
Potential of Ensemble Copula Coupling for
Wind Power Forecasting

Kaleb Phipps, Nicole Ludwig, Veit Hagenmeyer, Ralf Mikut

Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology
Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen

E-Mail: kaleb.phipps@kit.edu

Abstract

With the share of renewable energy sources in the energy system increasing,
accurate wind power forecasts are required to ensure a balanced supply and
demand. Wind power is, however, highly dependent on the chaotic weather
system and other stochastic features. Therefore, probabilistic wind power
forecasts are essential to capture uncertainty in the model parameters and input
features. The weather and wind power forecasts are generally post-processed
to eliminate some of the systematic biases in the model and calibrate it to
past observations. While this is successfully done for wind power forecasts,
the approaches used often ignore the inherent correlations among the weather
variables. The present paper, therefore, extends the previous post-processing
strategies by including Ensemble Copula Coupling (ECC) to restore the de-
pendency structures between variables and investigates, whether including the
dependency structures changes the optimal post-processing strategy. We find
that the optimal post-processing strategy does not change when including ECC
and ECC does not improve the forecast accuracy when the dependency struc-
tures are weak. We, therefore, suggest investigating the dependency structures
before choosing a post-processing strategy.
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1 Introduction

As the share of renewable energy sources in the energy system increases, wind
power forecasts become essential to guarantee balanced supply and demand.
However, wind power highly depends on the chaotic weather system as well
as other stochastic features and thus modelling uncertainty in these forecasts
is important [1]. Probabilistic wind power forecasts aim to capture the uncer-
tainty inherent in the model parameters and input features. Capturing this un-
certainty is not easy and weather predictions, for example, are known to be bi-
ased and underdispersed. Meteorologists have therefore been post-processing
ensemble weather predictions to describe the uncertainty more accurately
[2, 3, 4, 5, 6, 7, 8, 9, 10]. In this post-processing the ensemble weather pre-
dictions are calibrated to the actual historical weather observations, eliminating
some of the model biases. Transferring this approach to wind power forecasts
yields promising results for handling the uncertainty in wind power forecasting
models with uncertain weather features and forecast horizons of 3h-24h [11].

Phipps et al. [11] show that post-processing only the resulting wind power
forecast is the best strategy with respect to forecast accuracy. However, their
approach ignores dependencies between the weather variables as the post-
processing is done using Ensemble Model Output Statistics (EMOS). This
method involves fitting parametric distributions to the ensemble forecasts and
sampling from them to generate post-processed forecasts. Random sampling
causes inherent correlations, so-called dependency structures, between varia-
bles to be lost, which could affect the forecast performance. The present paper,
therefore, extends the previous post-processing strategies by including Ensem-
ble Copula Coupling (ECC) to restore the dependency structures between the
variables and investigates whether including the dependency structures chan-
ges the optimal post-processing strategy. In contrast to other approaches, we do
not investigate the temporal [12] or spatiotemporal [13] dependencies. We also
use a parametric approach unlike the non-parametric methods used in [14].

The extended post-processing strategy is evaluated on two data sets with both
a linear regression and an artificial neural network used as forecasting models.
Both the ability of ECC to restore the dependency structures between the vari-
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ables, as well as the resulting forecast accuracy are considered as performance
measures.

The remainder of the present paper is structured as follows. Firstly we in-
troduce theoretical concepts including ECC in Section 2. We then discuss
the altered post-processing strategies (Section 3) before evaluating the effect
of ECC in Section 4. We discuss the results in Section 5 before Section 6
concludes.

2 Background

Before evaluating the effect of ECC on wind power ensemble post-processing,
we introduce EMOS, ECC, and also discuss the forecasting models we use.

2.1 Ensemble Post-Processing

The weather ensembles from the Ensemble Prediction System (EPS) are known
to be biased and underdispersed, and thus need to be calibrated [2]. Not
accounting for this bias or under estimated variance could lead to false wind
power forecasts which affect the stability of the energy system. The present
paper applies EMOS developed by Gneiting et al. [6] to perform this calibra-
tion. EMOS is based on non-homogenous regressions and performed for each
weather variable individually given a single origin and set forecast horizon.

The standard EMOS approach is designed for ensemble members that are
individually distinguishable. Ensemble members from the European Centre
for Medium-Range Weather Forecasts (ECMWF) are, however, classified as
exchangeable, thus representing equally likely future scenarios without distin-
guishing features [15, 16]. Given exchangeable ensembles x1, . . . ,xM , we apply
EMOS from Gneiting and Katzfuss [5], where the weather variable y with an
assumed normal distribution is modelled as

y|x1, . . .xM ∼N

(
a+b

M

∑
m=1

xm,c+dS2

)
, (1)
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with a,b,c and d being regression coefficients, and the variance S2 being a
linear function of the ensemble spread with

S2 =
1
M

M

∑
m=1

(
xm−

1
M

M

∑
m=1

xm

)2

. (2)

We also use the same approach with a truncated normal distribution. Since we
post-process each weather variable for a single origin and set forecast horizon,
the EMOS coefficients change when any one of these three parameters are
altered. We apply EMOS using a rolling calibration window of 40 days with
the help of the scoringRules1 package. For more information on EMOS and
its application in meteorology see Gneiting et al. [6] or Gneiting [17].

2.2 Ensemble Copula Coupling

With the EMOS method introduced above, we now have ensembles that are
calibrated to the past data. All weather variables are modelled with a univariate
distribution. We could sample from each of these distributions independently
and input the information into the wind power forecasting scheme. However,
the original Numerical Weather Prediction (NWP) includes information on
the weather variables dependencies among each other as well as in space and
time. This information gets lost with the univariate EMOS approach. In order
to retain these dependencies, several empirical copula-based approaches have
been developed, which we want to introduce in more detail in this section.

A d-dimensional Copula is a multivariate cumulative distribution on the unit
cube [0,1]d with uniform margins [18, 19]. The importance of copulas in
restoring dependency structures is based on the theorem of Sklar [20]. He
states that for any multivariate cumulative distribution function F with margins
F1, . . . ,FM there exists a copula C, that is unique on the range of the margins
and has the form

F (x1 . . . ,xM) =C (F1 (x1) , . . .FM (xM)) , (3)

1 https://cran.r-project.org/web/packages/scoringRules/scoringRules.pdf
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for x1, . . . ,xm ∈ R. With regards to ensemble calibration, we already have the
uniform margins F1, . . . ,FM in the form of the EMOS univariate distribution.
Therefore, Sklar’s theorem states that as long as an appropriate copula is defi-
ned, univariate ensemble post-processing techniques can be used to accommo-
date any dependency structure.

The ECC approach, is based on the mathematical concepts defined above
with the appropriate copula in the form of a reordering process. The idea is
that given a dependence structure “template” [21], the samples drawn from
the univariate EMOS distributions can be reordered in such a way that they
resemble the initial correlation structures that were given in the NWP. The
templates are based on the raw ensembles, where we assume that the ensembles
capture the correlations. While several variants exist, we take a closer look
at random ECC (ECC-R), quantile ECC (ECC-Q), and transformation-based
ECC (ECC-T). These methods differ from each other in the way they sample
from the distributions and whether they include a reordering step. Firstly, we
take a look at an ECC approach based on random draws. Here, we sample with
the independent standard uniform random variates u1, . . . ,uM , such that

x̃1 = F−1(u1), . . . , x̃M = F−1(uM). (4)

In this ECC-R approach, the samples have to be reordered according to the tem-
plate depicted by the raw ensembles. This template is based on the rank struc-
ture. Given each time horizon, location and variable and following the notation
by Schefzik et al. [21], the raw ensembles x1, . . .xM and their order statistics
x(1) ≤ . . . ≤ x(M) construct a ranking permutation π , with
π(m) := rank(xm) for m ∈ {1, . . . ,M}. After drawing the samples from the
distribution, they are reordered according to π . The ECC approach based on
quantiles involves the same reordering step as in the ECC-R approach, the
sampling method is however different. In the case of ECC-Q, the samples are
drawn from equally spaced quantiles, such that

x̃1 = F−1
(

1
M+1

)
, . . . , x̃M = F−1

(
M

M+1

)
(5)
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and then reordered as before. In contrast to the ECC-R and ECC-Q approach,
ECC-T relies on a transformation and does not require an additional reordering
step. The samples are drawn such that

x̃1 = F−1(S(x1)), . . . , x̃M = F−1(S(xM)), (6)

where S is the fit of a cumulative distribution function to the raw ensembles
[21]. The choice of S depends on the variables in question and in the case of
temperature, pressure and wind component vectors, S can be assumed as nor-
mal with mean equal to the ensemble mean and variance equal to the ensemble
variance [3].

2.3 Forecasting Models

The present paper focuses on the effect of ECC on optimal post-processing
strategies and not developing state-of-the-art wind power forecasts. Therefore,
we use the same forecasting models (a linear regression model and a neural
network), and the same forecasting strategy as in [11]. Both are described in
the following together with how we measure the forecasting accuracy.

2.3.1 Linear Regression

The simplest models, which we use to forecast wind power, are linear regres-
sion models. These linear regression models can be described with

yt+h = β0 +αyt+h−24 +
K

∑
k=1

βkW k
t+h +

J

∑
j=1

γ jD
j
t+h + εt+h, (7)

where yt is the dependent variable, which in this case is the wind power,
yt−24 is the actual wind power a day before, W k are weather time series, such
as wind speed and temperature, and D j are dummy variables, such as the
season, the month and the year. The models are fitted for each forecast ho-
rizon h = h1 . . .hH with h≤ 24 using actual historical weather data in order to
describe the real relationship among the variables and remove any bias fitting
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on historical weather forecasts or ensembles could introduce. Each ensemble
x1 . . .xM from the EPS is then used in a separate prediction run for each forecast
horizon to generate an ensemble of wind power predictions with the previously
fitted regression coefficients

ŷt+h(x1, . . .xM) = β̂0 + α̂yt+h−24 +
K

∑
k=1

β̂kŴ k
t+h(x1, . . .xM)+

J

∑
j=1

γ̂ jD
j
t+h + ε̂t ,

(8)
where Ŵ k

t+h is the weather forecast made at time t for the forecast horizon h.

2.3.2 Neural Network

In order to better forecast non-linear dependencies, we implement a neural
network. We tested multiple neural network configurations before selecting
a configuration with two hidden layers of 10 and 7 neurons respectively and
trained it with the resilient backpropagation algorithm. This network architec-
ture was selected because it is the simplest we found, that still returns accurate
forecasts. The chosen activation function is a hyperbolic tangent given by

σ(x) =
e2x−1
e2x +1

∈ [−1,1]. (9)

The input features remain the same as for the linear regression model explained
above. Again, the parameters (i. e.weights) are fitted using the actual historical
weather data and each ensemble member is passed through the network to get
an ensemble wind power prediction. The neural networks are implemented in
R with the neuralnet package2.

2 https://cran.r-project.org/web/packages/neuralnet/neuralnet.pdf
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2.3.3 Forecasting Accuracy

To evaluate the forecasting approaches, we use the Continuous Ranked Proba-
bility Score (CRPS). This error measure is used to assess the calibration and
sharpness of the probabilistic forecast and can be described as follows

CRPS(F,y) =
∫

R
(F(z)−1{y≤ z})2 dz, (10)

with F being the wind power generations predictive cumulative distribution
function, y the verifying observation and 1 denoting an indicator function. We
report the score over all time steps t = 1, . . .N in the test set

CRPS =
1
N

N

∑
t=1

CRPS(Ft ,yt). (11)

3 Post-Processing Strategies

The present paper focuses on determining whether including ECC into the
post-processing of wind power forecasts affects the performance of these stra-
tegies and changes the optimal post-processing strategy. Four post-processing
strategies were identified by Phipps et al. [11] and these are shown with the
addition of ECC in Figure 1. We identify two strategies that can be extended
to include ECC, whilst two remain the same:

Raw. Using the raw weather ensembles directly in the forecast is not affected
by ECC. Here we take all available M ensemble members from the EPS for
multiple weather variables to generate the wind power forecast. Thus, the
resulting wind power forecast consists of M members.

One-Step-P. The second strategy identified by Phipps et al. [11] is also un-
changed by ECC. The output of the wind power forecasting model is post-
processed, without any previous calibration of the input variables. This as-
sumes that post-processing the wind power ensembles also accounts for the
biases in the weather ensembles. For a detailed description of the One-Step-P
approach see Phipps et al. [11].
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One-Step-W. This strategy involves calibrating the raw weather ensembles be-
fore they are used as inputs in the wind power forecast model. We initially post-
process the weather ensembles analogue to Phipps et al. [11]: Each weather
variable (temperature, wind speed, wind component vectors etc. ) is considered
separately and post-processed using EMOS with a rolling calibration window.
This results in probability distributions for each weather variable and we form
new post-processed weather ensembles by sampling from these distributions.
It is in this resampling stage that we apply ECC. Depending on the method (see
Section 2.2) we either reorder the EMOS samples or also consider a different
sampling strategy or transformation. As a result the strategy now has multiple
variants. We use the resulting post-processed ensembles with restored depen-
dency structures as inputs into the wind power forecast model. The resulting
ensemble of wind power forecasts is not processed further.

Two-Step-WP. The final strategy is also altered when we include ECC. In
this strategy both one-step post-processing approaches are coupled together.
We first post-process the weather ensembles using the altered One-Step-W
strategy including ECC. These ensembles are used to generate a wind power
ensemble forecast and then we again post-process the result as in the One-
Step-P method. Since there is only one set of wind power ensembles, therefore
not dependencies present, we are unable to apply ECC after the first EMOS
application step.

In the present paper we compare these approaches, focusing on discovering if
the inclusion of ECC in One-Step-W and Two-Step-WP improves the forecast
performance. Specifically through an evaluation on two data sets, we inves-
tigate if ECC leads to one of these two strategies outperforming One-Step-P,
which was previously found to perform best [11].

4 Evaluation

We use two different data sets to evaluate the effect of ECC on the performance
of the post-processing strategies described above. In this section we briefly
introduce those data sets and present the results of our evaluation.
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4.1 Data

We evaluate the post-processing strategies on two data sets: A benchmark
data set including both an onshore and offshore wind park, and real data from
bidding zones 3 and 4 in Sweden. This section briefly introduces the data
used.

4.1.1 Benchmark Data

The benchmark data set is based on simulated wind power data based on real
wind parks located in Germany. This data was simulating using the renewable
ninjas3 API, with the input data being selected to mimic real onshore and offs-
hore wind parks in Germany as closely as possible. Staffell and Pfenninger [22]
verify that the simulation and bias-corrections implemented in the renewable
ninjas API are capable of reproducing accurate wind power time series. A
detailed description of the parameters used in the simulation is provided by
Phipps et al. [11].

We access open source weather ensemble data through The International Grand
Global Ensemble (TIGGE) archive4. TIGGE archive is a result of The Ob-
serving System Research and Predictability Experiment which aimed to com-
bine ensemble forecasts from leading forecast centres to improve probabilis-
tic forecasting capabilities [23]. Due to damaged tapes in TIGGE we only
use data from February 2017 until August 2018, including the parameters
two-meter temperature, surface pressure, 10m-U-Component of wind, 10m-
V-Component of wind and wind speed. Weather data is downloaded for the
same location as the synthetic wind park generated through renewable ninjas.
We use the ERA5 reanalysis data for the ground truth historical weather data
[24]. We download the identical weather parameters for the same timespan
via the Copernicus Climate Data Store (CDS) API 5. Data from 2017 is used
for training the forecast models and from 01.2018-08.2018 for evaluation. For

3 www.renewables.ninja.
4 https://apps.ecmwf.int/data sets/data/tigge/
5 https://cds.climate.copernicus.eu/home

Proc. 30. Workshop Computational Intelligence, Berlin, 26.-27.11.2020 97



more detailed information on the benchmark data set, including information on
how to replicate it, see Phipps et al. [11]

4.1.2 Swedish Data

The Swedish electricity system is divided into four sub-areas or bidding zones
with the present paper focusing only on the area contained in bidding zones 3
and 4. We download the wind power generation data aggregated on a bidding
zone level through the open-source transparency platform which is operated by
the European Network of Transmission System Operators (ENTSO-E) [25].
This data is available at an hourly resolution, but due to limitations in the
weather data we can only forecast every 3h. The weather data for bidding zone
3 and 4 is made up of the ECMWF EPS Molteni et al. [15] and the ERA5
reanalysis data C3S [24]. The ERA5 data again serves as the ground truth
for post-processing, whilst we use the EPS for the ensemble forecasts. We
download the parameters two-meter temperature, surface pressure, 100m-U-
Component of wind, 100m-V-Component of wind and wind speed. Since the
weather data only comes in a grid-based format and we perform forecasts for an
entire bidding zone, this weather data must be aggregated. We use a weighted
average method to perform this aggregation. We use data from 2015-2017
for training our forecast models and from 01.2018-08.2019 for evaluation. A
detailed description of this data set, including the weighted average aggregation
method is provided by Phipps et al. [11].

4.2 Results

We evaluate both the ability of ECC to restore the dependency structures and
the effect this has on forecast performance. This section presents the results of
the analysis for both data sets introduced above. When analysing performance
of ECC with scatter plots we only consider April 14, 2018 at 6:00am. The
results for all other dates and forecasts horizons are similar and therefore not
discussed in detail.
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Figure 2: Scatter plots showing the raw dependency structures for both benchmark data sets on
April 14, 2018 at 6am. Pressure (P), the U-component of wind (U-W), the V-component
of wind (V-W), temperature (T) and wind speed (WS) are shown. Despite correlation
between wind components and wind speed, the dependencies between the weather
variables are not particularly strong.

4.2.1 Benchmark Data

First we consider the effect of ECC on restoring the dependency structures
in the data. We see the dependencies between various weather variables in the
form of scatter plots in Figure 2. These plots show a histogram of the empirical
distribution of individual weather ensembles along the diagonal and scatter
plots of their dependencies in the other positions. In the onshore benchmark
there is a clear correlation between the V-component of wind and wind speed,
and also a slight correlation between wind speed and the U-component of wind.
There are no strong dependencies shown between any other weather variables.
For the offshore benchmark data the only noticeable correlation is between the
U-component of wind and wind speed.

Figures 3 and 4 show how these dependency structures change after applying
ensemble post-processing and various ECC methods. Figure 3 details the
onshore benchmark and we see, that only applying EMOS removes all de-
pendency structures. ECC-R is also not effective, with no dependencies being
visible. Both the ECC-Q and ECC-T methods show improvement. The quan-
tile sampling based ECC-Q leads to an almost symmetric marginal distribution,
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(d) ECC-T

Figure 3: Scatter plots showing the dependency structures with various post-processing strategies
that aim to restore the raw dependency structure of the onshore benchmark on April 14,
2018 at 6am. Pressure (P), the U-component of wind (U-W), the V-component of wind
(V-W), temperature (T) and wind speed (WS) are shown. We see that EMOS destroys all
dependencies and ECC-R is not effective in restoring the structures. ECC-Q and ECC-T
both restore the dependency structures effectively.

but also accurately recreates the dependencies between the weather variables.
Since ECC-T is based on a transformation it is not surprising that this method
recreates the dependencies with the most accuracy. The results are similar for
the offshore benchmark in Figure 4, with the exception of the ECC-Q method.
Although we see some dependency structures being recreated, ECC-Q is not
as effective here as in the onshore data set.

In order to assess the effect of ECC on forecast accuracy we consider plots of
the mean CRPS for each forecast horizon on each benchmark data set. Figure
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Figure 4: Scatter plots showing the dependency structures with various post-processing strategies
that aim to restore the raw dependency structure of the offshore benchmark on April 14,
2018 at 6am. Pressure (P), the U-component of wind (U-W), the V-component of wind
(V-W), temperature (T) and wind speed (WS) are shown. We see that EMOS destroys
all dependencies and ECC-R is not effective in restoring the structures. ECC-Q shows
some improvements, but ECC-T restores the dependency structures the best.

5 compares the means CRPS of One-Step-P against variants of One-Step-W.
Figure 6 also plots the mean CRPS scores, but this time for variations of
Two-Step-WP against One-Step-P. The One-Step-P strategy is almost always
slightly more accurate than the variations of One-Step-W and very similar to
the Two-Step-WP variations. We also see, that there is almost no difference
between the various variations One-Step-W and Two-Step-WP based on diffe-
rent ECC methods. The neural networks perform worse than the linear models
on the benchmark data. This is mainly due to a lack of training data but
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Figure 5: Plot comparing the average CRPS score for the test data on the benchmark data set for
each forecast horizon using the One-Step-W variants to the One-Step-P strategy. In (A)
we see the linear model for the onshore data and (B) the neural network. (C) and (D)
show the evaluation of the linear model and neural network on the offshore data set.
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Figure 6: Plot comparing the average CRPS score for the test data on the benchmark data set for
each forecast horizon using the Two-Step-WP variants to the One-Step-P strategy. In (A)
we see the linear model for the onshore data and (B) the neural network. (C) and (D)
show the evaluation of the linear model and neural network on the offshore data set.

also suggest that a linear model is more than capable of delivering accurate
forecasts.

4.2.2 Swedish Data

The effect of ECC on the dependency structures in the Swedish data is similar
to the benchmark data set and therefore we do not discuss it here in detail. The
mean CRPS values for bidding zone 3 are shown in Table 1 and for bidding
zone 4 in Table 2. Again all One-Step-W variations deliver similar results and
perform noticeably worse than the One-Step-P strategy. The Two-Step-WP
performs similarly to the One-Step-P method, but again applying ECC has
little effect. On a whole, we see that as with the benchmark data set ECC has
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Table 1: Summary of mean CRPS for the test data in bidding zone 3 in Sweden. The best
prediction for each strategy and each forecast model is highlighted in bold.

Data Set 6h 12h 18h 24h

Linear Raw 97.12 84.86 91.97 94.28
Linear One-Step-P 64.12 68.90 64.62 69.27

Linear One-Step-W-E 107.95 95.28 103.85 100.43
Linear One-Step-W-R 107.95 95.26 103.21 100.24
Linear One-Step-W-Q 108.21 95.48 103.67 100.27

Linear One-Step-WP-T 107.89 95.43 103.60 100.17
Linear Two-Step-WP-E 63.70 67.26 63.28 67.38
Linear Two-Step-WP-R 64.50 67.40 63.61 67.02
Linear Two-Step-WP-Q 64.55 67.41 63.65 68.10

Bidding Linear Two-Step-WP-T 63.58 67.78 64.04 68.03
Zone 3 Neural Raw 64.35 70.73 72.55 66.99

Neural One-Step-P 61.05 63.02 67.13 59.54
Neural One-Step-W-E 73.40 64.81 63.26 74.45
Neural One-Step-W-R 74.60 65.29 65.34 74.11
Neural One-Step-W-Q 74.85 65.52 65.07 75.45
Neural One-Step-W-T 74.79 66.18 64.52 74.38

Neural Two-Step-WP-E 65.69 59.37 56.79 69.38
Neural Two-Step-WP-R 67.23 60.81 57.12 69.65
Neural Two-Step-WP-Q 66.27 61.04 57.29 70.87
Neural Two-Step-WP-T 67.51 62.23 56.22 70.29

almost no effect on the forecast accuracy, with all ECC variants performing
similarly to post-processing strategies where only EMOS is used. In the case
of the Swedish data we also note, that the neural network performs slightly
better than the linear model in bidding zone 3.

5 Discussion

The fact that the ECC variants perform differently is not surprising as simi-
lar results are observed by Schefzik et al. [3]. Across all data sets applying
EMOS destroys the dependency structures and ECC-R is relatively ineffective
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Table 2: Summary of mean CRPS for the test data in bidding zone 4 Sweden. The best prediction
for each strategy and each forecast model is highlighted in bold.

Data Set 6h 12h 18h 24h

Linear Raw 58.50 67.00 56.51 51.54
Linear One-Step-P 45.13 51.90 50.35 44.26

Linear One-Step-W-E 59.48 60.39 55.97 50.73
Linear One-Step-W-R 59.48 60.78 56.33 51.28
Linear One-Step-W-Q 59.71 61.01 56.35 50.71
Linear One-Step-W-T 59.46 60.80 56.33 50.72

Linear Two-Step-WP-E 45.21 52.69 49.89 43.92
Linear Two-Step-WP-R 45.00 52.75 50.48 43.48
Linear Two-Step-WP-Q 44.54 52.38 50.11 43.41

Bidding Linear Two-Step-WP-T 44.43 51.44 50.23 43.34
Zone 4 Neural Raw 52.74 46.70 51.02 43.98

Neural One-Step-P 49.55 47.80 48.11 46.22
Neural One-Step-W-E 82.29 90.97 100.03 82.26
Neural One-Step-W-R 81.34 88.97 98.62 80.29
Neural One-Step-W-Q 78.32 86.29 95.83 78.22
Neural One-Step-W-T 74.79 82.88 89.79 73.70

Neural Two-Step-WP-E 52.06 58.04 63.87 49.42
Neural Two-Step-WP-R 51.79 56.92 62.82 49.39
Neural Two-Step-WP-Q 52.48 57.19 63.47 49.00
Neural Two-Step-WP-T 53.27 56.67 61.52 49.35

in rebuilding dependency structures. Since ECC-Q relies on quantile sam-
pling, it produces marginal distributions that are always close to symmetric.
With regards to dependency structures, ECC-Q delivers mixed results. For
the onshore benchmark (and also bidding zone 3) it recreates the dependency
structures almost as accurately as ECC-T, but not for the other data sets. This
could be due to ECC-Q still relying on sampling from the EMOS distribution,
which we obtain by considering the last 40 days. Therefore it is possible
that the EMOS parameters vary in accuracy which could lead to a ECC-Q
sampling that is also slightly worse. ECC-T on the other hand is based on a
monotonic transformation and it is therefore expected that it always accurately
recreates the dependency structures of the raw ensembles. ECC-T therefore
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unsurprisingly performs the best in this regard, but the trade-off is the marginal
distributions, which are not as symmetrical as those from ECC-Q.

The key focus of the present paper is however, evaluating how the inclusion
of ECC affects post-processing strategies. Although, as discussed above, the
performance of the various ECC variants differs, this appears to have no effect
on the forecast performance. The only instance in which the ECC variations
noticeably diverge is when the neural network is used in bidding zone 4 in
Sweden with the One-Step-W strategy. In this case the One-Step-P method
performs far better than any One-Step-W variation, and the EMOS variant of
One-Step-W performs better than all ECC strategies. In this case ECC didn’t
lead to any improvement, but actually caused the forecasts to be slightly worse.
For other post-processing strategies and forecast horizons there is no noticea-
ble difference between the One-Step-W or Two-Step-WP variations with and
without ECC. For the forecast horizons and data sets considered, we therefore
find that dependency structures do not play a significant role with regards to
wind power forecast accuracy.

We consider two possible explanations for this. Firstly, the dependency struc-
tures present in both our data sets are not strong. Although Schefzik et al. [21]
reported improved results when using ECC, they were working with data sets
that showed clear dependencies. Since there are no strong dependency struc-
tures for ECC to restore in our datasets, it makes sense that this does not lead
to an improvement. We therefore suggest to investigate the dependency struc-
tures before deciding whether ECC is included in the post-processing strategy.
The second explanation is that the wind power forecast model is capable of
implicitly restoring these dependencies. When the weather ensembles are used
to generate wind power forecasts an implicit calibration (due to the training
of the model with historical weather variables and observed/simulated wind
power generation) occurs and this could be sufficient to negate the effect of the
missing dependency structures.
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6 Conclusion

The present paper investigates whether including Ensemble Copula Coupling
(ECC) into different post-processing strategies affects which of the strategies
is optimal. We show that ECC, particularly ECC-Q and ECC-T, restores the
dependency structures effectively, but this does not affect the forecast per-
formance. The strategies post-processing the weather variables only (One-
Step-W) or both the weather variables and the wind power (Two-Step-WP)
deliver almost identical results, regardless of whether ECC is used or not.
Given these results, we conclude, that ECC does not change the optimal post-
processing strategy for wind power forecasts. Due to the smaller number of
post-processing steps required and superior or similar forecast accuracy, the
strategy post-processing only the resulting wind power (One-Step-P) remains
optimal. However, our data does not contain strong dependency structures
which limits the potential of ECC. Therefore, we recommend investigating the
dependency structures before selecting a post-processing strategy.

Future work should focus on investigating data with different dependency struc-
tures to understand when ECC plays a role. Additionally, while the present
paper focuses solely on dependencies between weather variables, future work
should focus on recreating the spatial and temporal dependencies with ECC
and analysing their effect on forecast performance.
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