the paper.
The distributional partial derivative in ith coordinate direction of Rd is denoted

by ∂i , i = 1, . . . , d. Given a multi-index α = (α1, . . . , αd) ∈ Nd
0 we write ∂αv =

∂α1
1 . . . ∂αd

d
v with the convention ∂ (0,...,0)v = v. We further denote the `1-norm of

α ∈ Nd
0 by |α |. For vectors and matrices these derivatives act componentwise.

Given two real Hilbert spaces
(
X,

(
· �� ·

)
X

)
and

(
Y,

(
· �� ·

)
Y

)
, we denote the set

of all bounded operators from X to Y by B(X, Y ). The identity operator on a Hilbert
space is denoted by I. We write the dual space of X as X ′ and denote the canonical
dual pairing between X and its dual by

〈
· �� ·

〉
: X ′ × X → R.
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Later on, we define the domain D(A) of a Friedrichs’ operator A. Then, given
two Friedrichs’ operators A and B, we define the domain of the concatenation of A
andB as D(AB) B

{
v ∈ D(B) | Bv ∈ D(A)

}
and extend this definition recursively

to more than two operators.
For the remainder of this section, let K ⊂ Rd be open and F ⊂ ∂K . The set of

polynomials of degree at most k ∈ N on K is denoted by Qk
d

(K ).
Given two vector-valued functions u, v ∈ L2(K )m, we denote the (standard)

L2(K )-inner product by

(
u �� v

)
L2,K =

∫
K

u · v dx,

and for F ⊂ ∂K and u|F, v |F ∈ L2(F)m, we denote the surface integral over F as

(
u �� v

)
F =

∫
F

u|F · v |F dσ.

For the analysis, we also need the following inner product weighted by the material
tensor M given by

(
u �� v

)
K =

(
Mu �� v

)
L2,K .

By the properties of M , the weighted and L2-inner product are equivalent and thus,
the space

(
L2(K ),

(
· �� ·

)
K

)
is a Hilbert space. The norms induced by these inner

products are denoted by ‖ · ‖L2,K , ‖ · ‖K and ‖ · ‖F , respectively.
The L2-Sobolev spaces on K are denoted by Hq (K ), q ∈ N0, and we equip them

with the norms

‖v‖2q,K =

q∑
j=0
|v |2j,K, |v |2j,K =

∑
|α |=j

‖∂αv‖2K, j = 0, . . . , q,

where α ∈ Nd
0 is a multi-index. Note that we use the weighted L2-norm, not the

standard one, to define the Sobolev-norms. However, by equivalence, these spaces can
be identified. Further, note that q = 0 yields the corresponding (weighted) L2-space.

We denote the spectral norm of a matrix A ∈ Rm×m by ‖A‖. Given a square
matrix-valued field A ∈ L∞(K )m×m, the essential supremum of the spectral norm of
A is denoted by

‖A‖∞,K = ess sup
x∈K

‖A(x)‖.

Lastly, by Wq,∞(K ), q ∈ N0, we denote the L∞-Sobolev spaces on K and for A ∈
Wq,∞(K )m×m, we write

‖A‖q,∞,K = max
|α | ≤q

‖∂αA‖∞,K .
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2 Analytical setting

In this section, we briefly present some properties of Friedrichs’ operators and systems
of the form (2). We refer to [2,4,9,16] for most of the details.

The graph space of a Friedrichs’ operator L is defined as

H (L) = {v ∈ L2(Ω)m | Lv ∈ L2(Ω)m}.

As a straightforward consequence of [4, Lem. 7.2], the graph space H (L) together
with the (weighted) graph norm

‖ · ‖L = ‖ · ‖Ω + ‖L · ‖Ω

form a Hilbert space and by definition we haveL ∈ B(H (L), L2(Ω)m). The notation
H (L) for the graph space is inspired by H (div) and H (curl), which are important,
since they arise for the wave and Maxwell equations, respectively.

In this weak setting, the meaning of boundary values is not clear. In order to still
get hold of them, we need to introduce a more general concept of boundary values.
For this, we first need to define the formal adjoint of L.

Definition 2.1 We callL~ ∈ B(H (L), L2(Ω)m) defined via

ML~u = −
d∑
i=1

Li∂iu + LT
0 u

the formal adjoint of L.

The formal adjointL~ allows us to define the following boundary operator, which is
the aforementioned generalization of boundary values.

Definition 2.2 We call L∂ : H (L) → H (L)′ defined by〈
L∂ u �� v

〉
=

(
Lu �� v

)
Ω −

(
u ��L~v

)
Ω for all u, v ∈ H (L) (3)

the boundary operator associated with L.

Basically, (3) is a generalized integration-by-parts formula. Further, note that the
boundary operator L∂ is self-adjoint and bounded, i.e., L∂ ∈ B(H (L), H (L)′), cf.,
[9, Lem. 2.2].

Boundary conditions in this framework are implemented by incorporating them
into the domain of the operatorL. To this end, we follow the procedure in [9, Sec. 2.1]
and assume the existence of the following abstract boundary operator.

Assumption 2.3 There exists a bounded operator LΓ ∈ B(H (L), H (L)′) with〈
LΓv �� v

〉
≤ 0 for all v ∈ H (L), (4a)

H (L) = ker(L∂ −LΓ) + ker(L∂ +LΓ). (4b)
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Since the kernel of a bounded operator on a Hilbert space is closed, both ker(L∂−LΓ)
and ker(L∂ +LΓ) are Hilbert spaces if endowed with the graph norm of L.

To show wellposedness of (2), we use semigroup theory. Hence, we define the
domain of L as D(L) B ker(L∂ − LΓ). In fact, if restricted to this space, L is
maximal dissipative [16, Thm. 2.5]. Note that D(L) can be seen as the subspace of
H (L) in which the boundary conditions defined by LΓ are incorporated.

As a direct consequence of the maximal dissipativity, the famous Lumer–Phillips
Theorem [8, Thm. II.3.15, Cor. II.3.20] implies that the restriction L |D(L) is the
generator of a contraction semigroup,whichwe denote by

(
etL

)
t≥0. This immediately

yields the following wellposedness and stability result, see [25] and [20, Lem. 2.4]
for the second stability bound.

Corollary 2.4 Let f = f1 + f2 with f1 ∈ C1(R+; L2(Ω)m) and f2 ∈ C(R+; D(L)).
Then, for a given initial value u0 ∈ D(L), there exists a unique solution u ∈
C1(R+; L2(Ω)m) ∩ C(R+; D(L)) of (2) given by the variation-of-constants formula

u(t) = etL u0 +

∫ t

0
e(t−s)L f (s) ds.

Further, we have the stability bounds

‖u(t)‖Ω ≤ ‖u0‖Ω +

∫ t

0
‖ f (s)‖Ω ds,

and

‖∂tu(t)‖Ω + ‖Lu(t)‖Ω

≤ 3
(
‖Lu0‖Ω + max

s∈[0,t]
‖ f (s)‖Ω +

t∫
0

‖∂t f1(s)‖Ω + ‖L f2(s)‖Ω ds
)
.

3 Spatial discretization

We use the dG method with central fluxes to discretize the Friedrichs’ operator L.
The content of this section is a brief presentation of previously established results
(mostly from [9,16,21]), hence we omit the rather technical and lengthy proofs.

To avoid taking domain approximation into account, in the following, we assume
Ω to be polyhedral. Given a mesh Th of Ω, we denote the diameter of an (open)
mesh element or cell K ∈ Th by hK . The index h = maxK ∈Th

hK denotes the
maximal diameter of all elements in Th or meshsize of Th . To keep the notation of
mesh-dependent norms concise and intuitive, we further define the piecewise constant
function h ∈ L∞(Ω) by h|K ≡ hK for all K ∈ Th .

Since we analyze the approximation error w.r.t. h, we consider a sequence of
meshes TH =

(
Th

)
h∈H , where H is a countable collection of positive numbers

h < 1 with 0 as only accumulation point. To investigate the aforementioned error, we
have to ensure a certain quality of the meshes as the meshsize approaches zero and
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we therefore assume that TH is admissible in the sense of [4, Def. 1.57]. This means
that the mesh sequence is shape and contact regular and has optimal polynomial
approximation properties. We denote the regularity parameter of TH by ρ.

The faces of a mesh Th are collected in the set Fh = Fint
h
∪ Fbnd

h
, which is

decomposed into the set of interior faces or interfaces Fint
h

and the set of boundary
faces Fbnd

h
. Further, for each K ∈ Th we introduce the subset of faces that compose

the boundary of said element as FK
h

and denote the maximum number of faces per
element by N∂ = maxK ∈Th

|FK
h
|. Note that this number is bounded independently of

h ∈ H due to the admissibility of TH , cf., [4, Lemma 1.41].
We denote the outward unit normal vector to an element K ∈ Th by nK . Addi-

tionally, we define a face normal vector to each face F ∈ Fh denoted by nF in the
following way. Given a boundary face F ∈ Fbnd

h
, we simply define nF as the outward

unit normal vector to Γ. For each interface F ∈ Fint
h
, we denote the two neighboring

elements w.r.t. F arbitrarily by KF
1 and KF

2 and fix this choice. The face normal vector
nF is then defined as the outward unit normal vector to KF

1 .
Next, we denote the discrete approximation space consisting of broken polyno-

mials of degree at most k in each variable by

Vh = { v ∈ L2(Ω) | v |K ∈ Q
k
d (K ) for all K ∈ Th }

m.

Throughout the rest of the paper, we denote objects contained in or mapping into the
discrete space Vh in bold face. In particular, we slightly deviate from the notation
introduced in the beginning by denoting the identity on Vh by I .

Remark 3.1 To keep the presentation concise, we consider polynomials of the same
degree on each element K ∈ Th . Note, however, that the dG method can easily
handle different polynomial degrees on different elements and all our results can be
generalized to this case in a straightforward manner. Further, there is more freedom in
choosing the discrete spaces, e.g., polynomials of total degree at most k. More details
on this can be found in [4, Sec. 1.2.4.3].

As a consequence of the admissibility ofTH , some important properties of the discrete
spaces can be inferred. In particular, since admissibility implies shape and contact
regularity, the inverse inequality and the discrete trace inequality

‖ ∇v‖K ≤ C ′inv‖h
−1v‖K, and ‖v‖F ≤ Ctr‖h−1/2v‖K, (5)

respectively, hold for all K ∈ Th , F ∈ FK
h

[4, Lem. 1.44 & 1.46]. We point out that
the result on the elements is originally stated in the standard L2-inner product, not the
weighted version used here. However, by equivalence, it also holds in this setting. The
inverse inequality (5) further implies a similar inequality for the Friedrichs’ operator
L instead of the gradient, namely

‖Lv‖K ≤ CLCinv‖h−1v‖K, K ∈ Th, (6)

where CL = maxi=0,...,d ‖M−1Li ‖∞,K and Cinv =
√

dC ′inv + 1.
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To identify a best approximation in Vh to some L2-function (in some sense),
we define the (weighted) L2-projection πh : L2(Ω)m → Vh w.r.t. the weighted inner
product

(
· �� ·

)
Ω such that for v ∈ L2(Ω)m we have(

v − πhv �� ϕ
)
Ω = 0 for all ϕ ∈ Vh .

The error caused by this projection is then denoted as

evπ = v − πhv. (7)

Since the mesh sequence TH is admissible and hence possesses optimal polynomial
approximation properties in the sense of [4, Def. 1.55], we are able to infer bounds
that measure the quality of this approximation. However, since we use a weighted L2-
projection and the necessary results [4, Lem. 1.58 & 1.59] are given for the standard
one, we can not immediately apply them. Still, the next lemma shows that these results
also hold in our setting.

Lemma 3.2 For all h ∈ H , K ∈ Th , F ∈ FK
h
and v ∈ Hq+1(K ) the projection error

evπ satisfies

‖evπ ‖K ≤ Cπ |hq+1v |q+1,K, ‖evπ ‖F ≤ Cπ,∂ |hq+1/2v |q+1,K,

where Cπ and Cπ,∂ are independent of K and h.

Proof To prove this, one shows that, by the properties of M , the projection error
πh w.r.t. the weighted inner product yields the same quality of approximation as the
standard L2-projection w.r.t. ‖ · ‖L2,K . Using the equivalence of the weighted and
standard norm then yields the claim. We omit the details. ut

We aim to approximate functions in space by elements of the discrete approxima-
tion space Vh . These discrete functions can be discontinuous along element borders
but are polynomials on the elements. Thus, they are apt to approximate functions that
are sufficiently smooth on the elements. The broken Sobolev spaces defined by

Hq (Th) = { v ∈ L2(Ω) | v |K ∈ Hq (K ) for all K ∈ Th }, q ∈ N0,

contain such functions. They are Hilbert spaces if endowed with the norm

‖v‖2q,Th
=

q∑
j=0
|v |2j,Th

, |v |2q,Th
=

∑
K ∈Th

|v |2q,K .

Since neither functions contained in the discrete approximation space Vh , nor
those contained in the broken Sobolev spaces Hq (Th) need to be continuous across
the boundaries of mesh elements, their evaluation at these boundaries is not well-
defined. Thus, for an interface F ∈ Fint

h
, we write v |KF

1
and v |KF

2
for the limit of

a function v approaching F from KF
1 or KF

2 , respectively. With this, we define the
average and the jump of a function v across an interior face F ∈ Fint

h
as

{{v}}F =
v |KF

1
+ v |KF

2

2
and JvKF = v |KF

1
− v |KF

2
,
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respectively. These values serve as a measure for the discontinuities of the discrete
functions and are used to establish coupling between the otherwise decoupled elements
in the discrete problem.

Lastly, analogously to the broken Sobolev spaces Hq (Th), we define the spaces

Wq,∞(Th)m×m = { A ∈ L∞(Ω)m×m | A|K ∈ Wq,∞(K )m×m for all K ∈ Th },

q ∈ N0, together with the norm

‖A‖q,∞,Th
= max

K ∈Th

‖A‖q,∞,K .

3.1 Friedrichs’ operators in the discrete setting

To define the discrete operator, it is convenient to have a more concrete representation
of boundary values than the abstract boundary operator L∂ from Definition 2.2. To
achieve this, we restrict ourselves to spaces whose elements admit square-integrable
traces – in contrast to those of H (L). In particular, we consider the intersection of
H (L) and the broken Sobolev space H1(Th). Then, the abstract boundary operator
L∂ can be expressed by means of the usual integration-by-parts formula (on each
element K ∈ Th). Namely, by [16, Lem. 3.3] for v,w ∈ H (L) ∩ H1(Th), we have

(
Lv �� w

)
Ω −

(
v ��L~w

)
Ω =

∑
K ∈Th

(
LK
∂ v

�� w
)
∂K, LK

∂ =

d∑
i=1
n
K
i Li,

and Definition 2.2 of L∂ hence yields〈
L∂v �� w

〉
=

∑
K ∈Th

(
LK
∂ v

�� w
)
∂K .

Note that LK
∂
∈ L∞(∂K )m×m. Further, since we later on work on individual faces, we

define the boundary field LF
∂
∈ L∞(F)m×m via

LF
∂ =

d∑
i=1
n
F
i Li .

Following the same line of reasoning, it is convenient to also have a representation
of the abstract boundary operator LΓ in terms of boundary fields. This is achieved
by making the following assumption, which is in fact fulfilled in many practical
situations. We refer to [9, Sec. 5] for some examples.

Assumption 3.3 The boundary operatorLΓ is associatedwith amatrix-valued bound-
ary field LΓ ∈ L∞(Γ)m×m such that for v,w sufficiently smooth we have〈

LΓv �� w
〉
=

(
LΓv �� w

)
Γ .

Lastly, we give an auxiliary result needed to bound defects occurring in the error
analysis of the fully discrete scheme. It can be proven by multiple applications of the
product rule applied to L = M−1L̃ and exploiting that L̃ is composed of constant
coefficients and first-order partial derivatives.
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Lemma 3.4 Let q ≥ 0, v ∈ H (L) ∩ Hq+1(Th)m and M ∈ Wq,∞(Th)m×m. Then
Lv ∈ Hq (Th)m and for all p ∈ Z, we have

‖hpLv‖q,Th
≤ CL,M,q ‖hpv‖q+1,Th

,

and, in particular,

‖Lv‖q,Th
≤ CL,M,q ‖v‖q+1,Th

,

where CL,M,q only depends on q, d, CL and ‖M−1‖q,∞,Th
.

3.2 Discrete Friedrichs’ operators

We now define the central fluxes dG discretization of L. Instead of defining it only
on the discrete approximation space Vh , which would be sufficient for formulating
the (semi-)discrete problem, we extend its domain of definition to the space D(L) ∩
H1(Th)m. This will prove useful later for the error analysis. Hence, we define the
discrete operator domain associated with L as

VL
h = Vh + (D(L) ∩ H1(Th)m).

The discrete operator is then defined as follows.

Definition 3.5 The central fluxes dG discretization of L is the operatorL : VL
h
→ Vh

defined as (
Lv �� ϕ

)
Ω =

∑
K ∈Th

(
Lv �� ϕ

)
K −

∑
F ∈Fint

h

(
LF
∂ JvKF �� {{ϕ}}F

)
F

− 1
2

∑
F ∈Fbnd

h

(
(LF

∂ − LΓ)v �� ϕ
)
F for all ϕ ∈ Vh .

Note that L is well-defined as an easy consequence of the Riesz representation
theorem, cf., [16, Sec. 3.3].

In the following, we state some important properties of the discrete operator
needed for the analysis of the fully discrete method. Proofs of the first two results can
be found in [16, Sec. 3.3]. Note again that, despite the fact that the results therein are
given w.r.t. the standard L2-inner products, the proofs can be carried out completely
analogously in the weighted setting. The first proposition shows that the discrete
operator is consistent in the sense that its application to a sufficiently smooth function
yields the projection of the continuous operator applied to this function. Further, it
states that the discrete operator inherits the dissipativity on the approximation space.

Proposition 3.6 The discrete Friedrichs’ operatorL fulfills the consistency property

Lv = πhLv for all v ∈ D(L) ∩ H1(Th)m.

Further, its restriction to Vh is dissipative, i.e., we have(
Lv �� v

)
Ω ≤ 0 for all v ∈ Vh .
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Note that this immediately implies that L is also maximal dissipative, since Vh is
finite dimensional.

We formulate the following two results as a slightly more general version than the
respective ones given and proved in [16]. We need these more general results for the
last property of the discrete operator stated in this section. However, as the proofs are
completely analogous to the ones given in [16, Sec. 3.3 & Appendix] by using the
broken weighted L2-norms ‖hp · ‖Ω instead of the non-broken version, we omit them
here. The first result states that the discrete operator L satisfies an inverse inequality,
reflecting the corresponding property (6) of the original operator.

Proposition 3.7 Let v ∈ Vh . Then, for all p ∈ Z, the discrete Friedrichs’ operator L
fulfills the inverse inequality

‖hpLv‖Ω ≤ Cinv,L,p ‖hp−1v‖Ω,

and, in particular,

‖Lv‖Ω ≤ Cinv,L‖h−1v‖Ω.

The constants are given by Cinv,L,p = CLCinv +
1
2C2

tr
(
CΓ,L + N∂CL (1+ ρ p+1/2)

)
and

Cinv,L = Cinv,L,0 with CΓ,L = maxF ∈Fbnd
h
‖LF

∂
− LΓ‖∞,F .

The next result gives a bound on the broken weighted L2-norm of L applied to
the projection error evπ of a sufficiently smooth function v defined in (7). In some
sense, this quantifies how well the discrete operator L approximates the continuous
one, as for v ∈ D(L) ∩ H1(Th)m, we have Levπ = Lv −Lπhv = (πhL −Lπh)v by
Proposition 3.6.

Proposition 3.8 Let v ∈ D(L) ∩ Hq+1(Th)m for 0 ≤ q ≤ k. Then, for all p ∈ Z, we
have

‖hpLevπ ‖Ω ≤ Cπ,L,p |hp+qv |q+1,Th
,

and, in particular,

‖Levπ ‖Ω ≤ Cπ,L |hqv |q+1,Th
.

The constants are given by Cπ,L,p = 1
2 N∂CtrCπ,∂

(
CΓ,L + CL (1 + ρ p+1/2)

)
and

Cπ,L = Cπ,L,0.

The last result is another approximation property and generalizes Proposition 3.8
to more than one discrete operator. We point out that this result and its proof are
generalizations of [24, Thm. 6.3]. There, the assumption of a quasi-uniform mesh
sequence is needed and the result is restricted to powers of one particular operator
(namely the Maxwell operator and its central and upwind fluxes dG discretization).
Note that for each operator that is applied, we lose one order of h in the approximation.
The proof is given in the appendix.
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Lemma 3.9 Let L1, . . . ,Lr be Friedrichs’ operators with corresponding domains
D(L1),. . .,D(Lr ) and let L1, . . . ,Lr be their respective central fluxes dG dis-
cretizations. Further, let M ∈ Wq,∞(Th) and v ∈ D(Lr . . .L1) ∩ Hq+1(Th)m for
r − 1 ≤ q ≤ k. Then, for all p ∈ Z we have

‖hp (Lr . . .L2L1πh − πhLr . . .L1)v‖Ω ≤ C‖hp+(q+1)−rv‖q+1,Th
, (8)

and, in particular,

‖(Lr . . .L2L1πh − πhLr . . .L1)v‖Ω ≤ C‖h(q+1)−rv‖q+1,Th
,

where the constants are independent of h

4 Full discretization

This section is concernedwith deriving the full discretization of thewave-type problem
(2). To this end, we use a method-of-lines approach and first spatially discretize before
we discretize in time. We achieve the first step by replacing the continuous operator
L by its discrete counterpart L and projecting the data onto the discrete space Vh .
This yields the spatially semi-discrete wave-type problem




∂tu = Lu + fπ, R+ ×Ω,

u(0) = u0
π,

(9a)

(9b)

with fπ B πh f and initial value u0
π B πhu0.

The spatially discrete problem (9) is an evolution equation posed on the finite-
dimensional approximation space Vh . Hence, and since the discrete operator is dissi-
pative (and maximal due to the finite-dimensionality), its wellposedness and stability
can be analyzed completely analogously to the original problem.

Full discretization is now achieved by discretizing (9) in time via the Peaceman–
Rachford scheme. Beforewe can do so, we have to introduce a splitting of the (discrete)
spatial operator, since the Peaceman–Rachford scheme is a splitting scheme. There
are two ways to achieve this goal, which, in this case, lead to the same result. Namely,
we either split the continuous operator, leading to two Friedrichs’ operators, which
we then discretize via the dG method. Or we discretize the full operator and then split
the discrete one. As we deem it to be the more systematic way, we present the first
approach in the next section.

4.1 Splitting

We split the Friedrichs’ operator L = A + B into two operators by splitting its
coefficients.More precisely, we split Li = Ai+Bi for all i = 0, . . . , d such that A0, B0 ∈

Rm×m are negative semi-definite and A1, B1, . . . , Ad, Bd ∈ R
m×m are symmetric. This

leads to two operators

Ãu =
d∑
i=1

Ai∂iu + A0u, B̃u =
d∑
i=1

Bi∂iu + B0u,
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and analogously toL we defineA = M−1Ã andB = M−1B̃, respectively. We extend
all concepts introduced in Section 2 to the split operators, using analogous notation.

Additionally, we assume that we can split the boundary operator LΓ accordingly,
meaning that we haveLΓ =AΓ +BΓ withAΓ and BΓ fulfilling Assumption 2.3 w.r.t.
A andB, respectively.Moreover, we assume that bothAΓ andBΓ satisfy the analogue
of Assumption 3.3 with the respective boundary fields denoted by AΓ and BΓ. By the
same reasoning as in Section 2, this yields that A and B are maximal dissipative if
restricted to D(A) B ker(A∂ −AΓ) and D(B) B ker(B∂ − BΓ), respectively.

As we are interested in a splitting of the discrete operator, we also discretize these
split operators. Hence, we define the discrete operator domains

VA
h = Vh + (D(A) ∩ H1(Th)m), VB

h = Vh + (D(B) ∩ H1(Th)m)

associated with A and B, respectively, and the central fluxes dG discretizations
A : VA

h
→ Vh and B : VB

h
→ Vh of the Friedrichs’ operators A and B analogously

to Definition 3.5. Using bilinearity of the inner product and the properties of the
coefficients and boundary fields discussed above yields

L = A +B, (10)

i.e., A and B indeed constitute a splitting of L.

4.2 Peaceman–Rachford scheme

We now use the Peaceman–Rachford scheme to obtain the fully discrete scheme that
we analyze in the remainder of the paper. Let τ > 0 be the timestep size, tn B nτ,
f n B f (tn) and f nπ B fπ (tn). The Peaceman–Rachford scheme applied to the
semi-discrete wave-type problem (9) is given by




(
I − τ

2A
)
un+1/2
τ =

(
I + τ

2B
)
un
τ +

τ
2
(
I − τ

2A
)
f nπ ,(

I − τ
2B

)
un+1
τ =

(
I + τ

2A
)
un+1/2
τ + τ

2
(
I + τ

2A
)
f n+1
π ,

u0
τ = u0

π,

(11a)

(11b)

(11c)

where un
τ ≈ u(tn) is the fully discrete approximation at time tn, n ∈ N, and un+1/2

τ is
an intermediate value.

We point out that (11) is in fact equivalent to the scheme used in [7,23], which
relies on a different intermediate value un+1/2

τ (for f , 0) but produces the same un
τ .

In particular, one can show that this change results in un+1/2
τ being an approximation

to u(tn+1/2) of the same order as un
τ is to u(tn). This can be shown by using exactly

the same arguments we use later.
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To analyze the scheme, it is convenient to recast (11) into the equivalent form




un+1
τ = Spru

n
τ +

(
I − τ

2B
)−1 (
I + τ

2A
)
τ f n+1/2
π ,

u0
τ = u0

π,

(12a)

(12b)

where Spr : Vh → Vh is defined as

Spr =
(
I − τ

2B
)−1 (
I + τ

2A
) (
I − τ

2A
)−1 (
I + τ

2B
)
, (13)

and

f n+1/2
π =

f n+1
π + f nπ

2
= πh

f n+1 + f n

2
= πh f n+1/2. (14)

Note that the resolvents of A and B exist because they are maximal dissipative.
This readily implies the following result, which states that the fully discrete scheme

is wellposed and provides a closed solution formula for the approximation.

Theorem 4.1 For all h ∈ H and all τ > 0 there exists a unique un+1
τ ∈ Vh fulfilling

the fully discrete scheme (12) given by the discrete variation-of-constants formula

un+1
τ = S n+1

pr u0
π + τ

n∑
j=0
S

n−j
pr

(
I − τ

2B
)−1 (
I + τ

2A
)
f
j+1/2
π . (15)

Next, we show that the fully discrete scheme is unconditionally stable, which
is a well-known fact for the Peaceman–Rachford scheme in this maximal dissipative
setting.We follow the proof in [14] to show stability of the full discretization. However,
some adaptions are necessary for the fully discrete version to get a bound that is
independent of the discretization parameters. We proceed in two steps and first give a
bound on arbitrary powers of the system operator Spr.

Theorem 4.2 Let v ∈ Vh and q ∈ N. Then, for all h ∈ H and all τ > 0, we have

‖S
q
prv‖Ω ≤ ‖

(
I + τ

2B
)
v‖Ω.

Proof For arbitrary q ∈ N and v ∈ Vh , we have

‖S
q
prv‖Ω = ‖

((
I − τ

2B
)−1 (
I + τ

2A
) (
I − τ

2A
)−1 (
I + τ

2B
))q

v‖Ω

= ‖
(
I − τ

2B
)−1
C
q−1 (
I + τ

2A
) (
I − τ

2A
)−1 (
I + τ

2B
)
v‖Ω

with C =
(
I + τ

2A
) (
I − τ

2A
)−1 (
I + τ

2B
) (
I − τ

2B
)−1. BothA andB are maximal

dissipative (in the M-norm), and thus both their resolvents as well as the transforms(
I − τ

2A
)−1 (
I + τ

2A
)
and

(
I − τ

2B
)−1 (
I + τ

2B
)
, respectively, are contractive (in

the M-norm), see e.g., [28] for a proof of the latter. This proves the claim. ut

Note that the occurrence of the discrete operator B on the right-hand side means
that the bound provided in Theorem 4.2 is not uniform in h. However, the next result
shows that the scheme is unconditionally stable nonetheless.
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Corollary 4.3 For all h ∈ H and all τ > 0, the approximation un+1
τ given by the

fully discrete scheme (12) satisfies

‖un+1
τ ‖Ω ≤ ‖u

0
π ‖Ω +

τ
2 ‖Bu0

π ‖Ω + τ
n∑
j=0

(
‖ f

j+1/2
π ‖Ω +

τ
2 ‖A f

j+1/2
π ‖Ω

)
.

If u0 ∈ D(B) ∩ H1(Th)m and f ∈ C(R+; D(A) ∩ H1(Th)m), we have

‖un+1
τ ‖Ω ≤ ‖u0‖Ω +

τ
2 ‖Bu0‖Ω +

τ
2 Cπ,B |u0 |1,Th

+ τ
n∑
j=1

(
‖ f j+1/2‖Ω +

τ
2 ‖A f j+1/2‖Ω + Cπ,A | f j+1/2 |1,Th

)
.

Proof The discrete variation-of-constants formula (15) and Theorem 4.2 together
with the contractivity of

(
I + τ

2B
) (
I − τ

2B
)−1 yields

‖un+1
τ ‖Ω ≤ ‖S

n+1
pr u0

π ‖Ω + τ
n∑
j=0
‖S

n−j
pr

(
I − τ

2B
)−1 (
I + τ

2A
)
f
j+1/2
π ‖Ω

≤ ‖
(
I + τ

2B
)
u0
π ‖Ω + τ

n∑
j=0
‖
(
I + τ

2A
)
f
j+1/2
π ‖Ω.

Using the triangle inequality shows the first bound.
To show the second one, we add and subtract τ2 πhBu0 and use Proposition 3.6

(consistency) and the contractivity of πh to obtain

τ
2 ‖Bu0

π ‖Ω ≤
τ
2 ‖πhBu0‖Ω + ‖

τ
2Bπhu0 − τ

2Bu0‖Ω ≤
τ
2 ‖Bu0‖Ω +

τ
2 ‖Beu

0

π ‖Ω.

The bound on this term follows by Proposition 3.8 (approximation property) and
proceeding analogously for the term involving A proves the claim. ut

Next, we show the discrete analogon to the second bound in Corollary 2.4. Since
this stability result involves discrete derivatives of the approximations, we define the
discrete time derivative and the discrete space derivative at time tn+1/2 as

∂tu
n+1/2
τ =

un+1
τ − un

τ

τ
and Lun+1/2

τ = Aun+1/2
τ +B

un+1
τ + un

τ

2
,

respectively. While the definition of the discrete time derivative is rather intuitive, the
discrete space derivative is more involved. Its structure is due to the splitting nature of
the Peaceman–Rachford scheme. In fact, if one considers the semi-discrete analysis in
time, one sees that the full-step approximations at time tn are only contained in D(B),
whereas the half-step approximations at time tn+1/2 are only contained in D(A),
cf., [21] for details. Hence, one has to use the split operators to obtain a reasonable
approximation on the whole family of meshes.
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Corollary 4.4 For all h ∈ H and all τ > 0, the approximations
{
un
τ

}
n≥0 and{

un+1/2
τ

}
n≥0 given by the fully discrete scheme (11) satisfy

‖∂tu
n+1/2
τ ‖Ω + ‖Lun+1/2

τ ‖Ω

≤ 3
(
‖Lu0

π ‖Ω + max
0≤ j≤n+1

(
‖ f

j
π ‖Ω +

τ
2 ‖A f

j
π ‖Ω

)
+ τ

n∑
j=1

(
‖
f
j+1
π − f

j−1
π

2τ
‖Ω +

τ
2 ‖A

f
j+1
π − f

j−1
π

2τ
‖Ω

))
≤ C,

(16)

whereC is independent of h, τ and n if tn ≤ T for someT > 0, u0 ∈ D(L)∩H1(Th)m

and f ∈ C1(R+; D(A) ∩ H1(Th)m).

Proof First, note that by (14) we have

f
j+1/2
π − f

j−1/2
π

τ
=

f
j+1
π − f

j−1
π

2τ
, j ∈ N. (17)

Further, the definition (13) of Spr and the discrete splitting property (10) yields

Spr − I

τ
=

(
I − τ

2B
)−1 (
I − τ

2A
)−1

(
I + τ

2A
) (
I + τ

2B
)
−

(
I − τ

2A
) (
I − τ

2B
)

τ

=
(
I − τ

2B
)−1 (
I − τ

2A
)−1

L.

We point out that taking the limit τ → 0, we obtain the derivative of Spr w.r.t. τ
evaluated at 0 on the left-hand and the discrete operator L on the right-hand side.
This corresponds to the fact that Spr is a (time-)discrete version of the semigroup
generated by L and this relation reflects the fact that the derivative of a semigroup
evaluated at 0 yields its generator.

Having this in mind, we take the discrete derivative of the sequence {un
τ }n≥0 and

apply the discrete variation-of-constants formula (15) and (17) to obtain

∂tu
n+1/2
τ = S n

pr
Spr − I

τ
u0
π +

n∑
j=0
S

n−j
pr

(
I − τ

2B
)−1 (
I + τ

2A
)
f
j+1/2
π

−

n−1∑
j=0
S

n−1−j
pr

(
I − τ

2B
)−1 (
I + τ

2A
)
f
j+1/2
π

= S n
pr

(
I − τ

2B
)−1 (
I − τ

2A
)−1

Lu0
π + S

n
pr

(
I − τ

2B
)−1 (
I + τ

2A
)
f 1/2
π

+ τ
n∑
j=1
S

n−j
pr

(
I − τ

2B
)−1 (
I + τ

2A
) f j+1

π − f
j−1
π

2τ
,

where we further performed an index shift to combine the two sums. Note that this
can be seen as applying a discrete version of the Leibnitz rule of integration. Taking
norms and applying Theorem 4.2 yields an appropriate bound on ‖∂tun+1/2

τ ‖Ω.



18 Marlis Hochbruck and Jonas Köhler

Thus, it remains to show the bound on ‖Lun+1/2
τ ‖Ω to prove (16). To do so, we

add the (half-step) Peaceman–Rachford iterations (11a) and (11b) to obtain

Lun+1/2
τ = ∂tu

n+1/2
τ − f n+1/2

π −
τ

4
A

(
f n+1
π − f nπ

)
. (18)

Taking norms and using the already established bound on ‖∂tun+1/2
τ ‖Ω yields (16).

For the uniform bound, we use the fundamental theorem of calculus to obtain

τ
n∑
j=1
‖
f
j+1
π − f

j−1
π

2τ
‖Ω =

1
2

n∑
j=1

∫ tj+1

tj−1

‖πh∂t f (s)‖Ω ds ≤
∫ tn+1

0
‖πh∂t f (s)‖Ω ds,

and analogously for the same term includingA. The remaining terms can be bounded
as in the last part of the proof of Corollary 4.3. For completeness, we state the concrete
bound in the appendix. ut

5 Error analysis

In this section, we derive the main results of this paper, namely the error bounds
for the fully discrete scheme (11) resulting from the Peaceman–Rachford scheme in
time and a central fluxes dG discretization in space. More precisely, we show that
the approximation un

τ gained from performing n steps of this scheme converges to
the exact solution u(tn) of the original problem (2) at time tn with order two in time
(the classical order of the Peaceman–Rachford scheme) and order k in space, given
that the solution is sufficiently smooth. Further, we show that discrete derivatives of
the approximations w.r.t. space and time converge to their continuous counterparts
exhibiting the same rates if a bit more regularity is assumed.

In order to perform the analysis, we split the full discretization error en into

en = u(tn) − un
τ = enπ + en, (19)

where enπ = u(tn) − πhu(tn) is the projection error at time tn and en = πhu(tn) − un
τ

is the discretization error after n steps. Note that by Lemma 3.2 we already have a
bound on enπ of order k +1 for sufficiently smooth solutions. Thus, it suffices to bound
the discretization error en. Besides this, we also show bounds for the time derivative
error

en+1/2
τ = πh∂tu(tn+1/2) − ∂tun+1/2

τ ,

and the space derivative error

en+1/2
L

= πhLu(tn+1/2) −Lun+1/2
τ .
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5.1 Error recursion

We start by showing that the discretization error en satisfies the fully discrete scheme
(12) up to a defect. To keep the notation concise we define Rpr : Vh → Vh via

Rpr =
(
I − τ

2B
)−1 (
I − τ

2A
)−1,

abbreviating the concatenation of the resolvents of A andB.
The error analysis is based on the fact that the Peaceman–Rachford scheme can

be interpreted as a perturbation of the well-known Crank–Nicolson scheme. Thus, we
decompose the full defect into a defect already present in the Crank–Nicolson scheme
(which corresponds to the quadrature error of the trapezoidal rule) and an additional
defect caused by the perturbation.

Lemma 5.1 Let h ∈ H and τ > 0. Then, for all n ∈ N0, the discretization error
en+1 = πhu(tn+1) − un+1

τ of the dG-Peaceman–Rachford scheme satisfies




en+1 = Spre
n +Rpr(dncn + dnpr), n ∈ N0,

e0 = 0,

(20a)

(20b)

where the dG-Crank–Nicolson defect dncn is given by

dncn = πh
(
u(tn+1) − u(tn)

)
− τ

2
(
Lπh

(
u(tn+1) + u(tn)

)
+ πh

(
f n+1 + f n

))
,

and the (dG-Peaceman–Rachford) perturbation defect dnpr is given by

dnpr =
τ2

4
ABπh

(
u(tn+1) − u(tn)

)
+
τ3

4
A2πh f n+1/2.

Proof We begin by inserting the projected exact solution into the recursion (12a) of
the fully discrete scheme. This causes an error, which we define as Rpr(dncn + dnpr)
and we thus obtain

πhu(tn+1) = Sprπhu(tn) +Rpr(dncn + dnpr).

ApplyingR−1
pr =

(
I − τ

2A
) (
I − τ

2B
)
and solving for the defects dncn+ d

n
pr then yields

dncn + dnpr =
(
I − τ

2A
) (
I − τ

2B
)
πhu(tn+1) −

(
I + τ

2A
) (
I + τ

2B
)
πhu(tn)

− τ
(
I − τ

2A
) (
I + τ

2A
)
f n+1/2
π .

Expanding the products and using the splitting property (10) proves the claim. ut

As a consequence, Theorem 4.1 yields the representation formula

en+1 =
n∑
j=0
S

n−j
pr Rpr(d j

cn + d
j
pr) (21)

for the discretization error. Further, by Theorem 4.2, this representation formula
immediately implies an error bound for our scheme if the defects fulfill appropriate
bounds.
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Note that the Crank–Nicolson defect already closely resembles the (projected)
quadrature error δncn of the trapezoidal rule applied to ∂tu, i.e.,

δncn =

∫ tn+1

tn

∂tu(s) ds − τ
∂tu(tn+1) + ∂tu(tn)

2

=
(
u(tn+1) − u(tn)

)
− τ

(
L

u(tn+1) + u(tn)
2

+ f n+1/2), (22)

where we used the fundamental theorem of calculus and the differential equation
(2a) for the second equality. The only difference is that the second term involves the
operator Lπh instead of πhL. This discrepancy results in the spatial error term.

Moreover, after again applying the fundamental theorem, the perturbation defect
is already of order three in τ, which is the order required to obtain order two globally.
The only task still to be done is thus to show that the remaining factors can be bounded
independently of the discretization parameters. In fact, these observations will be key
to bounding the defect as we will see in the next section.

5.2 Bounds on the defects

Next, we derive appropriate bounds on the defects occurring in the error recursion
(20). We start with the dG-Crank–Nicolson defect.

Lemma 5.2 Let h ∈ H and τ > 0. Further, assume that u ∈ C3(R+; L2(Ω)m) ∩
C(R+; D(L) ∩ Hk+1(Th)m). Then we have

‖dncn‖Ω ≤
τ2

8

∫ tn+1

tn

‖∂3
t u(s)‖Ω ds + Cπ,L τ

2 |h
k (u(tn+1) + u(tn)

)
|k+1,Th

. (23)

Further, if u ∈ C4(R+; L2(Ω)m) ∩ C1(R+; D(L) ∩ Hk+1(Th)m) we have

‖
dncn − dn−1

cn
τ

‖Ω ≤
τ2

8

∫ tn

tn−1

∫ 1

0
‖∂4

t u(s + ςτ)‖Ω dς ds

+ 1
2Cπ,L

∫ tn+1

tn−1

|hk∂tu(s) |k+1,Th
ds.

(24)

Proof We exploit the observation made at the end of Section 5.1 and rewrite dncn as

dncn = πh
(
u(tn+1) − u(tn)

)
− τ

2
(
πhL

(
u(tn+1) + u(tn)

)
+ πh

(
f n+1 + f n

))
− τ

2
(
Lπh − πhL

) (
u(tn+1) + u(tn)

)
= πhδ

n
cn −

τ
2L

(
en+1
π + enπ

)
,

where we have added and subtracted the term involving πhL for the first and used
Proposition 3.6 (consistency) for the second equality. The first term is just the projected
quadrature error (22) of the trapezoidal rule. Using the associated Peano kernel
representation, its M-norm can be bounded by the first term in (23). The M-norm of
the second term can be bounded by using Proposition 3.8 (approximation property).
Combining these bounds yields (23).
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For the second bound (24), we take the discrete derivative of dncn, which yields

dncn − dn−1
cn

τ
= πh

δncn − δ
n−1
cn

τ
− 1

2L
(
en+1
π − en−1

π

)
. (25)

We use the definition of δncn in (22) together with multiple applications of the funda-
mental theorem of calculus and the substitution s → s + τ to obtain

δncn − δ
n−1
cn =

∫ tn

tn−1

(
∂tu(s + τ) − ∂tu(s) − τ

2
(
∂2
t u(s + τ) + ∂2

t u(s)
))

ds

=

∫ tn

tn−1

( ∫ s+τ

s

∂2
t u(ς) dς − τ

2
(
∂2
t u(s + τ) + ∂2

t u(s)
))

ds.
(26)

The integrand w.r.t. s is again the quadrature error of the trapezoidal rule and the
bound thus follows from its Peano kernel representation (and transformation of the
integrals).

For the second term in (25) we use the fundamental theorem of calculus to obtain

L
(
en+1
π − en−1

π

)
= L

(
u(tn+1) − u(tn−1) − πh

(
u(tn+1) − u(tn−1)

))
=

∫ tn+1

tn−1

L
(
∂tu(s) − πh∂tu(s)

)
ds

=

∫ tn+1

tn−1

Le∂tuπ (s) ds.

Using Proposition 3.8 (approximation property) concludes the proof. ut

Next, we bound the perturbation defect, again exploiting the ideas stated at the
end of Section 5.1. In fact, the approach is similar to the one used in the proof
of Lemma 5.2, meaning that we replace the discrete operators (which can only be
bounded in negative powers of h, not uniformly) by their continuous counterparts.
Lemma 5.3 Let h ∈ H , τ > 0 and k ≥ 1. Further, assume that we have M ∈

W1,∞(Th)m×m,u ∈ C1(R+; D(AB)∩H2(Th)m) and f ∈ C(R+; D(A2)∩H2(Th)m).
Then we have

‖dnpr‖Ω ≤
τ2

4

∫ tn+1

tn

‖AB∂tu(s)‖Ω + Cpr,u ‖∂tu(s)‖2,Th
ds

+
τ3

4
(
‖A2 f n+1/2‖Ω + Cpr, f ‖ f n+1/2‖2,Th

)
.

Further, if u ∈ C2(R+; D(AB) ∩ H2(Th)m) and f ∈ C1(R+; D(A2) ∩ H2(Th)m),
we have

‖
dnpr − dn−1

pr
τ

‖Ω ≤
τ2

4

∫ tn

tn−1

∫ 1

0
‖AB∂2

t u(s + ςτ)‖Ω + Cpr,u ‖∂
2
t u(s + ςτ)‖2,Th

dς ds

+
τ2

4

∫ tn+1

tn−1

‖A2∂t f (s)‖Ω + Cpr, f ‖∂t f (s)‖2,Th
ds,

where the constants are given by Cpr,u = Cinv,ACπ,B,−1 + Cπ,ACB,M,1 and Cpr, f =
Cinv,ACπ,A,−1 + Cπ,ACA,M,1.
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Proof We use the fundamental theorem of calculus and take the norm to obtain

‖dnpr‖Ω ≤
τ2

4

∫ tn+1

tn

‖ABπh∂tu(s)‖Ω ds +
τ3

4
‖A2πh f n+1/2‖Ω.

Following the approach used for the double integral in (26) we have

‖
dnpr − dn−1

pr
τ

‖Ω ≤
τ2

4
( ∫ tn

tn−1

∫ 1

0
‖ABπh∂

2
t u(s + τς)‖Ω dς ds

+

∫ tn+1

tn−1

‖A2πh∂t f (s)‖Ω ds
)
.

We show the bound on ‖ABπh∂tu(s)‖Ω. The remaining terms can be treated analo-
gously. Adding and subtracting πhAB∂tu(s) yields

‖ABπh∂tu(s)‖Ω ≤ ‖πhAB∂tu(s)‖Ω + ‖
(
ABπh − πhAB

)
∂tu(s)‖Ω.

Using the contractivity of the L2-projection for the first and Lemma 3.9 (with r = 2,
p = 0 and q = 1) for the second term concludes the proof. The exact constants can be
derived by explicitly executing the first induction step in the proof of Lemma 3.9. ut

5.3 Fully discrete error bounds

We are now able to state the main results of this paper. Since the assumptions for all
results in this section are similar, we encapsulate them in the following assumption.

Assumption 5.4 For ` ∈ N, the exact solution of the wave-type problem (2) sat-
isfies u ∈ C`+2(R+; L2(Ω)m) ∩ C` (R+; D(AB) ∩ H2(Th)m) ∩ C`−1(R+; D(A) ∩
Hk+1(Th)m), and the inhomogeneity satisfies f ∈ C`−1(R+; D(A2) ∩ H2(Th)m).
Further, the material tensor fulfills M ∈ W1,∞(Th)m×m.

Our first main result gives bounds on the full discretization error of the scheme.
Note that the regularity assumptions posed on the exact solution are in fact equivalent
to the combination of the corresponding ones posed in Lemmas 5.2 and 5.3.

Theorem 5.5 Let h ∈ H , τ > 0, k ≥ 1 and let Assumption 5.4 be fulfilled with ` = 1.
Then, for all n ∈ N0, the dG-Peaceman–Rachford error satisfies

‖u(tn+1)−un+1
τ ‖Ω ≤ Cπ |hk+1u(tn+1) |k+1,Th

+ Cπ,L τ
2

n∑
j=0
|hk (u(t j+1) + u(t j )

)
|k+1,Th

+
τ2

4
( ∫ tn+1

0

1
2 ‖∂

3
t u(s)‖Ω + ‖AB∂tu(s)‖Ω + Cpr,u ‖∂tu(s)‖2,Th

ds

+ τ
n∑
j=0

(
‖A2 f j+1/2‖Ω + Cpr, f ‖ f j+1/2‖2,Th

))
≤ C

(
hk + τ2),

where C only depends on tn+1, Cπ , Cπ,L, Cpr,u , Cpr, f , ‖∂3
t u(s)‖Ω, ‖AB∂tu(s)‖Ω,

|u(s) |k+1,Th
, ‖∂tu(s)‖2,Th

, ‖A2 f (s)‖Ω and ‖ f (s)‖2,Th
, s ∈ [0, tn+1].
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Proof We decompose the error as in (19). The projection error en+1
π is bounded by

Lemma 3.2. Thus, it remains to bound the discretization error en+1. We use (21)
together with Theorem 4.2 to obtain

‖en+1‖Ω =
n∑
j=0

(‖d j
cn‖Ω + ‖d

j
pr‖Ω).

The claim now follows by Lemmas 5.2 and 5.3. ut

Owing to the stability bound on the discrete derivatives in Corollary 4.3, we are
also able to show that the errors en+1/2

τ and en+1/2
L

converge with the same orders if
we assume some additional regularity. For the sake of readability, we do not give the
details of the full bounds as in Theorem 5.5 here. However, they can be found in the
appendix.

We start with the time derivative error. Note that we again need the combined
regularity already required for the corresponding bounds in Lemmas 5.2 and 5.3.

Theorem 5.6 Let h ∈ H , τ > 0, k ≥ 1 and let Assumption 5.4 be fulfilled with ` = 2.
Then, for all n ∈ N0, the full dG-Peaceman–Rachford time derivative error satisfies

‖∂tu(tn+1/2) − ∂tun+1/2
τ ‖Ω ≤ C

(
hk + τ2),

where C is independent of h, τ and n if tn ≤ T for some T > 0.

Proof As for the dG-Peaceman–Rachford error, we first split the full error into a
projection error and the discretization error en+1/2

τ . The projection error can again be
bounded by Lemma 3.2 and it thus remains to bound ‖en+1/2

τ ‖Ω.
First, note that the derivative error en+1/2

τ fulfills

‖en+1/2
τ ‖Ω = ‖πh∂tu(tn+1/2) − ∂tun+1/2

τ ‖Ω

≤ ‖∂tu(tn+1/2) −
u(tn+1) − u(tn)

τ
‖Ω + ‖

en+1 − en

τ
‖Ω

≤
τ

8

∫ tn+1

tn

‖∂3
t u(s)‖Ω ds + ‖

en+1 − en

τ
‖Ω,

where we have used that the first term in the second line is the quadrature error of the
midpoint rule. Hence, it remains to bound ‖ e

n+1 − en

τ ‖Ω. We do this by again applying
the error representation (21), which yields

en+1 − en

τ
= 1

τ

( n∑
j=0
S

n−j
pr Rpr(d j

cn + d
j
pr) −

n−1∑
j=0
S

n−1−j
pr Rpr(d j

cn + d
j
pr)

)
= 1

τS
n
prRpr(d0

cn + d0
pr) +

n∑
j=1
S

n−j
pr Rpr

( d j
cn − d

j−1
cn

τ
+

d
j
pr − d

j−1
pr

τ

)
.

Taking the norm and using the stability result Theorem 4.2 and the bounds on the
defects in Lemmas 5.2 and 5.3 (together with transforming some integrals) yields the
desired bound. ut
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Lastly, we show the error bound for the approximate space derivative. Note that
besides the combination of the corresponding assumptions in Lemmas 5.2 and 5.3 we
need some additional regularity of the inhomogeneity.

Theorem 5.7 Let h ∈ H , τ > 0, k ≥ 1, let Assumption 5.4 be fulfilled with ` = 2
and additionally f ∈ C(R+; Hk+1(Th)m) ∩ C2(R+; L2(Ω)m). Then, for all n ∈ N0,
the full dG-Peaceman–Rachford space derivative error satisfies

‖Lu(tn+1/2) −Lun+1/2
τ ‖Ω ≤ C

(
hk + τ2),

where C is independent of h, τ and n if tn ≤ T for some T > 0.

Proof Again, we first split the full error into a projection and a discretization part. Note
that by ∂tu, f ∈ C(R+; Hk+1(Th)m) we immediately obtainLu ∈ C(R+; Hk+1(Th)m)
via the original differential equation (2a), allowing us to bound the projection error.
Hence, it remains to bound the discretization error ‖en+1/2

L
‖Ω.

To do so, we compare (18) to the projected original differential equation (2a) at
time tn+1/2 to obtain

en+1/2
L

= en+1/2
τ − πh

(
f (tn+1/2) − f n+1/2) + τ2

4
Aπh

f n+1 − f n

τ
.

We have already bounded en+1/2
τ in the proof of Theorem 5.6 and the second term

can be bounded by Taylor expansion. The last term can be bounded by using the
fundamental theorem of calculus and subsequently proceeding analogously to the
corresponding part of the proof of Lemma 5.2. ut

6 Numerical experiments

In this section, we present numerical experiments to verify the theoretical results
obtained in this paper. Three different cases are considered, all of them consisting
of the full 3D Maxwell equations with perfectly conducting boundary conditions,
each time supplied with different data. Each data set is chosen such that there is an
analytical solution with which the approximations can be compared to obtain the exact
approximation error.

6.1 Linear Maxwell equations

For all cases, we consider the linear, isotropic and undamped Maxwell equations on
Ω = [0, 2] × [0, 1]2 in the following form. Given a three-dimensional, open, bounded
and connected Lipschitz domainΩ ⊂ R3, we seek the electric field E : R+ ×Ω→ R3

and the magnetic field H : R+ ×Ω→ R3 solving the Maxwell system




ε∂tE = ∇×H − J in R+ ×Ω,
µ∂tH = −∇× E in R+ ×Ω,

E(0) = E0, H (0) = H0 in Ω.

(27a)
(27b)

(27c)



Error analysis of a dG-ADI discretization of linear wave-type problems 25

Here, the initial data E0, H0 : Ω → R3, external current J : R+ × Ω → R3 and
material parameters ε, µ : Ω → R \ {0} (permittivity and permeability, respectively)
are given. These equations are suppliedwith perfectly conducting boundary conditions
on Γ = ∂Ω, i.e., we require

n × E = 0 on Γ, (27d)

where n is the outward normal vector on Γ.
Defining

u =
(

E
H

)
, u0 =

(
E0

H0

)
, g =

(
−J
0

)
,

and

L̃ =

(
0 ∇×

−∇× 0

)
, M =

(
εI 0
0 µI

)
,

we see that (27) can bewritten in the form of (1). Further, by [9, Lem. 3.5], the perfectly
conducting boundary conditions (27d) define an operator fulfilling Assumptions 2.3
and 3.3. Hence, if we have ε, µ ∈ L∞(Ω) and J ∈ C(R+; L2(Ω)3) this problem fits
the framework of this paper with d = 3 and m = 6.

In order to employ the Peaceman–Rachford method, we use the splitting proposed
in [22,34]. In particular, we first split the curl operator into

∇× = C1 − C2 with C1 =
*.
,

0 0 ∂2
∂3 0 0
0 ∂1 0

+/
-

and C2 =
*.
,

0 ∂3 0
0 0 ∂1
∂2 0 0

+/
-
,

and with this define the split operators

Ã =

(
0 C1
C2 0

)
and B̃ =

(
0 −C2
−C1 0

)
.

It can be shown that these split operators fulfill all necessary assumptions for our
theory and we refer to [21, Sec. 6.5.3] for the details.

The scheme was implemented with the help of the C++ finite element library
deal.ii [1], which was used to discretize the operators in space. The code can be
found at https://www.waves.kit.edu/dg-ADI.php. All experiments were per-
formed on uniform tensorial meshes of various mesh widths and we used a polynomial
degree of k = 2 on all elements for the dG method. Lastly, the simulation interval
for all experiments was chosen to be [0, 2] and we plot the maximal error over all
timesteps in all graphs.

https://www.waves.kit.edu/dg-ADI.php


26 Marlis Hochbruck and Jonas Köhler

Cavity solution. As a first example, we consider the well-known cavity solution
of the homogeneous Maxwell system with constant material parameters. In particular,
we set J ≡ 0, assume ε, µ ∈ R to be constant and consider the family of solutions to
(27) given by

E(t, x) = ε−1 *..
,

Ê1 cos(κ1x1) sin(κ2x2) sin(κ3x3)
Ê2 sin(κ1x1) cos(κ2x2) sin(κ3x3)
Ê3 sin(κ1x1) sin(κ2x2) cos(κ3x3)

+//
-

cos(Θt),

H (t, x) = c2
Θ
−1 *..

,

(Ê2κ3 − Ê3κ2) sin(κ1x1) cos(κ2x2) cos(κ3x3)
(Ê3κ1 − Ê1κ3) cos(κ1x1) sin(κ2x2) cos(κ3x3)
(Ê1κ2 − Ê2κ1) cos(κ1x1) cos(κ2x2) sin(κ3x3)

+//
-

sin(Θt)

(28)

for (t, x) ∈ R+ × Ω. Here, we denote by c = (εµ)−1/2 the speed of light, κ =
(κ1, κ2, κ3) ∈ R3

+ is the wave vector and Θ = c ‖κ‖ is the angular frequency. Further,
Ê1, Ê2, Ê3 are preset amplitudes of the waves. For our numerical experiment we chose
the parameter set

ε ≡ µ ≡ 1, κ1 = κ2 = κ3 = 2π, and Ê1 = −1, Ê2 = 0, Ê3 = 1,

which, in particular, leads to a solution satisfying the perfectly conducting boundary
condition (27d).

Varying material parameters. For the second example, we adapt the cavity
solution such that it allows for varying material parameters. In fact, one can show
that (28) is a solution to the homogeneous (i.e., J ≡ 0) Maxwell equations (27) for
sufficiently smooth ε, µ : Ω→ R with µ ≡ 1

ε and (∇ε) × E = 0 on Ω for all t ∈ R+.
We exploit this and choose the solution given by (28) with the parameters

ε(x) =
1

µ(x)
= x2

1 + 1, κ1 = κ2 = π, Ê1 = 1, and κ1 = Ê2 = Ê3 = 0,

for x ∈ Ω. Besides satisfying the above mentioned criteria, note that, again, the
resulting solution also fulfills the perfectly conducting boundary conditions (27d).

Inhomogeneous Problem. As a last example we consider the following solution
to the inhomogeneous Maxwell equations. Let Φ ∈ C2(Ω) with n ×∇Φ = 0 on Γ and
Ψ ∈ C1(R). Then, for x ∈ Ω, t ∈ R+, the solution of (27) with J (t, x) = Ψ′(t) ∇Φ(x)
and ε ≡ µ ≡ 1 is given by

E(t, x) = Ψ(t) ∇Φ(x), H (t, x) = 0.

In particular, we choose

Φ(x) = (x2
1 − 2x1)(x2

2 − x2)(x2
3 − x3), Ψ(t) = t4 + 5

2 t3 + 3t2 + 3t + 1.

for this example.
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Fig. 1 Errors produced by the fully discrete scheme (11) applied to the problem solved by the cavity
solution plotted against the timestep τ. The employed mesh sizes are given in the legend.
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Fig. 2 Errors produced by the fully discrete scheme (11) applied to the problem with varying material
parameters plotted against the timestep τ. The employed mesh sizes are given in the legend.

6.2 Results

First, note that all three considered examples are sufficiently regular to fulfill the
requirements of our main results Theorems 5.5, 5.6 and 5.7. Hence, we expect at least
the convergence orders presented in these theorems.

Further, since the first two examples are homogeneous, both the discrete as well as
the continuous objects considered in Theorems 5.6 and 5.7 coincide by the numerical
scheme (12) and the continuous problem (2), respectively. Therefore, we expect the
same errors for both, which was indeed the case in all numerical results.

We performed several simulations with varying meshsizes h and timesteps τ to
verify our theoretical results. The resulting errors are displayed in Figures 1–5.

In all experiments, one clearly sees the second-order convergence in time (when-
ever the spatial error is small enough so that the temporal error is dominant). The
spatial error contained in en, however, behaves about an order better than predicted
in the homogeneous examples, i.e., we see convergence of order about k + 1 in h.
This is probably due to the high regularity of both the considered solutions and the
employed meshes. Further, this is not the case for the errors in the derivatives, enτ and
en
L

(which coincide here as explained before), where we see second-order conver-
gence. In the inhomogeneous example we see no influence of the spatial error at all.
However, this is to be expected, since we used k = 2 in the experiments and thus both
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Fig. 3 Errors produced by the fully discrete scheme (11) applied to the inhomogeneous problem plotted
against the timestep τ. The employed mesh sizes are given in the legend.
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Fig. 4 Errors produced by the fully discrete scheme (11) applied to the problem solved by the cavity
solution plotted against the mesh width h. The approximations were produced by using 5120 timesteps for
time integration.

the solution and the inhomogeneity (as well as their spatial derivatives) are contained
in the approximation space Vh (for all t ∈ R+). Hence, it is easy to see that the defects
derived in Section 5.1 (and consequently the derived bounds on the errors) are in fact
independent of h, which explains this behavior.

Lastly, note that the errors in the space derivative of the solution corresponding to
Theorem 5.7 are of approximately one to two orders of magnitude higher than those
of the error in the solution. This can probably be explained by the fact that additional
terms involving the inhomogeneity enter the error constant.
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Fig. 5 Errors produced by the fully discrete scheme (11) applied to the problem with varying material
parameters plotted against the mesh width h. The approximations were produced by using 5120 timesteps
for time integration.
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Appendix

In this appendix, we gather several things, which were omitted in the main part of the
paper for readability. First, we give the postponed proof of Lemma 3.9.

Proof (Lemma 3.9) The proof is performed via induction over r . The initial step is
given by Proposition 3.8 (approximation property). Hence, we assume (8) to hold for
some r < q + 1 and consider the case r + 1. We apply Proposition 3.6 (consistency)
to the outermost operator Lr+1 to obtain

‖hp (Lr+1 . . .L1πh − πhLr+1 . . .L1)v‖Ω
= ‖hpLr+1(Lr . . .L1πh −Lr . . .L1)v‖Ω.

Adding and subtracting Lr+1πhLr . . .L1v and using the triangle inequality yields

‖hp (Lr+1 . . .L1πh − πhLr+1 . . .L1)v‖Ω
≤ ‖hpLr+1(Lr . . .L1πh − πhLr . . .L1)v‖Ω
+ ‖hpLr+1(Lr . . .L1 − πhLr . . .L1)v‖Ω.

To tackle the first term, we use Proposition 3.7 (inverse inequality), yielding

‖hpLr+1(Lr . . .L1πh − πhLr . . .L1)v‖Ω

≤ Cinv,Lr+1,p ‖h
p−1(Lr . . .L1πh − πhLr . . .L1)v‖Ω,

which can be bounded by the induction hypothesis with p − 1 instead of p.
For the second term, note that Lemma 3.4 yields Lr . . .L1v ∈ H (q+1)−r (Th)m.

Hence, we can use Proposition 3.8 (approximation property) with exponent p and
regularity parameter q − r to obtain

‖hpLr+1(Lr . . .L1 − πhLr . . .L1)v‖Ω

= ‖hpLr+1eLr ...L1v
π ‖Ω

≤ Cπ,Lr+1,p |h
p+(q+1)−(r+1)Lr . . .L1v |(q+1)−r,Th

.

Applying r times Lemma 3.4 yields the asserted bound for this term. ut

Full bound for Corollary 4.4. Next, we explicitly state the constant C used in
Corollary 4.4. It is defined by

‖∂tu
n+1/2
τ ‖Ω + ‖Lun+1/2

τ ‖Ω ≤ 3
(
‖Lu0‖Ω + Cπ,L |u0 |1,Th

+ max
s∈[0,tn+1]

(
‖ f (s)‖Ω + τ

2 ‖A f (s)‖Ω + τ
2 Cπ,A | f (s) |1,Th

)
+

∫ tn+1

0
‖∂t f (s)‖Ω + τ

2 ‖A∂t f (s)‖Ω + τ
2 Cπ,A |∂t f (s) |1,Th

ds
)
.
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Full bounds for Theorems 5.6 and 5.7. Lastly, the full bounds defining the constant
C in Theorems 5.6 and 5.7 are given by

‖∂tu(tn+1/2) − ∂tun+1/2
τ ‖Ω ≤ Cπ |hk+1∂tu(tn+1/2) |k+1,Th

+ Cπ,L
(

1
2 |h

k (u(τ) + u0) |k+1,Th
+

∫ tn+1

0
|hk∂tu(s) |k+1,Th

ds
)

+
τ2

4
( ∫ 1

0

1
2
(
‖∂3

t u(tn + τs)‖Ω + ‖∂3
t u(τs)‖Ω

)
ds

+

∫ 1

0

(
‖AB∂tu(τs)‖Ω + Cpr,u ‖∂tu(τs)‖2,Th

)
ds

+ ‖A2 f 1/2‖Ω + Cpr, f ‖ f 1/2‖2,Th

+

∫ 1

0

∫ tn+τs

τs

1
2 ‖∂

4
t u(ς)‖Ω dς ds

+

∫ 1

0

∫ tn+τs

τs
‖AB∂2

t u(ς)‖Ω + Cpr,u ‖∂
2
t u(s)‖2,Th

dς ds

+ 2
∫ tn+1

0
‖A2∂t f (s)‖Ω + Cpr, f ‖∂t f (s)‖2,Th

ds
)
,

and

‖Lu(tn+1/2) −Lun+1/2
τ ‖Ω ≤ Cπ |hk+1Lu(tn+1/2) |k+1,Th

+ Cπ,L
(

1
2 |h

k (u(τ) + u0) |k+1,Th
+

∫ tn+1

0
|hk∂tu(s) |k+1,Th

ds
)

+
τ2

4
( ∫ 1

0

1
2
(
‖∂3

t u(tn + τs)‖Ω + ‖∂3
t u(τs)‖Ω + ‖∂2

t f (tn + τs)‖Ω
)
ds

+

∫ 1

0

(
‖AB∂tu(τs)‖Ω + Cpr,u ‖∂tu(τs)‖2,Th

)
ds

+

∫ 1

0

(
‖A∂t f (tn + τs)‖Ω + Cπ,A |∂t f (tn + τs) |1,Th

)
ds

+ ‖A2 f 1/2‖Ω + Cpr, f ‖ f 1/2‖2,Th

+

∫ 1

0

∫ tn+τs

τs

1
2 ‖∂

4
t u(ς)‖Ω dς ds

+

∫ 1

0

∫ tn+τs

τs
‖AB∂2

t u(ς)‖Ω + Cpr,u ‖∂
2
t u(s)‖2,Th

dς ds

+ 2
∫ tn+1

0
‖A2∂t f (s)‖Ω + Cpr, f ‖∂t f (s)‖2,Th

ds
)
,

respectively.
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