
CAD2Real: Deep learning with domain
randomization of CAD data for 3D pose

estimation of electronic control unit housings

Simon Bäuerle1,2, Jonas Barth2, Elton Tavares de Menezes2,
Andreas Steimer2, Ralf Mikut1

1 Institute for Automation and Applied Informatics,
Karlsruhe Institute of Technology, Karlsruhe, Germany

2 Robert Bosch GmbH
E-Mail: {simon.baeuerle, ralf.mikut}@kit.edu

Abstract

Electronic control units (ECUs) are essential for many automobile components,
e.g. engine, anti-lock braking system (ABS), steering and airbags. For some
products, the 3D pose of each single ECU needs to be determined during
series production. Deep learning approaches can not easily be applied to this
problem, because labeled training data is not available in sufficient numbers.
Thus, we train state-of-the-art artificial neural networks (ANNs) on purely
synthetic training data, which is automatically created from a single CAD file.
By randomizing parameters during rendering of training images, we enable
inference on RGB images of a real sample part. In contrast to classic image
processing approaches, this data-driven approach poses only few requirements
regarding the measurement setup and transfers to related use cases with little
development effort.

Proc. 30. Workshop Computational Intelligence, Berlin, 26.-27.11.2020 33



1 Introduction

An exemplary use case for our approach is the 3D pose estimation of electronic
control units (ECUs). The pose of each individual ECU needs to be detected
robustly to enable an automated application of sealing materials. Generally,
automated image processing is widely used in industrial series production [1,
2]. A commonly used method to detect ECU poses is by applying classic image
processing. In some cases, these algorithms rely on fiducial marks imprinted on
parts themselves. Setting up this image processing pipeline needs to be done by
experts individually for each new product. Substituting classic image proces-
sing by fully automatically designed deep learning on our task can potentially
save a significant amount of development effort for new product designs. Furt-
hermore, ANNs generally impose much lower requirements regarding camera
resolution and surrounding conditions, enabling simpler measurement setups.
Adding fiducial markers in industrial applications “may be undesirable” [10].
Dropping the need for fiducial markers prevents changes on the product design,
which would involve product engineers. However, deep state-of-the-art ANN
architectures require a large number of labeled images, which are usually not
available for ECUs. In contrast to real-world images, rendered CAD images are
a widely available data source in industrial settings. A network trained solely
on CAD data cannot be directly applied to real images though, since those
are different with respect to pixel color values (see [3]). This domain gap is
generally present on many different settings that involve ANNs. Techniques
to overcome this domain gap are called domain adaptation and are subject
to current research (e.g. [4, 3]). Instead of adapting the ANN to a different
domain, an approach can also include adaptation of the domain itself: Images
from the training domain can be randomized to such an extent, that the real-
world domain is "just another variation" [5]. This method is called domain
randomization and has been tested successfully on other use-cases such as
indoor drone flight [6] or robotic grasping and manipulation [5, 7, 8, 9, 10].
Sundermeyer et al. are working on pose estimation by using a denoising
autoencoder architecture [11, 12]. In contrast to Sundermeyer et al., we are
using state-of-the-art ANN architectures and evaluate different randomization
parameters. Tremblay et al., Khirodkar et al. and Hinterstoisser et al. are using
domain randomization for object detection [13, 14, 15]. Khirodkar et al. focus

34 Proc. 30. Workshop Computational Intelligence, Berlin, 26.-27.11.2020



on the use case of detecting cars and also includes a pose estimation. Domain
randomization is not limited to image data however. For example, Peng et al.
have randomized the dynamic properties of their simulation model to transfer
a robotic control algorithm trained by deep reinforcement learning to the real
world [16].

In contrast to our setup, pose estimation approaches like BB8 [17], SSD-6D
[18] or PoseCNN [19] employ further pose refinement to improve accuracy
[20, 21]. Tekin et al. [20] and Do et al. [21] use standardized datasets, which
does not target the domain gap that is widely present in real-world use cases.
Kleeberger et al. also use domain randomization for pose estimation, but uses
depth data instead of RGB images [22].

The generally very promising results on related use cases motivate the deploy-
ment of deep ANNs for pose estimation of ECUs. In Section 2 we outline
our approach in a general way. This description is made on an abstract level
without implementation details. It serves as a template, which can easily be
applied to similar use cases. Subsequently, the experimental setup as described
in Section 3 includes the details. In contrast to the previous section, we set out
specific implementation aspects. A detailed overview is given e.g. over the pa-
rameters that we randomize and the way we set up the training datasets. Results
for our use case are presented in Section 4. Performance during inference is
listed for the different training datasets. We include an estimation of how much
errors differ from their mean values. In Section 5 we discuss the results. We
analyze the effects of different randomizations of training data. Furthermore,
we compare this data-driven approach against classic image processing setups,
with a focus on the possible impact on future manufacturing setups. Eventually,
in Section 6 the most relevant aspects are summarized and a detailed outlook
onto further research opportunities is given.

2 Methods

Figure 1 gives an overview of our approach. To cope with the domain gap be-
tween simulated and real-world images we use domain randomization. Unlike
domain adaptation methods, domain randomization does not adapt the ANN

Proc. 30. Workshop Computational Intelligence, Berlin, 26.-27.11.2020 35



Figure 1: Overview of our approach

to a different domain. Instead, it rather adapts the training domain itself. Our
training domain consists of CAD images, which are rendered with arbitrary
settings. We generate different datasets of synthetic images automatically. We
train state-of-the-art ANNs on synthetic datasets and perform inference on real-
world images.

2.1 Domain randomization

We created a generic pipeline for applying domain randomization as depicted
in the upper left area of Figure 1 (our specific implementation details are outli-
ned in Section 3). CAD files are loaded into a 3D rendering software suite. A
common exchange format is used for transferring CAD files. Geometric featu-
res are not changed in any way. Within the 3D renderer, several randomizations
are applied. Specifically, we randomize shadows, translations and gray tones.
Those are all parameters, which are not causally connected to the labels. For
example, gray tones have no causal connection to rotation angles and must not
affect inference. The pose of the model is set to a random angle configuration.
An arbitrary number of angle configurations with individual randomizations
is rendered and output to image files. Randomization parameters and rotation
angles (=labels) are set via a scripting interface. Datasets with different rando-
mization parameters can be created in any desired number automatically. This

36 Proc. 30. Workshop Computational Intelligence, Berlin, 26.-27.11.2020



kind of domain randomization is used to close the domain gap from training on
CAD data to inference on real-world data (CAD2Real), saving the need for any
labelled real-world images. Once finalized, this setup can be used for different
products with minimum effort by replacing the CAD model and rerunning the
script. Images for our baseline dataset CAD_unchanged are created with this
method as well by simply omitting the randomizations.

2.2 ANN inference on real-world images

Real-world images are automatically preprocessed and then fed into the trained
ANN. As shown in the lower part of Figure 1, the ANN infers all three rotation
angles directly from real-world RGB images. We use a fully automatized
preprocessing step to replace the background with a uniform gray tone.

3 Experimental Setup

We described our approach generically in Section 2. Here, we provide specific
implementation details. We outline the creation of our different datasets used
for training and during inference. Details regarding the ANN are also provided
below.

3.1 Datasets

We work with two general types of datasets. On the one hand we have different
training datasets. Those are solely based on CAD data and generated auto-
matically. On the other hand we use experimental data for testing purposes.
This experimental data is captured from real product samples in a laboratory
setting.

Proc. 30. Workshop Computational Intelligence, Berlin, 26.-27.11.2020 37



Table 1: Parameters and their respective ranges

Parameter Range

X-/y-angle [-15 o, 15 o]

Z-angle [-45 o, 45 o]

Part translations [-1.5 cm, 1.5 cm]

Camera translations [-1.5 cm, 1.5 cm]

Gray tones [0.05, 0.8]
x ∈ [-1 m, 1 m]

Light positions y ∈ [-1 m, 1 m]
z = f(x, y)

3.1.1 Training sets

For creation of our training datasets we use the 3D rendering software Blender.
Blender is open-source software and freely available. It includes a powerful
Python API that enables control via automatic scripts. The image generation
pipeline is generally depicted in Figure 1. We import the CAD model as STEP-
file, a data-format commonly used for CAD data exchange. The geometry
itself is not modified. Rotations are applied around the x-/y- and z-axis within
a range of -15 to 15 degrees for the x- and y-axis and a range of -45 to 45
degrees for the z-axis. The rotation angles serve as labels and are therefore
stored for each image created. Random translations of the model along the x-
and y-axis are optionally applied within a range of -1.5 cm and 1.5 cm. Random
translations of the camera along the z-axis are optionally applied within a range
of -1.5 cm to 1.5 cm. One light source is placed high above the model, emitting
uniform lighting. Two additional light sources are optionally included as well.
Those are placed randomly above the model, generating random shadows. The
color of the model itself is randomized in uniform tones of gray. We are aware
that the introduction of additional light sources also makes the part appear
brighter. Therefore, we try to limit this effect by keeping the distance of both
additional lights to the part on a constant value. For each randomly drawn x-
and y-coordinate the z-coordinate is calculated so that the distance to the part

38 Proc. 30. Workshop Computational Intelligence, Berlin, 26.-27.11.2020



is always equal, effectively placing both lights on an imaginary sphere. All
parameters with respective ranges are listed in Table 1.

We are using the training sets described below. During evaluation we compare
our domain randomization approach against two datasets:

• CAD_unchanged: Images are labeled with rotation angles around
x-/y- and z-axis. There are no further modifications made.

• CAD_augmented: We take the images from the set CAD_unchanged and
apply random modifications. We modify brightness, translations and
zoom. This data augmentation is applied to already rendered images.
Data augmentation of this kind is usually used when not enough labeled
training data samples are available.

The following datasets include domain randomization. To test the influence of
different parameters, we modify the extent of our randomization. Samples for
each dataset are shown in Figure 2.

• Dataset Rand_full includes all randomizations described above.

• Dataset Rand_noShadows is the same as Rand_full except for the two
additional light sources. Thus, no random shadows are included.

• Dataset Rand_noTranslations is the same as Rand_full except for the
translations of the part and the camera. Part and camera remain at con-
stant positions.

• Dataset Rand_noGraytones is the same as Rand_full except for randomi-
zing the uniform gray tones. Part color is only affected by the position
of both randomly placed lights.

For each dataset described here, we have created 100 000+ training images.

Proc. 30. Workshop Computational Intelligence, Berlin, 26.-27.11.2020 39



(a) CAD_unchanged

(b) CAD_augmented

(c) Rand_full

(d) Rand_noTranslations

(e) Rand_noShadows

(f) Rand_noGraytones

Figure 2: Example images from training datasets

40 Proc. 30. Workshop Computational Intelligence, Berlin, 26.-27.11.2020



Figure 3: Example images from our real-world dataset with green background

3.1.2 Real-world dataset

We outline the creation of our real-world dataset, which is used as test set
during inference. We use a single sample part from an ECU that is already
available during prototype phases (before starting series production). We use
the following laboratory setup: The images are recorded with a common SLR
camera, since there are no specific requirements regarding the camera. Image
resolution is later scaled down during pre-processing to below 300x300 pixels.
The camera is mounted onto a fixed frame with two lighting sources on either
side. The sample part is placed 0.5 m below the camera on a green cardbo-
ard layer. To introduce rotations around the horizontal x- and y-axis we are
using 3D-printed wedges. We use multiple wedges with slopes of 2.5, 5 and
10 degrees. Placing the wedges below our sample introduces the respective
rotations. We recorded 20 different angle configurations, examples are shown
in Figure 3.

3.2 Artificial Neural Network: Training and inference

We use the state-of-the-art architecture InceptionV3 [23], with weights pre-
trained on ImageNet. The architecture including its weights can be imported
within Keras [24] in two lines of code. To adjust to our number of labels we
append a dense layer with three neurons. Pose estimation is sometimes imple-
mented as classification, with a binning of rotation angle intervals. Binning
limits the resolution of angle values to discrete intervals. To avoid this, we

Proc. 30. Workshop Computational Intelligence, Berlin, 26.-27.11.2020 41



opt for using regression as proposed by e.g. Mahendran et al. [25] instead.
We use a linear activation function within the last layer, directly outputting
continuous rotation angles around the x-/y- and z-axis. Each ANN is trained
on a dataset as described above. We train on each dataset with 10 000 randomly
drawn samples for 50 epochs. First runs have shown slightly differing results
when re-drawing the samples and re-starting training. Therefore, we execute
30 independent runs on each dataset. For final evaluation we use error metrics
as described below. The lower area of Figure 1 shows our setup for inference
with the trained ANN. We use preprocessing of the real-world images for
removing the background. Since the images are taken on green background,
preprocessing can be done automatically without much effort.

3.3 Evaluation metrics

In this section we describe the metrics used for evaluation later on. First, we
focus on the evaluation of the training set characteristics (to get an impression
of “which training set is best”). We then also estimate the confidence of
statements that are made on our limited number of real-world images. For
a single test or validation image, an ANN outputs three distinct angle values
ŷi, i ∈ {1,2,3}. These are compared against the corresponding ground truth
angle values yi, i ∈ {1,2,3} by calculating error

ei =‖ ŷi− yi ‖1 . (1)

Each single ANN is evaluated on validation and test data. We merge all angle
values (ŷi and yi) into one vector per dataset (ŷyy and yyy). This is done on
validation and test data separately for each ANN. Errors are then averaged
over all angles and the respective number of images, yielding an mean error
per ANN of

eANN =
1

3N
‖ ŷyy− yyy ‖1 . (2)

42 Proc. 30. Workshop Computational Intelligence, Berlin, 26.-27.11.2020



N is the number of images in either the validation (N = 500) or test set (N = 20).
Since we assess the fitness of the training set characteristics, we calculate the
mean error per training set with

e =
M

∑
j=1

eANN, j, (3)

with M = 30 ANNs for each training dataset. We further calculate the standard
deviation per training set

s =

√√√√ 1
M−1

M

∑
j=1

(eANN, j− e)2. (4)

This yields a standard error of

se =
s√
M
. (5)

We further calculate a margin of error for e. Since our sample size is limited,
we use the Student’s t-distribution instead of the normal distribution. For our
sample size of M = 30 and a confidence level of 99% we calculate the margin
of error for e as

MOE =±tM−1se, (6)

with tM−1 = 2.76. When working with a normal distribution instead, tM−1

would be replaced by zc with a value of 2.58 for the 99% confidence level
(tM−1 converges towards zc for very large sample sizes). The value of tM−1 is
retrieved from a table for the Student’s t-distribution (see e.g. [26], p.206) and
depends on the sample size and the confidence level. For our sample size of
M = 30, we need a t-value that corresponds to M - 1 = 29 degrees of freedom.
The values of the distribution function in the table can be used directly when
working with a one-sided interval. Our two-sided interval gives an estimation
into both directions (upper and lower bound). Therefore, we record t for a value
of 0.995 for the distribution function to account for the two-sided interval. Up
to now, we have mainly looked at how results differ when re-drawing samples
from the training set and retraining the ANN. The limited number of images
within the test set is another factor that might affect our results. For our limited

Proc. 30. Workshop Computational Intelligence, Berlin, 26.-27.11.2020 43



Table 2: Mean error on validation data and real-world data

Training dataset Validation data Real-world data
e [o] e [o]

CAD_unchanged 0.4 ± 0.04 11.7 ± 2.4

CAD_augmented 0.4 ± 0.05 2.5 ± 0.6

Rand_full 0.5 ± 0.06 1.5 ± 0.2
Rand_noTranslations 0.5 ± 0.07 7.7 ± 2.8

Rand_noShadows 0.5 ± 0.1 3.6 ± 0.8

Rand_noGraytones 0.4 ± 0.09 1.2 ± 0.2

amount of real-world samples we take a similar approach as above, but now
on a more isolated scope. For the first ANN trained on dataset Rand_full,
we evaluate the mean error etest for angles around the x-axis on the test set
containing 20 images. This is the same calculation as presented in Equation
(2), but discarding angles around y- and z-axis. For those 20 error values ei we
also calculate the standard deviation

stest =

√
1

N−1

N

∑
i=1

(ei− etest)2 (7)

and the margin of error

MOEtest =±tN−1
stest√
(N)

(8)

with tN−1 = 2.86 for N = 20 and a 99% confidence level.

4 Results

We train 30 ANNs on each of the datasets described in Section 3.1. We evaluate
the mean absolute error and include a margin of error as described in Section
3.3 for test and validation data on each dataset. Results are shown in Table 2.
The outer left column indicates the dataset used during training. We then eva-

44 Proc. 30. Workshop Computational Intelligence, Berlin, 26.-27.11.2020



luate the performance on validation data and real-world data. Validation data
images are from the same domain as the images used during training. Real-
world data is taken from product samples and therefore substantially different.
This is our target domain used for testing. ANNs trained on CAD_unchanged
exhibit the lowest error on the validation set, but insufficient performance on
real-world test images. For CAD_augmented the mean absolute error on real-
world images is lower by a factor of approximately five. Another improvement
by another factor of almost two over CAD_augmented is gained by using
Rand_full: Angles around all axes are inferred with an mean error of 1.5 de-
grees. Rand_full has full randomization applied. For Rand_noTranslations and
Rand_noShadows we note an error-score inbetween CAD_unchanged and
CAD_augmented. Dropping the randomization of translations affects perfor-
mance worse than dropping randomization of shadows. Training on Rand_no-
Graytones gives slightly better results than on Rand_full, but only by a small
margin. Errors on the validation set increase from CAD_unchanged to CAD_-
aug- mented and further rise for the randomized datasets. All randomized
datasets show similar errors on validation data. We now take an isolated look
onto the limited number of real-world samples as described in Section 3.3.
We evaluate the error for rotations around the x-axis only and look at a single
ANN trained on Rand_full. For our 20 real-world samples the ANN inference
has a mean error of 1.6 ± 0.4 degrees. This margin of error is calculated for
a confidence level of 99%. Our experimental setup as described in Section
3.1 has measurement errors which affect the ground truth labels. All results
presented above are naturally limited to measurement tolerances.

5 Discussion

The results presented in Section 4 show a consistent advantage by training on
randomized datasets for our application of pose estimation of ECUs. In the
later part of this section we also discuss the impact of this research direction
on image processing setups in related product applications. But first we look
more closely at the effects of how the datasets were set up. First of all, the
insufficient performance with the dataset CAD_unchanged is not surprising.
In this case, the training images differ a lot from the real-world images. This

Proc. 30. Workshop Computational Intelligence, Berlin, 26.-27.11.2020 45



can be interpreted as a “wide” domain gap, leading to poor transferability from
source domain to target domain. A significantly improved performance on real-
world images is achieved by applying state-of-the-art data augmentation to the
training set. Data augmentation is commonly used to expand the training set
size. This is especially useful when dealing with a limited amount of labeled
training data. We believe that there is a second benefit of data augmentation.
Augmenting training data with changing brightness or translations also incre-
ases the diversity within the training set. Increased diversity of features not
relevant for inference favors transferability from source to target domain. This
effect is exactly the underlying idea of domain randomization. Data augmenta-
tion therefore can be seen as a “light version” of domain randomization. With
full domain randomization applied, inference quality is further increased by
another factor of approximately two. In comparison to data augmentation,
domain randomization introduces even more diversity to the training set. This
time, the introduced diversity goes beyond simply adjusting images. Modifi-
cations of this kind cannot be easily applied to raw images. This is especially
clear for the randomization of shadows. Calculating the position and intensity
of shadows is an integral part during rendering and not easily possible when
working on two-dimensional image data only. Also, translations made within
the renderer lead to different outcomes compared to augmentation by transla-
tions as well. Translations applied during state-of-the-art data augmentation
will not change camera perspective. In contrast, inside the renderer not only
the part position changes, but also the perspective view of the part changes.
Translations in data augmentation therefore are different from those in domain
randomization. However, we believe that the major error reduction is achieved
simply by the fact that additional translations are introduced, no matter whether
perspective changes or not. The poor performance with the dataset Rand_-
noTranslations especially motivates the introduction of translations. To get a
better impression of the different aspects of domain randomizations, in addition
to dropping the added translations in Rand_noTransla- tions we dropped the
shadow randomization in Rand_noShadows and the gray tone randomization in
Rand_noGraytones. The performance with Rand_noShadows is worse compa-
red to Rand_full and CAD_augmented. It seems that shadows and translations
are both relevant factors when dealing with the present domain gap. However,
dropping the randomization of gray tones in Rand_noGraytones has not caused

46 Proc. 30. Workshop Computational Intelligence, Berlin, 26.-27.11.2020



deteriorating performance, but even shows slight improvements compared to
Rand_full. Since we trained 30 different ANNs we do not believe this effect
is caused by chance. A possible explanation is that by randomization of gray
tones many gray tones are outside of a usable scope (e.g. too light or too dark).
This leads to a smaller part of training set being useful for inference, since
some images are “too far off”. Also, we want to mention that the effects of
introducing random shadows and random gray tones overlap in some sense.
Both affect the color of the part at a certain position and are not entirely
independent of each other. In our opinion, the unexpected behavior on the
dataset Rand_noGraytones does not hurt the idea of domain randomization in
general. It rather motivates further studies on the unique effects of different
randomization types. Instead of randomizing gray tones only, e.g. textures
could be introduced as well.

Also, the varying error on the validation set from CAD datasets to randomized
datasets motivates the analysis of different hyperparameters, mainly training
set size and the number of epochs. The most efficient hyperparameters are
generally likely to be different depending on the randomization type and extent.
With domain randomization we desire to cover all aspects during rendering
that make the real-world images different from the CAD images. This does not
mean representing reality in simulation exactly however. For example when
dealing with differing textures of the part in the real-world, applying textu-
res with random noise to the simulation might be sufficient. The successful
application of domain randomization on this use case shows high potential
for future setups of image processing pipelines in series production of ECUs.
The pipeline that we used can easily be transferred to other products. Ot-
her products may be manufactured on different production lines. Subsequent
processing of pose information varies between products or production lines.
To standardize e.g. the naming of parameters on these interfaces and during
further processing steps, an ontology-based approach is useful. Zhou et al.
[27] and Svetashova et al. [28] have applied ontologies to other production
processes successfully. This approach not only helps during technical setup,
but also enables a common understanding of process-specific details across all
involved persons [27, 28]. In contrast to many algorithms of classic image
processing, our pose estimation approach is not bound to specific product

Proc. 30. Workshop Computational Intelligence, Berlin, 26.-27.11.2020 47



features. Further improvements aimed at improving inference accuracy can
also maintain this product-independent aspect. This advantage is based on the
fact, that the features needed for inference are learned by the ANN during
the training process and not manually tuned. This data-driven approach has
the advantage that for a different problem setting only the problem-specific
training data needs to be supplied. We use only data sources that are available
without major effort. With our approach, the problem-specific training data
can be created automatically from a single CAD model file. Once again we
emphasize that training is done on purely synthetic data. Not a single real-
world image is needed during training. We see a high potential for a significant
reduction of development effort in future image processing setups.

6 Summary and Outlook

We have set out to analyze the applicability of domain randomization to our use
case of pose estimation of ECUs. Our goal was to minimize the domain gap
and to deploy an ANN trained solely on synthetic data to real-world images.
We have shown that applying domain randomization exceeds the effect of data
augmentation by a factor of around two. The mean error for inferred rotations
around all three axes is only 1.2 degrees on real-world images. The entire
pipeline for creating randomized training datasets and training the ANN is
fully automatized. The only input needed for creation of all training data is
a single CAD model file, which is readily available for all ECUs. We use
only a state-of-the-art ANN architecture with a minor adjustment regarding the
output dimensionality. Training is done end-to-end, we infer all rotation angles
directly from RGB images. No further depth data is needed. We have analyzed
the application to our use case and motivated further research directions. The
following aspects could make this approach fit for application in production of
ECUs:

48 Proc. 30. Workshop Computational Intelligence, Berlin, 26.-27.11.2020



• We focused on detecting part rotations. For application in series pro-
duction a post-processing step to determine translational degrees of free-
dom needs to be appended. Including the translations directly into the
labels as well might also be a feasible approach for our use case (directly
inferring 6D pose information).

• Our pre-processing currently requires a green-colored background.
Randomizing the backgrounds as done in other use cases [5, 10, 13, 11]
could make our approach feasible for a background containing work-
piece carriers. This would drop the need for using any pre-processing at
all.

• We have provided insights into the effect of different randomizations. To
further improve accuracy, these influences need to be examined in more
detail. Ideally, this simultaneously includes adjustment of hyperparame-
ters for training the ANN as well.

The successful execution of the steps outlined above can reduce the entire
pipeline for 6D pose estimation to solely a state-of-the-art ANN architecture.
These architectures are conveniently available within the Keras library. This
would provide a fully automated pipeline for pose estimation of new ECUs
and similar products.

References

[1] A. Korodi, D. Anitei, A. Boitor, and I. Silea, “Image-processing-based
low-cost fault detection solution for end-of-line ECUs in automotive
manufacturing,” Sensors, vol. 20, no. 12, p. 3520, 2020.

[2] S.-H. Huang and Y.-C. Pan, “Automated visual inspection in the
semiconductor industry: A survey,” Computers in Industry, vol. 66,
pp. 1–10, 2015.

[3] E. R. Tavares de Menezes, “Machine learning and classic image
processing - extraction of 3D information from real-world 2D images

Proc. 30. Workshop Computational Intelligence, Berlin, 26.-27.11.2020 49



of electronic part housings,” Masters thesis, TH Köln University for
Applied Sciences, 2019.

[4] M. Böhland, T. Scherr, A. Bartschat, R. Mikut, and M. Reischl,
“Influence of synthetic label image object properties on GAN supported
segmentation pipelines,” in Proceedings 29th Workshop Computational
Intelligence, pp. 289–305, KIT Scientific Publishing, 2019.

[5] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from si-
mulation to the real world,” in 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 23–30, IEEE, 2017.

[6] F. Sadeghi and S. Levine, “Cad2RL: Real single-image flight without a
single real image,” arXiv preprint 1611.04201, 2016.

[7] J. Tremblay, T. To, B. Sundaralingam, Y. Xiang, D. Fox, and
S. Birchfield, “Deep object pose estimation for semantic robotic
grasping of household objects,” arXiv preprint 1809.10790, 2018.

[8] I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew,
A. Petron, A. Paino, M. Plappert, G. Powell, R. Ribas, and others,
“Solving rubik’s cube with a robot hand,” arXiv preprint 1910.07113,
2019.

[9] S. Grün, S. Höninger, P. M. Scheikl, B. Hein, and T. Kröger, “Evaluation
of domain randomization techniques for transfer learning,” in 2019 19th
International Conference on Advanced Robotics (ICAR), pp. 481–486,
IEEE, 2019.

[10] X. Ren, J. Luo, E. Solowjow, J. A. Ojea, A. Gupta, A. Tamar, and
P. Abbeel, “Domain randomization for active pose estimation,” in 2019
International Conference on Robotics and Automation (ICRA), 2019
pp. 7228–7234, IEEE, 2019.

[11] M. Sundermeyer, Z.-C. Marton, M. Durner, M. Brucker, and R. Triebel,
“Implicit 3D orientation learning for 6D object detection from RGB
images,” in Proceedings of the European Conference on Computer
Vision (ECCV), pp. 699–715, 2018.

50 Proc. 30. Workshop Computational Intelligence, Berlin, 26.-27.11.2020



[12] M. Sundermeyer, M. Durner, E. Y. Puang, Z.-C. Marton, N. Vaskevicius,
K. O. Arras, and R. Triebel, “Multi-path learning for object pose esti-
mation across domains,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 13916–13925, 2020.

[13] J. Tremblay, A. Prakash, D. Acuna, M. Brophy, V. Jampani, C. Anil,
T. To, E. Cameracci, S. Boochoon, and S. Birchfield, “Training deep
networks with synthetic data: Bridging the reality gap by domain
randomization,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, pp. 969–977, 2018.

[14] R. Khirodkar, D. Yoo, and K. Kitani, “Domain randomization for
scene-specific car detection and pose estimation,” in 2019 IEEE Winter
Conference on Applications of Computer Vision (WACV), pp. 1932–
1940, IEEE, 2019.

[15] S. Hinterstoisser, O. Pauly, H. Heibel, M. Martina, and M. Bokeloh,
“An annotation saved is an annotation earned: Using fully synthetic
training for object detection,” in Proceedings of the IEEE International
Conference on Computer Vision Workshops, pp. 0–0, 2019.

[16] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-real
transfer of robotic control with dynamics randomization,” in 2018 IEEE
International Conference on Robotics and Automation (ICRA), pp. 1–8,
IEEE, 2018.

[17] M. Rad and V. Lepetit, “BB8: A scalable, accurate, robust to
partial occlusion method for predicting the 3D poses of challenging
objects without using depth,” in Proceedings of the IEEE International
Conference on Computer Vision, pp. 3828–3836, 2017.

[18] W. Kehl, F. Manhardt, F. Tombari, S. Ilic, and N. Navab, “SSD-6D:
Making RGB-based 3D detection and 6D pose estimation great again,”
in Proceedings of the IEEE International Conference on Computer
Vision, pp. 1521–1529, 2017.

Proc. 30. Workshop Computational Intelligence, Berlin, 26.-27.11.2020 51



[19] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, “PoseCNN: A
convolutional neural network for 6D object pose estimation in cluttered
scenes,” arXiv preprint 1711.00199, 2017.

[20] B. Tekin, S. N. Sinha, and P. Fua, “Real-time seamless single shot
6D object pose prediction,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 292–301, 2018.

[21] T.-T. Do, M. Cai, T. Pham, and I. Reid, “Deep-6Dpose: Recovering
6D object pose from a single RGB image,” arXiv preprint 1802.10367,
2018.

[22] K. Kleeberger and M. F. Huber, “Single shot 6D object pose estimation,”
arXiv preprint 2004.12729, 2020.

[23] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethin-
king the Inception architecture for computer vision,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 2818–2826, 2016.

[24] F. Chollet et al., “Keras,” https://keras.io, 2015.

[25] S. Mahendran, H. Ali, and R. Vidal, “3D pose regression using con-
volutional neural networks,” in Proceedings of the IEEE International
Conference on Computer Vision Workshops, pp. 2174–2182, 2017.

[26] J. Puhani, Statistik: Einführung mit praktischen Beispielen. Springer
Fachmedien Wiesbaden, 2020.

[27] B. Zhou, Y. Svetashova, S. Byeon, T. Pychynski, R. Mikut, and
E. Kharlamov, “Predicting quality of automated welding with machine
learning and semantics: A Bosch case study,” in Proceedings of the
29th ACM International Conference on Information and Knowledge
Management (CIKM ’20), p. 8, 2020.

[28] Y. Svetashova, B. Zhou, T. Pychynski, S. Schmidt, Y. Sure-Vetter,
R. Mikut, and E. Kharlamov, “Ontology-enhanced machine learning
pipeline: A Bosch use case of welding quality monitoring,” in The
Semantic Web - ISWC 2020, 2020.

52 Proc. 30. Workshop Computational Intelligence, Berlin, 26.-27.11.2020


	S. Dari, E. Hüllermeier
	J. Schuetzke, A. Benedix, R. Mikut, M.Reischl
	S. Bäuerle, J. Barth, E. Tavares de Menezes, A. Steimer, R. Mikut
	D. Schneider, M. Schneider, M. Schweigel, A. Wenzel
	F. Berens, Y. Knapp, M. Reischl, S. Elser
	K. Phipps, N. Ludwig, V. Hagenmeyer, R. Mikut
	P. Kurz, P. Kaufmann, R. Kalkreuth, J. Born, R. Klöckner, F. Hahn, F. Döllinger, T. Auer
	A. Hohenhövel, S. Borchers-Tigasson
	M. Himmelsbach, A. Kroll
	S. Godt, M. Kohlhase
	L. Tarek, H. Schulte, A. El-Badawy
	A. Cavaterra, M. Östreich, S. Lambeck
	M. Schöne, M. Kohlhase
	T. J. Peter, O. Nelles
	S. Heid, A. Ramaswamy, E. Hüllermeier
	R. Kalkreuth



