
ScienceDirect

Available online at www.sciencedirect.com

Procedia Manufacturing 52 (2020) 50–55

2351-9789 © 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 5th International Conference on System-Integrated Intelligence.
10.1016/j.promfg.2020.11.010

10.1016/j.promfg.2020.11.010 2351-9789

© 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 5th International Conference on System-Integrated Intelligence.

Available online at www.sciencedirect.com

ScienceDirect
Procedia Manufacturing 00 (2020) 000–000

 www.elsevier.com/locate/procedia

2351-9789 © 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review Statement: Peer-review under responsibility of the scientific committee of the 5th International Conference on System-Integrated Intelligence.

5th International Conference on System-Integrated Intelligence

Self-Aware LiDAR Sensors in Autonomous Systems using a Convolutional
Neural Network

Junyu Qua, David Bartona,*, Philipp Gönnheimera, Florian Pinskerb, Dominik Kuferc, Jürgen Fleischera

aKarlsruhe Institute of Technology, wbk Institute of Production Science, Kaiserstraße 12, 76131 Karlsruhe, Germany
bT-Systems, Dachauer Straße 651, 80995 Munich, Germany

cIAV, Weimarer Straße 10, 80807 Munich, Germany

* Corresponding author. Tel.: +49-1523-950-2565 ; fax: +49 721 608-45005. E-mail address: david.barton@kit.edu

Abstract

Autonomous systems, as found in autonomous driving and highly automated production systems, require an increased reliability
in order to achieve their high economic potential. Self-aware sensors are a key component in highly reliable autonomous
systems. In this paper we highlight a proof of concept (PoC) of a deep learning method that enables a LiDAR (Light detection
and ranging) sensor to detect functional impairment. More specifically, a deep convolutional neural network (CNN) is developed
and trained with labelled LiDAR data in the form of point clouds to classify the degree of impairment of its functionality. The
results are statistically significant and can be regarded as a general classifier for objects within LiDAR data, applied to selected
cases of sensor impairment. In detecting impairment and evaluating the correctness of the captured data, the sensor gains a basic
form of self-awareness. The presented methods and insights pave the way for improved safety of autonomous systems by the
means of more sophisticated “self-aware” neural networks.

© 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review Statement: Peer-review under responsibility of the scientific committee of the 5th International Conference on
System-Integrated Intelligence.

 Keywords: autonomous systems; machine learning; reliability

1. Introduction

Autonomous systems are in general not maintained by an
operator and therefore self-awareness of functionality is not
only a way to bridge the gap opened by the lack of testing
functionality but also a further step towards self-aware robots,
as more and more functions of the robot are checked by the
robot itself. In animals, a simple form of mirror-self-recognition
(MSR) is demonstrated when animals realise they have been
marked when they see their reflection in a mirror [1]. In this
contribution a similar level of self-awareness is implemented
concerning the state of a robot’s sensors.

3D sensor technology is currently being developed for driver
assistance systems and autonomous driving. LiDARs are
popular examples of 3D sensors with specific strengths such as
their range (distances from centimetres up to hundreds of
metres) and their high angular resolution compared to radar.
Shortcomings of a single frequency laser scanning method are
particularly resolution and effective colour-blindness compared
to cameras, these can be partly overcome by using
convolutional neural networks (CNN) for object detection and
localization as well as combining LiDAR with other sensors
such as cameras [2]. Further applications of LiDAR technology
include assisting a visually impaired person [3], and detecting

Available online at www.sciencedirect.com

ScienceDirect
Procedia Manufacturing 00 (2020) 000–000

 www.elsevier.com/locate/procedia

2351-9789 © 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review Statement: Peer-review under responsibility of the scientific committee of the 5th International Conference on System-Integrated Intelligence.

5th International Conference on System-Integrated Intelligence

Self-Aware LiDAR Sensors in Autonomous Systems using a Convolutional
Neural Network

Junyu Qua, David Bartona,*, Philipp Gönnheimera, Florian Pinskerb, Dominik Kuferc, Jürgen Fleischera

aKarlsruhe Institute of Technology, wbk Institute of Production Science, Kaiserstraße 12, 76131 Karlsruhe, Germany
bT-Systems, Dachauer Straße 651, 80995 Munich, Germany

cIAV, Weimarer Straße 10, 80807 Munich, Germany

* Corresponding author. Tel.: +49-1523-950-2565 ; fax: +49 721 608-45005. E-mail address: david.barton@kit.edu

Abstract

Autonomous systems, as found in autonomous driving and highly automated production systems, require an increased reliability
in order to achieve their high economic potential. Self-aware sensors are a key component in highly reliable autonomous
systems. In this paper we highlight a proof of concept (PoC) of a deep learning method that enables a LiDAR (Light detection
and ranging) sensor to detect functional impairment. More specifically, a deep convolutional neural network (CNN) is developed
and trained with labelled LiDAR data in the form of point clouds to classify the degree of impairment of its functionality. The
results are statistically significant and can be regarded as a general classifier for objects within LiDAR data, applied to selected
cases of sensor impairment. In detecting impairment and evaluating the correctness of the captured data, the sensor gains a basic
form of self-awareness. The presented methods and insights pave the way for improved safety of autonomous systems by the
means of more sophisticated “self-aware” neural networks.

© 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review Statement: Peer-review under responsibility of the scientific committee of the 5th International Conference on
System-Integrated Intelligence.

 Keywords: autonomous systems; machine learning; reliability

1. Introduction

Autonomous systems are in general not maintained by an
operator and therefore self-awareness of functionality is not
only a way to bridge the gap opened by the lack of testing
functionality but also a further step towards self-aware robots,
as more and more functions of the robot are checked by the
robot itself. In animals, a simple form of mirror-self-recognition
(MSR) is demonstrated when animals realise they have been
marked when they see their reflection in a mirror [1]. In this
contribution a similar level of self-awareness is implemented
concerning the state of a robot’s sensors.

3D sensor technology is currently being developed for driver
assistance systems and autonomous driving. LiDARs are
popular examples of 3D sensors with specific strengths such as
their range (distances from centimetres up to hundreds of
metres) and their high angular resolution compared to radar.
Shortcomings of a single frequency laser scanning method are
particularly resolution and effective colour-blindness compared
to cameras, these can be partly overcome by using
convolutional neural networks (CNN) for object detection and
localization as well as combining LiDAR with other sensors
such as cameras [2]. Further applications of LiDAR technology
include assisting a visually impaired person [3], and detecting

http://crossmark.crossref.org/dialog/?doi=10.1016/j.promfg.2020.11.010&domain=pdf

 Junyu Qu et al. / Procedia Manufacturing 52 (2020) 50–55 51
2 Qu et al. / Procedia Manufacturing 00 (2020) 000–000

archaeological objects [4]. This paper describes a CNN that is
trained to determine whether a LiDAR sensor is impaired by
dirt or other obstructions, and to which degree it is impaired,
thereby enabling a higher level of autonomy and enhancing
safety in LiDAR applications.

2. State of the art

In the following relevant methods from existing work are
presented, focusing on preprocessing LiDAR data,
classification using CNN and the detection of sensor
impairment.

2.1. Preprocessing LiDAR data

The output data from LiDAR sensors consists of point
clouds. The most common method for preprocessing these is
by the means of voxel grids. Discretised point clouds in square
grids and binary coding for 3D voxel grids are considered in
[5]. The processed point cloud can be drawn as a 4D data array.
The dimensions are length, height, width and the number of
channels. A binary channel can be used to determine whether
points are inside the grid. Then the mechanism is extended
from 2D CNN to 3D for the considered point cloud.

[6] introduces a voxel coding layer that could learn the
unified features directly from LIDAR point clouds. The first
step is partition into voxels. The number of points in each voxel
varies significantly, some voxels are empty. The contents of a
voxel can be described as 𝑉𝑉 = {𝑝𝑝𝑖𝑖 = [𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖, 𝑧𝑧𝑖𝑖, 𝑟𝑟𝑖𝑖]𝑇𝑇 ∈
 𝑅𝑅4}𝑖𝑖=1…𝑡𝑡 𝑝𝑝𝑖𝑖 consists of the coordinates 𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖, 𝑧𝑧𝑖𝑖 for a
point and the received reflection 𝑟𝑟𝑖𝑖

 non-empty if the number of points 𝑡𝑡 exceeds a
threshold 𝑇𝑇. First, the local mean value is calculated as the
centre of gravity of all points in 𝑉𝑉 and is designated as (𝜗𝜗𝑥𝑥, 𝜗𝜗𝑦𝑦,
𝜗𝜗𝑧𝑧). Then each point 𝑝𝑝𝑖𝑖 is extended with the relative offset
𝑉𝑉𝑖𝑖𝑖𝑖 = {𝑝𝑝�̂�𝑖 = [𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖, 𝑧𝑧𝑖𝑖, 𝑟𝑟𝑖𝑖, 𝑥𝑥𝑖𝑖 − 𝜗𝜗𝑥𝑥, 𝑦𝑦𝑖𝑖 − 𝜗𝜗𝑦𝑦, 𝑧𝑧𝑖𝑖 − 𝜗𝜗𝑧𝑧]𝑇𝑇 ∈
 𝑅𝑅7}𝑖𝑖=1…𝑡𝑡.

Next, each point is transformed by a Fully-Connected
Network (FCN) into a feature space for later processes. [7, 8]
encoded each non-empty voxel with 6 statistical quantities that
derived from all points contained in the voxel. The points in the
point cloud are defined by point positions and reflection values.
First, the 3D space is divided into a grid with a fixed resolution,
like an image, and each occupied cell is converted into a fixed-
dimensional feature vector. The normal feature vector contains
a binary occupancy value, the mean and variance of the
reflection values, and three form factors. Thus the total voxel
has 6 statistical quantities. Cells that are empty are not stored.
The 3D voxel grids can be projected onto a plane to get a 2D
point map [9].

2.2. Classification using CNN

Many image classification competitions have been won
using deep learning architectures based on a CNN. [10] also
confirms that a CNN is well suited to perform segmentation

tasks with LiDAR data. This section aims to give an overview
of some architectures that may provide the basis for classifying
3-dimensional data from LiDAR sensors for impairment
detection.

AlexNet [11] achieved a leading result in the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) in 2010
(error rates in Top-1 and Top-5). It consists of 65,000 neurons
and 60 million parameters. The AlexNet algorithm was
originally written with CUDA and ran on GPUs. The whole
process is performed using five convolutional layers and three
fully connected layers. For down-sampling, max-pooling is
used to reduce the number of neurons in the following layers.
The image size of the input for AlexNet is 227 ∗ 227 ∗ 3 and
the size of the filter is 11 ∗ 11 ∗ 3. With step size 4, the size of
the output for this layer is 55 ∗ 55 ∗ 96. To avoid overfitting, a
drop-out within the first Fully-Connected layer was used in
addition to the data expansion of the input data.

VGGNet [12] is also a very successful CNN architecture.
Compared to AlexNet, VGGNet contains more layers and also
delivered a good result in ILSVRC 2012 (error rates in Top-1
and Top-5). It consists of about 140 million parameters. There
are 13 convolutional layers, 5 max-pooling layers and 3 fully
connected layers. Apart from the depth, the other major
difference to AlexNet is the structure of the convolutional
layer. The size of the filter in the convolutional layer for
VGGNet is 3 ∗ 3 ∗ 3 instead of 11 ∗ 11 ∗ 3 AlexNet.

Another CNN architecture that has been successfully
applied to image classification is ResNet [13]. The so-called
Residual Neural Network (ResNet) is a new idea with "jump
connections", shown successfully at ILSVRC 2015. In contrast
to other architectures, the output for an input 𝑥𝑥 is not 𝑓𝑓(𝑥𝑥) but
𝑓𝑓(𝑥𝑥) + 𝑥𝑥 , where 𝑓𝑓(𝑥𝑥) is the output of convolutional layers.
First VGGNet is extended from 19 layers to 34 layers, then this
structure is used to jump connections between the layers. This
modification helps to solve the problem of vanishing gradients.

2.3. Detection of sensor impairment

In [14], the influence of rain and fog on the performance of
data from LiDAR sensors is assessed. The analysis shows a
significant impairment of object detection, with a significant
reduction in the number of points per object. This confirms the
need for an approach to detecting such adverse conditions.
Additionally, support vector machines (SVM) and k-Nearest-
Neighbor classifiers (kNN) are applied to classify the weather
conditions, achieving a high accuracy. Thus an awareness of
impairment due to weather conditions was implemented.
However no work was found where an awareness of the
condition of the sensor itself, due to dirt or other obstructions,
is implemented.

3. Approach

This contribution describes a solution to detect sensor
impairment in LiDAR. It includes an approach for

52 Junyu Qu et al. / Procedia Manufacturing 52 (2020) 50–55
 Qu et al. / Procedia Manufacturing 00 (2020) 000–000 3

preprocessing LiDAR data and two classification tasks based
on the preprocessed data. The first classification task consists
in determining whether the sensor is impaired (binary
classification). In the second task (multi-classification), the
impaired condition is further divided into two levels of
impairment.

3.1. Data collection and preparation

Point clouds were generated using the Velodyne VLP-16
LiDAR. To generate a data stream for training we recorded five
distinctive scenes. Three scenes were recorded indoors at
distinctive places. The other two scenes were recorded
outdoors. Each scene was divided into three cases: clear vision,
lightly impaired vision and heavily impaired vision. To
simulate different states of the LiDAR, markers of two
different sizes where placed on the sensor. Each point cloud
dataset is irregular, and the number of points varies between
frames. Based on these characteristics, we preprocess the point
cloud datasets with regularization. The first step is to convert
the whole spatial area of a point cloud into 𝑛𝑛 ∗ 𝑛𝑛 ∗ 𝑛𝑛 boxes
(voxels), then the number of points in each voxel and the sum
of the intensity of all points in each voxel are calculated. The
𝑛𝑛 ∗ 𝑛𝑛 ∗ 𝑛𝑛 voxels with one channel, containing the sum of the
intensity of all points in each voxel, can be processed as a
regular input by three-dimensional convolutional neural
networks.

Fig. 1. Visualisation of preprocessed voxels.

An example of a point cloud converted to a resolution of
5 ∗ 5 ∗ 5 voxels is visualised in Figure 1. The higher the
intensity of points within a voxel, the more the colour is shifted
towards red. Voxels without a point are transparent. In the
following section we shortly present the architectures used for
classification.

3.2. Network Architecture for binary classification

The CNN binary classification algorithm considered here
consists of five layers: a convolutional layer, a mean pooling

layer, a fully connected layer and two activation function
layers. The arrangement is shown in Figure 2, with an input
resolution of 5 ∗ 5 ∗ 5 voxels. In this scenario the first layer
contains a filter 𝜔𝜔𝐿𝐿1 with the size 2 ∗ 2 ∗ 2 and bias 𝑏𝑏𝐿𝐿1 with
the size 4 ∗ 4 ∗ 4
After the first layer the size of the output is 4 ∗ 4 ∗ 4. The
fourth layer contains a filter 𝜔𝜔𝐿𝐿4 with the size 2 ∗ 2 ∗ 2 and
bias 𝑏𝑏𝐿𝐿4 with the size 1.

Fig. 2. Layer structure of CNN for binary classification.

The vector 𝜃𝜃 includes
optimisation parameters for the convolutional layer and fully
connected layer. For the convolutional layer filters 𝜔𝜔𝐿𝐿1 and
bias 𝑏𝑏𝐿𝐿1 were used and for the fully connected layer filters 𝜔𝜔𝐿𝐿4
and bias 𝑏𝑏𝐿𝐿4 were used.

3.3. Network Architecture for multi-classification

The algorithm for multi-classification consists of four layers
which are a convolutional layer, an activation function layer, a
mean pooling layer, and a softmax layer, as shown in Figure 3.

Fig. 3. Layer structure of CNN for multi classification.

In this particular example the input for the neural network
has a resolution of 25 ∗ 25 ∗ 25 voxels. In the first layer, 𝜔𝜔𝐿𝐿1
consists of 𝑧𝑧 filters, which each have a size of 18 ∗ 18 ∗ 18,
and a bias 𝑏𝑏𝐿𝐿1 with the size 8 ∗ 8 ∗ 8 fter the first layer the
size of the output is 8 ∗ 8 ∗ 8 ∗ 𝑧𝑧. Through the pooling layer,
the size is reduced to 4 ∗ 4 ∗ 4 ∗ 𝑧𝑧. The fourth layer has the
filter 𝜔𝜔𝐿𝐿4 with the size 64 ∗ 𝑧𝑧 ∗ 3 and bias 𝑏𝑏𝐿𝐿4 with the size 3.
Then the output contains the probabilities for all three classes.

 Junyu Qu et al. / Procedia Manufacturing 52 (2020) 50–55 53
4 Qu et al. / Procedia Manufacturing 00 (2020) 000–000

4. Result and discussion

In the following sections the results in both classification
tasks are presented for different input formats (number of
voxels). For the multi-classification task, the input format and
other parameters are tuned to improve performance.
Subsequently the achieved accuracies and computational cost
are briefly discussed.

4.1. Validation tests for binary classification

The validation tests for binary classification are divided into
two phases: testing the algorithm and improving the algorithm
using the data. In the first phase a smaller set of data is used.
Based on encouraging preliminary results, all available data
from all scenes is used to improve the algorithm in the second
phase.

In the first phase, the computational cost for preprocessing
was minimised by considering only one scene. The point
clouds were divided into two classes: “impaired” and “clear”.
100 point clouds were randomly selected from each class. 160
point clouds were used for training and 40 point clouds for
testing. The data was preprocessed for two different input
resolutions, 5 ∗ 5 ∗ 5 voxels and 15 ∗ 15 ∗ 15 voxels, and
separate models were trained with each format. The number of
iterations here was 1000 for both cases. In the testing data, the
average final output (probability of sensor impairment) was
0.9989 for the 20 “impaired” point clouds and 2.2182e-04 for
the 20 “clear” point clouds. This comes very close to the ideal
average outputs, respectively 1 and 0. Training lasted only
approximately 1 minute for 5 ∗ 5 ∗ 5 voxels and almost 10
minutes for 15 ∗ 15 ∗ 15 voxels on a standard CPU. However,
the higher resolution delivered better predictions.

For the second phase, preprocessing was automated using
Python. In each of the 5 scenes, 10 point clouds were randomly
selected from each of the three classes (clear, lightly impaired,
heavily impaired), resulting in 150 point clouds in total. These
were split into 120 point clouds for training (8 from each of the
15 cases) and 30 point clouds for testing (2 from each case). In
this phase three different resolutions were used and compared:
5 ∗ 5 ∗ 5 voxels, 9 ∗ 9 ∗ 9 voxels and 15 ∗ 15 ∗ 15 voxels.
The number of iterations was set to 10000 for all the considered
cases. Once again the intuition was confirmed that a higher
resolution (higher number of voxels) leads to better predictions
while increasing the time needed for training.

4.2. Validation tests and tuning for multi classification

Next we consider multi-classification of the degree of
impairment, with three classes: clear, lightly impaired and
heavily impaired. First different input resolutions were tested.
For each of the 5 scenes, 100 point clouds were randomly
selected from each class to obtain a total of 1500 point clouds.
These were divided into 1200 point clouds for training and 300
point clouds for testing (respectively 80 and 20 from each
case). We first considered five different input resolutions, as

shown in Table 1. The number of mini-batches for the training
is 12 and the number of epochs is set to 10. The average
accuracies during training are compared, as shown in Figure 4.

Fig. 4. Cost for different numbers of voxels.

Table 1. Accuracy rate for different numbers of input resolutions.

Voxels 5x5x5 15x15x15 25x25x25 35x35x35 45x45x45

Accuracy [%] 49.3 69.3 72.3 71.3 70.6

It becomes apparent that accuracy peaks at 25 ∗ 25 ∗ 25
voxels. The training phase is especially costly with high
resolutions and the low resolutions may not lead to the loss of
too much information. Based on this result, an input resolution
of 25 ∗ 25 ∗ 25 is used for all subsequent tests, and all the
available data (1000 point clouds for each class, in each scene)
was preprocessed for this resolution, thus including a total of
15000 point clouds. The point clouds were split in the same
proportions as above.

In the next test, all parameters except the minibatch size were
kept the same as above. To determine the optimal minibatch
size, training was performed with five minibatch sizes (60, 80,
100, 120 and 240), as shown in Figure 5 and Table 2.

Fig. 5. Cost for different minibatch sizes.

54 Junyu Qu et al. / Procedia Manufacturing 52 (2020) 50–55
 Qu et al. / Procedia Manufacturing 00 (2020) 000–000 5

Table 2. Accuracy rate for different minibatch sizes.

Minibatch size 60 80 100 120 240

Accuracy [%] 79.3 79.7 80.3 80.2 75.7

After selecting a minibatch size of 100, parameters within
the model were tuned. The regularization method invoking the
L2 norm, i.e. L2 Regularization, was used in our examples
which has an additional parameter 𝜆𝜆. To determine the adjusted
𝜆𝜆 for L2 Regularization, eight different 𝜆𝜆 were used in training,
as shown in Figure 6 and Table 3. The best accuracy was
obtained for 𝜆𝜆 = 0.04, therefore this setting was chosen.

Fig. 6. Cost with different L2 regularization parameters.

Table 3. Accuracy rate with different L2 regularization parameters.

𝜆𝜆 0.001 0.01 0.02 0.03 0.04 0.05 0.1 1

Accuracy [%] 79.3 79.7 80.5 80.7 81.53 81.3 80.7 70.7

The learning rate, the size of the filter and the number of
filters in the convolutional layer also influence accuracy. It was
observed that the size of the filter and the number of filters have
a significant effect on the accuracy of the prediction. Previous
experiments were all performed with two 2 ∗ 2 ∗ 2 filters. At
first the number of filters was fixed as two and only the size of
the filters was varied, as shown in Figure 7 and Table 4.

Fig. 7. Cost for different filter sizes.

Table 4. Accuracy rate for different filter sizes.

Filter size 6 8 10 12 14 16 18 20 22 24

Accuracy [%] 82.8 83.1 83.2 85.6 86.8 87.2 88 86.5 83.5 91.7

After the size of filters was set to 18, the number of filters
was varied. To quickly determine the best number of filters, a
sequence of increasing powers of two was used for the number
of filters. Based on the results shown in Figure 8 and Table 5,
the parameter was set to 64.

Fig. 8. Cost for different numbers of filters.

Table 5. Accuracy rate for different numbers of filters.

Number of filters 4 8 16 32 64 128

Accuracy [%] 89.9 90.3 90.7 91.1 91.7 91.1

Fig. 9. Prediction for multi classification with 64 filters with size 18
(25*25*25 voxels) in percent

The average accuracy of this model for all point clouds of
the test set is 91.67%. The detailed results for each class are
shown in Figure 9. The highest accuracy is achieved when
detecting heavy impairment, reaching 98.2%. A summary of
the successive accuracy improvements through parameter
tuning is given in Table 6.

 Junyu Qu et al. / Procedia Manufacturing 52 (2020) 50–55 55
6 Qu et al. / Procedia Manufacturing 00 (2020) 000–000

Table 6. Summary of accuracy improvements through parameter tuning.

Tuning Method Accuracy

Baseline (simple CNN with 25 voxels) 72.3%

Ten times more data and minibatch 100 80.33%

Regularization method L2 with 𝜆𝜆 = 0.04 81.53%

Filter size adjusted to 18 ∗ 18 ∗ 18 88.03%

Number of filters increased to 64 91.67%

4.3. Discussion

The procedure of developing this algorithm can be divided
in three parts which were recording LiDAR data, setting up the
preprocessing of LiDAR data and finding a working deep
learning algorithm. The obstruction of the LiDAR was created
artificially to ensure a defined and reproducible state of
impairment. This differs from real conditions where dirt is
randomly distributed on the LIDAR system and the size of dirt
is not known, however this made it much easier to label the
data. The voxel based method used for preprocessing made it
possible to feed the data to a CNN while limiting loss of
information. In the classification model Cross-entropy Loss
(CEL) was chosen as a loss function, which in combination
with the sigmoid activation function simplified the calculation
of gradients. The backpropagation algorithm was faster and
more accurate than other methods we considered at the
beginning. The developed model was simple enough to train on
a regular office computer. The validation results of the
algorithm for multi classification achieved a satisfactory
accuracy of 91.7%, with a much higher rate of 98.2% for large
obstructions. It was shown that the algorithm works with data
collected from different scenes, both indoors and outdoors.

5. Conclusion

This contribution shows that a classifier based on a CNN can
be used to detect obstructions on a LiDAR sensor, thus
providing an example for a basic level of self-awareness in
autonomous systems. This type of self-awareness is critical in
reducing the need for monitoring quality of sensing either
manually or with an additional sensor. Future work may consist
in testing and improving the algorithm developed here for a
wider range of conditions, including a greater variety of
obstructions. Additionally the approach could be tested on

other sensor types in harsh environments such as inside
manufacturing equipment.

References

[1] Morrison R, Reiss D. Precocious development of self-awareness in
dolphins. PLoS One 2018.

[2] Ku J, Mozifian M, Lee J, Harakeh A, Waslander SL. Joint 3d proposal
generation and object detection from view aggregation. In: International
Conference on Intelligent Robots and Systems 2018.

[3] Ton C, Omar A, Szedenko V, Tran V, Aftab A, Perla F, Bernstein M, Yang
Y. LIDAR Assist spatial sensing for the visually impaired and performance
analysis. In: IEEE Transactions on Neural Systems and Rehabilitation
Engineering; 2018. p. 1727-1734.

[4] Verschoof-van der Vaart WB, Lambers K. Learning to Look at LiDAR:
The use of R-CNN in the automated detection of archaeological objects in
LiDAR data from the Netherlands. In: Journal of Computer Applications;
2019.

[5] Lagarias JC, Reeds JA, Wright MH, Wright PE. Convergence properties of
the Nelder--Mead simplex method in low dimensions. In: SIAM Journal on
optimization; 1998. p. 112-147.

[6] Ruder S. An overview of gradient descent optimization algorithms. arXiv
preprint 2016.

[7] Li B. 3d fully convolutional network for vehicle detection in point cloud.
In: International Conference on Intelligent Robots and Systems (IROS);
2017.

[8] Zhou Y, Oncel T. Voxelnet: End-to-end learning for point cloud based 3d
object detection. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition; 2018.

[9] Engelcke M, Rao D, Wang DZ, Tong CH, Posner I. Vote3deep: Fast object
detection in 3d point clouds using efficient convolutional neural networks.
In: IEEE International Conference on Robotics and Automation (ICRA);
2017.

[10] Velas M, Spanel M, Hradis M, Herout A. Cnn for very fast ground
segmentation in velodyne lidar data. In: IEEE International Conference on
Autonomous Robot Systems and Competitions (ICARSC); 2018.

[11] Wang DZ, Posner I. Voting for Voting in Online Point Cloud Object
Detection. In: Robotics: Science and Systems; 2015.

[12] Li B, Zhang T, Xia T. Vehicle detection from 3d lidar using fully
convolutional network. arXiv preprint 2016.

[13] Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep
convolutional neural networks. Advances in neural information processing
systems 2012.

[14] Heinzler R, Schindler P, Seekircher J, Ritter W, Stork W. Weather
Influence and Classification with Automotive Lidar Sensors. In: IEEE
Intelligent Vehicles Symposium; 2019.

