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Abstract 

Autonomous systems, as found in autonomous driving and highly automated production systems, require an increased reliability 
in order to achieve their high economic potential. Self-aware sensors are a key component in highly reliable autonomous 
systems. In this paper we highlight a proof of concept (PoC) of a deep learning method that enables a LiDAR (Light detection 
and ranging) sensor to detect functional impairment. More specifically, a deep convolutional neural network (CNN) is developed 
and trained with labelled LiDAR data in the form of point clouds to classify the degree of impairment of its functionality. The 
results are statistically significant and can be regarded as a general classifier for objects within LiDAR data, applied to selected 
cases of sensor impairment. In detecting impairment and evaluating the correctness of the captured data, the sensor gains a basic 
form of self-awareness. The presented methods and insights pave the way for improved safety of autonomous systems by the 
means of more sophisticated “self-aware” neural networks. 
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1. Introduction 

Autonomous systems are in general not maintained by an 
operator and therefore self-awareness of functionality is not 
only a way to bridge the gap opened by the lack of testing 
functionality but also a further step towards self-aware robots, 
as more and more functions of the robot are checked by the 
robot itself. In animals, a simple form of mirror-self-recognition 
(MSR) is demonstrated when animals realise they have been 
marked when they see their reflection in a mirror [1]. In this 
contribution a similar level of self-awareness is implemented 
concerning the state of a robot’s sensors. 

3D sensor technology is currently being developed for driver 
assistance systems and autonomous driving. LiDARs are 
popular examples of 3D sensors with specific strengths such as 
their range (distances from centimetres up to hundreds of 
metres) and their high angular resolution compared to radar. 
Shortcomings of a single frequency laser scanning method are 
particularly resolution and effective colour-blindness compared 
to cameras, these can be partly overcome by using 
convolutional neural networks (CNN) for object detection and 
localization as well as combining LiDAR with other sensors 
such as cameras [2]. Further applications of LiDAR technology 
include assisting a visually impaired person [3], and detecting 
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archaeological objects [4]. This paper describes a CNN that is 
trained to determine whether a LiDAR sensor is impaired by 
dirt or other obstructions, and to which degree it is impaired, 
thereby enabling a higher level of autonomy and enhancing 
safety in LiDAR applications. 

2. State of the art 

In the following relevant methods from existing work are 
presented, focusing on preprocessing LiDAR data, 
classification using CNN and the detection of sensor 
impairment. 

2.1. Preprocessing LiDAR data 

The output data from LiDAR sensors consists of point 
clouds. The most common method for preprocessing these is 
by the means of voxel grids. Discretised point clouds in square 
grids and binary coding for 3D voxel grids are considered in 
[5]. The processed point cloud can be drawn as a 4D data array. 
The dimensions are length, height, width and the number of 
channels. A binary channel can be used to determine whether 
points are inside the grid. Then the mechanism is extended 
from 2D CNN to 3D for the considered point cloud. 

[6] introduces a voxel coding layer that could learn the 
unified features directly from LIDAR point clouds. The first 
step is partition into voxels. The number of points in each voxel 
varies significantly, some voxels are empty. The contents of a 
voxel can be described as 𝑉𝑉 =  {𝑝𝑝𝑖𝑖 = [𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖, 𝑧𝑧𝑖𝑖, 𝑟𝑟𝑖𝑖]𝑇𝑇 ∈
 𝑅𝑅4}𝑖𝑖=1…𝑡𝑡 𝑝𝑝𝑖𝑖 consists of the coordinates 𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖, 𝑧𝑧𝑖𝑖  for a 
point and the received reflection 𝑟𝑟𝑖𝑖

 non-empty if the number of points 𝑡𝑡  exceeds a 
threshold  𝑇𝑇. First, the local mean value is calculated as the 
centre of gravity of all points in 𝑉𝑉 and is designated as (𝜗𝜗𝑥𝑥, 𝜗𝜗𝑦𝑦,
𝜗𝜗𝑧𝑧). Then each point 𝑝𝑝𝑖𝑖  is extended with the relative offset 
𝑉𝑉𝑖𝑖𝑖𝑖 =  {𝑝𝑝𝑖̂𝑖 = [𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖, 𝑧𝑧𝑖𝑖, 𝑟𝑟𝑖𝑖, 𝑥𝑥𝑖𝑖 − 𝜗𝜗𝑥𝑥, 𝑦𝑦𝑖𝑖 − 𝜗𝜗𝑦𝑦,   𝑧𝑧𝑖𝑖 − 𝜗𝜗𝑧𝑧]𝑇𝑇 ∈
 𝑅𝑅7}𝑖𝑖=1…𝑡𝑡.  

Next, each point is transformed by a Fully-Connected 
Network (FCN) into a feature space for later processes. [7, 8] 
encoded each non-empty voxel with 6 statistical quantities that 
derived from all points contained in the voxel. The points in the 
point cloud are defined by point positions and reflection values. 
First, the 3D space is divided into a grid with a fixed resolution, 
like an image, and each occupied cell is converted into a fixed-
dimensional feature vector. The normal feature vector contains 
a binary occupancy value, the mean and variance of the 
reflection values, and three form factors. Thus the total voxel 
has 6 statistical quantities. Cells that are empty are not stored. 
The 3D voxel grids can be projected onto a plane to get a 2D 
point map [9]. 

2.2. Classification using CNN 

Many image classification competitions have been won 
using deep learning architectures based on a CNN. [10] also 
confirms that a CNN is well suited to perform segmentation 

tasks with LiDAR data. This section aims to give an overview 
of some architectures that may provide the basis for classifying 
3-dimensional data from LiDAR sensors for impairment 
detection. 

AlexNet [11] achieved a leading result in the ImageNet 
Large Scale Visual Recognition Challenge (ILSVRC) in 2010 
(error rates in Top-1 and Top-5). It consists of 65,000 neurons 
and 60 million parameters. The AlexNet algorithm was 
originally written with CUDA and ran on GPUs. The whole 
process is performed using five convolutional layers and three 
fully connected layers. For down-sampling, max-pooling is 
used to reduce the number of neurons in the following layers. 
The image size of the input for AlexNet is 227 ∗ 227 ∗ 3 and 
the size of the filter is 11 ∗ 11 ∗ 3. With step size 4, the size of 
the output for this layer is 55 ∗ 55 ∗ 96. To avoid overfitting, a 
drop-out within the first Fully-Connected layer was used in 
addition to the data expansion of the input data. 

VGGNet [12] is also a very successful CNN architecture. 
Compared to AlexNet, VGGNet contains more layers and also 
delivered a good result in ILSVRC 2012 (error rates in Top-1 
and Top-5). It consists of about 140 million parameters. There 
are 13 convolutional layers, 5 max-pooling layers and 3 fully 
connected layers. Apart from the depth, the other major 
difference to AlexNet is the structure of the convolutional 
layer. The size of the filter in the convolutional layer for 
VGGNet is 3 ∗ 3 ∗ 3 instead of 11 ∗ 11 ∗ 3 AlexNet. 

Another CNN architecture that has been successfully 
applied to image classification is ResNet [13]. The so-called 
Residual Neural Network (ResNet) is a new idea with "jump 
connections", shown successfully at ILSVRC 2015. In contrast 
to other architectures, the output for an input 𝑥𝑥 is not 𝑓𝑓(𝑥𝑥) but 
𝑓𝑓(𝑥𝑥) + 𝑥𝑥 , where 𝑓𝑓(𝑥𝑥) is the output of convolutional layers. 
First VGGNet is extended from 19 layers to 34 layers, then this 
structure is used to jump connections between the layers. This 
modification helps to solve the problem of vanishing gradients. 

2.3. Detection of sensor impairment 

In [14], the influence of rain and fog on the performance of 
data from LiDAR sensors is assessed. The analysis shows a 
significant impairment of object detection, with a significant 
reduction in the number of points per object. This confirms the 
need for an approach to detecting such adverse conditions. 
Additionally, support vector machines (SVM) and k-Nearest-
Neighbor classifiers (kNN) are applied to classify the weather 
conditions, achieving a high accuracy. Thus an awareness of 
impairment due to weather conditions was implemented. 
However no work was found where an awareness of the 
condition of the sensor itself, due to dirt or other obstructions, 
is implemented. 

3. Approach 

This contribution describes a solution to detect sensor 
impairment in LiDAR. It includes an approach for 
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preprocessing LiDAR data and two classification tasks based 
on the preprocessed data. The first classification task consists 
in determining whether the sensor is impaired (binary 
classification). In the second task (multi-classification), the 
impaired condition is further divided into two levels of 
impairment. 

3.1. Data collection and preparation  

Point clouds were generated using the Velodyne VLP-16 
LiDAR. To generate a data stream for training we recorded five 
distinctive scenes. Three scenes were recorded indoors at 
distinctive places. The other two scenes were recorded 
outdoors. Each scene was divided into three cases: clear vision, 
lightly impaired vision and heavily impaired vision. To 
simulate different states of the LiDAR, markers of two 
different sizes where placed on the sensor. Each point cloud 
dataset is irregular, and the number of points varies between 
frames. Based on these characteristics, we preprocess the point 
cloud datasets with regularization. The first step is to convert 
the whole spatial area of a point cloud into 𝑛𝑛 ∗ 𝑛𝑛 ∗ 𝑛𝑛  boxes 
(voxels), then the number of points in each voxel and the sum 
of the intensity of all points in each voxel are calculated. The 
𝑛𝑛 ∗ 𝑛𝑛 ∗ 𝑛𝑛 voxels with one channel, containing the sum of the 
intensity of all points in each voxel, can be processed as a 
regular input by three-dimensional convolutional neural 
networks.  

 

Fig. 1. Visualisation of preprocessed voxels. 

An example of a point cloud converted to a resolution of  
5 ∗ 5 ∗ 5  voxels is visualised in Figure 1. The higher the 
intensity of points within a voxel, the more the colour is shifted 
towards red. Voxels without a point are transparent. In the 
following section we shortly present the architectures used for 
classification. 

3.2. Network Architecture for binary classification 

The CNN binary classification algorithm considered here 
consists of five layers: a convolutional layer, a mean pooling 

layer, a fully connected layer and two activation function 
layers. The arrangement is shown in Figure 2, with an input 
resolution of 5 ∗ 5 ∗ 5 voxels. In this scenario the first layer 
contains a filter 𝜔𝜔𝐿𝐿1 with the size 2 ∗ 2 ∗ 2  and bias 𝑏𝑏𝐿𝐿1 with 
the size 4 ∗ 4 ∗ 4
After the first layer the size of the output is 4 ∗ 4 ∗ 4. The 
fourth layer contains a filter 𝜔𝜔𝐿𝐿4  with the size 2 ∗ 2 ∗ 2 and 
bias 𝑏𝑏𝐿𝐿4 with the size 1. 

Fig. 2. Layer structure of CNN for binary classification. 

The vector 𝜃𝜃  includes 
optimisation parameters for the convolutional layer and fully 
connected layer. For the convolutional layer filters 𝜔𝜔𝐿𝐿1 and 
bias 𝑏𝑏𝐿𝐿1 were used and for the fully connected layer filters 𝜔𝜔𝐿𝐿4
and bias 𝑏𝑏𝐿𝐿4 were used.  

3.3. Network Architecture for multi-classification 

The algorithm for multi-classification consists of four layers 
which are a convolutional layer, an activation function layer, a 
mean pooling layer, and a softmax layer, as shown in Figure 3. 

Fig. 3. Layer structure of CNN for multi classification. 

In this particular example the input for the neural network 
has a resolution of  25 ∗ 25 ∗ 25 voxels. In the first layer, 𝜔𝜔𝐿𝐿1 
consists of 𝑧𝑧 filters, which each have a size of 18 ∗ 18 ∗ 18, 
and a bias 𝑏𝑏𝐿𝐿1 with the size 8 ∗ 8 ∗ 8 fter the first layer the 
size of the output is 8 ∗ 8 ∗ 8 ∗ 𝑧𝑧. Through the pooling layer, 
the size is reduced to 4 ∗ 4 ∗ 4 ∗ 𝑧𝑧.  The fourth layer has the 
filter 𝜔𝜔𝐿𝐿4 with the size 64 ∗ 𝑧𝑧 ∗ 3 and bias 𝑏𝑏𝐿𝐿4 with the size 3. 
Then the output contains the probabilities for all three classes. 
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4. Result and discussion 

In the following sections the results in both classification 
tasks are presented for different input formats (number of 
voxels). For the multi-classification task, the input format and 
other parameters are tuned to improve performance. 
Subsequently the achieved accuracies and computational cost 
are briefly discussed. 

4.1. Validation tests for binary classification 

The validation tests for binary classification are divided into 
two phases: testing the algorithm and improving the algorithm 
using the data. In the first phase a smaller set of data is used. 
Based on encouraging preliminary results, all available data 
from all scenes is used to improve the algorithm in the second 
phase. 

In the first phase, the computational cost for preprocessing 
was minimised by considering only one scene. The point 
clouds were divided into two classes: “impaired” and “clear”. 
100 point clouds were randomly selected from each class. 160 
point clouds were used for training and 40 point clouds for 
testing. The data was preprocessed for two different input 
resolutions, 5 ∗ 5 ∗ 5  voxels and 15 ∗ 15 ∗ 15  voxels, and 
separate models were trained with each format. The number of 
iterations here was 1000 for both cases. In the testing data, the 
average final output (probability of sensor impairment) was 
0.9989 for the 20 “impaired” point clouds and 2.2182e-04 for 
the 20 “clear” point clouds. This comes very close to the ideal 
average outputs, respectively 1 and 0. Training lasted only 
approximately 1 minute for 5 ∗ 5 ∗ 5  voxels and almost 10 
minutes for 15 ∗ 15 ∗ 15 voxels on a standard CPU. However, 
the higher resolution delivered better predictions. 

For the second phase, preprocessing was automated using 
Python. In each of the 5 scenes, 10 point clouds were randomly 
selected from each of the three classes (clear, lightly impaired, 
heavily impaired), resulting in 150 point clouds in total. These 
were split into 120 point clouds for training (8 from each of the 
15 cases) and 30 point clouds for testing (2 from each case). In 
this phase three different resolutions were used and compared: 
5 ∗ 5 ∗ 5  voxels, 9 ∗ 9 ∗ 9 voxels and 15 ∗ 15 ∗ 15  voxels. 
The number of iterations was set to 10000 for all the considered 
cases. Once again the intuition was confirmed that a higher 
resolution (higher number of voxels) leads to better predictions 
while increasing the time needed for training. 

4.2.  Validation tests and tuning for multi classification 

Next we consider multi-classification of the degree of 
impairment, with three classes: clear, lightly impaired and 
heavily impaired. First different input resolutions were tested. 
For each of the 5 scenes, 100 point clouds were randomly 
selected from each class to obtain a total of 1500 point clouds. 
These were divided into 1200 point clouds for training and 300 
point clouds for testing (respectively 80 and 20 from each 
case). We first considered five different input resolutions, as 

shown in Table 1. The number of mini-batches for the training 
is 12 and the number of epochs is set to 10. The average 
accuracies during training are compared, as shown in Figure 4. 

Fig. 4. Cost for different numbers of voxels. 

Table 1. Accuracy rate for different numbers of input resolutions. 

Voxels 5x5x5 15x15x15 25x25x25 35x35x35 45x45x45 

Accuracy [%] 49.3 69.3 72.3 71.3 70.6 

 

It becomes apparent that accuracy peaks at 25 ∗ 25 ∗ 25 
voxels. The training phase is especially costly with high 
resolutions and the low resolutions may not lead to the loss of 
too much information. Based on this result, an input resolution 
of  25 ∗ 25 ∗ 25 is used for all subsequent tests, and all the 
available data (1000 point clouds for each class, in each scene) 
was preprocessed for this resolution, thus including a total of 
15000 point clouds. The point clouds were split in the same 
proportions as above. 

In the next test, all parameters except the minibatch size were 
kept the same as above. To determine the optimal minibatch 
size, training was performed with five minibatch sizes (60, 80, 
100, 120 and 240), as shown in Figure 5 and Table 2. 

Fig. 5. Cost for different minibatch sizes. 

 



54	 Junyu Qu  et al. / Procedia Manufacturing 52 (2020) 50–55
 Qu et al. / Procedia Manufacturing 00 (2020) 000–000  5 

 

Table 2. Accuracy rate for different minibatch sizes. 

Minibatch size 60 80 100 120 240 

Accuracy [%] 79.3 79.7 80.3 80.2 75.7 

After selecting a minibatch size of 100, parameters within 
the model were tuned. The regularization method invoking the 
L2 norm, i.e. L2 Regularization, was used in our examples 
which has an additional parameter 𝜆𝜆. To determine the adjusted 
𝜆𝜆 for L2 Regularization, eight different 𝜆𝜆 were used in training, 
as shown in Figure 6 and Table 3. The best accuracy was 
obtained for 𝜆𝜆 = 0.04, therefore this setting was chosen. 

Fig. 6. Cost with different L2 regularization parameters.

Table 3. Accuracy rate with different L2 regularization parameters. 

𝜆𝜆 0.001 0.01 0.02 0.03 0.04 0.05 0.1 1 

Accuracy [%] 79.3 79.7 80.5 80.7 81.53 81.3 80.7 70.7 

The learning rate, the size of the filter and the number of 
filters in the convolutional layer also influence accuracy. It was 
observed that the size of the filter and the number of filters have 
a significant effect on the accuracy of the prediction. Previous 
experiments were all performed with two 2 ∗ 2 ∗ 2 filters. At 
first the number of filters was fixed as two and only the size of 
the filters was varied, as shown in Figure 7 and Table 4. 

Fig. 7. Cost for different filter sizes.

 

Table 4. Accuracy rate for different filter sizes. 

Filter size 6 8 10 12 14 16 18 20 22 24 

Accuracy [%] 82.8 83.1 83.2 85.6 86.8 87.2 88 86.5 83.5 91.7 

After the size of filters was set to 18, the number of filters 
was varied. To quickly determine the best number of filters, a 
sequence of increasing powers of two was used for the number 
of filters. Based on the results shown in Figure 8 and Table 5, 
the parameter was set to 64. 

Fig. 8. Cost for different numbers of filters. 

Table 5. Accuracy rate for different numbers of filters. 

Number of filters 4 8 16 32 64 128 

Accuracy [%] 89.9 90.3 90.7 91.1 91.7 91.1 

 

Fig. 9. Prediction for multi classification with 64 filters with size 18 
(25*25*25 voxels) in percent

The average accuracy of this model for all point clouds of 
the test set is 91.67%. The detailed results for each class are 
shown in Figure 9. The highest accuracy is achieved when 
detecting heavy impairment, reaching 98.2%. A summary of 
the successive accuracy improvements through parameter 
tuning is given in Table 6. 

  



	 Junyu Qu  et al. / Procedia Manufacturing 52 (2020) 50–55� 55
6 Qu et al. / Procedia Manufacturing 00 (2020) 000–000 

 

Table 6. Summary of accuracy improvements through parameter tuning. 

Tuning Method Accuracy 

Baseline (simple CNN with 25 voxels) 72.3% 

Ten times more data and minibatch 100 80.33% 

Regularization method L2 with 𝜆𝜆 = 0.04 81.53% 

Filter size adjusted to 18 ∗ 18 ∗ 18 88.03% 

Number of filters increased to 64  91.67% 

4.3. Discussion 

The procedure of developing this algorithm can be divided 
in three parts which were recording LiDAR data, setting up the 
preprocessing of LiDAR data and finding a working deep 
learning algorithm. The obstruction of the LiDAR was created 
artificially to ensure a defined and reproducible state of 
impairment. This differs from real conditions where dirt is 
randomly distributed on the LIDAR system and the size of dirt 
is not known, however this made it much easier to label the 
data. The voxel based method used for preprocessing made it 
possible to feed the data to a CNN while limiting loss of 
information. In the classification model Cross-entropy Loss 
(CEL) was chosen as a loss function, which in combination 
with the sigmoid activation function simplified the calculation 
of gradients. The backpropagation algorithm was faster and 
more accurate than other methods we considered at the 
beginning. The developed model was simple enough to train on 
a regular office computer. The validation results of the 
algorithm for multi classification achieved a satisfactory 
accuracy of 91.7%, with a much higher rate of 98.2% for large 
obstructions. It was shown that the algorithm works with data 
collected from different scenes, both indoors and outdoors. 

5. Conclusion 

This contribution shows that a classifier based on a CNN can 
be used to detect obstructions on a LiDAR sensor, thus 
providing an example for a basic level of self-awareness in 
autonomous systems. This type of self-awareness is critical in 
reducing the need for monitoring quality of sensing either 
manually or with an additional sensor. Future work may consist 
in testing and improving the algorithm developed here for a 
wider range of conditions, including a greater variety of 
obstructions. Additionally the approach could be tested on 

other sensor types in harsh environments such as inside 
manufacturing equipment. 
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