NUTECH-2020

Warsaw, 4-7 October 2020

International Conference on Development and Applications of Nuclear Technologies

Mirco Grosse

Thermal limits of potential ATF cladding materials

Promising ATF concepts

Various coating systems:

- Metals
- Oxides or silicates
- MAX phases

Cr coated Zry is the most promising system

Cr in FeCrAL is boon and bane at once:

- irradiation induced embrittlement due to the formation of Cr rich α' precipitates
- Increase of the corrosion and HT oxidation resistance

less developed system best HT properties issues: - water corrosion

- joining

Mirco Grosse

www.nutech2020.pl

International Conference on Development and Applications of Nuclear Technologies

Several facilities for high and very high temperature tests

Mirco Grosse

www.nutech2020.pl

International Conference on Development and Applications of Nuclear Technologies

The QUENCH facility for bundle tests

- Bundle with 21 32 fuel rod simulators of ~2.5 m length
- Electrically heated: ~2 m;
- Fuel simulator: ZrO₂ pellets
- Quenching from bottom
- Off-gas analysis by mass spectrometer (H₂, steam ...)
- Extensive instrumentation for T, p, flow rates, water level, etc. (140 measurement channels)
- corner rods, can be removed during test

Mirco Grosse

www.nutech2020.pl

International Conference on Development and Applications of Nuclear Technologies

Results

Issues of chromium coatings at Zircaloys I) bending

First test Second test

1800

Time (s)

Bending: High-level of residual stress and stress

concentration (inhomogeneity) via cold spraying

2400

3000

3600

50

 $H_2 (mg)$

20

10

0.05

0.04

0.03

0.02

0.01

0.00

-600

Ω

H₂ (mg/s)

Repeated testFirst testPre-oxidation from 800°C

Same level bending

Mirco Grosse

www.nutech2020.pl

International Conference on Development and Applications of Nuclear Technologies

600

1200

Local variations in the coating thickness

Transient test from 800 to 1500°C

- ➤The hydrogen release rate accelerated at temperature around 1250°C.
- ➤ A steeply increased hydrogen release rate above approx. 1410°C, then surpassed that of the uncoated reference Zircaloy-4.

Mirco Grosse

www.nutech2020.pl

International Conference on Development and Applications of Nuclear Technologies

$$Cr + Zr = (Zr, Cr)_{melt}$$

2 $Cr_2O_3 + 3 Zr = 3 ZrO_2 + 4 Cr$

Mirco Grosse

www.nutech2020.pl

International Conference on Development and Applications of Nuclear Technologies

NUTECH-2020 Warsaw, 4-7 October 2020

F6113030

Results Dissolution of the Cr coating

Mirco Grosse

www.nutech2020.pl

International Conference on Development and Applications of Nuclear Technologies

Results Dissolution of the Cr coating

Mirco Grosse

www.nutech2020.pl

International Conference on Development and Applications of Nuclear Technologies

Results Issues of FeCrAl I) kinetic limitations

Oxidation behaviour of FeCrAl-based alloys during the transient tests from 500 to 1450°C with subsequent holding 1 h at 1450°C in steam. ■ and ★: alloy specimens showed catastrophic oxidation with non-protective Fe-based oxide scale

- and ★: alloy specimens formed protective alumina scale
- ▲ : alloy specimens with Y addition formed protective alumina scale

Mirco Grosse

www.nutech2020.pl

International Conference on Development and Applications of Nuclear Technologies

Results Issues of FeCrAI II) eutectic interactions

QUENCH-19 test with FeCrAl claddings

QUENCH-19, 950 mm, rod 2: metallographic investigations, optical observation

Mirco Grosse

www.nutech2020.pl

International Conference on Development and Applications of Nuclear Technologies

Results Issues of FeCrAl II) eutectic interactions

QUENCH-19, 950 mm, rod 2: SEM/EDX analysis of pellet

Mirco Grosse

www.nutech2020.pl

International Conference on Development and Applications of Nuclear Technologies

I) accelerated oxidation at T > 1730°C **Issues of SiC**

Bubble formation at T > 1713°C (melting point of SiO₂)

NUTECH-2020 Warsaw, 4-7 October 2020

Mirco Grosse

Results

www.nutech2020.pl

International Conference on Development and Applications of Nuclear Technologies

Results

Issues of SiC-CMC

II) very large reacting surface if steam can penetrate the fibers

Rapid increase of the reacting surface at 1750°C when the monolithic outer layer is consumed.

Mirco Grosse

www.nutech2020.pl

International Conference on Development and Applications of Nuclear Technologies

Results Issues of SiC-CMC I

II) very large reacting surface if steam can penetrate the fibers

Mirco Grosse

www.nutech2020.pl

International Conference on Development and Applications of Nuclear Technologies

Results Issues of SiC-CMC

II) very large reacting surface if steam can penetrate the fibers

Mirco Grosse

www.nutech2020.pl

International Conference on Development and Applications of Nuclear Technologies

Summary and Conclusions

The maximumal temparatures for applications are often less than a-priori expected.

Cr-coated Zry-4: eutectic interaction between Cr and Zr results in a higher oxidation rate at temperatures above 1330°C. Catastrophic oxidation if the coating fails.

FeCrAl:

- Eutectic interaction between molten FeO and UO₂ at 1335°C can results in much earlier core melting.
- Material performance depends on heating rate. Time is needed to form a protective Al₂O₃ layer. Catastrophic oxidation occurs above 1330°C if no protective Al₂O₃ layer is formed.
- SiC: faster oxidation above the melting temperature of SiO₂ at 1720°C. Catastrophic oxidation occur if the monolithic outer layer fails (even at 1200°C).
- A lot of work has to be done to achieve accident tolerance. However, it is worth to do this work because the improvement of safety would be great.

Mirco Grosse

www.nutech2020.pl

International Conference on Development and Applications of Nuclear Technologies

THANK YOU FOR YOUR ATTENTION!

JARL P

Presenting author's contact details Mirco.Grosse@KIT.edu