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1 Introduction

A fundamental understanding of multinuclear transition metal complexes and clusters will

lead to new applications in the field of photonics, optoelectronics and photocatalysis. Various

experimental techniques have been developed for synthesis and characterization of ligand-

stabilized multimetallic complexes, including synthetic molecular chemistry, mass spectrome-

try, UV/Vis absorption and luminescence spectroscopy. The main focus of this thesis, as funded

by the Transregional Collaborative Research Center "Cooperative Effects in Homo- and Het-

erometallic Complexes (3MET)", lies on the theoretical description of the electronic structure

and optical properties of di-, tri-, and tetranuclear transition metal complexes containing the

coinage metals copper, silver and gold, hoping to provide more insights into the multimetallic

complexes with typically three (but also two or four) metal centers.

The goals of this thesis include structure determination in ground and electronically excited

states, ab initio calculation of vertical and adiabatic excitation energies, and most importantly,

prediction and interpretation of absorption and emission spectra of oligonuclear transition

metal complexes. On the other hand, the intermetallic cooperative interactions [1] within d8/d10

electron configurations, which is the key topic of 3MET, will also be investigated here. Various

examples on short d10–d10 distances are documented for all three coinage metals. Instead of re-

pelling each other, attractive interactions between two closed-shell metal cations are very com-

monly observed, which are weaker than most covalent or ionic bonds but stronger than van der

Waals interactions. This metallophilic attraction can lead to the formation of dimers, oligomers

and polymers, and their electronic structures and luminescence behavior are strongly affected

by the arrangement of the metal centers. Therefore, it is interesting to see how the catalytic and

optical properties are influenced by the cooperativity between metal centers.

Computational methods based on time-dependent density functional theory (TDDFT) and

Green’s function, namely GW approximation and Bethe–Salpeter equation (BSE) will be em-

ployed in this thesis. Nowadays, TDDFT in its effective linear-response (LR) formalism has

been the most applied ab initio method for excited states. This popularity is due to the favor-

able N4 scaling with system size, the availability of analytic first and second derivatives, and

ease of coupling to environmental models. However, it suffers from strong dependency on the

exchange-correlation functional, and it is system and state dependent. [2] In recent years, the

1



1 Introduction

GW/BSE approach has attracted considerable interest in computing molecular excitation ener-

gies, and highly promising results have been presented. [3–23] The BSE formalism is very similar

to TDDFT in the language of linear response and hence shares the same N4 scaling with system

size as TDDFT, whereas it can overcome the TDDFT limitations associated with charge-transfer

(CT) excitations, which are particularly problematic for standard exchange-correlation func-

tionals. [24,25] Charge-transfer states play a central role in many 3MET complexes, either with

metal-to-ligand or ligand-to-metal character. Therefore, an appropriate description of such CT

excitations is crucial for computing optical spectroscopy.

Since BSE computations normally require quasiparticle energies from preceding GW calcula-

tions on input, the quality of the GW energy levels strongly affects the accuracy of the BSE exci-

tation energies. There are various GW starting points for the BSE step. The non-self-consistent

GW(G0W0) [26] is computationally very efficient, but the lack of self-consistency results in great

dependency on the reference orbitals, which is undesirable. On the other hand, fully self-

consistent GW theory (scGW) [27–29] seems computationally too expensive. Therefore, partially

self-consistent schemes such as eigenvalue-only self-consistent GW (evGW) [30] and quasipar-

ticle self-consistent GW (qsGW) [31,32] can be good alternatives. The evGW scheme admittedly

still depends on the reference orbitals, yet much less than G0W0, while qsGW totally removes

the dependency on the starting points, and it is also computationally more demanding than

evGW. The quasiparticle energies can be computed for all orbital levels using the full spec-

tral representation of the density response function (SR-GW). [5] However, it is computationally

very expensive and scales as N6 with system size. When quasiparticle energies are only needed

for a few orbitals near the Fermi level, the analytic continuation (AC-GW) [30,33–35] and contour

deformation (CD-GW) [36] variants provide efficient low-scaling (N4) alternatives to the com-

putation of correlation self-energy. Compared to AC-GW, CD-GW yields more robust results

for core orbitals, which are critical for accurate description of core-level spectroscopy.

This thesis is organized as follows. First, the quantum chemistry methods used in the present

work, namely TDDFT and GW/BSE, are briefly recapitulated in Chap. 2. Then, an extensive

accuracy assessment of TDDFT and GW/BSE methods is given in Chap. 3 for singlet and triplet

valence excited states, as well as charge-transfer excited states, which provides benchmark for

further real-world applications. Next, multiple applications of TDDFT and GW/BSE to transi-

tion metal complexes are presented, including a trinuclear silver(I) hydride complex (Chap. 4)

and a tetranuclear silver(I) halide complex (Chap. 5), a series of heteroleptic copper(I) com-

plexes as potential candidates for photosensitizers (Chap. 6), a series of highly luminescent

gold(III) pincer complexes (Chap. 7) and a series of dinuclear amidinate gold(I) complexes as

model systems for investigation of photophysical properties (Chap. 8). Lastly, the main conclu-

sions of this thesis are summarized in Chap. 9.
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2 Theoretical background

In this chapter, the quantum chemistry methods used in the present work will be briefly re-

viewed. A comprehensive aspect of the underlying fundamental principles of theoretical chem-

istry and computational methods can be found in many textbooks [37–39], and thus will not be

described here in every detail. Since my work has been mainly concerned with the application

of the methods rather than the implementation or development, I will only present the key

ideas and equations behind the related methods, namely time-dependent density functional

theory (TDDFT) and Green’s function based Bethe–Salpeter equation (BSE). The main theo-

retical frameworks of TDDFT and GW/BSE will be outlined and compared, since these two

methods share similarities in many aspects. The details of derivation can be found in Ref.s 40

and 41 for TDDFT, and in Ref.s 42 and 43 for GW/BSE.

2.1 Density functional theory (DFT)

2.1.1 The Kohn–Sham equations

In the Kohn–Sham (KS) scheme [44,45], an interacting electrons system can be described in terms

of an auxiliary non-interacting electrons system that has exactly the same ground state electron

density as the real system, and the Kohn–Sham energies and wavefunctions can be obtained

by solving the Schrödinger equation[
−1

2
∇

2 +Vext(r)+VH(r)+VXC(ρ(r))
]

φi(r) = εiφi(r) (2.1)

with the density given by

ρ(r) = ∑
i

φ
∗
i (r)φi(r) (2.2)

where Vext, VH and VXC are the external potential (i.e. nuclear attraction and any applied field),

the Hartree potential (i.e. Coulomb repulsion), and the exchange-correlation potential, respec-

tively.

3



2 Theoretical background

2.1.2 Time-dependent DFT: linear response theory

In linear response (LR) theory [40], the density induced by an external time-dependent (TD)

perturbative field can be expressed in terms of the real interacting system as

ρ
(1)(r, t) =

∫
dr′χ(r,r′, t− t ′)Vext(r′, t ′) (2.3)

or in terms of the fictitious non-interacting system as

ρ
(1)(r, t) =

∫
dr′χ0(r,r′, t− t ′)Vtot(r′, t ′) (2.4)

The response functions χ and χ0 are called polarizabilities of the interacting and non-interacting

systems, respectively.

Analogous to the static KS equation, Vtot is defined as

Vtot(r, t) =Vext(r, t)+VH(r, t)+VXC(ρ(r), t)

=Vext(r, t)+
∫

dr′υ(r,r′)ρ(r′, t ′)+
∫

dr′ fXC(r,r′, t, t ′)ρ(r′, t ′)
(2.5)

where fXC = δVXC/δρ is the exchange-correlation kernel that takes into account all the dynam-

ical exchange and correlation effects.

Hence, the two response functions are related via Eq.s (2.3) to (2.5) as

χ =
δρ

δVext
=

δρ

δVtot

δVtot

δVext
= χ0

(
δVext

δVext
+

δVH

δVext
+

δVXC

δVext

)
= χ0

(
1+

δVH

δρ

δρ

δVext
+

δVXC

δρ

δρ

δVext

)
= χ0 +χ0(υ + fXC)χ

(2.6)

The Kubo formula [46] for the response function reads

χ(r,r′,τ) =−θ(τ)
〈
Ψ

N
0
∣∣[ρ(r, t),ρ(r′, t ′)]∣∣ΨN

0
〉

(2.7)

where
∣∣ΨN

0

〉
is the ground state with N electrons and energy EN

0 ; θ is the Heaviside step function

and τ = t− t ′; if τ > 0, then θ = 1, otherwise θ = 0.
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2.1 Density functional theory (DFT)

By introducing the completeness relation for the ground state, and using the relation ρ(r, t) =

eiEN
0 tρ(r)e−iEN

0 t , Eq. (2.7) becomes

χ(r,r′,τ) =−θ(τ) ∑
J 6=0

[〈
Ψ

N
0 |ρ(r)|ΨN

J
〉〈

Ψ
N
J

∣∣ρ(r′)∣∣ΨN
0
〉

e−i(EN
J −EN

0 )τ

−
〈
Ψ

N
0
∣∣ρ(r)′∣∣ΨN

J
〉〈

Ψ
N
J |ρ(r)|ΨN

0
〉

e−i(EN
0 −EN

J )τ
]

=−θ(τ) ∑
J 6=0

[
fJ(r) f ∗J (r

′)e−iEJτ − f ∗J (r) fJ(r′)eiEJτ

] (2.8)

where
∣∣ΨN

J

〉
is the J-th excited state with N electrons and energy EN

J ; fJ(r) =
〈
ΨN

0 |ρ(r)|ΨN
J

〉
;

EJ = EN
J −EN

0 corresponds to the excitation energy.

The Fourier transform of χ in frequency domain gives a spectral representation

χ(r,r′,ω) = ∑
J 6=0

[
fJ(r) f ∗J (r′)

ω−EJ + iη
− f ∗J (r) fJ(r′)

ω +EJ + iη

]
(2.9)

where η is a positive infinitesimal. The two terms represent excitation and de-excitation, re-

spectively, and the poles of χ correspond to the excitation energies.

In order to obtain the independent-particle polarizability χ0, we rewrite the density in second

quantization framework

ρ(r) = ψ(r)ψ†(r) = ∑
pq

φp(r)φ ∗q (r)apa†
q (2.10)

where ψ(r) and ψ†(r) are the field operators, and ap and a†
q are the annihilation and creation

operators, respectively. Then we have

fJ(r) = ∑
pq

〈
Ψ

N
0
∣∣φp(r)φ ∗q (r)apa†

q

∣∣ΨN
J
〉
= ∑

ia
φ
∗
i (r)φa(r) (2.11)

Hence, χ0 is nonzero only for occupied-virtual pairs. It can be easily built from the ground-state

KS orbitals and energies, which is the well-known expression

χ
KS
0 (r,r′,ω) = ∑

ia

[
φ ∗i (r)φa(r)φ ∗a (r′)φi(r′)

ω− (εa− εi)+ iη
− φi(r)φ ∗a (r)φa(r′)φ ∗i (r′)

ω +(εa− εi)+ iη

]
(2.12)

The full polarizability χ can then be obtained if an expression for fXC is known. The simplest

approximation is the random phase approximation (RPA), i.e. set the kernel to zero ( f RPA
XC = 0).

Another widely used approximation is the adiabatic local density approximation (ALDA), i.e.

5



2 Theoretical background

the kernel is taken as the adiabatic functional derivative of the static LDA exchange-correlation

potential

f ALDA
XC (r,r′) =

∂V LDA
XC (ρ(r))
∂ρ(r)

δ (r− r′) (2.13)

Matrix representation

The time-dependent KS orbitals are given by

φi(r, t) = φi(r)e−iεit (2.14)

and the time-dependent perturbed KS orbitals are given by

φ
(1)
i (r, t) = φ

(1,+)
i (r)e−i(εi+ω)t +φ

(1,−)
i (r)e−i(εi−ω)t (2.15)

where both terms can be expanded as linear combinations of virtual orbitals

φ
(1,+)
i (r) = ∑

a
Xiaφa(r) (2.16)

φ
(1,−)
i (r) = ∑

a
Y ∗iaφa(r) (2.17)

From Eq.s (2.14) and (2.15), we have the time-dependent induced density expanded over the

occupied orbitals as

ρ
(1)(r, t) = ∑

i

[
φ
(1)
i (r, t)φ ∗i (r, t)+φ

(1)∗
i (r, t)φi(r, t)

]
= ∑

i

{[
φ
(1,+)
i (r)φ ∗i (r)+φ

(1,−)∗
i (r)φi(r)

]
e−iωt

+
[
φ
(1,+)∗
i (r)φi(r)+φ

(1,−)
i (r)φ ∗i (r)

]
eiωt
} (2.18)

And ρ(1)(r, t) is translated in frequency domain as

ρ
(1)(r, t) = ρ

(1)(r,ω)e−iωt +ρ
(1)(r,−ω)eiωt (2.19)

Compare Eq. (2.18) with (2.19), we have

ρ
(1)(r,ω) = ∑

i

[
φ
(1,+)
i (r)φ ∗i (r)+φ

(1,−)∗
i (r)φi(r)

]
= ∑

ia
[φ ∗i (r)φa(r)Xia +φi(r)φ ∗a (r)Yia]

(2.20)
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2.1 Density functional theory (DFT)

For the purpose of implementation, we now reformulate Eq.s (2.4) and (2.5) in terms of the

response of the density matrix P

δPia = ∑
jb

χ
KS
ia, jbδV tot

jb (2.21)

δV tot
ia = δV ext

ia +∑
jb

Kia, jbδPjb (2.22)

where the kernel K is given by

Kia, jb = (ia|υ |b j)+(ia| fXC|b j)

=
∫∫

drdr′φ ∗i (r)φa(r)
[

1
|r− r′|

+ fXC(r,r′)
]

φ
∗
b (r
′)φ j(r′)

(2.23)

The two linear equations Eq.s (2.21) and (2.22) are coupled together in terms of P

∑
jb

[(
χ

KS
ia, jb
)−1−Kia, jb

]
δPjb = δV ext

ia (2.24)

We can split δP into the excitation and de-excitation parts, i.e. δPjbτ and δPb jτ , and rewrite

Eq. (2.24) as two equations

∑
jb

[(
χ

KS
ia, jb
)−1−Kia, jb

]
δPjb−∑

jb
Kia,b jδPb j = δV ext

ia (2.25)

∑
jb

[(
χ

KS
ai,b j
)−1−Kai,b j

]
δPb j−∑

jb
Kai, jbδPjb = δV ext

ai (2.26)

which can be expressed in matrix representation as
A B

B∗ A∗

−ω

1 0

0 −1



X

Y

=

V

V∗

 (2.27)

In case of free oscillations, δV ext = 0, and then we haveA B

B∗ A∗


X

Y

= ω

1 0

0 −1


X

Y

 (2.28)
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2 Theoretical background

where the matrix elements are

Aia, jb = (εa− εi)δi jδab +υia, jb + f XC
ia, jb (2.29)

Bia, jb = υia,b j + f XC
ia,b j (2.30)

with υpq,rs = (pq|sr) and f XC
pq,rs = (pq| fXC|sr). Eq. (2.28) is known as the Casida’s equation [41] in

TDDFT. Note that:

• If fXC is replaced by the Hartree–Fock exchange , then it is equal to time-dependent HF

(TDHF), also called RPA with exchange (RPAx);

• If fXC is set to zero, then it is equal to direct RPA (dRPA).

For triplets, the orbital-rotation matrix A−B has only contributions from fXC and the differ-

ences of orbital energies. If one of the eigenvalues approaches zero, then the corresponding

triplet excitation energy will also be significantly underestimated. One solution to the triplet

problem is the Tamm–Dancoff approximation (TDA) [47], which assumes B = 0.

2.2 Many-body Green’s function

2.2.1 The quasiparticle equations

An alternative scheme for description of the response of strongly interacting particles is to

map onto weakly interacting quasiparticles (QPs), i.e. individual electrons plus a surrounding

charge cloud of the other electrons, which interact via the screened Coulomb potential rather

than the bare Coulomb potential. This scheme provides a better representation of the electrons

within the many-body perturbation theory (MBPT) framework, and the quasiparticle energies

and wavefunctions can be obtained by solving the Schrödinger-like equation[
−1

2
∇

2 +Vext(r)+VH(r)
]

φi(r)+
∫

dr′Σ(r,r′,εi)φi(r′) = εiφi(r) (2.31)

where Σ is the self-energy that contains all the exchange and correlation effects. The quasipar-

ticle equation (2.31) resembles the Kohn–Sham equation (2.1), replacing the adiabatic, local VXC

with the energy-dependent, non-local Σ. It can also be seen as an extension of the Hartree–Fock

equation, replacing the bare exchange term with the exchange and correlation term.
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2.2 Many-body Green’s function

2.2.2 One-particle Green’s function and GW approximation

The one-particle Green’s function is defined as

iG(1,2) =
〈
Ψ

N
0
∣∣T ψ(1)ψ†(2)

∣∣ΨN
0
〉
= θ(τ)

〈
Ψ

N
0
∣∣ψ(1)ψ†(2)

∣∣ΨN
0
〉
−θ(−τ)

〈
Ψ

N
0
∣∣ψ†(2)ψ(1)

∣∣ΨN
0
〉

(2.32)

where
∣∣ΨN

0

〉
is the ground state with N electrons and energy EN

0 ; ψ and ψ† are the field opera-

tors, and the indices denote combined space, spin and time coordinates, e.g. (1) = (r1,σ1, t1) =

(x1, t1), ψ(1) = eiEN
0 t1ψ(x1)e−iEN

0 t1 ; T is the Wick’s time-ordering operator which orders the oper-

ators with later times to the left of earlier times, and τ = t1− t2. For t1 > t2, G(1,2) describes the

probability amplitude for the propagation of an electron from position r2 at time t2 to position

r1 at time t1, or the propagation of a hole in another way around, and vice versa.

By introducing the completeness relation for excited states, Eq. (2.32) becomes

iG(x1,x2,τ) = θ(τ)∑
A

〈
Ψ

N
0 |ψ(x1)|ΨN+1

A

〉〈
Ψ

N+1
A

∣∣ψ†(x2)
∣∣ΨN

0
〉

e−i(EN+1
A −EN

0 )τ

−θ(−τ)∑
I

〈
Ψ

N
0
∣∣ψ†(x2)

∣∣ΨN−1
I

〉〈
Ψ

N−1
I |ψ(x1)|ΨN

0
〉

e−i(EN
0 −EN−1

I )τ

= θ(τ)∑
A

fA(x1) f ∗A(x2)e−iEAτ −θ(−τ)∑
I

fI(x1) f ∗I (x2)e−iEIτ

(2.33)

where
∣∣ΨN+1

A

〉
and

∣∣ΨN−1
I

〉
are the A-th and I-th excited states with N+1 and N−1 electrons and

energies EN+1
A and EN−1

I , respectively; fA(x) =
〈
ΨN

0 |ψ(x)|ΨN+1
A

〉
and fI(x) =

〈
ΨN

0

∣∣ψ†(x)
∣∣ΨN−1

I

〉
;

EA = EN+1
A −EN

0 and EI = EN
0 −EN−1

I correspond to minus the electron affinities (EAs) and ion-

ization potentials (IPs), which can be measured by direct and inverse photoemission spectro-

scopies, respectively.

The Fourier transform gives the Lehmann (spectral) representation of Green’s function

G(x1,x2,ω) = ∑
A

fA(x1) f ∗A(x2)

ω−EA + iη
+∑

I

fI(x1) f ∗I (x2)

ω−EI− iη
(2.34)

The singularities of G are poles lying along the real axis, which are located infinitesimally be-

low the axis for virtual orbitals and above for occupied orbitals. Namely, by switching on the

interaction, the poles are shifted along the real axis into the complex plane. Hence, given the

exact G(x1,x2,ω), the exact EA and IP can be obtained from the poles of G.

The imaginary part of the Green function is called spectral function, which is closely related

to direct and inverse photoemission spectra

A(x1,x2,ω) =− 1
π

Im{G(x1,x2,ω)} (2.35)
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2 Theoretical background

For the non-interacting Green’s function

G0(x1,x2,ω) = ∑
q

ϕq(x1)ϕ
∗
q (x2)

ω− εq + iηsgn(εq− εF)
(2.36)

where εF is the Fermi level, which is chosen to lie between the highest occupied and lowest

unoccupied orbitals. The spectral function is a δ function located at the eigenvalues of the

Hamiltonian of the non-interacting system

A0(ω) = δ (ω− εq) (2.37)

For the full Green’s function, the spectral function becomes a Lorentzian function

A(ω)≈ 1
π

γ/2
(ω− εq−∆ω)2 +(γ/2)2 (2.38)

The position of the peak represents the quasiparticle energy, which is shifted by with respect to

the non-interacting case, and its full width at half maximum (FWHM), γ , represents the inverse

lifetime of the corresponding quasiparticle.

Dyson’s equation

In second quantization framework, the many-body Hamiltonian becomes H = T +Vext +VH

where

T =−1
2

∫
drψ

†(r)∇2
ψ(r) (2.39)

Vext =
∫

drψ
†(r)Vext(r)ψ(r) (2.40)

VH =
1
2

∫
drdr′ψ†(r)ψ†(r′)υ(r− r′)ψ(r′)ψ(r) (2.41)

The Heisenberg equation of motion for the field operator is

i
∂ψ

∂ t
= [ψ,H] (2.42)

from which the equation of motion of the Green’s function can be derived as[
i

∂

∂ t1
−H0(1)

]
G(1,2)−

∫
d3Σ(1,3)G(3,2) = δ (1,2) (2.43)

with

H0(1) =−
1
2

∇
2
1 +Vext(1)+VH(1) (2.44)
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2.2 Many-body Green’s function

When the self-energy Σ = 0, we obtain the non-interacting one-particle Green’s function G0[
i

∂

∂ t1
−H0(1)

]
G0(1,2) = δ (1,2) (2.45)

The full one-particle Green’s function G(1,2) is linked to G0(1,2) via Dyson’s equation [48,49]

G(1,2) = G0(1,2)+
∫

d(34)G0(1,3)Σ(3,4)G(4,2) (2.46)

Hedin’s equations

Once an expression for the self-energy Σ is known, the energy levels of a molecule or the band

structure of a solid can be calculated by determining the eigenvalues of the quasiparticle equa-

tion (2.31). The self-energy Σ is calculated via Hedin’s equations [50,51], which are five coupled

integral equations (one is Dyson’s equation) involving Green’s function G0, G, the vertex cor-

rection function Γ, the irreducible polarizability P, and the screened Coulomb interaction W

Σ(1,2) = i
∫

d(34)G(1,3)Γ(3,4;2)W (4,1+) (2.47)

G(1,2) = G0(1,2)+
∫

d(34)G0(1,3)Σ(3,4)G(4,2) (2.48)

Γ(1,2;3) = δ (1,2)δ (1,3)+
∫

d(4567)
δΣ(1,2)
δG(4,5)

G(4,6)Γ(6,7;3)G(7,5) (2.49)

P(1,2) =−i
∫

d(34)G(1,3)Γ(3,4;2)G(4,1+) (2.50)

W (1,2) = υ(1,2)+
∫

d(34)υ(1,3)P(3,4)W (4,2) (2.51)

where (1+) = (x1, t1+η). A diagrammatic representation of the Hedin’s equations can be found

in Appx. A.1.

Hedin’s equations can be solved in an iterative manner. We start with the assumption Σ = 0,

and obtain successively G=G0, Γ= 1 , P0 =−iG0G0 (independent-particle polarizability, or RPA

polarizability), W0 = υ +υPW0 (RPA screening WRPA), and the updated Σ = iG0W0. In principle,

this process should continue until full self-consistency is achieved. In practice, however, calcu-

lations usually stop after one round, or shortcut the vertex function Γ to pursue self-consistency

for a reduced set of equations. Different schemes for GW approximation will be further dis-

cussed in Chap. 2.3.
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2 Theoretical background

2.2.3 Response functions

To solve the screening equation (2.51), an inversion via the dielectric function is required, which

links the screened Coulomb interaction to the bare one

W (1,2) =
∫

d3ε
−1(1,3)υ(3,2) (2.52)

where the dielectric function ε is defined as

ε(1,2) = δ (1,2)−
∫

d3υ(1,3)P(3,2) (2.53)

Here, P enters W via inversion, which is slightly inconvenient from a numerical point of view.

Alternatively, W can be constructed from the full (reducible) polarizability χ , which is a central

object of TDDFT.

In the language of linear response, χ and P represent the variation of the induced density

upon an external potential Vext and a (classical) total potential Vtot, respectively

χ(1,2) =−i
δG(1,1+)
δVext(2)

(2.54)

P(1,2) =−i
δG(1,1+)

δ [Vext(2)+VH(2)]
(2.55)

and χ relates to P and ε as

χ(1,2) = P(1,2)+
∫

d(34)χ(1,3)υ(3,4)P(4,2) (2.56)

The inverse dielectric function ε−1 can then be written in terms of χ as

ε
−1(1,2) = δ (1,2)+

∫
d3υ(1,3)χ(3,2) (2.57)

The above relations can be expressed in a simplified way. If we insert χ = P+Pυχ (Eq. (2.56))

into ε−1 = 1+υχ (Eq. (2.57)), then we obtain

ε
−1 = 1+υ(1−Pυ)−1P = 1+(υ−1−P)−1P

= 1+(1−υP)−1
υP = (1−υP)−1

(2.58)

which is Eq. (2.53).

Inserting Eq. (2.57) into Eq. (2.52), W can be expressed directly in terms of χ as

W (1,2) = υ(1,2)+
∫

d(34)υ(1,3)χ(3,4)υ(4,2) (2.59)

12



2.2 Many-body Green’s function

or in terms of P as (using Eq. (2.56))

W = υ +υPυ +υPυPυ + · · · (2.60)

Matrix representation

Applying the resolution-of-the-identity (RI) approximation, the two-electron, four-center inte-

grals are computed via three-center integrals

(pq|rs)∼= ∑
PQ
(pq|P)(V−1)PQ(Q|rs) (2.61)

where VPQ = (P|Q), and P, Q are the auxiliary basis sets. Since the matrix V is real-valued,

symmetric, and positive-definite, a Cholesky decomposition V = LLT can be done, and we

define the three-index intermediate

RP,rs = ∑
Q
(L−1)PQ(Q|rs) (2.62)

The Coulomb and screened integrals can then be approximated as

υpq,rs ∼= ∑
P

Rpq,PRP,sr (2.63)

Wpq,rs ∼= ∑
PQ

Rpq,Pε
−1
PQRQ,sr (2.64)

The inverse dielectric function is

ε
−1
PQ = [δPQ−ΠPQ(ω)]−1 (2.65)

where ΠΠΠ is the matrix representation of the density response function

ΠPQ(ω) = ∑
kc

[
Rkc,PRQ,kc

ω− (εc− εk)
−

Rck,PRQ,ck

ω +(εc− εk)

]
(2.66)

If Kramers symmetry is obeyed, then Eq.(2.66) becomes

ΠPQ(ω) = 2∑
kc

[
(εc− εk)Rkc,PRQ,kc

ω2− (εc− εk)2

]
(2.67)

Therefore, the matrix ΠΠΠ(ω) is real-valued and symmetric.
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2 Theoretical background

We can rewrite the RI approximation in matrix notation for both Coulomb interaction and

screened exchange

v∼= RT R, W∼= RT
εεε
−1R (2.68)

Similarly, we expand the inverse dielectric function to calculate W

εεε = 1−X, X = 2RD−1RT (2.69)

Therefore, we have

W∼= RT R+RT XR+RT XRRT XR+ · · · (2.70)

Although good results have been obtained with GW approximation for description of charged

excitations, e.g. quasiparticle energy levels and photoemission spectra, it fails to properly de-

scribe neutral excitations, e.g. absorption spectra due to the definition of the polarizability P,

where the interaction between the electron (described by G(1,2)) and the hole (described by

G(2,1+)) is missing. The inclusion of the vertex function Γ(1,2,3) in the screening equation is

then crucial for accurate description of two-particle excitations. This has been achieved by the

Bethe–Salpeter equation (BSE).

2.2.4 Two-particle Green’s function and Bethe–Salpeter equation

The two-particle Green’s function is defined as

i2G(1,2;3,4) =
〈
Ψ

N
0 |T ψ(1)ψ(2)ψ†(4)ψ†(3)|ΨN

0
〉

(2.71)

It can describe the propagation of different coupled pairs depending on the ordering of the four

times. Here we are only interested in the neutral excitation, where an electron-hole is created.

The independent-particle polarizability L0 describes the propagation of an electron and a

hole separately

L0(1,2;3,4) =−iG(1,4)G(2,3) (2.72)

And the four-point polarizability L describes the propagation of two coupled particles minus

that of the two independent ones

L(1,2;3,4) = iG(1,2;3,4)− iG(1,3)G(2,4) (2.73)
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2.2 Many-body Green’s function

The polarizability L is also linked to L0 via a Dyson-like equation, which is known as the Bethe–

Salpeter equation [52]

L(1,2;3,4) = L0(1,2;3,4)+
∫

d(5678)L0(1,6;3,5)K(5,8;6,7)L(7,2;8,4) (2.74)

where the kernel K is

K(5,6;7,8) = δ (5,6)δ (7,8)υ(5,7)+Ξ(5,8;6,7) (2.75)

with Ξ defined as

Ξ(5,8;6,7) = i
δΣ(5,6)
δG(7,8)

(2.76)

or in a simplified way

L = L0 +L0(υ +Ξ)L (2.77)

The Bethe–Salpeter equation (2.77) resembles the TDDFT equation (2.6), replacing the two-

point exchange-correlation kernel fxc (∂Vxc/∂ρ) by the four-point Bethe–Salpeter Hartree-

exchange-correlation kernel Ξ (∂Σ/∂G). The presence of Ξ indicates the intrinsic two-particle

character of the BSE.

Taking the GW approximation for Σ

Ξ = i
δΣ

δG
=
−δ (GW )

δG
=−W −G

δ (W )

δG
≈−W (2.78)

directly leads to

K(5,6,7,8) = δ (5,6)δ (7,8)υ(5,7)−δ (5,7)δ (6,8)W (5,6) (2.79)

The standard implementation of the BSE formalism assumes an adiabatic approximation for W

W (1,2) =W (r1,r2)δ (t1− t2) (2.80)

which resembles the adiabatic approximation for fXC in Eq. (2.13). Such a treatment leads to a

formulation similar to the Casida’s equation (2.28) for TDDFT or TDHFA B

B∗ A∗


Xn

Yn

= ωn

1 0

0 −1


Xn

Yn

 (2.81)
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2 Theoretical background

where the matrix elements are

ABSE
ia, jb = (εQP

a − ε
QP
i )δi jδab +υia, jb−W QP

i j,ab (2.82)

BBSE
ia, jb = υia,b j−W QP

ib,a j (2.83)

The only differences between BSE and TDDFT/TDHF are:

• The quasiparticle energies εQP
p replace the Kohn–Sham or Hartree–Fock orbital energies;

• The screened exchange W replaces the Kohn–Sham exchange-correlation kernel or Hartree–

Fock exchange interaction.

In addition, to improve the triplet excitation energies in BSE, a hybrid BSE/TDDFT anzatz,

i.e. correlation-kernel-augmented BSE (cBSE) [4], is constructed ad hoc as

AcBSE
ia, jb = (εQP

a − ε
QP
i )δi jδab +υia, jb + f C

ia, jb−W KS
i j,ab (2.84)

BcBSE
ia, jb = υia,b j + f C

ia,b j−W KS
ib,a j (2.85)

which keeps the correlation part of the underlying density functional, and constructs the

screened exchange with Kohn–Sham orbital energies. In this manner, the correct description of

charge-transfer excitations is still retained.

2.3 Calculation of quasiparticle energies in GW

2.3.1 Separation of self-energy

Analogous to Eq. (2.20), the transition density for the m-th excited state is

ρm(x) = ∑
kc
[φ ∗k (x)φc(x)Xm

kc +φk(x)φ ∗c (x)Y
m
kc ] (2.86)

and analogous to Eq. (2.9), the polarizability χ is

χ(x,x′,ω) = ∑
m 6=0

[
ρm(x)ρ∗m(x′)
ω−ωm + iη

− ρ∗m(x)ρm(x′)
ω +ωm + iη

]
(2.87)

where ωm is the excitation energy.

Then from Eq. (2.59), the screened exchange W is

W (x,x′,ω) = υ(x−x′)+ ∑
m6=0

[
Vm(x)V ∗m(x′)
ω−ωm + iη

− V ∗m(x)Vm(x′)
ω +ωm + iη

]
(2.88)
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2.3 Calculation of quasiparticle energies in GW

where Vm(x) =
∫

dx′υ(x−x′)ρm(x′).

According to the relation Σ = iGW

Σ(x,x′,ω) =
i

2π

∫
dω
′eiηω ′G(x,x′,ω +ω

′)W (x,x′,ω ′) (2.89)

the self-energy Σ can thus be separated into a frequency-independent exchange part ΣX and a

frequency-dependent correlation part ΣC

Σ(x,x′,ω) = Σ
X(x,x′)+Σ

C(x,x′,ω) (2.90)

where ΣX is nothing but Hartree–Fock exchange

Σ
X(x,x′) =V X(x,x′) (2.91)

〈
p
∣∣ΣX∣∣ p

〉
=−∑

k
〈pk|kp〉=−〈p|K|p〉 (2.92)

and ΣC reads

Σ
C(x,x′,ω) = ∑

m 6=0

[
∑
k

Vm(x)V ∗m(x′)ϕk(x)ϕ∗k (x
′)

ω−ωm +2iη

−∑
c

V ∗m(x)Vm(x′)ϕc(x)ϕ∗c (x′)
ω +ωm +2iη

] (2.93)

Compare the quasiparticle equation (2.31) with the Kohn–Sham equation (2.1), the quasipar-

ticle energies can be obtained in an iterative manner

ε
(n+1)
p = ε

(0)
p +

〈
p
∣∣∣ΣX +Σ

C
(

ε
(n)
p

)
−VXC

∣∣∣ p
〉

(2.94)

where ε
(0)
p is the Kohn–Sham orbital energy

ε
(0)
p = 〈p |h+ J+VXC| p〉 (2.95)

Then we have

ε
(n+1)
p =

〈
p
∣∣∣h+ J−K +Σ

C
(

ε
(n)
p

)∣∣∣ p
〉

(2.96)
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2.3.2 GW variants with different levels of self-consistency

Non-self-consistent: (linearized) G0W0

In the G0W0 method, the QP energies are obtained after one simple iteration

ε
(1)
p =

〈
p
∣∣∣h+ J−K +Σ

C
(

ε
(0)
p

)∣∣∣ p
〉

(2.97)

In the linearized G0W0 method [26], the QP energies are obtained after one Newton’s iteration, i.e.

as a first-order Taylor expansion around the KS solution

ε
(1)
p =

〈
p
∣∣∣h+ J−K +Σ

C
(

ε
(0)
p

)∣∣∣ p
〉

+

〈
p
∣∣∣∣∂ΣC

∂ε

(
ε
(0)
p

)∣∣∣∣ p
〉(

ε
(1)
p − ε

(0)
p

) (2.98)

Partially self-consistent: evGW and qsGW

In the eigenvalue-only self-consistent GW (evGW) method [30], Eq. (2.96) is iterated until self-

consistency is achieved. The QP energy reads

ε
(n+1)
p = hpp + Jpp−Kpp +

〈
p
∣∣∣ΣC
(

ε
(n)
p

)∣∣∣ p
〉

(2.99)

Note that only the QP energies are updated while the KS orbitals remain unchanged.

In the quasiparticle self-consistent GW (qsGW) method [31,53], not only the diagonal matrix

elements 〈p|ΣC(εp)|p〉, but also the off-diagonal matrix elements 〈p|ΣC(εs)|q〉 are required, with

s = {p,q}. The Fock matrix then reads

F(n+1)
pq = h(n)pq + J(n)pq −K(n)

pq +
1
2

〈
p(n)

∣∣∣ΣC
(

ε
(n)
p

)
+Σ

C
(

ε
(n)
q

)∣∣∣q(n)〉 (2.100)

The Fock matrix is diagonalized to generated new QP vectors and energies, from which the

new Fock matrix will be constructed. This is iterated until self-consistency is achieved, and

both the QP orbitals and energies are updated.

2.3.3 GW variants for evaluation of correlation self-energy

Spectral representation (SR-GW)

Formally, the quasiparticle energies are computed for all orbital levels using the full spectral

representation of the density response function. In this way, the correlation self-energy can be

integrated analytically and no quadrature is involved, hence it yields the exact result and serves
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2.3 Calculation of quasiparticle energies in GW

as a benchmark for the low-scaling schemes. However, it is computationally very expensive

and scales as N6 with system size N.

The matrix elements of the correlation self-energy (Eq. (2.93)) are

〈
p
∣∣ΣC (εs)

∣∣q〉= ∑
m6=0

[
∑
k
(kp|ρm)(kq|ρm)D+

k,s,m

+∑
c
(cp|ρm)(cq|ρm)D−c,s,m

] (2.101)

where

D±r,s,m =
εs− εr±ωm

(εs− εr±ωm)2 +η2 (2.102)

The required integrals (pq|ρm) can be evaluated via an intermediate γm that contracts the exci-

tation vectors into the subspace of the auxiliary basis sets

γP,m = ∑
kc

[
RP,kcXm

kc +R∗P,kcY
m
kc
]

(2.103)

Then we have

(pq|ρm) = ∑
kc
[(pq|kc)Xm

kc +(pq|ck)Y m
kc ] = ∑

P
Rpq,PγP,m (2.104)

The excitation vectors are computed with the dRPA approximation, using KS orbital energies

in the case of G0W0, and QP energies in the case of evGW and qsGW.

Analytic continuation (AC-GW)

The Green’s function has a smooth form on the imaginary axis, whereas it usually exhibits

many poles in the real frequency domain. Therefore, it is advantageous to first calculate the

self-energy for imaginary frequencies, which can be efficiently computed using RI approxima-

tion, and then evaluate the self-energy for real frequencies via analytic continuation [34].

Inserting Eqs. (2.36), (2.64) and (2.65) into Eq. (2.89), and we obtain

Σp(x,x′,ω) =
i

2π
∑
q

∫
dω
′ 1
ω +ω ′− εq + iηsgn(εq− εF)

×∑
PQ

Rpq,P
[
1−Π(ω ′)

]−1
PQ RQ,qp

(2.105)

and the correlation part ΣC is

Σ
C
p(x,x

′,ω) =
i

2π
∑
q

∫
dω
′ 1
ω +ω ′− εq + iηsgn(εq− εF)

×∑
PQ

Rpq,P

{[
1−Π(ω ′)

]−1
PQ−δPQ

}
RQ,qp

(2.106)
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Likewise, for imaginary frequencies, we have

Σ
C
p(x,x

′, iω) =− 1
2π

∑
q

∫
dω
′ 1
iω + iω ′− εq + iηsgn(εq− εF)

×∑
PQ

Rpq,P

{[
1−Π(iω ′)

]−1
PQ−δPQ

}
RQ,qp

(2.107)

And similar to Eq. (2.67), for imaginary frequencies, we have

ΠPQ(iω) =−2∑
kc

[
(εc− εk)Rkc,PRQ,kc

ω2 +(εc− εk)2

]
(2.108)

Since the matrix 1−ΠΠΠ(iω) is positive-definite, Eq. (2.107) can be efficiently computed via a

Cholesky decomposition 1−ΠΠΠ(iω ′) = LLT

[
1−Π(iω ′)

]−1
PQ = ∑

R
(L−1

PR)
T L−1

RQ (2.109)

∑
PQ

Rpq,P
[
1−Π(iω ′)

]−1
PQ RQ,qp = ∑

R
R̃pq,RR̃R,qp (2.110)

where

R̃R,qp = ∑
Q

L−1
RQRQ,qp (2.111)

For the grid points ω and ω ′ on the imaginary axis, ΣC
p(iω) is fit to an n-point Padé approxi-

mant

Σ
C
p(iω)∼= Pp(iω) =

∑
n−1
j=0 a j(iω) j

1+∑
n
k=1 bk(iω)k (2.112)

In Eq. (2.112), replacing iω with ω in P, ΣC for real frequencies can then be obtained by means

of analytic continuation.

In AC-GW, quasiparticle energies are calculated for HOMO and LUMO only, and the rest of

the orbitals are shifted according to the new HOMO and LUMO while preserving the Kohn-

Sham energy spacing. It has been demonstrated that the AC-GW variant is often not accurate

enough when computing the self-energy for nonvalence states. [36]

Contour deformation (CD-GW)

An alternative method is to calculate the self-energy directly on the real-frequency axis via the

contour deformation technique [36], thus avoiding the fitting procedure in analytic continuation.

A contour is deformed into the complex plane such that the numerically unstable integration
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2.3 Calculation of quasiparticle energies in GW

at the poles is circumvented (see Figure 2.1), and ΣC(ω) is transformed as a contour integral,

RC(ω), minus the integral along the imaginary axis, IC(ω)

Σ
C(x,x′,ω) = RC(ω)− IC(ω)

=
i

2π

∮
dω
′eiηω ′G(x,x′,ω +ω

′)W C(x,x′,ω ′)

− 1
2π

∫
dω
′eiηω ′G(x,x′,ω + iω ′)W C(x,x′, iω ′)

(2.113)

where the correlation part of the screened exchange is

W C(x,x′, iω) =W (x,x′, iω)−υ(x,x′) (2.114)

Figure 2.1: Contours used to evaluate Σ(ω) and circles representing poles of G. When seeking
the quasiparticle energy for occupied states (a) or virtual states (b), the poles start
entering the first quadrant (a) or the third quadrant (b), respectively.

The poles of G are located in the complex frequency domain

ω
′ = εq−ω− iηsgn(εq− εF) (2.115)

The contour integral RC(ω) can be computed from the residues of the poles that are enclosed in

the contour, i.e. in the first or third quadrants, which holds only for ω < εq < εF (Figure 2.1a)

and ω > εq > εF (Figure 2.1b). When the poles lie on the contour (imaginary axis), i.e. ω = εq,
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2 Theoretical background

they are considered as half of the respective residue [54]. Employing the residue theorem, RC(ω)

is obtained as

RC
p(ω) = ∑

q
fqWC

pq
(∣∣εq−ω

∣∣+ iη
)

(2.116)

with

WC
pq
(∣∣εq−ω

∣∣+ iη
)
= ∑

PQ
Rpq,P

{[
1−Π

(∣∣εq−ω
∣∣+ iη

)]−1
PQ−δPQ

}
RQ,qp (2.117)

and fq as the contribution of the residue

fq =



+1 if ω > εq > εF

+0.5 if ω = εq > εF

−0.5 if ω = εq < εF

−1 if ω < εq < εF

0 else

(2.118)

And the integral along the imaginary axis IC(ω) can be obtained analogously to Eq. (2.107)

IC
p (ω) =− 1

2π
∑
q

∫
dω
′ WC

pq(iω
′)

ω + iω ′− εq + iηsgn(εq− εF)
(2.119)

with

WC
pq(iω) = ∑

PQ
Rpq,P

{
[1−Π(iω)]−1

PQ−δPQ

}
RQ,qp (2.120)

In CD-GW, if quasiparticle energies are calculated for HOMO and LUMO only, then it is

equivalent to AC-GW. Theoretically, when more orbitals are included in the calculation, the

resulting excitation energies will be more accurate, and also the computation will be more

demanding.

2.4 Computational details

All quantum-chemical calculations in this thesis were performed with the TURBOMOLE pro-

gram package. [55,56] The resolution-of-the-identity (RI) approximation was used for all two-

electron integrals. The effective core potentials (ECPs) [57] were used for second and third row

transition elements (namely Ag and Au) to speed up the computation and more importantly,

to account for the relativistic effects in both one-component (1c, scalar-relativistic) and two-

component (2c, including spin–orbit coupling) frameworks. For non- and scalar-relativistic 1c
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2.4 Computational details

calculations, the def2-XVP basis sets [58] together with the underlying def2-ecp ECPs were used.

For quasirelativistic 2c calculations, the dhf-XVP-2c basis sets [59] together with the underlying

dhf-ecp-2c ECPs [60] were used.

All orbital and auxiliary basis sets were taken from the TURBOMOLE basis-set library. [56] The

"Coulomb-fitting" auxiliary basis sets (denoted jbas) were used in the ground-state HF and

DFT computations, and the "MP2-fitting" auxiliary basis sets (denoted cbas) were used in the

excited-state TDDFT and GW/BSE computations. The ground-state Hartree–Fock (HF) and

density functional theory (DFT) computations were carried out with the modules DSCF and

RIDFT, and the self-consistent field convergence criterion scfconv = 8 and DFT grid (m)4 were

used. The geometry optimization was considered converged when the change in energy and

cartesian gradients reached thresholds of 10−7 and 10−4 Hartree, respectively. The excited-state

TDDFT and GW/BSE computations were carried out with the ESCF module, and the conver-

gence criterion rpaconv = 6 was used. Furthermore, in evGW and qsGW, the damping param-

eter was set to η = 0.001 in order to achieve rapid convergence. In AC-GW and CD-GW, 128

grid points were used, also 128 parameters were taken in the Padé approximant.

All the plots in this thesis were generated with Gnuplot [61] and VMD [62].
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3 Performance assessment of BSE with different GW
starting points

In this chapter, an extensive accuracy assessment of SR-GW/(c)BSE is presented for singlet and

triplet valence excited states, as well as charge-transfer excited states. Furthermore, a computed

electronic circular dichrosim (ECD) spectrum of fullerene is displayed as a real-world example,

and the timings measured for a few GW and BSE computations are also reported.

3.1 Valence excited states

The well-known benchmark set established by Thiel and co-workers [63–65] consists of 28 small

and medium-sized organic molecules. Excluding excited states with strong double-excited and

Rydberg character, 93 singlet and 63 triplet valence excited states left in the benchmark were

analyzed. Theoretical estimates at the level of approximate coupled-cluster singles, doubles

and triples (CC3) calculations with aug-cc-pVTZ basis set were adopted as reference values for

the vertical excitation energies. The estimates were based on an extensive literature study [63–67]

as well as ab initio computations of our own, and more details can be found in Ref. 5.

The deviations of singlet and triplet excitation energies computed in def2-TZVP basis set

with respect to the CC3/aug-cc-pVTZ reference values are plotted in Figure 3.1, and the sta-

tistical analyses of singlets and triplets are listed in Tables 3.1 and 3.2, respectively. The PBE0

functional [68,69] was used in the TDDFT, G0W0/(c)BSE and evGW/(c)BSE calculations. As can

be seen, the G0W0-BSE energies are too low on average, and hence it is not recommended in

combination with the presented PBE0 starting point. The TDDFT, evGW/BSE and qsGW/BSE

methods show similar performance and achieve good accuracy in the case of singlet states.

However, they systematically underestimate the triplet excitation energies. This underestima-

tion of the triplet energies by the evGW/BSE model has also been addressed earlier in Ref. 70,

where the authors suggested that fully self-consistent GW might improve the results. However,

as shown in the present work, although the dependence on the reference orbitals is removed

by the qsGW/BSE model, it hardly yields any improvement in comparison to the evGW/BSE

model, and the triplet excitation energies are still much too low in the qsGW/BSE model. By

adding the correlation kernel of the underlying density functional, the triplets are significantly
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3 Performance assessment of BSE with different GW starting points

Figure 3.1: Plot of the computed singlet and triplet excitation energies against the reference
CC3/aug-cc-pVTZ values.
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3.1 Valence excited states

Table 3.1: Deviations of singlet excitation energies (eV) obtained in the def2-TZVP basis with
respect to the CC3/aug-cc-pVTZ reference.

TDDFT
G0W0 evGW qsGW

BSE cBSE BSE cBSE BSE

MSDa −0.06 −0.63 −0.46 −0.02 0.14 0.03

MADb 0.21 0.63 0.48 0.16 0.23 0.18

RMSc 0.27 0.66 0.51 0.21 0.26 0.23

MAXd 0.68 0.97 0.87 0.48 0.48 0.64

MEDe 0.15 0.70 0.51 0.12 0.24 0.14
aMean signed deviation. bMean absolute deviation. cRoot-mean-square deviation.
dMaximum absolute deviation. eMedian absolute deviation.

Table 3.2: Deviations of triplet excitation energies (eV) obtained in the def2-TZVP basis with
respect to the CC3/aug-cc-pVTZ reference.

TDDFT
G0W0 evGW qsGW

BSE cBSE BSE cBSE BSE

MSD −0.48 −1.14 −0.70 −0.56 −0.09 −0.49

MAD 0.48 1.14 0.70 0.56 0.14 0.49

RMS 0.53 1.16 0.74 0.60 0.23 0.53

MAX 0.97 1.66 1.52 1.05 0.87 1.03

MED 0.47 1.12 0.65 0.54 0.07 0.48

improved in cBSE compared to the BSE counterparts (Table 3.2), without the singlets being ob-

viously deteriorated (Table 3.1). In particular, the evGW/cBSE model provides an accurate and

balanced description for both singlet and triplet excited state, and the overall performance is in

good agreement with the CC3 reference.

Additional aug-cc-pVTZ calculations have been performed for TDDFT, evGW/(c)BSE and

qsGW/BSE methods to investigate their basis set dependence. The statistical analyses with re-

spect to the CC3/aug-cc-pVTZ reference data are given in Tables 3.3 and 3.4, while Tables 3.5

and 3.6 provide mutual comparisons between the def2-TZVP and aug-cc-pVTZ basis sets. As

can be seen in Tables 3.5 and 3.6, for TDDFT and qsGW/BSE, the extension of the basis set with

diffuse functions only leads to slight lowering in the excitation energies, and the def2-TZVP

and aug-cc-pVTZ results are in perfect agreement. For these two methods, considering that
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3 Performance assessment of BSE with different GW starting points

Table 3.3: Deviations of singlet excitation energies (eV) obtained in the aug-cc-pVTZ basis
with respect to the CC3/aug-cc-pVTZ reference.

TDDFT
evGW qsGW

BSE cBSE BSE

MSD −0.13 −0.24 −0.09 −0.04

MAD 0.23 0.26 0.20 0.17

RMS 0.28 0.34 0.26 0.23

MAX 0.71 1.10 0.76 0.56

MED 0.17 0.18 0.19 0.12

Table 3.4: Deviations of triplet excitation energies (eV) obtained in the aug-cc-pVTZ basis with
respect to the CC3/aug-cc-pVTZ reference.

TDDFT
evGW qsGW

BSE cBSE BSE

MSD −0.50 −0.84 −0.35 −0.52

MAD 0.50 0.84 0.35 0.52

RMS 0.54 0.90 0.46 0.55

MAX 0.96 1.97 1.48 1.07

MED 0.49 0.84 0.27 0.52

the computation is more expensive and that the assignment of the states is more difficult in the

presence of diffuse functions, while the improvement of the excitation energies is rather minor,

the smaller def2-TZVP basis set is adequate for the valence excited states of the Thiel’s test set

studied in the present work. The basis set dependence is, however, much more pronounced

for the evGW model. Compared to the other two methods, the lowering in both evGW/BSE

and cBSE excitation energies due to the diffuse functions is twice as large for singlet states, and

even an order of magnitude larger for triplet states. Though the singlet excitation energies of

evGW/cBSE are still in very good agreement with the CC3 reference results (Table 3.3), and the

triplet excitation energies are also greatly improved in comparison to evGW/BSE (Table 3.4).

This ill-behavior caused by the presence of diffuse functions is an insufficiency of the under-

lying GW method, [4,5] which vastly underestimates the lowest unoccupied molecular orbital

(LUMO) in some cases, especially for acetamide and propanamide. Since (c)BSE rely on good
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3.2 Charge-transfer states

Table 3.5: Deviations of singlet excitation energies (eV) obtained in the aug-cc-pVTZ basis
with respect to the def2-TZVP results.

TDDFT
evGW qsGW

BSE cBSE BSE

MSD −0.07 −0.22 −0.23 −0.08

MAD 0.08 0.22 0.23 0.08

RMS 0.12 0.29 0.30 0.11

MAX 0.53 1.02 1.08 0.46

MED 0.04 0.15 0.16 0.06

Table 3.6: Deviations of triplet excitation energies (eV) obtained in the aug-cc-pVTZ basis with
respect to the def2-TZVP results.

TDDFT
evGW qsGW

BSE cBSE BSE

MSD −0.02 −0.28 −0.26 −0.03

MAD 0.02 0.28 0.27 0.03

RMS 0.03 0.38 0.36 0.04

MAX 0.10 1.01 1.06 0.14

MED 0.02 0.21 0.22 0.03

quasiparticle energies from a preceding GW calculation, the failure of obtaining them in GW

will be automatically carried over to (c)BSE, which leads to the deterioration in the excitation

energies with respect to the reference values. Therefore, the medium-sized def2-TZVP basis set

is recommended for the evGW/(c)BSE model.

3.2 Charge-transfer states

The charge-transfer (CT) states of para-nitroaniline (pNA), dimethylaminobenzonitrile (DMABN),

the benzene-tetracyanoethylene complex (B-TCNE), phenylpyrrole (PP), and HCl were inves-

tigated to validate the evGW/(c)BSE scheme. The excitation energies were calculated using

the PBE0 functional and def2-TZVP basis set, and the CC3/aug-cc-pVTZ results (CC2/aug-cc-

pVTZ for B-TCNE) are adopted as reference values (Table 3.7).
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3 Performance assessment of BSE with different GW starting points

Table 3.7: Singlet excitation energies (eV) and diagnostics Λ of charge-transfer (CT) states.

Molecule State evGW -BSE evGW -cBSE Λ Reference

pNA 2 1A1 4.47 4.50 0.61 4.39

DMABN (C2v) 2 1A1 4.86 4.98 0.74 4.86

DMABN (Cs) 2 1A′ 4.80 4.92 0.75 4.75

B-TCNE 2 1A1 3.45 3.44 0.20 3.41

PP 2 1B2 5.18 5.27 0.63 5.21

3 1A1 5.92 5.89 0.24 5.69

HCl 1 1Π 7.66 7.82 0.51 7.81

Molecule State NTO (hole) NTO (particle)

pNA 2 1A1

DMABN
(C2v)

2 1A1

DMABN
(Cs)

2 1A′

B-TCNE 2 1A1

PP 2 1B2

3 1A1

HCl 1 1Π

Figure 3.2: Dominating occupied (blue/yellow) and virtual (red/white) natural transition or-
bitals (NTOs, iso-value: ±0.04a−3/2

0 ) obtained from PBE0 evGW-BSE/def2-TZVP.

30



3.3 Timings

The diagnostic Λ is an overlap criterion of the dominating occupied and virtual natural

transition orbitals (NTOs) of the respective excitation [5,71], and smaller Λ corresponds to more

prominent CT character. It can be seen that the evGW/BSE and cBSE results are in good mu-

tual agreement with each other, and also compare well with the reference values. Especially for

small values of Λ, i.e. B-TCNE and PP, the BSE and cBSE results are virtually identical due to

the fact that they converge to the same asymptotic limit. And for larger values of Λ, the same

trend as for standard singlet excitations is observed, i.e. cBSE gives slightly higher excitation

energies in comparison with BSE. Therefore, BSE and cBSE treat CT excitations on the same

footing and they both give correct results, which is an important advantage over TDDFT.

3.3 Timings

Tables 3.8 and 3.9 give the timings for the TDDFT and GW/BSE computations of 40 singlet ex-

citation energies (five in each irreducible representation of the D2h point group) of five aromatic

hydrocarbons: benzene, naphthalene, anthracene, tetracene, and pentacene.

Table 3.8 shows that the CPU times for the TDDFT and BSE approaches are of the same

order of magnitude, which is as expected [72]. Furthermore, the CPU times for the evGW part of

the calculations are fully acceptable, which is quite remarkable concerning the fact the the full

response function is determined in every iteration in order to compute quasiparticle energies

for all orbital levels. The CPU times for the qsGW calculations are an order of magnitude larger

than for the evGW case, partly because many more iterations were needed to converge the

calculations. Since in the present work, no significant advantage of qsGW in comparison with

evGW is observed, the latter is recommended for real-world applications of the Bethe–Salpeter

formalism.

The dRPA-response part of the GW code has been parallelized, but since not all parts of the

whole calculation have been parallelized, the parallel efficiency is not very high on 8 or 16

processors (Table 3.9). According to Amdahl’s law, the speedup is limited by the serial part of

the code. Nevertheless, Table 3.9 shows that in particular evGW calculations on larger systems

such as pentacene in the def2-TZVP basis can be performed in reasonable time (ca. 17 minutes)

on a standard Intel® Xeon® sever node.

C84 fullerene

In order to assess the performance of GW/BSE in real-world applications, a D2-symmetric iso-

mer of the fullerene C84 has been studied. As this is a chiral isomer, it offers the opportunity

to simulate an electronic circular-dichroism (ECD) spectrum based on BSE calculations of sin-

glet excited states. The calculations were performed for the enantiomer with (fA) configura-
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3 Performance assessment of BSE with different GW starting points

Table 3.8: CPU times (min) for TDDFT and GW/BSE computations in the def2-TZVP basis on
a single core of an Intel® Xeon® E5-2687W v2 (25M Cache, 3.40 GHz) processor. The
number of iterations is given in the parentheses.

TDDFT
evGW /BSE qsGW /BSE

evGW BSE qsGW BSE

Benzene 1.4(8) 0.4(6) 0.7(11) 2.5(13) 0.7(11)

Naphthalene 5.1(9) 2.3(5) 3.3(15) 23.7(17) 3.2(13)

Anthracene 12.5(8) 9.4(5) 9.4(13) 122.7(21) 9.6(13)

Tetracene 24.9(11) 35.6(6) 20.4(15) 510.9(28) 20.8(15)

Pentacene 44.8(9) 88.8(4) 41.5(18) 851.4(16) 40.4(16)

Table 3.9: Wall clock times (min) for GW computations in the def2-TZVP basis on different
numbers of cores of an Intel® Xeon® E5-2687W v2 (25M Cache, 3.40 GHz) processor.

evGW qsGW

# Cores 1 2 4 8 16 1 2 4 8 16

C6H6 0.4 0.4 0.4 0.4 0.4 2.5 2.2 1.7 1.4 1.2

C10H8 2.3 1.8 1.6 1.6 1.6 23.7 20.3 12.8 9.1 8.0

C14H10 9.4 6.5 5.2 4.4 4.2 122.8 107.0 63.9 41.1 31.0

C18H12 35.6 23.0 15.9 12.4 11.4 511.3 436.5 246.2 149.7 105.2

C22H14 88.9 56.1 33.5 22.0 16.7 852.1 707.2 383.4 216.7 135.9

tion according to the configurational descriptor system of Thilgen, Herrmann and Diederich

(Figure 3.3). [73] Experimental ECD spectra were already reported for this enantiomer in the

literature in the 1990s. [74,75] TDDFT investigations followed soon. [76–78]

In the present work, the equilibrium structure of the (fA)-D2-C84 enantiomer was optimized

at the PBE0/def2-SVP level, the quasiparticle energies were determined at the evGW level, and

150 excitation energies (50 excitations in each of the irreducible representations B1, B2, and B3)

as well as rotatory strengths were computed using the BSE formalism. From these energies and

rotatory strengths, the ECD spectrum were simulated as shown in Figure 3.4. In the simulation,

the bands were broadened by means of Gaussians with full width at half maximum (FWHM) of

0.35 eV, and the spectrum was scaled by a factor of 1/14 (this is the same scaling factor as used

in Ref. 76). It should be noted that the simulated spectrum was neither red- nor blue-shifted.
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3.3 Timings

Figure 3.3: PBE0/def2-SVP structure of (fA)-D2-C84. Reprinted with permission from Ref. 5.
Copyright 2018 American Chemical Society.

Figure 3.4: Simulated ECD spectrum of (fA)-D2-C84 compared to experiment [74]. Gaussian
broadening with FWHM = 0.35 eV. Calculated ∆ε values were scaled with 1/14.
Reprinted with permission from Ref. 5. Copyright 2018 American Chemical Soci-
ety.

For C84, the def2-SVP basis comprises 1,176 basis functions. With 252 doubly occupied

orbitals, this yields a total tensor space of dimension 232,848. Fortunately, exploiting D2 sym-

metry reduces the complexity of the calculation to four tensor spaces of sizes 58,206, 58,210,

58,216, and 58,216 for the four irreducible representations of the point group. On eight cores of

an Intel® Xeon® E5-2687W v4 @ 3.00 GHz processor, the evGW calculation took 65 hours (five

iterations). The subsequent BSE calculation took 185 hours on a single core of an Intel® Xeon®

E5-4640 @ 2.40 GHz processor.
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3 Performance assessment of BSE with different GW starting points

3.4 Conclusion

It has been demonstrated that the Bethe–Salpeter formalism is an interesting and valid alterna-

tive to the time-dependent DFT approach, and the CPU and wall-clock computation times of

both the Bethe–Salpeter calculations themselves as well as the underlying GW calculations of

the required quasiparticle energies are fully acceptable, thus allowing for real-world applica-

tions of the theory. In order to achieve the balance between accuracy and efficiency, our method

of choice is evGW/BSE, or evGW/cBSE when triplets are involved.
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4 Photoinitiated charge-transfer in a triangular
silver(I) hydride complex

4.1 Introduction

Multinuclear coinage metal hydrides (CMHs) are fascinating synthetic targets with promising

applications in energy storage and photocatalysis. [79,80] In catalytic studies, besides the domi-

nating application of copper hydrides, interesting perspectives on silver and gold species have

also gained much attention due to their distinctive (photo)reactivity. To better understand the

photochemistry of CMHs as well as transition metal hydrides, more studies are needed to

correlate the physico-optical properties of CMHs (UV spectra, cross-sections, types of transi-

tions), their molecular structures (hydride coordinating motif), and the primary photoprod-

ucts. In this chapter, a trinuclear silver hydride [Ag3(µ3-H)(µ2-LCy)3]
2+ ([P]2+, LCy = dcpm

= bis(dicyclohexylphosphino)methane) will be studied to further explore the silver-hydride-

centered electronic transitions and the cooperative metallophilic interactions.

4.2 Structural examination and geometry optimization

In the solid-state structure of [P](PF6)2 (Figure 4.1a), the three silver centers are µ3-bridged by

the central hydrido ligand, resulting in a distorted trigonal planar coordination for each silver

site. Three silver atoms form a nearly equilateral triangle, and the average Ag· · ·Ag distance is

3.082 Å, which is shorter than twice the van der Waals radius of silver (3.44 Å) [81] and thus in

the range of argentophilic d10–d10 interactions. The average Ag· · ·H distance is 1.779 Å. A C2

axis runs through the atoms Ag1 and H1, which determines the symmetry of the (
_
PP)3Ag3(H)

core.

In the quantum chemical calculation, the ground-state equilibrium geometry of [P]2+ was

first optimized in C2 symmetry at the PBE-D3(BJ) level of theory [68,83,84] starting from the ob-

tained X-ray diffraction structure. For the central hydrogen, the def2-TZVP basis set was used

for geometry optimization and the def2-TZVPP basis set for further calculating the electronic

excitation energies. The def2-SV(P) basis set was taken for all the other atoms. Because the

calculated harmonic vibrational frequencies comprised one imaginary frequency, the geome-

try was re-optimized in C1 symmetry yielding a true minimum with only real frequencies. This
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Figure 4.1: a) Solid-state structure of [P](PF6)2. Hydrogen atoms and hexafluorophosphate
anions are omitted for clarity. Inset: illustration of the pseudo-C2 axis passing
through the Ag1 and H1 atoms. b) Optimized structure of [P]2+ at the PBE-
D3(BJ)/def2-SV(P) level of theory. Hydrogen atoms are omitted for clarity. Inset:
top view. Reprinted with permission from Ref. 82. Copyright 2019 John Wiley &
Sons.

optimized ground-state structure (Figure 4.1b) is in good agreement with the experimental X-

ray diffraction results, featuring slightly shorter Ag· · ·Ag distance (3.023 Å) and slightly longer

Ag· · ·H distance (1.853 Å). The main difference between the experimental and computed struc-

tures lies in the position of the central hydrogen atom and the accompanying Ag· · ·H distance.
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4.3 Optical properties and electronic structure

The calculation gave a clear preference for a position that is located out of the Ag3 plane by

around 0.6 Å, whereas the experimental results exhibit an in-plane hydride localization. How-

ever, a small displacement of the hydrido ligand cannot be completely ruled out. And this

structure is further validated by comparison of the calculated electronic transitions with the

experimental absorption spectrum. A natural population analysis revealed that the silver cen-

ters carry an average partial charge of 0.56e, and the central hydrogen carries a partial charge

of -0.59e, indicating its hydridic character.

4.3 Optical properties and electronic structure

At the optimized geometry, quasiparticle energies were determined at the evGW level with the

PBE0 functional. The standard SR-GW was not applicable in this case. Therefore, the calcu-

lations were performed with the low-scaling AC-GW variant. The resulting orbitals near the

Fermi level are presented in Figure 4.2. It can be seen that the HOMO-LUMO gap, which is

much too small at the PBE0 level, is substantially increased at the evGW level, which aims to

correct deficiencies in the PBE0 orbital energies. All the other orbital levels are shifted accord-

ing to the new HOMO and LUMO while preserving the Kohn-Sham energy spacing, yielding

larger excitation energies. The orbital plots identify the electronic interactions between the hy-

dride and Ag3 moieties, which allows the experimental absorption spectrum to be unraveled.

Based on the quasiparticle energies obtained from the evGW calculation, the singlet exci-

tation energies were computed using the Bethe–Salpeter equation (BSE) formalism. The cal-

culated spectrum together with the experimental UV/Vis absorption spectroscopy in the gas

phase and solution are presented in Figure 4.3. The UV-PD spectrum of gaseous [P]2+ (Fig-

ure 4.3a, black circles) displays a low-intensity band centered at around 320 nm, a broad asym-

metric band peaking at around 252 nm with a shoulder at around 270 nm, and a rising edge

of the fragment yield to higher photon energies starting at around 245 nm. The total fragment

yield shows a linear dependence on the laser pulse energy, which indicates a one-photon ab-

sorption process and justifies the comparison with the linear absorption spectrum in solution.

In fact, the overall shape of the UV-PD spectrum closely resembles the absorption spectrum in

acetonitrile solution (Figure 4.3a, blue line), although a pronounced blueshift of around 1400

cm−1 is discernible with respect to the band maximum at 261 nm observed in the condensed

phase. Additionally, the band at around 320 nm in the gas-phase spectrum is slightly broader

and differently structured compared with its solution counterpart, and thus the corresponding

solvation shift is difficult to ascertain.

The calculated absorption spectrum (Figure 4.3b) is in good agreement with the optical ex-

perimental spectra. Based on the evGW-BSE calculations, the weak, lowest-energy band at
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4 Photoinitiated charge-transfer in a triangular silver(I) hydride complex

Figure 4.2: Energy levels of the orbitals HOMO-3 to LUMO+2 of [P]2+ obtained at the
PBE0/def2-SV(P) and PBE0 evGW/def2-SV(P) levels of theory. Orbitals are shown
with an isovalue of ±0.04a−3/2

0 . Cyclohexyls and methylene hydrogen atoms are
omitted for clarity. Reprinted with permission from Ref. 82. Copyright 2019 John
Wiley & Sons.

around 320 nm, observed in both the gas phase and solution, is assigned to a 1HMCT (hydride-

to-metal charge-transfer) transition (λcalcd = 321 nm, S1), hence electron density is transferred

mainly from a hydride-centered orbital to a collective Ag3 orbital (LUMO), as illustrated by the

transition density plot shown in Figure 4.3b. Because the LUMO facilitates cooperative binding

interactions (Figure 4.2), all the electronic transitions exhibiting significant LUMO contribu-

tions are expected to enhance the stability of the Ag3 core. Further evidence of this assignment

is provided by the fact that UV-PD mainly leads to fragments with an intact cluster core, which

primarily displays ionic core fission. The distinct shoulder (ca. 270 nm), discernible by the

apparent asymmetry of the broad PD band in the 280–245 nm spectral range, originates from

two nearly degenerate S3 and S4 excited states (λcalcd = 261 nm) with mainly metal-centered

character (1MC). Furthermore, in excellent agreement with the experimental gas-phase maxi-

mum at around 252 nm, the calculated UV absorption spectrum is dominated by two almost

degenerate transitions (S5 and S6) at 250 nm arising mainly from charge-transfer from hydride

to silver-centered orbitals (1HMCT), which corresponds to the absorption maximum in MeCN

at around 261 nm. The experimentally observed increase in absorption below 240 nm, both in

the gas phase and in solution, is assigned to the excitation of the 1MC states.
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4.3 Optical properties and electronic structure

Figure 4.3: a) Normalized UV-PD spectrum of [P]2+ (black circles) compared with the UV ab-
sorbance spectrum of [P](PF6)2 in MeCN (blue line). Error bars represent one stan-
dard deviation. The yield of the H-loss channel obtained by isotope pattern decon-
volution is shown in grey. b) Unscaled calculated electronic absorption (FWHM =
0.3 eV) and stick spectra (PBE0 evGW-BSE/def2-SV(P)) of [P]2+. Inset: transition
density plots for the labeled S1, S3,4, S5,6 transitions (isovalue: ±0.001a−3

0 , cyclo-
hexyl and methylene hydrogen atoms are omitted). Green represents a loss of elec-
tron density whereas orange represents a gain of electron density. Magnified spec-
tra in the 277-360 nm range (×5,×10) are shown as dotted lines. Reprinted with
permission from Ref. 82. Copyright 2019 John Wiley & Sons.

To validate the more robust CD-GW scheme, a series of BSE excited state calculations have

been done, where quasiparticle energies were optimized for 5, 10, 15 and 20 highest occupied

and lowest unoccupied orbitals, respectively. Figure 4.4 illustrates the resulting absorption

spectra in comparison with the previous calculated spectrum (Figure 4.3b), where quasiparticle

energies were computed from AC-GW that is equivalent to CD-GW optimizing only one single

occupied and unoccupied orbitals, i.e. HOMO and LUMO.

As can be clearly seen, when more orbitals are involved, the resulting absorption spectrum

is more blue-shifted until convergence is reached. The difference among spectra with 10, 15
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4 Photoinitiated charge-transfer in a triangular silver(I) hydride complex

Figure 4.4: Calculated electronic absorption spectra (FWHM = 0.3 eV) of [P]2+ at the PBE0
CD-evGW-BSE/def2-SV(P) level of theory, where 1, 5, 10, 15 and 20 highest oc-
cupied and lowest unoccupied orbitals were optimized for CD-evGW, respectively.
Magnified spectra in the 280-360 nm range (×10) are shown as dotted lines.

and 20 occupied/unoccupied orbitals is extremely minor, and the latter two almost completely

overlap. Therefore, in general, it is more than enough to optimize 10 highest occupied and 10

lowest unoccupied orbitals for a CD-GW calculation. It should be noted that although in this

case the AC-GW/BSE spectrum suggests a better agreement with the experimental spectrum,

while the CD-GW(10)/BSE spectrum shows a pronounced blueshift of around 2000 cm−1, this

is purely coincidental. Theoretically, when more orbitals are included in the calculation, the

CD-GW results will more closely resemble the benchmark SR-GW that computes the quasipar-

ticle energies for all orbital levels. Therefore, our method of choice is CD-GW, and in the rest of

this thesis, if not specified, always 10 highest occupied and 10 lowest unoccupied orbitals are

optimized in CD-GW.

4.4 Conclusion

In summary, the silver(I) hydride complex [Ag3(µ3-H)(µ2-LCy)3]
2+ ([P]2+) possesses a nearly

equilateral triangular Ag3 core, capped by a central µ3-hydrido ligand and stabilized by slightly

twisted bis-phosphine ligands, as inferred from combined experimental and theoretical struc-

tural analyses. The gas-phase photofragment action spectrum shows hydride-to-Ag3 charge-
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4.4 Conclusion

transfer (1HMCT) and metal-core-centered (1MC) transitions in the spectral range of 350–240

nm, in accordance with the hypsochromic shifts observed in MeCN solution. This has been

directly compared with the results of GW/BSE calculations, which excellently reproduced the

experimental spectra and facilitated the assignment of the character of electronic transitions by

means of transition density plots. Hence, the low-scaling AC-GW and CD-GW variants make

calculations feasible for systems with hundreds of atoms and thousands of basis functions. And

the combined experimental and theoretical results provide a basis for further detailed spectro-

scopic investigations, specifically for studying metal–metal interactions under electronic exci-

tation and identification of hydride charge-transfer processes.
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5 A tetranuclear silver(I) iodide complex: cube and
chair isomers

5.1 Introduction

Design, synthesis, and characterization of polynuclear d10 metal complexes have attracted

widespread interest due to their intrinsic aesthetic appeal and potential applications in het-

erogeneous catalysts and luminescent materials. Compared to the copper(I) and gold(I) con-

geners, the photophysical properties of silver(I) complexes are relatively less studied mainly

due to their thermal instability and light sensibility. A classical example of multinuclear Ag(I)

complexes is Ag4I4(PPh3)4, which contains a metal–halide core and neutral phosphine bridging

ligands. This tetramer can exist in a cubane- or chair-like conformation (Figure 5.1), and both

were found to be luminescent originating from a 4d→5s metal-centered excited state. [85,86] The

cubane-like isomer emits at a lower energy due to the higher delocalization over the 4d and 5s

orbitals of the Ag(I) centers. In this chapter, a similar tetranuclear silver(I) iodide complex will

be presented, which is bridged by diphenyl-2-pyridylphosphine (PyrPhos) derivatives with a

methyl group in para position of the pyridine ring. The tetramer will be denoted as Ag4I4L4 (L

= MePyrPhos) in further discussions.

Figure 5.1: Cube and chair isomers of Ag4I4(PPh3)4. The chair isomer can be considered as
derived from the cube isomer via cleavage of two Ag–I bonds in one Ag2I2 face
followed by rotation of one adjacent Ag2I2 face by approximately 180°.
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5.2 Cubane-like isomer

5.2.1 Structural examination and geometry optimization

In the solid state structure of Ag4I4L4 (Figure 5.2), the Ag4I4P4 core shows a highly distorted

cubane-like configuration with two interpenetrating silver and iodine tetrahedra situated on

alternate corners of the cube. Each silver atom is coordinated by three µ3-bridging iodine atoms

and further coordinated to a phosphine ligand. The distortion from the idealized Td symmetry

due to steric hindrance can be seen in the variation of the following molecular parameters.

First, the Ag· · ·Ag distances span from 3.157 to 3.427 Å, with an average of 3.302 Å, which

are all in the range of argentophilic d10–d10 interactions. Second, the I· · · I distances span from

4.492 to 4.813 Å, with an average of 4.636 Å, which are all greater than twice the van der Waals

radius of iodine (4.32 Å) [81], indicating the repulsion of iodine ions. And for each nonplanar

Ag2I2 moiety, shorter I· · · I distances are in general accompanied by longer Ag· · ·Ag distances,

and vice versa. Third, the Ag–I bond lengths range from 2.816 to 2.926 Å, with an average of

2.887 Å, and the Ag–I–Ag bond angles range from 65.64 to 73.31°, with an average of 69.79°.

In the quantum chemical calculation, the ground-state equilibrium geometry of cubane-like

Ag4I4L4 was optimized in S4 symmetry at the PBE0-D3(BJ) level of theory starting from the

distorted cube configuration. The def2-TZVP basis set was taken for Ag, I, P, N, and C atoms

in pyridine rings, and the def2-SV(P) basis set was taken for the rest of the atoms. This com-

bination will be referred to as "TZVP" in further discussions. A true energy minimum with

only real harmonic vibrational frequencies was achieved, and hence the favorable S4 symmetry

was retained. This optimized ground-state structure (Figure 5.3) is in good agreement with the

experimental X-ray diffraction results, only being more symmetric, featuring shorter Ag· · ·Ag

distances (average 3.009 Å) and longer I· · · I distances (average 4.873 Å) as well as acuter Ag–

I–Ag bond angles (average 61.48°). And the average Ag–I bond length is 2.940 Å, which is

slightly longer than the experimental result.

5.2.2 Absorption spectra

The Ag4I4L4 tetramer has very low solubility in dichloromethane (DCM). And dimethyl sul-

foxide (DMSO), which is a good alternative solvent for hardly soluble compounds, has a self-

absorption band that starts around 310-320 nm and unfortunately cannot be used here. Hence,

chloroform (CHCl3) was used as solvent, but it should be noted that CHCl3 has a strong self-

absorption band at around 270 nm. As shown in Figure 5.4, the spectrum of Ag4I4L4 in CH3Cl

(black solid line) exhibits a broad absorption band from 300 to 350 nm, which is not related to

the bridging ligands (black dashed line). Besides, there appears an unexpected bump at 425
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5.2 Cubane-like isomer

Figure 5.2: ORTEP plots of Ag4I4L4 (top and side view) shown at the 50% probability level.
Results provided by Jasmin Busch (IOC), measured and solved by Olaf Fuhr (INT).

nm, which was not seen in the solid phase spectrum from a neat film on a CaF2 window. How-

ever, the device could only record up to 320 nm. And it is not possible to record absorption

spectra in a KBr matrix at the moment. Hence, no satisfying solid phase spectra is available for

comparison.
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5 A tetranuclear silver(I) iodide complex: cube and chair isomers

Figure 5.3: Optimized ground-state structure of Ag4I4L4 (top and side view) at the PBE0-
D3(BJ)/TZVP level of theory. Color code: Ag (silver), I (purple), P (yellow), N
(cyan), C and H (white).

Figure 5.4: UV/Vis spectra of Ag4I4L4 in CHCl3 (black solid line) and L in DCM (black dashed
line) compared to calculated absorption spectra (FWHM = 0.3 eV) using TD-CAM-
B3LYP (red lines) and PBE0 CD-evGW/BSE (blue lines).
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5.2 Cubane-like isomer

(a) 1B, λcalcd = 311 (322) nm (b) 1E & 2E, λcalcd = 305 (310) nm

(c) 3E & 4E, λcalcd = 290 (308) nm (d) 2B, λcalcd = 289 (307) nm

Figure 5.5: Transition density plots and excitation energies for the transitions involved in the
TD-CAM-B3LYP absorption band centered at 305 nm (isovalue: ±0.0015a−3

0 , all
hydrogen atoms are omitted for clarity). Green represents a gain of electron den-
sity whereas orange represents a loss of electron density. The corresponding PBE0
CD-evGW/BSE excitation energies are listed in parentheses for comparison.

The electronic excitation energies were calculated using TDDFT with CAM-B3LYP func-

tional [87] and CD-evGW/BSE with PBE0 functional employing the TZVP basis set. The cal-

culated absorption spectra of Ag4I4L4 are in good mutual agreement, and both agrees well

with the experimental results. The TDDFT spectrum (Figure 5.4, red solid line) displays a

narrow band centered at 305 nm, while the GW/BSE spectrum (Figure 5.4, blue solid line) dis-
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plays a broad band centered at 310 nm, For both methods, this band has contributions from

a number of excitations in B and E symmetry, and the corresponding transition density plots

are given in Figure 5.5. The 1B and degenerate 1E and 2E excited states are mainly centered at

the metal–halide core, while the 2B and degenerate 3E and 4E excited states arise mainly from

metal–halide to ligand charge-transfer (X+M)LCT.

5.3 Chair-like isomer

5.3.1 Geometry optimization

Experimentally, no crystallization of the chair-like configuration of Ag4I4L4 has been achieved

so far. In the quantum chemical calculation, the ground-state equilibrium geometry of chair-

like Ag4I4L4 was optimized in Ci symmetry at the PBE0-D3(BJ)/TZVP level of theory, and a

true energy minimum with only real harmonic vibrational frequencies was obtained, which is

ca. 4 eV higher in energy than the cubane-like isomer. In contrast to the cubane-like isomer

that is defined by six highly nonplanar Ag2I2 moieties, the chair-like isomer is defined by three

Ag2I2 moieties: two nonplanar Ag2I2 fragments connected by one strictly planar Ag2I2 in the

middle (Figure 5.6). The Ag· · ·Ag distances differ substantially within the nonplanar (2.908

Å) and planar (3.188 Å) Ag2I2 moieties. In comparison, the I· · · I distances show less variation

within the nonplanar (4.922 Å) and planar (4.841 Å) Ag2I2 moieties. The four silver atoms, the

four iodine atoms, as well as the four phosphorus atoms are also precisely coplanar as required

by the symmetry. The four Ag atoms form a parallelogram with edges of 4.583 and 2.908 Å,

with a short diagonal of 3.188 Å. Likewise, the four I atoms form a parallelogram with edges

of 4.536 and 4.922 Å, with a short diagonal of 4.841 Å.

The most important feature of the chair-like isomer is that the metal–halide core atoms

have variable coordination numbers (CN). It can be obviously seen from Figure 5.6 that two

Ag atoms are trigonal-coordinated (CN = 3), while another two silver atoms are tetrahedral-

coordinated (CN = 4). Similarly, two I atoms are µ2-bridging (CN = 2), while another two iodine

atoms are µ3-bridging (CN = 3). Within the nonplanar Ag2I2 moieties, the Ag–I bond lengths

can be nicely correlated with the coordination numbers. Let m and n be coordination numbers

of the Ag and I atoms: as (m, n) increases from (3, 2) to (3, 3), the Ag–I bond length increases

from 2.713 to 2.887 Å; as (m, n) increases from (4, 2) to (4, 3), the Ag–I bond length increases

from 2.881 to 2.988 Å. The remaining two Ag–I bond lengths within the planar Ag2I2 moiety

are 2.806 Å. The metal coordination number is closely reflected in the I–Ag–I bond angles. The

I–Ag–I bond angle with Ag (CN = 3) is 123°, which is close to the ideal trigonal value of 120°,

while the I–Ag–I bond angles with Ag (CN = 4) have an average value of 111°, which is close
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5.4 Conclusion

Figure 5.6: Optimized ground-state structure of the chair-like isomer of Ag4I4L4 (top and side
view) at the PBE0-D3(BJ)/TZVP level of theory. Color code: Ag (silver), I (purple),
P (yellow), N (cyan), C and H (white).

to the ideal tetrahedral value of 109.5°. The Ag–I–Ag angles are highly acute within both the

nonplanar (62.6° and 59.3°) and planar (66.7°) Ag2I2 moieties.

When comparing the structural parameters of the cubane- and chair-like isomers, a resem-

blance between the nonplanar Ag2I2 moieties can be easily seen, while the major difference lies

in the Ag· · ·Ag distance. In the chair form, the Ag· · ·Ag distance of 4.536 Å across the bridge is

significantly longer than every Ag· · ·Ag distance in the distorted cube form, indicating a huge

relief of repulsion between the phenyl/pyridyl groups of the phosphines attached to these two

Ag atoms. This is supposed to be the driving force in the cube→chair isomerization.

5.3.2 Absorption spectra

For the chair-like isomer, the electronic excitation energies were calculated in the same manner

as for the cubane-like isomer. The predicted absorption spectra are in good mutual agree-

ment (Figure 5.7), featuring an absorption band centered at 272 nm for TDDFT and 270 nm

for GW/BSE. For both methods, this band has contributions from two Au excitations, and the

corresponding transition density plots (Figure 5.8) exhibit the (X+M)LCT character.

5.4 Conclusion

In summary, the tetranuclear silver(I) iodide complex Ag4I4L4 (L = MePyrPhos) has been

shown by quantum chemical calculations to exist in either a cubane- or a chair-like struc-

ture, though only the cubane-like isomer has been crystallized experimentally. The cubane-like

isomer possesses a metal–halide core with four silver and four iodine atoms situated on al-
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Figure 5.7: Calculated absorption spectra (FWHM = 0.3 eV) of the chair-isomer of Ag4I4L4 and
ligand L using TD-CAM-B3LYP (red lines) and PBE0 CD-evGW/BSE (blue lines).

(a) 3Au, λcalcd = 276 (273) nm (b) 4Au, λcalcd = 266 (265) nm

Figure 5.8: Transition density plots and excitation energies for the transitions involved in the
TD-CAM-B3LYP absorption band centered at 272 nm (isovalue: ±0.0015a−3

0 , all
hydrogen atoms are omitted for clarity). Green represents a gain of electron den-
sity whereas orange represents a loss of electron density. The corresponding PBE0
CD-evGW/BSE excitation energies are listed in parentheses for comparison.
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ternate corners of a highly distorted cube resulting from steric hindrance among the ligands,

which is in good agreement with the X-ray diffraction results. The chair-like isomer can be

considered as derived from the cubane-like isomer via cleavage of two Ag–I bonds in one

Ag2I2 face followed by ca. 180° rotation of an adjacent face, and the driving force is the re-

lief of repulsion between the ligands attached to those two opposite Ag atoms. The UV/Vis

spectrum in solution shows a broad absorption band in the range of 300–350 nm, which is ex-

cellently reproduced by the GW/BSE calculations on the cubane-like isomer. This is assigned

to charge-transfer from metal–halide core to ligand (X+M)LCT by means of transition density

plots. For the chair-like isomer, the (X+M)LCT absorption peak appears at around 270 nm,

which is slightly blueshifted compared to the cubane-like isomer.
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6 Photosensitizers based on heteroleptic copper(I)
complexes

6.1 Introduction

The exploitation of solar energy is essential for sustainable development, and the most optimal

way is to convert solar energy into chemical energy stored in chemical bonds of molecules,

which is the natural photosynthesis. In order to build an artificial photosynthetic system, a

photosensitizer (PS) and a catalyst (CAT) are needed, which can be the same in some cases.

The molecular photocatalysts developed so far are mainly based on rare precious metal com-

plexes, such as Ru [88], Re [89], or Ir [90]. However, viable renewable energy systems require PS

or CAT based on low-cost and earth-abundant materials. Such molecular systems have been

designed [91,92], and remarkably, Cu(I) complexes have been found to be potential alternatives

to Ru(II)-polypyridine complexes as photosensitizers for photoredox catalysis. [93,94] Cu(I) com-

plexes exhibit prominent metal-to-ligand charge-transfer (MLCT) transitions, which often ab-

sorb in the visible region at relatively low energy. This property makes them very attractive

candidates for developing further photosensitizers. However, on one hand, a specific prob-

lem for copper complexes is that they may undergo Jahn–Teller flattening distortion in the

excited states, which could lead to undesirable deactivation and lifetime shortening. This can

be prevented via the use of sterically bulky ligands, such as chelating diphosphines. On the

other hand, some of them are not very stable in the coordinating solvents like acetonitrile due

to easy ligand replacements, while stability is an important requirement for the photosensi-

tizer. Recently, a few photosensitizers based on heteroleptic copper(I) complexes of general

formula [Cu(NN)(PP)]BF4 have been reported, where NN and PP are the chelating diimine

and diphosphine ligands, respectively. [95] And in this chapter, more examples of such type will

be presented. For all compounds, bis[(2-diphenylphosphino)phenyl] ether (DPEPhos) is used

as the bulky ancillary diphosphine ligand, while the chromophoric chelating diimine ligands

are different. The diimines all contain a neutral moiety (pyridine or quinoline/quinoxaline

derivatives) and a triazole moiety, which can be deprotonated during the coordination reac-

tion.
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6.2 Copper(I) complexes with triazole–quinoline/quinoxaline ligands

6.2.1 Structural examination and geometry optimization

The structures of the mononuclear copper(I) complexes 1a-c and the dinuclear species 2 are

shown in Figure 6.1. The monomers 1a-c adopt a distorted tetrahedral geometry with the cen-

tral copper atom coordinated by one nitrogen atom from the quinoline or quinoxaline ligands

and one nitrogen atom from the triazole ligand, and two phosphorous atoms from DPEPhos.

The dihedral angles between the Cu(NN) and Cu(PP) planes (1a: 78.5°; 1b: 76.7°; 1c: 74.3°)

manifest the distortion from the idealized tetrahedral geometry. The distances between Cu

and N atom of the triazole moiety are very similar in each complex (1a: 2.087 Å; 1b: 2.095

Å; 1c: 2.059 Å). This is also true for the distances between Cu and N atom of the quino-

line/quinoxaline moiety (1a: 2.129 Å; 1b: 2.117 Å; 1c: 2.139 Å). The Cu–P distances are also

similar for the three compounds (1a: 2.249 and 2.311 Å; 1b: 2.256 and 2.299 Å; 1c: 2.263 and

2.273 Å). The N–Cu–N bite angles (1a: 91.1°; 1b: 89.8°; 1c: 90.6°) and P–Cu–P bite angles (1a:

110.6°; 1b: 111.7°; 1c: 113.4°) are similar too.

In the quantum chemical calculation, all geometries were optimized at the PBE0-D3(BJ) level

of theory. The def2-TZVP basis set was taken for Cu, P, C and N atoms in triazole and quino-

line/quinoxaline moieties, and the def2-SV(P) basis set was taken for the rest of the atoms.

This combination will be referred to as "TZVP" in further discussions. The ground-state (S0)

geometries of the monomers are in good agreement with the X-ray diffraction analyses, except

that the dihedral angles between the Cu(NN) and Cu(PP) planes (1a: 85.6°; 1b: 81.8°; 1c: 85.9°)

are much larger than the experimental values. The Cu–N distances (1a: 2.130 and 2.135 Å; 1b:

2.132 and 2.126 Å; 1c: 2.105 and 2.126 Å), Cu–P distances (1a: 2.257 and 2.316 Å; 1b: 2.256 and

2.312 Å; 1c: 2.254 and 2.314 Å), N–Cu–N angles (1a: 93.6°; 1b: 92.9°; 1c: 93.4°) and P–Cu–P

angles (1a: 114.4°; 1b: 114.3°; 1c: 114.4°) are all similar among the three compounds and agree

well with the experiment. The optimized dimer 2 exhibits C2 symmetry. The dihedral angle be-

tween the Cu(NN) and Cu(PP) planes is 82.1°. The Cu–N distances (2.117 and 2.142 Å), Cu–P

distances (2.256 and 2.316 Å), N–Cu–N angle (90.0°) and P–Cu–P angle (115.8°) are similar to

the corresponding monomer 1a. The dihedral angle between the two planes formed by Cu and

two N atoms of the diimine ligand is 66.4°.

6.2.2 Absorption spectra

UV/Vis spectra of all the compounds were recorded in spectroscopic dichloromethane (DCM)

solutions (Figure 6.2). The absorption spectra of species 1a, 1c and 2 are very similar, which

is to be expected since they all bear the same quinoxaline ligand. The main difference lies in
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6 Photosensitizers based on heteroleptic copper(I) complexes

Figure 6.1: Chemical structure and ORTEP drawing of the copper(I) complexes (1a-c:
mononuclear complexes, 2: dinuclear complex). Counterions and solvent
molecules are omitted for clarity. Crystal structures (not available for 2)
provided by Cecilia Bruschi (IOC), measured and solved by Olaf Fuhr (INT).

Figure 6.2: Absorption spectra in DCM. Inset: zoom-in in the range of MLCT.

the extinction coefficients, where the dinuclear species 2 almost doubles the values compared

to the mononuclear species 1a and 1c as it contains two chromophoric units. Besides, 2 shows

a prolonged tail at around 600 nm, which is probably due to the cooperativity effect between
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(a) TD-CAM-B3LYP/TZVP

(b) PBE0 evGW-BSE/TZVP

Figure 6.3: Absorption spectra (FWHM = 0.4 eV) calculated using (a) TD-CAM-B3LYP/TZVP
and (b) PBE0 evGW-BSE/TZVP at the optimized S0 geometries. Inset: zoom-in in
the range of MLCT.

two copper centers. The high-intensity absorption bands in the high-energy UV region (below

300 nm) are assigned to ligand-centered (LC) π → π∗ transitions on the chelating diphosphine
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ligands. LC transitions centered on the diimine ligands also appear up to 350 nm. The char-

acteristic metal-to-ligand charge-transfer (MLCT) bands occur in the visible region above 400

nm with a shoulder at around 435 nm for 1a, 455 nm for 1c and 450 nm for 2. These MLCT

transitions are assigned to charge-transfer from the copper core to the diimine ligand. For com-

plex 1b that bears a quinoline ligand, its MLCT band is significantly blueshifted compared to

the species bearing a quinoxaline ligand, with a shoulder at around 385 nm. This is probably

due to one less nitrogen atom in the ring and decreased π conjugation of quinoline compared

to quinoxaline.

At the ground-state geometries, the absorption spectra were calculated with TD-CAM-B3LYP

and PBE0 CD-evGW/BSE employing TZVP basis set (Figure 6.3). For TD-CAM-B3LYP, the

predicted MLCT absorption bands are occurring with relative maxima at 377 nm for 1a, 349

nm for 1b, 379 nm for 1c, 393 and 500 nm for 2. These transitions are significantly blueshifted

by 0.33–0.55 eV compared to the measured spectra, and hence TD-CAM-B3LYP is unsuitable for

this class of compounds. For GW/BSE, the MLCT absorption bands are occurring with relative

maxima at 438 nm for 1a, 397 nm for 1b, 447 nm for 1c, 431 and 645 nm for 2, which fit perfectly

with the experimental values, only the prolonged tail of complex 2 is slightly redshifted by 0.14

eV.

An NTO analysis confirms the MLCT character of the transitions in the visible region (Fig-

ure 6.4). The first absorption band of all four complexes corresponds to charge-transfer from

the copper atom to the quinoline/quinoxaline moiety of the diimine ligand, while the triazole

moiety is not involved. For complex 1b, less delocalization of π electrons on quinoline ring can

be seen from the particle NTO compared to quinoxaline, which leads to higher energy levels of

quinoline π∗ orbitals, and hence the absorption is shifted to higher energy. Besides the lowest

absorption band at 645 nm, the dinuclear species 2 exhibits one further MLCT transition at 431

nm compared to the monomers. This arises from the communication between the two copper

centers.

6.2.3 Structures of the first triplet excited state (T1)

The tetrahedral geometry of the [Cu(NN)(PP)] core is well retained in the optimized excited

states. The dihedral angles between the Cu(NN) and Cu(PP) planes (1a: 87.7°; 1b: 89.7°; 1c:

87.1°; 1c: 83.8°) are even closer to the idealized tetrahedral geometry. The increased N–Cu–N

bite angles (1a: 95.9°; 1b: 96.6°; 1c: 95.7°; 2: 92.2°) and decreased P–Cu–P bite angles (1a: 105.6°;

1b: 106.4°; 1c: 105.9°; 2: 109.1°) are also closer to the ideal tetrahedral value of 109.5°.
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complex λabs/nm hole NTO particle NTO

1a 443

1b 403

1c 452

2 645

431

Figure 6.4: Dominating occupied (blue/yellow) and virtual (red/white) natural transition or-
bitals (NTOs, iso-value: ±0.04a−3/2

0 ) of the MLCT excitation in the visible region
calculated at PBE0 evGW-BSE/TZVP level. Phenyl groups of DPEPhos and all hy-
drogen atoms are omitted for clarity. Color code: C (silver), N (cyan), O (red), P
(yellow), Cu (mauve).

59
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6.3 Copper(I) complexes with triazole–pyridine ligands

6.3.1 Structural examination and geometry optimization

The structures of the four copper(I) complexes bearing triazole and pyridine ligands are shown

in Figure 6.5. The dinuclear species 3N and 3H are bridged by a para-xylene on the triazole

moiety and exhibit Ci symmetry. All geometries were optimized at the PBE0-D3(BJ) level of

theory. The def2-TZVP basis set was taken for Cu, P, C and N atoms in pyridine, triazole

and central benzene ring, and the def2-SV(P) basis set was taken for the rest of the atoms.

This combination will again be referred to as "TZVP" in further discussions. In the optimized

ground-state (S0) structures, the dihedral angles between the Cu(NN) and Cu(PP) planes are

slightly larger in the neutral species than the protonated species (1N: 89.9°; 3N: 89.8°; 1H: 87.5°;

3H: 86.9°). The distances between Cu and N atom of the triazole moiety are slightly shorter in

the neutral species (1N: 2.018 Å; 3N: 2.016 Å; 1H: 2.081 Å; 3H: 2.089 Å). The distances between

Cu and N atom of the pyridine moiety are very similar in each complex (1N: 2.089 Å; 3N: 2.086

Å; 1H: 2.104 Å; 3H: 2.111 Å). This is also true for the Cu–P distances (1N: 2.218 and 2.284 Å; 3N:

2.216 and 2.285 Å; 1H: 2.236 and 2.276 Å; 3H: 2.240 and 2.276 Å). The N–Cu–N bite angles (1N:

80.8°; 3N: 81.0°; 1H: 79.7°; 3H: 79.2°) and P–Cu–P bite angles (1N: 113.2°; 3N: 113.3°; 1H: 115.3°;

3H: 115.5°) are similar too. Interestingly, the dihedral angles between the benzene bridging

unit and the connected triazole ligand vary between neutral and protonated species (1N: 39.9°;

3N: 40.0°; 1H: 49.6°; 3H: 47.2°).

6.3.2 Absorption spectra

At the ground-state geometries, the absorption spectra were calculated with CD-evGW/BSE

employing the PBE0 function and TZVP basis set (Figure 6.6). For the protonated species, the

absorption band in the visible region with relative maximum at 359 nm (1H) and 343 nm (3H)

corresponds to the characteristic MLCT absorption band. This is also confirmed by an NTO

analysis (Figure 6.7). The prolonged tail of 3H at 402 nm is assigned to a MLCT transition too.

For the neutral species, the first absorption band at 333 nm (1N) and 328 nm (3N) is mainly

centered on the ligand, corresponding to the charge-transfer from the triazole moiety and ben-

zene bridging unit to the pyridine moiety, while the copper atoms are hardly involved.

6.3.3 Rotation of the benzene bridging unit

Theoretically speaking, the central benzene ring in the dinuclear species is expected to be able

to rotate freely about the σ bond between the para carbon atom and the triazole ligand. As

it rotates, the coplanarity of benzene and triazole rings will change accordingly, resulting in
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6.3 Copper(I) complexes with triazole–pyridine ligands

Figure 6.5: Chemical structure of the copper(I) complexes: neutral monomer 1N and dimer
3N; protonated monomer 1H and dimer 3H.

Figure 6.6: Absorption spectra (FWHM = 0.2 eV) calculated using PBE0 evGW-BSE/TZVP at
the optimized S0 geometries.
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6 Photosensitizers based on heteroleptic copper(I) complexes

λabs/nm hole NTO particle NTO

1N 333

3N 328

1H 359

3H 402

343

Figure 6.7: Dominating occupied (blue/yellow) and virtual (red/white) natural transition or-
bitals (NTOs, iso-value: ±0.04a−3/2

0 ) of the MLCT excitation in the visible region
calculated at PBE0 evGW-BSE/TZVP level. Phenyl groups of DPEPhos and all hy-
drogen atoms are omitted for clarity. Color code: C (silver), N (cyan), O (red), P
(yellow), Cu (mauve).

different extent of π-conjugations. It is interesting to see how the π-electron delocalization as

well as the absorption spectra will be affected. Therefore, twelve distinct configurations were

obtained by rotating the benzene ring in 3N for every 15 degrees. For each rotation angle, the

dihedral angle between benzene and the connected triazole ligand was kept fixed, and the rest

of the molecule was optimized. Figure 6.8 shows the change of total energy with respect to the

rotation angle. Note that this angle is the rotation angle relative to the equilibrium structure,

62



6.3 Copper(I) complexes with triazole–pyridine ligands

not the dihedral angle itself. Since the starting dihedral angle is 40°, as the benzene ring is

rotated, it becomes more coplanar with the two triazole ligands, giving rise to larger repulsion

and higher total energy. When it is rotated 45°, the three rings are nearly coplanar, and hence

the repulsion as well as the total energy reaches a relative maximum. Then the total energy

decreases till the benzene is rotated 90°, and increases again to a relative maximum at around

135° before another decline.

Figure 6.8: Total energy of 3N with respect to the rotation angle.

At each optimized geometry, the corresponding excitation energies were calculated using

PBE0 CD-evGW-BSE/TZVP. Since the HOMO mainly sits at the triazole moiety and benzene

bridging unit while the LUMO mainly sits at the pyridine moiety, the HOMO energy changes

along with rotation of the benzene ring while the LUMO energy stays nearly the same. The

resulting HOMO–LUMO gap displays a sinusoidal trendline with respect to the rotation angle

(Figure 6.9). At the rotation angle of 45°, the highly coplanar structure is beneficial for effective

π-conjugation, thus improving the charge-transfer properties and resulting in the narrowest

π–π∗ energy gap. In contrast, at the rotation angle of 135°, the twisted configuration weakens

the interaction and reduces the π-conjugation, thus yielding the largest π–π∗ energy gap. The

energy of the lowest lying singlet excited state (S1) closely resembles the HOMO–LUMO gap,

reflecting the shift of the predicted absorption spectra among different rotation angles.

The transition density plots for selected rotation angles are displayed in Figure 6.10. From

0° to 45°, an enhanced π-conjugation as well as intermolecular π-electron interactions can be
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6 Photosensitizers based on heteroleptic copper(I) complexes

Figure 6.9: HOMO–LUMO gap (HL) and the first singlet excitation energy (S1) of 3N with re-
spect to the rotation angle.

Figure 6.10: Transition density plots of the first absorption peak of 3N at rotation angles of 0°,
45°, 90° and 135°(isovalue: ±0.0015a−3

0 ). Phenyl groups of DPEPhos and all hy-
drogen atoms are omitted for clarity. Green represents a gain of electron density
whereas orange represents a loss of electron density.
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6.3 Copper(I) complexes with triazole–pyridine ligands

clearly seen. The electron density is mainly transferred from the benzene and triazole moiety

to the pyridine moiety, which benefits from the highly coplanar structure with effective π-

conjugation. From 45° to 90°, the π-conjugation is slowly reduced, and further weakened till

135°, where the central benzene ring is completely excluded from the charge-transfer. On the

other hand, the metal centers become more and more involved, exhibiting MLCT character

of electron density from copper to the pyridine ligands. Then after 135°, the π-conjugation is

gradually recovered and the central benzene ring starts to gain back intensity from the metal

centers in the charge-transfer process.

To investigate the cooperative effects, the same calculations were performed for the 1N

monomer at different rotation angles. A comparison of the first singlet excitation energy of

1N and 3N is given in Figure 6.11. The calculated energies of 1N closely resemble 3N, which

is as expected since they have the same diimine ligands and thus similar charge-transfer char-

acter. Compared to the dimer, the monomer S1 is slightly higher in the range of 15°–60°, and

slightly lower in the range of 75°–180°.

Figure 6.11: The first singlet excitation energy (S1) of 1N and 3N with respect to the rotation
angle.

The transition density plots for selected rotation angles are displayed in Figure 6.12. In gen-

eral, the monomer features less effective π-conjugation due to lack of one triazole unit, and

the benzene unit is much less involved in the charge-transfer. On the other hand, the copper

atom plays a more crucial role and exhibits stronger MLCT character, and the diphosphine unit

is more involved in the charge-transfer. At small rotation angles, where excitations in 3N are
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6 Photosensitizers based on heteroleptic copper(I) complexes

dominated by the LC transitions, 1N yields slightly higher S1 energies due to more pronounced

MLCT character. While at large rotation angles, where the MLCT transitions become more im-

portant in 3N, the transfer of electron density to the diphosphine unit in 1N leads to slightly

lower S1 energies.

Figure 6.12: Transition density plots of the first absorption peak of 1N at rotation angles of 0°,
45°, 90° and 135°(isovalue: ±0.0015a−3

0 ). Phenyl groups of DPEPhos and all hy-
drogen atoms are omitted for clarity. Green represents a gain of electron density
whereas orange represents a loss of electron density.

6.3.4 Structures of the first triplet excited state (T1)

Overall, the excited state distortions from the theoretical calculations are very subtle, yet more

pronounced for the protonated species than the neutral species. For the neutral species, the

calculated dihedral angle between the Cu(NN) and Cu(PP) planes (1N: 88.4°; 3N: 88.5°) only

changed by 1° compared to the S0 state. Hence, there is hardly any distortion in the excited

states. On the contrary, the dihedral angles of the protonated species in the T1 state (1H: 77.6°;

3H: 80.1°) revealed prominent flattening distortions, especially for 1H, where a distortion of

almost 10° was observed. Therefore, the protonation of the triazole ligand yields a significant

increase of the flexibility.
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6.4 Conclusion

In summary, a series of photosensitizers based on heteroleptic copper(I) complexes with chelat-

ing diimine and diphosphine ligands have been investigated. The [Cu(NN)(PP)] core adopts a

slightly distorted tetrahedral geometry with the central copper atom coordinated by two nitro-

gen atoms from the diimine and two phosphorous atoms from the diphosphine. Organometal-

lic photosensitizers employing earth-abundant metals have very promising applications in so-

lar energy conversion, and key to the characterization of their photoresponse is the determi-

nation of important experimental and theoretical spectroscopic properties. Complexes with a

neutral [Cu(NN)(PP)] core present mainly LC transitions, while complexes with a charged core

exhibit prominent MLCT transitions that absorb in the relatively low-energy visible region,

and the absorption is further redshifted for the dinuclear species as a result of cooperative

effect. Furthermore, the excited state flattening distortions of these copper(I) complexes are

rather minor, which is desirable because structural relaxation in the excited state could lead to

deactivation and lifetime shortening.
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7 Highly luminescent gold(III) pincer complexes

7.1 Introduction

Phosphorescent emitters based on gold(III) are far less studied in the context of phosphores-

cent organic light-emitting diodes (PhOLEDs) than systems incorporating other heavy metals

like iridium(III), ruthenium(II) or platinum(II). However, gold(III) based systems mainly em-

ploying a 2,6-diphenylpyridine (C^N^C) pincer ligand have attracted dramatically increasing

interest. [96–100] The (C^N^C) pincer diminishes radiationless relaxation pathways of excited

complexes due to its rigid nature, and in combination with an additional strong donor, e.g.

carbenes, alkyl donors or thiolates as second ligand beside the pincer motif, high ligand field

splitting is expected, thereby shifting metal centered d-states to higher energies. These metal

centered states are regularly seen to be responsible for radiationless relaxation pathways. [101]

Compared to the tetradentate systems, where all coordination sites of the central Au atom are

occupied, the tridentate Au(III) complexes are obviously more attractive for further applica-

tions in chemical or catalytic transformations.

The pincer’s structure can be modified, e.g. by substituting the central pyridine by pyrazine,

thereby affecting emission quantum yields and wavelengths. [102] In fact, the non-palindromic

(C^C^N) pincer has been shown to exhibit high emission quantum yields, which makes its

Au(III) complexes particularly interesting for OLED fabrication. [103] This was assigned to a

higher ligand field splitting of the Au(III) complex compared to the palindromic (C^N^C) con-

gener which was investigated by TDDFT. [101,104] Moreover, the central phenyl donor of the

(C^C^N) ligand exhibits a stronger trans influence than the central pyridine in the (C^N^C)

ligand, resulting in different complexes reactivity: [(C^C^N)Au(III)] based carboxylates favor

thermal decarbonylation reactions [105] whereas the (C^N^C) carboxylates show elimination of

CO2
[106].

In this work, two non-palindromic (C^C^D) pincer ligands with pyridine (D = N) and imida-

zolium (D = C′) substituents are presented, in combination with phenylacetylene or pentaflu-

orophenyl donors giving rise to four different highly phosphorescent [(C^C^D)Au(III)] com-

plexes (Figure 7.1). Their photophysical properties are investigated by the two-component

TDDFT and GW/BSE method including spin–orbit coupling, hoping to shed light on the elec-
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7 Highly luminescent gold(III) pincer complexes

Figure 7.1: Chemical structures of [(C^C^N)Au(III)CCPh] (1), [(C^C^N)Au(III)C6F5] (2),
[(C^C^C′)Au(III)CCPh] (3) and [(C^C^C′)Au(III)C6F5] (4).

Figure 7.2: Solid state molecular structure of [(C^C^D)Au(III)] complexes 2 (left), 3 (middle)
and 4 (right). Hydrogen atoms are omitted for clarity. Reprinted with permission
from Ref. 107. Copyright 2020 John Wiley & Sons.

tronic influence of the non-palindromic pincer ligand and reveal non-radiative relaxation path-

ways accompanied with the different ligands employed.

7.2 Geometry optimization

All geometries were optimized at the PBE0-D3(BJ)/def2-TZVP level of theory. The ground-

state (S0) geometries are in good agreement with the X-ray diffraction analyses (Figure 7.2). All

complexes adopt structures with tilted orientation of the aryl entities of the ancillary ligands,

i.e. they are not aligned coplanar with the pincer moiety, but tilted against the pincer’s plane in

a near perpendicular manner. This preference for the tilted arrangement is important with re-

spect to the interpretation of photophysical properties. The [(C^C^D)Au(III)] motif belongs to

the Cs point group. Therefore, the πCCD→ π∗CCD intra-ligand transitions (IL) are of A′ symmetry

and thus dipole allowed, while the πethinyl→ π∗CCD inter-ligand transitions (LL′CT) depends on
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the orientation of the aryl entity. In a coplanar arrangement, LL′CT is of A′ symmetry and thus

dipole allowed; a tilted arrangement changes it to A′′, which is dipole allowed in one direction.

The transition intensities are strongly affected by these symmetry properties, and hence are

important for a sound discussion of photophysics.

7.3 Excited state calculations at the S0 geometry

In the experimentally measured spectra (Figure 7.3), the (C^C^C′) complexes 3 and 4 exhibit

further blueshifted absorptions compared to the (C^C^N) congeners 1 and 2. This is due to the

higher energy levels of imidazole π∗ orbitals as well as the higher-lying gold centered d-orbitals

caused by stronger ligand field splitting, which clearly shows the electron rich nature of Au(III)

in the presence of the (C^C^C′) pincer. The vibronically structured bands between 330 nm and

280 nm with peak distances between 1200 cm−1 and 1400 cm−1 are typical for the pincer’s

ligand breathing mode, which probably arise from π → π∗ IL transitions. The possibility can

be ruled out that LL′CT transitions are responsible for the first absorption bands, since the

absorption profiles of complexes 1 and 2 do not obviously differ.

Figure 7.3: Experimental UV/Vis spectra of complexes 1, 2, 3 and 4. Reprinted with permis-
sion from Ref. 107. Copyright 2020 John Wiley & Sons.
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7 Highly luminescent gold(III) pincer complexes

At the ground-state geometries, the absorption spectra were calculated with TDDFT and CD-

evGW/BSE employing the PBE0 or CAM-B3LYP functional and def2-TZVP basis set. Overall,

the predicted spectra (Figures 7.4 and 7.5) agree well with the experiment.

For TD-PBE0 (Figure 7.4a), a blueshift of approximately 0.15 eV and 0.25 eV is observed for

complexes 1/2 and 3/4, respectively. For evGW/BSE (Figure 7.5), a blueshift of approximately

0.25 eV and 0.3 eV is observed for complexes 1/2 and 3/4, respectively. These are all within

the accuracy range of the methods. However, TD-CAM-B3LYP failed to reproduce the exper-

iment values, and the predicted spectra (Figure 7.4b) are significantly too much blueshifted,

especially for complexes 3/4, a blueshift of approximately 0.55 eV is observed. Hence, the

CAM-B3LYP functional is not suitable for this class of complexes. The prolonged tail in the

absorption spectra of the (C^C^N) complexes 1 and 2 is dominated by a π → π∗ IL transition

located at the pincer ligand (Figure 7.6).

7.4 Two-component excited state calculations at the T1 geometry

The investigated complexes show intense luminescence in solution at room temperature with

emission lifetimes in the micro- and sub-microsecond region indicating phosphorescence. All

complexes share very similar emission pattern (Figure 7.7), which is rather astonishing given

that the absorption spectra are quite different. This can only be due to the fact that all these

complexes have a triplet excitation at around the same energy, from which vibronic transitions

generate the phosphorescence spectroscopy. Indeed, the vibronic structure with band distances

of about 1300 cm−1 indicates pincer π ← π∗ centered transitions. This is further confirmed by

the lifetimes (Table 7.1) that are of the same order of magnitude. The emission wavelengths

of the (C^C^C′) complexes 3 and 4 are negligibly shifted to higher energies, and the PhCC or

C6F5 ligands have no impact on the emission profile. Thus, the transition is detached from

these ligands.

Table 7.1: Photophysical data of gold complexes in dichloromethane at 293 K.

complex λabs/nm λem/nm Φ τ/µs

1 298, 312, 327, 376 473, 507, 543, 588 0.03 0.8

2 295, 314, 326, 370 475, 510, 546, 589 0.09 4.1

3 303, 314 471, 505, 540, 581 0.03 1.0

4 302, 314 470, 504, 539, 582 0.10 0.5
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7.4 Two-component excited state calculations at the T1 geometry

(a)

(b)

Figure 7.4: Absorption spectra (FWHM = 0.3 eV) of complexes 1, 2, 3 and 4 calculated using
TDDFT/def2-TZVP with (a) PBE0 or (b) CAM-B3LYP functional at the optimized
S0 geometries.

Emission quantum yields Φ in dichloromethane solution at room temperature range between

3% and 10% (Table 7.1), which are higher than the yields of many palindromic analogues [108].
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7 Highly luminescent gold(III) pincer complexes

Figure 7.5: Absorption spectra (FWHM = 0.3 eV) of complexes 1, 2, 3 and 4 calculated using
PBE0 evGW-BSE/def2-TZVP at the optimized S0 geometries.

complex hole NTO particle NTO

1

2

Figure 7.6: Dominating occupied (blue/yellow) and virtual (red/white) natural transition or-
bitals (NTOs, iso-value: ±0.02a−3/2

0 ) of the lowest singlet excitation calculated at
PBE0 evGW-BSE/def2-TZVP level. Hydrogen atoms are omitted for clarity.
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Figure 7.7: Experimental emission spectra in solution of complexes 1, 2, 3 and 4. Reprinted
with permission from Ref. 107. Copyright 2020 John Wiley & Sons.

Obviously, the quantum yields are not affected by the pincer motif but the adjacent ligand, since

the C6F5 substituted systems 2 and 4 phosphoresce up to three times more efficient than the

PhCC analogues 1 and 3. This is especially noteworthy, since the opposite finding was reported

for the luminescence of cyclometalated [(C^N)Au(III)] [109] and [(C^C′)Au(III)] [110]complexes,

where higher emission quantum yields were found for phenylethinyl substituted complexes

than for pentafluorophenyl substituted ones. This may be understood from the weaker donor

strength of (per)fluorinated aryl ligands resulting in smaller ligand field splitting of the gold(III)

atom, while in contrast, the PhCC ligand is a sufficiently strong donor to enable phosphoresce.

Obviously, the non-palindromic pincer motifs in the present study overcompensate the weaker

ligand-field splitting, i.e. the ligand-field splitting of 2 and 4 is strong enough despite the weak

pentafluorophenyl donor. However, this does not explain why the pentafluorophenyl substi-

tuted complexes outperform the phenylethynyl substituted ones regarding phosphorescence

quantum yields.

To gain more insight into the mechanism of phosphorescence, two-component (2c) TDDFT

and evGW/BSE calculations using the PBE0 functional and dhf-TZVP-2c basis set were per-

formed. At the optimized first triplet excited state (T1), TDDFT predicts the shift of the emis-

sion lines for all four complexes to nearly the same value with calculated 0←0 triplet emission
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7 Highly luminescent gold(III) pincer complexes

Table 7.2: First triplet excitation T1 and most intense triplet excitation Tint in the energetic
range between S1 and T1 for gold complexes at the optimized T1 geometries. Ex-
citation energies of triplets are given at their center of mass. Oscillator strengths f
and electric dipole radiative lifetime τ are taken from the most intense component.

(a)

2c TD-PBE0 1 2 3 4

T1/eV (nm) 2.02 (615) 2.02 (613) 1.93 (641) 1.92 (645)

f1/a.u. 3.132×10−6 2.637×10−6 7.189×10−6 4.991×10−6

τ1/µs 1809 2139 858 1249

Tint/eV (nm) 2.81 (441) 2.81 (441) 3.06 (405) 3.05 (406)

fint/a.u. 7.599×10−4 4.132×10−4 3.448×10−4 1.519×10−4

τint/µs 3.8 7.1 7.1 16.3

(b)

2c evGW/BSE 1 2 3 4

T1/eV (nm) 2.56 (484) 2.48 (499) 2.35 (528) 2.32 (535)

f1/a.u. 1.183×10−8 7.561×10−8 1.382×10−5 7.474×10−6

τ1/µs 297192 49423 303 574

Tint/eV (nm) 3.27 (379) 3.08 (403) 3.33 (373) 3.29 (377)

fint/a.u. 4.626×10−3 4.216×10−4 6.377×10−5 7.402×10−5

τint/µs 0.5 5.8 32.6 28.8

energies of 615 nm/2.02 eV (1), 613 nm/2.02 eV (2), 641 nm/1.93 eV (3) and 645 nm/1.92 eV

(4), respectively (Table 7.2a). This is in close resemblance of experimental findings of nearly

identical phosphorescence spectra for all complexes. The evGW/BSE emission energies are

further blueshifted and fail to predict the position of the peaks well (Table 7.2b). However,

predicted oscillator strengths and transition probabilities of the singlet–triplet excitations are

underestimated within the TDDFT framework and improved within the GW/BSE scheme. The

evGW/BSE lifetimes roughly resemble the trend of the experimentally observed lifetimes in Ta-

ble 7.1, though in terms of absolute values, differences of up to an order of magnitude remain

for complexes 3 and 4. An NTO analysis reveals that both T1 excitations listed in Table 7.2a

and Table 7.2b are pure intra-ligand (IL) excitations, as described previously. And the π orbital

of the emissive π ← π∗ 3IL state is almost exclusively centered at the (bi)phenyl unit of the

respective pincer ligand (Figure 7.8) .
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complex hole NTO particle NTO

1

2

3

4

Figure 7.8: Dominating occupied (blue/yellow) and virtual (red/white) natural transition or-
bitals (NTOs, iso-value: ±0.02a−3/2

0 ) of the lowest triplet excitation calculated at
PBE0 evGW-BSE/def2-TZVP level. Hydrogen atoms are omitted for clarity.

Even though there is good agreement between the predicted and observed spectra, the quan-

tum yield needs further investigation, as the difference between the PhCC and C6F5-ligated

systems cannot be explained by the emission spectra alone. A main difference between these

complexes is given by their ability to rotate about the Au-C axis. For the phenylethynyl com-

plexes 1 and 3, rotational barriers of only 0.8 kJ/mol and 1.5 kJ/mol were obtained, and thus a

rapid rotation of the ligand at room temperature is assumed. However, due to steric hindrance,

no rotation is observed for the bulkier pentafluorophenyl ligand, and a stable transition-state
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7 Highly luminescent gold(III) pincer complexes

geometry could not be located. In the nearly coplanar transition-state geometry of complexes 1

and 3, the first triplet excited state changes its character from intra- (IL) to inter-ligand charge-

transfer (LL′CT, Figure 7.9), which allows for an efficient pathway to release the excess energy

of the excited state, suppressing the phosphorescence of complexes 1 and 3. This is also con-

firmed by the higher oscillator strengths and shorter radiative lifetimes as shown in Table 7.4.

In the tilted geometry, this LL′CT state is also present, but only as a higher-lying excited state.

Therefore, for the bulkier C6F5 ligand, this non-radiative relaxation pathway is closed as the

overlap between the π systems is never sufficiently high at any reasonable geometry to yield a

significant transition dipole moment.

Table 7.4: First triplet excitation T1 and most intense triplet excitation Tint in the energetic
range between S1 and T1 for gold complexes at the optimized transition-state (TS)
geometries. Excitation energies of triplets are given at their center of mass. Oscil-
lator strengths f and electric dipole radiative lifetime τ are taken from the most in-
tense component.

2c TD-PBE0 2c evGW /BSE

1 3 1 3

T1/eV (nm) 2.22 (557) 1.93 (641) 2.70 (460) 2.35 (527)

f1/a.u. 3.271×10−5 9.793×10−6 1.168×10−7 2.332×10−5

τ1/µs 142 630 27167 179

Tint/eV (nm) 2.83 (438) 3.05 (406) 3.30 (375) 3.42 (363)

fint/a.u. 4.250×10−3 4.315×10−3 9.939×10−4 2.828×10−4

τint/µs 0.7 0.6 2.1 7.0

Hence, an unhindered rotating π system suppresses phosphorescence. But even for the PhCC

complexes, the overall transition probability is still not high in the coplanar configuration, ex-

plaining why only diminished emission quantum yields are observed instead of full quench-

ing. The difference between magnitudes of transition dipole moment for tilted (LL′CT: A′′)

and coplanar geometry (LL′CT: A′) nicely corresponds to a qualitative picture based on group

theory considerations.

7.5 Conclusion

In summary, the photophysical properties of four different highly phosphorescent gold(III)

pincer complexes were investigated by one- and two-component TDDFT and GW/BSE calcula-

tions. The non-palindromic (C^C^D) pincer motifs with pyridine (D = N) and imidazolium (D
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complex hole NTO particle NTO

1

3

Figure 7.9: Dominating occupied (blue/yellow) and virtual (red/white) natural transition or-
bitals (NTOs, iso-value: ±0.02a−3/2

0 ) of the lowest triplet excitation of the coplanar
transition state calculated at PBE0 evGW-BSE/def2-TZVP level. Hydrogen atoms
are omitted for clarity.

= C′) substituents have shown outstanding electronic properties compared to the palindromic

(C^N^C) congeners. A strong ligand field splitting is reflected in blue shifted absorptions and

high emission quantum yields in solution at room temperature. Interestingly, the tilted pheny-

lacetylene or pentafluorophenyl ligands have almost no effect on either the absorption or the

emission profiles. However, they do affect the quantum yields, and the C6F5 substituted sys-

tems phosphoresce more efficiently than the PhCC analogues. This is nicely explained by the

non-radiative relaxation pathways via a coplanar transition state, which is also supported by

the group theory considerations. Thus, the quantum chemical calculations successfully clarify

the electronic influence of the non-palindromic pincer ligand and the non-radiative relaxation

pathways of the phenylacetylene ligand. And the combined experimental and theoretical re-

sults provide a basis for further investigations on systematically tuning the chemical and pho-

tophysical properties of the pincer complexes with different functional groups in the pincer

moieties.

79





8 Bimetallic gold(I) amidinate complexes as model
systems for investigation of photophysical
properties

8.1 Introduction

The most prominent metallophilic interaction is the interaction between gold atoms, which

has been coined as aurophilicity. The strength of aurophilic interactions correlates with the

intermetallic distance, and the cooperative effects are important for the luminescence proper-

ties. On the other hand, the correlation between the luminescence and the arrangement of the

metal atoms is not yet fully understood due to limitations of theoretical methods, synthesis

procedure and spectroscopic experiment. Therefore, it makes sense to first build up a series of

simple model bimetallic gold complexes with aurophilic interaction, followed by a systematic

investigation of the luminescence properties in both gas phase and solid state. Within this li-

brary, ligands that can be easily altered in terms of their electronic and steric properties will be

used. Hence, by slightly modifying the substituent of the ligand, the effects of the ligand on

the photophysical properties can be studied in a systematic way.

Amidinates are good candidates as anionic bridging ligands for this purpose, since the sub-

stituents on the nitrogen atoms as well as on the ligand backbones can be varied in a wide range

with moderate synthetic work. The amidinates ligands coordinate to Au(I) ions in a bridging

mode and bring the metal ions close together, giving rise to short Au· · ·Au distances. The two

gold atoms are coplanar with the central carbon and two nitrogen atoms of both amidinate

ligands (Figure 8.1). By introducing aromatic groups with electron donating and withdrawing

substituents in para position, the electronic influence of the ligand on the photophysical proper-

ties can be investigated. And by introducing aromatic groups with bulky substituents in ortho

position, the steric demand of the amidinate can be varied. By combining the synthesis, the

spectroscopic data and the quantum chemical calculation results, it is hoped to push the un-

derstanding of the influence of aurophilic interaction on the luminescence properties further.
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8 Bimetallic gold(I) amidinate complexes as model systems for investigation of photophysical properties

Figure 8.1: Structures of the bimetallic gold(I) amidinate model systems.

8.2 Structural examination and geometry optimization

Figure 8.1 shows the eight model compounds that will be investigated in this work. The steric

modification includes the isopropyl group (complex 3), and the electronic modification in-

cludes the electron-donating methyl (complex 1), phenyl (complex 8), methoxy (complex 4),

methylthio (complex 6) groups, and the electron-withdrawing methoxycarbonyl (complex 5)

and bromo (complex 7) groups.
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8.2 Structural examination and geometry optimization

In the solid state structures, the intermetallic Au· · ·Au distances range from 2.711 to 2.738 Å,

which are rather similar for different systems (Table 8.1). The Au· · ·Au distances are all much

shorter than twice the van der Waals radius of gold (3.32 Å) [81], indicating the prominent au-

rophilic interactions. In the quantum chemical calculation, all geometries were optimized in Ci

symmetry at the PBE0-D3(BJ)/def2-TZVP level of theory except for complex 3 (in C1 symme-

try) and complex 7 (in C2 symmetry). The ground-state (S0) geometries are in good agreement

with the X-ray diffraction analyses, only featuring slightly longer Au· · ·Au distances (around

2.751 Å), which are extremely similar for all complexes.

Table 8.1: Intermetallic Au· · ·Au distances based on the X-ray diffraction analyses (XRD) and
quantum chemical calculations (DFT).

r(Au· · ·Au)/Å 1 2 3 4 5 6 7 8

XRD 2.727 2.711 2.738 2.714 2.719 n.a. 2.720 2.737

DFT 2.753 2.753 2.746 2.752 2.751 2.751 2.751 2.752

The two-body dispersion energies, which are closely related to the distances, are presented

in Table 8.2. It can be seen that though the dispersion energies for the ligands vary substantially

among different complexes, they remain the same for the metal core. This is easy to understand

since the Au–Au terms are rather small or even neglectable compared to the L–L terms. There-

fore, the steric or electronic modifications on the ligands have almost no effect on the Au· · ·Au

distances. Moreover, the partial charges of the gold centers are calculated via a natural popula-

tion analysis (NPA), which gives pretty much the same results for all the complexes (Table 8.3).

This further confirms that the electron donating or withdrawing substituents on the ligands

have rather minor effects on the electronic state of the gold atoms.

Table 8.2: Two-body dispersion energies for the metal core (Au–Au) and the ligands (L–L).

Edisp/kcal 1 2 3 4 5 6 7 8

Au–Au -0.941 -0.941 -0.941 -0.941 -0.941 -0.941 -0.941 -0.941

L–L -63.030 -55.705 -100.861 -65.173 -71.816 -71.348 -61.756 -91.225
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Table 8.3: Calculated partial charges of Au atoms based on a natural population analysis
(NPA).

partial charge/e 1 2 3 4 5 6 7 8

Au 0.498 0.502 0.514 0.494 0.510 0.498 0.502 0.502

8.3 Excited state calculations at the S0 geometry

At the ground-state geometries, the absorption spectra were calculated with CD-evGW/BSE

employing the PBE0 functional and def2-TZVP basis set, and the predicted spectra are dis-

played in Figure 8.2.

Figure 8.2: Absorption spectra (FWHM = 0.3 eV) of complexes 1–8 calculated using PBE0
evGW-BSE/def2-TZVP at the optimized S0 geometries.

The three alkyl substituted complexes 1, 2 and 3 exhibit very similar absorption profile (red,

orange and yellow lines). For complexes 1 and 2, the absorption peak at 240 nm and 239

nm originates from two degenerate excited states with metal-to-ligand charge-transfer (MLCT)

character, and the para-substituted complex 1 shows a slightly higher absorption intensity. Af-

ter introducing bulkier isopropyl groups, the predicted absorption spectrum of complex 3 is

slightly blueshifted (235 nm) with decreased intensity.
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8.3 Excited state calculations at the S0 geometry

The introduction of the electron donating methoxy groups does not alter the absorption pro-

file of complex 4 (green line) obviously, only resulting in slightly higher intensity of the MLCT

peak centered at 241 nm. However, when methoxy groups are replaced by methylthio groups,

significant redshift (263 nm) and increased intensity is observed in the predicted absorption

spectrum of complex 6 (cyan line). On the other hand, after introducing the electron withdraw-

ing methoxycarbonyl and bromo groups, the predicted absorption spectra of complex 5 (blue

line) and complex 7 (violet line) feature a broad MLCT absorption band centered at 270 nm and

246 nm, respectively. Interestingly, the phenyl substituted complex 8 shows the most redshifted

absorption peak (272 nm) with the largest intensity (black line).

The transition density plots for the MLCT transitions in a few selected complexes are pre-

sented in Figure 8.3. The electron donating and withdrawing properties of the substituents are

reflected in the change of electron density. However, the charge-transfer from the gold cen-

ter to the aromatic groups of the amidinate ligands does not obviously differ, and is actually

quite similar among all the complexes. Therefore, the electronic effects of the ligands on the

absorption properties are very limited.

Figure 8.3: Transition density plots for the MLCT absorption bands of complexes 2, 5, 6 and
8 (isovalue: ±0.0015a−3

0 , all hydrogen atoms are omitted for clarity). Green repre-
sents a gain of electron density whereas orange represents a loss of electron den-
sity.

85
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8.4 Two-component excited state calculations at the T1 geometry

The optimized structure of the first triplet excited state (T1) removes the coplanarity of the

ground-state geometry. The central carbon atom of one amidinate ligand is located out of the

Au2N4 plane. The phenyl substituted complex 8 is the only exception, where the coplanarity

of two gold atoms with the central carbon and two nitrogen atoms of both amidinate ligands is

better retained.

At the optimized T1 geometries, two-component (2c) CD-evGW/BSE calculations using the

dhf-TZVP-2c basis set were performed to investigate luminescence properties. Note that for

complex 8, the dhf-SV(P)-2c basis set was used for all atoms in the para-substituted phenyl

rings in order to facilitate the computation. The predicted spectra are displayed in Figure 8.4.

For complexes 1–7, the typical MLCT peak in the visible range is now split into two distinct

(shoulder) peaks, and the high-energy peak consists of one component of the second triplet

excited state (T2), which starts to gain intensity from strong mixing with the singlet states.

This is also the most intense triplet excitation in the energetic range between S1 and T1. The

phenyl substituted complex 8 shows no MLCT peak in the visible range, only a high-intensity

peak in the UV region, which is assigned to ligand-centered transitions. This could be related

to the structure, since complex 8 possesses a slightly different T1 geometry from all the other

complexes.

Figure 8.4: Emission spectra (FWHM = 0.2 eV) of complexes 1–8 calculated using PBE0 evGW-
BSE/dhf-TZVP-2c at the optimized T1 geometries.
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8.4 Two-component excited state calculations at the T1 geometry

Table 8.4: First and second triplet excitations T1 and T2 for gold complexes 1–7 at the opti-
mized T1 geometries. Excitation energies of triplets are given at their center of mass.
Oscillator strengths f and electric dipole radiative lifetime τ are taken from the most
intense component.

1 2 3 4

T1/eV (nm) 1.93 (641) 1.99 (624) 2.25 (550) 1.98 (625)

f1/a.u. 4.274×10−5 4.460×10−5 1.885×10−5 3.059×10−5

τ1/µs 144 131 241 191

T2/eV (nm) 2.91 (426) 2.95 (420) 3.09 (401) 3.05 (407)

f2/a.u. 4.571×10−2 4.728×10−2 1.493×10−2 1.241×10−2

τ2/µs 0.058 0.055 0.158 0.199

5 6 7

T1/eV (nm) 2.18 (569) 2.03 (612) 1.99 (623)

f1/a.u. 1.142×10−4 6.224×10−5 4.584×10−5

τ1/µs 42.5 90.1 127

T2/eV (nm) 3.01 (412) 2.95 (420) 2.91 (423)

f2/a.u. 1.284×10−1 4.378×10−2 6.764×10−2

τ2/µs 0.019 0.060 0.039

The calculated triplet excitation energies as well as oscillator strengths and lifetimes (in the

mixed velocity/length representation) are listed in Table 8.4. All complexes turn out to present

similar lifetimes in the range of tens or few hundreds of microseconds/nanoseconds. Unfortu-

nately, the experimental photophysical data are not available yet, and hence a direct compari-

son between measured and predicted values is not possible at the moment.

An NTO analysis further confirms the MLCT character of the triplet excited states for com-

plexes 1–7. The NTOs are quite similar among all the complexes, and those of complex 2 are

presented in Figure 8.5 as an example. Due to the distorted symmetry, the electron density is

not evenly distributed on two amidinate ligands anymore, but exclusively centered on one side

where the central carbon atom is located out of the Au2N4 plane.
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(a) T1

(b) T2

Figure 8.5: Dominating occupied (blue/yellow) and virtual (red/white) natural transition or-
bitals (NTOs, iso-value: ±0.04a−3/2

0 ) of the (a) first triplet excitation T1 and (b) sec-
ond triplet excitation T2 of complex 2. All hydrogen atoms are omitted for clarity.

8.5 Conclusion

In summary, a series of simple bimetallic gold(I) amidinate model complexes with various

steric and electronic modifications on the ligands have been investigated theoretically. Both

X-ray diffraction analyses and theoretical calculations show that the Au· · ·Au distances in all

complexes are very similar, indicating that different substituents on the amidinate ligands have

little influence on bringing the metal atoms together or pulling them apart. Likewise, the cal-

culated absorption and emission spectra exhibit similar MLCT character among the complexes

bearing different electron donating or withdrawing groups. This further confirms that the ef-

fects of the amidinate ligands on the electronic state of the gold(I) atoms are rather minor.

Therefore, suggestions for further synthetic work would be that instead of modifying the lig-

and structures of the dinuclear gold(I) amidinate complexes, substituents should be directly

bonded to the metal core via oxidative-addition reaction, which can lead to significant changes

in the Au· · ·Au distances. For example, in Ref. 111, the oxidative addition of benzoyl peroxide

to a bimetallic gold(I) amidinate complex (same as 2 in this work) resulted in the first stable
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bimetallic Au(II) amidinate complex possessing Au–O bonds, which has the shortest Au· · ·Au

distance (2.48 Å) known for Au(II) amidinate complex. Such gold(II) amidinate complexes are

probably better models for investigating the electronic influence of structural modifications on

the photophysical properties.
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9 Summary

In this thesis, the optical properties of mono- and oligonuclear transition metal complexes were

investigated theoretically. Coinage metal (Cu, Ag, Au) complexes have attracted increasing

chemical interest for their potential applications in optical devices such as efficient emitters for

new OLED materials and photocatalysis for small-molecule activation. The determination of

important experimental and theoretical spectroscopic data is crucial for the characterization

of their photoresponse, including absorption spectra and assignment of transitions, quantum

yields and lifetimes of electronically excited states, correlation between ground- and excited-

state molecular structures and optical properties. Theoretical spectroscopy can provide more

insight into the nature of electronic transitions, help to interpret the experimental UV/Vis ab-

sorption and luminescence spectra, and give a hint for future design of model systems. Never-

theless, challenges are that charge-transfer excitations play a critical role in the transition metal

complexes, and a balance between accuracy and efficiency should be achieved for large sys-

tems of hundreds of atoms. The time-dependent density functional theory (TDDFT) has been

the most popular ab initio method for excited-state calculations in large complexes due to its

favorable scaling with respect to system size. However, charge-transfer states are particularly

problematic for standard functionals. Therefore, an equally efficient computational protocol in

the framework of the Bethe–Salpeter equation (BSE) was employed and validated in this work.

First of all, the performance of BSE with different GW starting points has been extensively

assessed regarding singlet and triplet valence excited states as well as charge-transfer states of

small to medium-sized organic molecules. The partially self-consistent GW schemes, namely

eigenvalue-only self-consistent GW (evGW) and quasiparticle self-consistent GW (qsGW) have

shown comparable accuracy to TDDFT in the case of valence states. The systematic under-

estimation of triplet excitation energies of GW/BSE, which is also a well-known problem

for TDDFT, can be easily cured by a hybrid BSE/TDDFT ansatz, namely correlation-kernel-

augmented BSE (cBSE). For the charge-transfer states, the GW/BSE results are in very good

agreement with the reference values, which is a remarkable advantage over TDDFT. The CPU

times for the TDDFT and BSE methods are of the same order of magnitude due to the same

scaling. For the GW part, the CPU times for the qsGW calculations are an order of magnitude

larger than for the evGW case since many more iterations are needed to converge the calcula-
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tions. Given the fact that no significant advantage of qsGW in comparison with evGW has been

observed, the latter is recommended for real-world applications of the BSE formalism.

Furthermore, the low-scaling AC-GW and CD-GW variants have made calculations feasible

for large systems. Both schemes were applied to a triangular silver(I) hydride complex with

hundreds of atoms and thousands of basis functions, and the MLCT absorption peaks from the

experimental spectra were excellently reproduced in the calculations. In fact, CD-GW is equiv-

alent to AC-GW when only HOMO and LUMO are optimized. If more orbitals are included in

the calculation, then the resulting excitation energies will more closely resemble the standard

GW that computes the quasiparticle energies for all orbital levels, and also the computation will

be more demanding. Nevertheless, it has been shown that when 10 highest occupied and 10

lowest unoccupied orbitals are optimized, the convergence of calculated excitation energies are

nearly reached. Therefore, in general, it is more than enough to optimize 10 highest occupied

and 10 lowest unoccupied orbitals for a CD-GW calculation. This scheme was further applied

to a tetranuclear silver(I) iodide complex, and the predicted (X+M)LCT absorption band of the

cubane-like isomer was in good agreement with the experiment too. Besides, according to the

calculations, a chair-like isomer also exists, exhibiting a slightly blueshifted (X+M)LCT peak.

For a series of heteroleptic copper(I) complexes with chelating diimine and diphosphine

ligands, the absorption spectra and excited-state structures were studied. Complexes with a

charged [Cu(NN)(PP)] core exhibit prominent MLCT absorptions in the relatively low-energy

visible region, which is further redshifted for the dinuclear species as a result of cooperative

effect. This property has been observed in both experimental and theoretical spectroscopy,

making them very attractive candidates for new photosensitizers based on earth-abundant

metals. For the complexes with a neutral core, the LC transitions are dominating at the equi-

librium structure. The excited state flattening distortions of the tetrahedral [Cu(NN)(PP)] core

are rather minor, which is favorable for their potential use as photosensitizer in solar energy

conversion.

The photophysical properties of a series of highly luminescent gold(III) pincer complexes

were investigated by one- and two-component computations. The electronic influence of the

non-palindromic pincer ligand and the non-radiative relaxation pathways of the phenylacety-

lene ligand have been successfully clarified by the calculations, which in combination with the

experimental results provide a basis for further studies on systematically tuning the photo-

physical properties with different functional groups in the pincer moieties. Likewise, a series

of bimetallic gold(I) amidinate model complexes were investigated regarding the effects of dif-

ferent ligands on the photophysical properties. The calculated absorption and emission spectra

turned out to exhibit similar MLCT feature among the complexes with various steric and elec-

tronic substituents on the ligands, indicating that the effects of the amidinate ligands on the

92



9 Summary

electronic state of the gold(I) centers are rather minor. Therefore, it is suggested that structural

modifications should be made directly on the gold atoms.

Overall, the CD-evGW/BSE method has presented a balanced description for all the com-

plexes involved in this thesis, and thus its applicability to d8/d10 transition metal complexes

has been successfully validated. In contrast, the TDDFT method employing the CAM-B3LYP

functional, which adds the long-range correction in order to fix the charge-transfer prob-

lems for standard functionals, tends to overestimate the excitation energies and yield strongly

blueshifted absorption spectra in some cases. Future studies include further refinement of ex-

perimental and theoretical approaches towards excited-state structure determination, lifetimes

of electronically excited states and relaxation pathways, and search of suitable model systems

for interpretation of cooperative effects as well as correlations between molecular structure and

photophysical properties. Combined efforts from both experiment and theory are essential for

a better understanding of excited state transitions and optical properties of transition metal

complexes.
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A Appendix

A.1 Diagrammatic representation

Hedin’s equations are five coupled integral equations

Σ(1,2) = i
∫

d(34)G(1,3)Γ(3,4;2)W (4,1+) (A.1)

G(1,2) = G0(1,2)+
∫

d(34)G0(1,3)Σ(3,4)G(4,2) (A.2)

Γ(1,2;3) = δ (1,2)δ (1,3)+
∫

d(4567)
δΣ(1,2)
δG(4,5)

G(4,6)Γ(6,7;3)G(7,5) (A.3)

P(1,2) =−i
∫

d(34)G(1,3)Γ(3,4;2)G(4,1+) (A.4)

W (1,2) = υ(1,2)+
∫

d(34)υ(1,3)P(3,4)W (4,2) (A.5)

A diagrammatic representation of Hedin’s equations is shown in Fig. A.1. The Green’s func-

tions G0 and G are denoted by single and double straight lines with arrows, respectively. The

bare and screened Coulomb interaction V and W are denoted by single and double wiggly lines,

respectively.

And for the Bethe–Salpeter equation

L(1,2;3,4) = L0(1,2;3,4)+
∫

d(5678)L0(1,6;3,5)K(5,8;6,7)L(7,2;8,4) (A.6)

K(5,6,7,8) = δ (5,6)δ (7,8)υ(5,7)−δ (5,7)δ (6,8)W (5,6) (A.7)
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Figure A.1: Diagrammatic representation of Hedin’s equations

the diagrammatic representation is shown in Fig. A.2.

Figure A.2: Diagrammatic representation of the Bethe–Salpeter equation
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